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Abstract—Internet of things (IoT) applications are becoming
more resource-hungry and latency-sensitive, which are severely
constrained by limited resources of current mobile hardware. Mo-
bile cloud computing (MCC) can provide abundant computation
resources, while mobile edge computing (MEC) aims to reduce
the transmission latency by offloading complex tasks from IoT
devices to nearby edge servers. It is still challenging to satisfy
the quality of service (QoS) with different constraints of IoT
devices in a collaborative MCC and MEC environment. In this
paper, we propose three constrained multi-objective evolution-
ary algorithms (CMOEAs) for solving IoT-enabled computation
offloading problems in collaborative edge and cloud computing
networks. First of all, a constrained multi-objective computation
offloading model considering time and energy consumption is
established in the mobile environment. Inspired by the push
and pull search (PPS) framework, three constrained multi-
objective evolutionary algorithms are developed by combing the
advantages of population-based search algorithms with flexible
constraint handling mechanisms. On one hand, three popular and
challenging constrained benchmark suites are selected to test the
performance of the proposed algorithms by comparing them to
the other seven state-of-the-art CMOEAs. On the other hand, a
multi-server multi-user multi-task computation offloading exper-
imental scenario with a different number of IoT devices is used
to evaluate the performance of three proposed algorithms and
other compared algorithms as well as representative offloading
schemes. The experimental results of the benchmark suites and
computation offloading problems demonstrate the effectiveness
and superiority of the proposed algorithms.

Index Terms—Mobile edge computing, mobile cloud comput-
ing, computation offloading, Internet of Things (IoT), constrained
multi-objective optimization.

I. INTRODUCTION

ITH the explosive development of mobile networks

and Internet of Things (IoT), more and more
computation-intensive and latency-sensitive applications are
emerging and deployed into different IoT devices [1], [2].
However, due to the inherent size constraints of IoT devices,
limited computation capability and battery life cannot satisfy
the quality of service (QoS) of these complex applications,
such as augmented reality (AR), face recognition and online
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gaming [3]. Since the cloud servers have more powerful
computation resources than mobile devices, the computation
tasks can be offloaded to and processed at cloud servers, which
can enhance the computation capacity and reduce energy
consumption of these mobile devices [4]. The new computing
paradigm that offloads tasks to the cloud through wireless
networks is known as mobile cloud computing (MCC) [5].

Generally speaking, in MCC, cloud data centers are mostly a
little far away from mobile devices, which need more propaga-
tion delay to the remote cloud. To address this problem, mobile
edge computing (MEC) (or multi-access edge computing) [6]
is a promising technique to overcome these challenges. In
MEC, the edge servers are deployed at the edge of cellular
networks, such as smart gateways, access points, and base
stations [7]. The latency-sensitive tasks can be offloaded to
edge servers with the aim to reduce the communication delay
between mobile devices and edge servers. Hence, computation
offloading is an attractive and challenging topic in MEC.
A variety of architectures and offloading policies have been
investigated. The literature [8] presented the challenges and
methods of realizing low latency and high reliability of several
mission-critical applications in MEC, such as virtual reality
(VR), vehicle-to-everything (V2X), edge artificial intelligence
(AI). Pham et al. [9] provided a holistic overview of MEC
technology and its potential use cases and applications under
the 5G mobile networks. Wang et al. [10] analyzed different
architectural design alternatives based on cloud/edge/fog com-
puting for connected vehicles. They also compared the char-
acteristics in different edge computing paradigms, including
MCC, Cloudlet, Fog computing and MEC.

Wu et al. [11] studied how to dynamically partition a
given application and determine whether the computation
task is executed locally or offloaded to edge/cloud servers.
They proposed a min-cost offloading partitioning (MCOP)
algorithm from the graph theory to reduce execution time
and energy consumption. Dinh et al. [12] designed an of-
floading framework of a single mobile device and multiple
edge nodes, and considered two cases for the mobile device’s
fixed and elastic CPU frequency. They proposed a linear
relaxation based approach and a semidefinite relaxation (SDR)
based approach for fixed and elastic CPU frequency cases,
respectively. Bi et al. [13] put forward a joint optimization
of service caching placement and computation offloading in
mobile edge computing systems, a sequential task execution
model is set up in a single-user with the assistance of a single-



server. Wang et al. [14] proposed a cooperative task offloading
model to minimize task duration with the constraint of energy
consumption in three-tier mobile computing networks, and
utilized alternating direction method of multipliers (ADMM)
method to solve the problem. Du et al. [15] defined the cost
as a weighted sum of latency and energy consumption of
computation offloading problem in a mixed fog/cloud system,
which considers the allocation of both computation resource
and radio bandwidth, and the final objective minimizes the
maximum cost among all users to guarantee the fairness for
all users.

Some other work used deep learning methods to solve
offloading problems [16]-[18]. Huang et al. [19] formulated
the optimization problem of joint offloading decision and
bandwidth allocation in MEC network, in which multiple
wireless devices choose to offload their computation tasks
to an edge server. Then they proposed a distributed deep
learning-based offloading (DDLO) algorithm to generate near-
optimal offloading decisions. Wu et al. [20] established the
task offloading model with the aim to reduce latency and save
energy in the collaboration of MCC and MEC, and proposed
a distributed deep learning-driven task offloading (DDTO)
algorithm to solve the offloading problems. Huang et al. [21]
also investigated online computation offloading problems in
the wireless powered mobile edge computing networks, and
developed a deep reinforcement learning-based online of-
floading (DROO) framework to learn the binary offloading
decisions from experience. Wang et al. [22] observed that
many deep reinforcement learning (DRL) based methods have
weak adaptability to new environments since they need full
retraining to learn updated policies due to new environments.
Hence, they proposed a meta reinforcement learning method to
adapt fast to new environments with a relevant small number
of gradient updates and samples.

On the other hand, multiple metaheuristic optimization
algorithms have also received attention. Kuang et al. [23]
established a system model in the MEC environment with
multiple users, multiple end nodes, and structured tasks.
Then they formalized an offloading decision problem as a
cost-minimization problem and designed an improved genetic
algorithm (GA) to solve that. Xu et al. [24] proposed a non-
dominated sorting genetic algorithm IIT (NSGA-III) to address
the multi-objective optimization problem of task offloading for
cloudlet and cloud computing. Goudarzi et al. [25] investigated
an application placement technique for concurrent IoT applica-
tions in edge and fog computing environments, and obtained
a memetic algorithm (MA) algorithm based on the GA and
one local search method to solve the offloading problems.

Computation offloading problems are often constrained op-
timization problems and NP-hard [14], [20], [25]. However,
there are few studies that combine constrained multi-objective
optimization with computation offloading in collaborative
MCC and MEC. The motivation of this paper is to treat
the computation offloading problem as a constrained multi-
objective optimization problem (CMOP) and then we focus on
the state-of-the-art constrained multi-objective evolutionary al-
gorithms (CMOEAs) for solving that. A key issue in CMOEA
is to deal with constraints. The penalty function approach is of-

ten used to balance objectives and constraints, which converts
a CMORP into an unconstrained MOP by adding the overall
constraint violation multiplied by a predefined penalty factor
to each objective [26]. The constrained NSGA-II [27] adopted
the constraint dominance principle to distinguish feasible
and infeasible solutions. MOEA/D-IEpsilon [28] combined
an improved epsilon constraint handling mechanism with a
decomposition-based multi-objective evolutionary algorithm
(MOEA/D) [29] to solve CMOPs. C-TAEA [30] maintained
convergence-oriented archives and diversity-oriented archives
simultaneously to retain the balance between convergence and
diversity of solutions. Push and pull search (PPS) [31] divided
the search process into two stages: push and pull search, and
embedded the MOEA/D algorithm [29] into the PPS frame-
work for tackling CMOPs. CCMO [32] used a coevolutionary
framework of two populations to share information with each
other for dealing with CMOPs. MOEA/D-DAE [33] developed
a detect-and-escape strategy to avoid being trapped into local
optima and struck in an unfeasible area.

Following the above ideas, we propose and compare
three constrained multi-objective evolutionary algorithms
(CMOEA5) to solve constrained multi-objective computation
offloading problems in the collaborative edge-cloud comput-
ing environment. The major contributions of this paper are
summarized as follows:

e Three constrained multi-objective evolutionary algo-
rithms, i.e., PPS-NSGA-II, PPS-SPEA?2 and PPS-SPEA2-
SDE are developed by taking advantage of PPS frame-
work and NSGA-II, PSEA2 and SPEA2-SDE with con-
straint handling principles.

o Three challenging constrained benchmark suites are se-
lected to evaluate the performance of the three proposed
algorithms, which are compared with the other seven
state-of-the-art CMOEAs. The numerical results verify
the effectiveness and competitiveness of the proposed
algorithms.

o We further compare the three proposed algorithms with
the other five representative CMOEAs as well as four
offloading schemes to solve different scale computation
offloading problems. In addition, impacts of different
parameters in edge-cloud networks and different types of
applications are analyzed with regard to the performance
of different offloading policies. The experimental results
demonstrate the superiority and efficiency of the proposed
algorithms.

The remainder of this paper is organized as follows. Sec-
tion II describes the background of the constrained multi-
objective optimization and PPS framework. The system model
and problem formulation are provided in Section III. The
details of the three proposed algorithms are illustrated in
Section IV. The simulation studies on benchmark suites are
presented in Supplementary Materials I. The experimental
results on computation offloading problems are discussed in
Section V. Finally, Section VI draws the conclusion and future
work.



II. BACKGROUND

In this section, we introduce some concepts of constrained
multi-objective optimization (CMOPs) and push and pull
search (PPS) framework for solving CMOPs. PPS framework
has been demonstrated to be a very efficient technology for
dealing with CMOPs [31]. We try to apply the PPS framework
to NSGA-II, SPEA2 and SPEA2-SDE for solving constrained
multi-objective computation offloading problems. For better
understanding the implementation process of PPS framework,
we present the operation details of the push and pull stages
as well as introduce the condition when to switch from the
push to the pull search process. In addition, We illustrate the
reason that PPS framework is a potential technique for solving
CMOPs.

A. Constrained Multi-objective Optimization

Many real-world problems can be formulated as constrained
multi-objective optimization problems (CMOPs), which aim to
optimize different conflicting objectives simultaneously with a
set of inequality and/or equality constraints. A CMOP can be
defined as follows [31]:

min : @%:Uﬂ)a2W%“wﬁA@F» (M
st gi(x) >0, i=1,---,p, )
hj(:ﬂ)—O i=1,q 3)
x = (x1,22, - ,xp) € Q, 4)

where x is a solution consisting of D decision variables,
Q) C RP is the decision space, F(z) C R™ is an m-
dimensional objective vector, g; (z) > 0 is an inequality
constraint, h;(x) = 0 is an equality constraint, and the number
of inequality and equality constraints are p and g, respectively.

When solving CMOPs with equality constraints, we often
relax the equality constraint with an extremely small positive
value & and convert the equality constraints into inequality
constraints, which can be expressed as:

hj(z)" =6 — |h; (z)| > 0. 5)

In order to deal with CMOPs with different inequality and
quality constraints, the overall constraint violation of each
solution x can be calculated as:

x) = Z |min {g; (z),0} +Z ’min {hj(:v)/

where 2 is a feasible solution if C'V (x) = 0, otherwise it is
infeasible. A feasible solution x® is said to Pareto dominate
another feasible solution z°, denoted by z¢ < 2°, if every
objective value of x is not greater than that value of 2? and
there exists at least one objective value of x is less than .
If there are no other feasible solutions dominating solution
xz*, which is called a Pareto optimal solution. All the Pareto
optimal solutions constitute the Pareto optimal set (P.S). And
the mapping of a Pareto optimal set into the objective space
is called Pareto front (PF).

,0}], (6)

B. PPS Framework

The push and pull search (PPS) framework was proposed
to solve CMOPs by Fan et al. [31]. The search process of
PPS is divided into two different stages: push and pull search
stages. In the first push stage, the working population is
pushed to approach the unconstrained Pareto front without
considering any constraints, which can help the solutions to
get across infeasible regions. Afterwards, a constraint handling
mechanism is used to pull the working population to approach
the constrained Pareto front in the pull stage.

The condition when to convert from the push stage to pull
stage is important, which can be suggested as [31], [34]:

ri = max {rzg,rng} < e, 7

where ¢ (suggested ¢ = 0.001) is a threshold. r; denotes
the maximum rate of change between the ideal and nadir
points during the last [ generations. rz; and rnj represent
the rates of change of the ideal and nadir points during the
last [ generations, defined as follows:

=z

TZp = ,L_Zl'll’laX {HMXHZ/GM } (8)

|k —nk= l| ©
i=1,--,m max{|nk l| A}

N = max
where zF = (2f,--+,zF) and n* = (n},--- ,nk) are the
ideal and nadir points in the k-th generation, respectively.
2kl = (ziC l,-~- ,zfn_l) and nF~! = (n’f l,-~- ,nfn_l)

are the ideal and nadir points in the k — [-th generation. A
(suggested A = 1le—6) is a very small positive number, which
is used to make sure that the denominators in Egs. (8) and (9)
are not equal to zero. rz; and rng are two points in the interval
[0,1].

rg is initialized 1 at the beginning of the search, and is
updated at each iteration according to Eq. (7). When 7, is
less than or equal to €, the push stage will be transformed
into pull stage.

To summarize, PPS has two potential advantages over other
constraint handling techniques [34]. During the first push
stage, a multi-objective evolutionary algorithm is adopted to
approximate the Pareto front without considering any con-
straints, which can help the working population to get across
the large infeasible regions and avoid the distance between
the unconstrained PF and true PF. After obtaining the uncon-
strained PF in the push stage, some valuable information can
be collected to guide the parameter setting for the constraint
handling approaches in the pull stage, which can enhance the
adaptability of the algorithm.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we consider a collaborative MEC and MCC
network with multiple mobile devices (MDs), multiple edge
servers and multiple cloud servers. The computation tasks in
the mobile devices can be executed locally or offloaded to the
edge/cloud servers.



A. System Model

Fig. 1 presents the system model composed by L cloud
servers, K edge servers, and N mobile devices (MDs). Each
MD can communicate with the edge server with a wireless
link, whereas the edge server and cloud server are connected
through a wired link. Without loss of generality, we assume
that each mobile device has M independent tasks. We denote
the set of MDs as N = {1,2,--- N} and the set of
tasks as M = {1,2,---, M}, and the set of servers as
K =1{012- - ,K,K+1,---,K + L}, where server 0
denotes MD itself and servers {1,2,--- , K} denote the edge
servers and servers {K + 1,--- K + L} denote the cloud
servers. In each MD, different tasks can decide to be processed
by MD itself or remotely processed by edge/cloud servers.
We denote a,,,, € {0,1,2,--- K, K +1,--- ,K 4+ L} as
the offloading decision that MD n’s m-th task is assigned
to mobile device or cloud/edge servers, where n € N and
M e M. Especially, @y, = 0 means that MD n chooses to
locally execute its m-th task, an, € {1,2,---, K} indicates
that MD n’s m-th task is offloaded to the edge servers and
apm € {K+1,K+2,--- K+ L} represents that MD n’s
m-th task is offloaded to the cloud servers. Overall, every task
must be processed locally or by the edge/cloud servers, whose
offloading decision depends on:

0, local computing,
anm = €{1,2,--- K},

edge computing,
cloud computing.

(10)
where n € N and M € M. Since both response time and
energy consumption play a significant role in the performance
of computation offloading for MDs, we consider these two
objectives as QoS metrics. The detailed operations of the
communication and computation process are illustrated in
Sections III-B and III-C, respectively. The important notations
used in this paper are listed in Table I.

Cloud Servers

Distributed Edge Servers
10T Devices g

Edge Layer

Cloud Layer

Fig. 1: System model of local-edge-cloud computation offload-
ing.

B. Communication Model

Considering the communication cost between the MDs and
edge/cloud servers, we first analyze the transmission time and

energy consumption in the communication model. We set a
tuple (Qpm, Ynm) to represent MD n’s m-th task, where av,m,
is the data size and 7, is the required number of CPU cycles
to finish the task. When one of the MD n’s task m is offloaded
to the edge server k € {1,2,---, K}, the whole processing
of task m includes transmitting and edge computing phase.
Let BYF denote the allocated upload bandwidth between the
MD n and the edge server k. We neglect the influence of
the process when the edge server returns the results back to
MDs since the data size of feedback information is small in
general [15]. The upload transmission time for offloading MD
n’s m-th task to the edge server k can be calculated as:
Qnm,
TVE — BUF
The energy consumption for uploading MD n’s m-th task
to the edge server k can be quantified as:

UE _ pTXppUE
Enm *Pn Crnm'

Y

12)

where PTX is the transmission energy consumption power of
the MD n.

When one of the MD n’s task is offloaded to the cloud
server k € {K +1,K 4+ 2,---,K + L}, one of the edge
servers is selected as a relay node between the MD and the
cloud server. We assume that the task is first transmitted to
the edge server k through a wireless link, then the edge server
k will forward the task to the central cloud server k via a
wired link. The upload transmission time for offloading MD
n’s m-th task to the cloud server k can be calculated as:

o
Tow = ZuE + 7

nk
where 7 denotes the propagation delay between edge servers
and cloud servers. We focus on the energy consumption of
MDs, thus the energy consumption for uploading MD n’s m-

th task to the cloud server k can be quantified as:

By = P < (T = 7) -

13)

(14)

When the task is executed locally, there is no communica-
tion latency. Hence, the total communication delay of MD n
for completing all M tasks can be expressed as:

Tfomm _ T7?ommE' + TnCommC, (15)

where
C E M UE
Tnomm = Z Tnm7 Anm € {1527"' vK}v
m=1

uc
Tnm )

M
Tgommc _ Z

m=1

apm € {K+1,--- K+ L}.

(16)
Then the overall communication energy consumption of MD
n for completing all M tasks can be calculated as:

Egomm — EgommE + ‘Evgo’mmc’7 (17)
where
M
EgommE - Z Egn{fj, Apm € {1a2, aK}V
m=1
M
EgommC — Z ET[L]WC‘L" Gy € {K+ 1,--- 7K+L}.

m=1

(18)



TABLE I: Important notations used in this paper.

Notation Description

Anm The offloading decision of m-task of n-th MD

Anm Input data size of the task m of MD n

Ynm Total CPU cycles of the task m of MD n

BUE The transmission bandwidth between MD n and edge server k

Pg}& The transmission power consumption of MD n

TYE The transmission time for offloading task m of MD n to edge server k
EUE The transmission energy consumption for offloading task m of MD n to edge server k
T The propagation latency between a edge server and a cloud server
TEommE  The transmission latency from MD n to edge servers

T °ommC  The transmission latency from MD n to cloud servers

TS omm The total communication delay of MD n for completing all M tasks
Eg ommE  The communication energy consumption from MD n to edge servers
Eg ommC  The communication energy consumption from MD n to cloud servers
Eg omm The total communication energy consumption of MD n for completing all M tasks
i, fe, fe The CPU frequency in mobile devices, edge servers and cloud servers
TS omP The computation latency of m task of MD n

T7E°™PL The total computation latency of MD n in mobile devices

TS°™PE  The total computation latency of MD n in edge servers

TS°™PC  The total computation latency of MD 7 in cloud servers

Eggomr The total computation energy consumption of MD n

Th The overall completion time of executing all M tasks of MD n

T The overall completion time of executing all tasks of all MDs

En, The energy consumption of executing all M tasks of MD n

E The total energy consumption of executing all tasks of all MDs
TCons The response time constraint

ECons The energy consumption constraint

C. Computation Model

We denote f;, f., f. as the number of CPU cycles for
the mobile devices, the edge servers and the cloud servers,
respectively. In general, the computation capability of the
cloud servers is more powerful than the edge servers, and

Hence, the total computation energy consumption of MD n
can be expressed as:

EJo™P = Pl ox T,0omPE, (22)

the edge servers have better computation capability than the
mobile devices, as f; < fo < fe.

When each task is determined to be offloaded to edge or
cloud servers, the edge or cloud servers start to process it
after all the input data has been received by the edge or cloud
servers. The computation latency of MD n’s m-th task in MDs,
the edge servers and cloud servers are calculated as:

%a anm:07
%7 a'rwnE {1727 7K}7

B anpm € {K +1,--- K+ L}.

Thus, the total computation latency of MD n for completing
all M tasks can be expressed as:

T5omP = (19)

M

T7?OMPL = 7?%70“%771 = 07
7n]\:41

TnCompE: Z ’Y}Lmaanme{lv27“'7K}7 (20)
m]\?l ¢

TnComPC: 3 V}LC’"’anm e{K+1,--- ,K+L}.

m=1

3

3

In this paper, we only consider the energy consumption at
MDs. Specially, we use PL to denote the local energy con-
sumption power of MD n. Then MD n’s energy consumption
for executing its task m locally is given by:

EComp — pL y Jnm, @1

fi

D. Problem Formulation

The processing latency consists of communication and
computation latency, and the total delay of executing all M
tasks of MD n can be given by:

T — maX{TCompL TCo7rsz+TCoermE TCompC’_’_TCommC}.

(23)

The total completion time of executing all tasks of all MDs
can be expressed:

N N

T:max{ ZTEO’””L,

n=1

(TT?ompE + TnCommE)

3

n=1

N
Z (T”?OMPC + TnCOmmC) } (24)
n=1
The energy consumption of executing all M tasks of MD
n can be given by:
En _ Egomp + Egomm.

(25)

The total energy consumption of executing all tasks of all
MDs can be expressed as:

N
E = Z (Egomp + Egomm).

n=1

(26)



Hence, the computation offloading problem can be formal-
ized as follows:

min : [T, E], 27
st apm€4{0,1,2,--- K, K+1,--- K+ L}, (28)
|anm| =1, (29)
T < T, (30)
E < ECors | (31)

where the first and second constraints indicate that each task
is assigned to one server, the third constraint denotes that
MDs have constraints of response time deadline, and the
last constraint represents the energy consumption limits. To
summarize, we establish a local-edge-cloud constrained multi-
objective computation offloading model.

IV. THE PROPOSED ALGORITHMS

This section presents the details of three proposed algo-
rithms PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE.

A. The General Framework

The general frameworks of the three proposed algorithms
are presented in Algorithm 1 and Algorithm 2, respectively.
The flowchart of PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-
SDE is shown in Fig. 2. Please note that PPS-SPEA2 and
PPS-SPEA2-SDE share the same framework but have different
fitness calculating methods. In the framework of PPS-NSGA-
II, the non-dominated front numbers and crowding distances
of solutions are calculated by the fast non-dominated sorting
approach [27] with and without considering constraints, re-
spectively. The whole search process consists of two stages:
push and pull search. When PushStage = true, the push
stage is utilized, the parents are selected via binary tournament
selection as the mating pool without considering constraints
and then offspring solutions O are generated from the mating
pool. When PushStage = false, the pull stage is applied,
a constraint handling mechanism is embedded into NSGA-
II to pull the working population to the constrained PF. The
parameter 7 for switching from push to pull stage is updated
iteratively.

In the framework of PPS-SPEA2 and PPS-SPEA2-SDE,
different fitness calculation methods are adopted instead of
calculating the non-dominated front numbers and crowding
distances in PPS-NSGA-II. The fitness calculating methods
can reflect both the performance of convergence and diversity
of each solution in the population. Without loss of generality,
the smaller fitness value means better performance. The whole
search processes of PPS-SPEA2 and PPS-SPEA2-SDE also
include push and pull search stages. In the push stage, we use
SPEA2 and SPEA2-SDE without considering any constraints
to search the unconstrained PF. In the pull stage, the constraint
handing approaches are applied to search the constrained PF.
More details about the main operations in PPS-NSGA-II, PPS-
SPEA2 and PPS-SPEA2-SDE are presented in Sections IV-B,
IV-C, and IV-D, respectively.

Algorithm 1 Framework of PPS-NSGA-II

Input: The population size N

Output: The final population P

I P« Initialization (N ;

2. [Fy, Fy, -] < NDSorting (P.objs);

3: CrowdDis < CrowdingDistance (Fy, Fy,---);
4: [Fl/, F, .. ] < NDSorting (P.objs, P.cons);
5: CrowdDis' <+ CrowdingDistance (Fl/, - ~);
6: Set v, = 1.0, PushStage = true;

7: while termination criterion not fulfilled do
8:  Calculate 7 according to Eq. (7);

9 if r, < e and PushStage = true then

10: PushStage = false;

11:  end if

12:  if PushStage = true then

13: P’ + Select N parents via binary tournament se-
lection according to [F, Fy, -] and CrowdDis in
P;

14: O + Of fspringGeneration (P, P');

s, (P, [F1, Fa, -] ,CrowdDis) <

’ EnvironmentalSelection (P U O);

16:  else _

17: P’ + Select N parents via binary tournament selec-
tion according to [Fy', %', -] and CrowdDis’ in
P;

18: O + Of fspringGeneration (P, P');

o (P, [F, F,--] ,CrowdDis’) +

EnvironmentalSelection’ (P U O);
20:  end if
21: end while

B. PPS-NSGA-II

In the original NSGA-II, Deb et al. [27] embedded fea-
sibility into Pareto dominance and developed a constraint
dominance principle (CDP) to deal with constraints. If a
solution z* is said to constrained-dominate a solution z7, one
of the following three conditions holds: 1) z® is a feasible
solution and 27 is an infeasible solution. 2) Solutions z* and 2/
are both feasible solutions, and solution z* Pareto dominates
solution 27 in terms of objectives. 3) Solutions z* and x7 are
both infeasible solutions, and solution z* has a lower overall
constraint violation than that of solution z7.

PPS-NSGA-II is an instantiation of the PPS framework of
a specific type of NSGA-II algorithm [27]. In the push search
stage, we use an unconstrained NSGA-II to search for both
feasible and infeasible solutions to minimize the objectives
of solutions without considering any constraints, which aims
to approach the unconstrained PF. The non-dominated front
numbers and crowding distances of solutions are calculated
by the fast non-dominated sorting approach. The crowding
distance is defined as the average distance between its two
closest points on each objective. Then N parents are selected
as mating pool via binary tournament selection based on the
non-dominated front numbers and crowding distances. The
two parents are randomly selected from the mating pool to
generate two offspring solutions, and a genetic operator [27] or
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Fig. 2: The flowchart of PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE.

Algorithm 2 Frameworks of PPS-SPEA2 and PPS-SPEA2-
SDE

Input: The population size N
Output: The final population P
. P « Initialization (N ;
Fitness < CalFitness (P.objs);
Fitness' < CalFitness (P.objs, P.cons);
Set rp, = 1.0, PushStage = true;
while termination criterion not ful filled do
Calculate r; according to Eq. (7);
if r, < e and PushStage = true then
PushStage = false;
end if
if PushStage = true then
P’ + Select N parents via binary tournament selec-
tion according to F'itness in P;
12: O + Of fspringGeneration (P, P’');
(P, Fiitness) «

R B A A S o

_..—
= @

= EnvironmentalSelection (P U O);

14:  else _

15: P’ < Select N parents via binary tournament selec-
tion according to Fitness’ in P;

16: O + Of fspringGeneration (P, P');

. (P, Fitness') +

EnvironmentalSelection’ (P U O);
18:  end if

19: end while

differential evolution operator [35] can be applied as offspring
generating operator. Thus the environmental selection opera-
tion is adopted to update the non-dominated front numbers
and crowding distances as well as the new population.

The ideal and nadir points are updated at each iteration.
And the maximum rate of change between the ideal and nadir
points (rg) during the last [ generations is calculated. When

ri satisfies the condition of switching from the push to pull
stages, the pull search stage is starting. In the pull search
stage, the constraint dominance principle (CDP) is applied
to calculate the non-dominated front numbers and crowding
distances. Then the new mating pool and offspring solutions
are generated based on the new non-dominated front numbers
and crowding distances with respect to the constraints. Finally,
a set of feasible solutions will be updated and obtained in the
environmental selection operation.

C. PPS-SPEA2

PPS-SPEA2 is an instantiation of the PPS framework of
a specific type of SPEA2 algorithm [36]. In PPS-NSGA-II,
the non-dominated front number represents the performance
of convergence and the crowding distance reflects the perfor-
mance of diversity. However, the fitness metric value is used to
measure both convergence and diversity in PPS-SPEA2. The
fitness evaluation strategy shares the same idea as the one in
the original SPEA2. First of all, let the solution set R, store all
the solutions dominated by x and the solution set .S, store all
the solutions dominating =z, the raw fitness R (x) of a solution
x is calculated as:

R(z)= Y IR,

YyES,

(32)

where |R,| denotes the number of solutions in the set.
R(x) = 0 means solution z is a non-dominated solution.
What’s more, additional density information is needed to
distinguish the quality of different non-dominated solutions.
The k-th nearest neighbor method [37] is applied to measure

the density information of solutions. Then {\/ 2N J -th nearest
neighbor 2’ of solution z is detected, the density D (z) of
corresponding to z is calculated as:

1

D(z)= — —
(2) dist (x,x') + 2’

(33)



where dist (z,2") denotes the Euclidean distance between
solutions x and z'.
Hence, the fitness of the solution x can be expressed as
follows:
fit(z) = R(z)+ D (z),

where z is the non-dominated solution when fit(z) < 1.
Obviously, smaller fitness means better quality of the solution.

PPS-SPEA2 also has two search stages: push and pull
stages. In the push stage, no constraints will be considered
into the fitness evaluation method, PPS-SPEA2 can search
for unconstrained solutions. In the pull stage, the constraint
dominance principle (CDP) is embedded into the fitness
evaluation method, PPS-SPEA2 can pull the unconstrained
solutions to the feasible regions. It is necessary to point out
that the solution which has the minimum distance to another
solution is chosen to be deleted in the environmental selection
operation. If there are several solutions having the same
minimum distance, we consider the second smallest distances
and so forth.

(34)

D. PPS-SPEA2-SDE

PPS-SPEA2-SDE is an instantiation of the PPS framework
of a specific type of SPEA2-SDE algorithm [38]. Compared
PPS-SPEA2 with PPS-SPEA2-SDE, the fitness calculating
method is different. In PPS-SPEA2-SDE, the shift-based den-
sity estimation (SDE) strategy is used to measure the density
of the solutions. The shifted-based density estimation based
distance between solution z and solution y (y € P\ {z}) can
be calculated as:

m 2
> (max {0, f; (y) — fi (2)}) -
i=1
Similar to PPS-SPEA?2, the fitness of the solution x can be
expressed as follows:
1

fit (z) :R(x)+ma

where R (x) is the same to that of PPS-SPEA2. SDEF (x, ')
is the SDE crowding degree of the solution = with regard to its

\/ﬁ J -th nearest neighbor z’. Afterwards, PPS-SPEA2-SDE
shares the same search process with PPS-SPEA2. It is noted
that the solution which has the minimum SDE based distance
to another solution is chosen to be deleted in the environmental
selection operation. If there are several solutions having the
same minimum SDE based distance, we consider the second
smallest distances and so forth.

SDE (z,y) = (35)

(36)

E. Computational Complexity

For the proposed algorithms PPS-NSGA-II, PPS-SPEA2,
and PPS-SPEA2-SDE, the major costs are the iteration process
in Algorithm 1 and 2. In PPS-NSGA-II, the worst-case time
complexities of the maximum rate of change between the ideal
and nadir points are O(MN), where M is the number of
objectives and N is the population size. The mating selection
operator needs O(N) operations for the binary tournament se-
lection. The offspring reproduction needs O(NN D) operations

to generate offspring solutions, where D is the number of
decision variables. The non-dominated sorting operator and
environmental selection operator need O(M N?) operations.
Thus, the overall computational complexity of PPS-NSGA-II
within one generation is O(M N?).

In PPS-SPEA2, the time complexity of the fitness cal-
culating procedure is O(N 2log N). The binary tournament
selection needs O(N ) operations and the offspring generation
needs O(N D) operations. The worst run-time complexity of
the environmental selection operator is O(N 3), on average
the complexity will be lower O(N2log N) [36]. Thus, the
worst overall computational complexity of PPS-SPEA?2 within
one generation is O(N?). In PPS-SPEA2-SDE, the time com-
plexity of the fitness calculating procedure is O(M N?). And
the worst run-time complexity of the environmental selection
operator is O(N 3). Since N is often larger than M. Hence, the
worst overall computational complexity of PPS-SPEA2-SDE
within one generation is O(N3).

V. PERFORMANCE EVALUATION

Before using the proposed algorithms to deal with offload-
ing problems, we adopt three challenging benchmark suites to
test the performance and the simulation results are illustrated
in Supplementary Materials I. In this section, we further study
the performance of PPS-NSGA-II, PPS-SPEA2, PPS-SPEA2-
SDE for solving constrained multi-objective computation of-
floading optimization problems.

A. Experimental Setup

We set up the multi-server multi-user multi-task computa-
tion offloading scenario in the local-edge-cloud environment.
The number of mobile devices is selected between 10 and 100.
The number of independent tasks of each MD is M = 5. We
set the number of edge servers K = 5 and the number of cloud
serves L = 2. In the following scenarios, we consider the CPU
frequencies of each MD, each edge server, and each cloud
server are 0.6 GHz, 10 GHz and 1 THz, respectively [12].
The transmitting power P7X of all MDs is 0.2 W. The power
consumption of all MDs is 0.7 W. The round-trip propagation
delay between edge servers and cloud servers is 7 = 15 ms.
The bandwidth between MDs and edges is randomly selected
from [8,15] MBps. The data size of each task is uniformly
distributed between 10 MB and 30 MB. The total CPU cycles
for finishing the task are assumed to be proportional to the
input data size [3], i.e., Ynm = pQnm. Here the parameter
p denotes the computation to data radio for different types
of applications. Table II lists some values of p for various
applications [39], [40]. For example, the label A represents
the gzip application and p = 330 cycles/byte. By default, the
type A application is taken as an example of the computation
offloading problems.

To verify the performance of the proposed algorithms, we
compare PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE
with other five algorithms TiGE-2 [41], constrained NSGA-
11 [27], PPS-MOEA/D [31], ToP [42] and CMOEA-MS [43] to
solve five offloading problems, which consider that the number
of MDs N = [10, 30, 50, 70, 100]. For a fair comparison, the



TABLE II: Application complexity.

Application Labels  p (cycles/byte)
gzip A 330

pdf2text (N90O data sheet) B 960

x264 CBR encode C 1900
html2text D 5900

pdf2text (E72 data sheet) E 8900

population size of all algorithms is set to 100, and the number
of iterations is 1000. The solution encoding style adopts the
real-encoding method, which means that each task is assigned
to a specific server including edge and cloud servers. We
apply the hypervolume (HV) [44] as the performance metric
to evaluate the performance of these compared algorithms.
Each algorithm is executed 30 times independently on each
test problem, and the average and standard deviation of perfor-
mance metric values are recorded. The Wilcoxon rank-sum test
at a 5% significance level is used to compare the experimental
results, where the symbol "+, °—’ and ’~’ denotes that the
result of another algorithm is significantly better, significantly
worse and similar to that obtained by the proposed algorithm.

B. Convergence Properties Analysis

As listed in Table III, the proposed PPS-NSGA-II has
achieved the best performance on four offloading problems,
while only CMOEA-MS gets one best result among other
algorithms. It is necessary to point out that CMOEA-MS, PPS-
NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE share similar
overall performance based on the Wilcoxon rank-sum test,
which outperform other four compared algorithms (TiGE-2,
NSGA-II, PPS-MOEA/D and ToP). We can also observe that
PPS-MOEA/D may obtain good performance for solving the
benchmark suites, while encountering difficulties in solving
discrete computation offloading problems.

We can observe that ToP cannot find any feasible solu-
tions on N = 50 and 100 offloading problems as shown in
Figs. 3(b) and 3(c). TiGE-2, NSGA-II, and PPS-MOEA/D can
obtain a few feasible and non-dominated solutions. NSGA-
II, CMOEA-MS, PPS-SPEA?2 and PPS-SPEA2-SDE may get
good results about the small-scale offloading problems (e.g.,
N =10), while their performance deteriorates with the growth
of the number of mobile devices, especially for the algorithm
NSGA-II. PPS-NSGA-II can always obtain a set of well-
distributed and well-converged feasible solutions for different
offloading problems.

C. Performance of Different Offloading Schemes

It has been demonstrated that PPS-NSGA-II has a good and
stable performance in terms of both convergence and diversity
on different offloading problems. To further evaluate the
performance of PPS-NSGA-II for reducing response time and
energy consumption, we compare PPS-NSGA-II with other
four offloading schemes, which are Local Offloading Scheme
(LOS), Edge Offloading Scheme (EOS), Cloud Offloading
Scheme (COS), and Random Offloading Scheme (ROS). LOS,
EOS, and COS represent that all tasks are executed locally,

offloaded to edge servers and central cloud servers. ROS
denotes that offloading decisions of all tasks are generated
randomly. In order to better compare the effectiveness of
different algorithms, we can design system cost and offloading
gain of a weighted sum of time and energy as follows:

SystemCost = w X Toffloading + (1 — w) X Eoffloadinga

(37)
T - To oadin
Of floadingGain = |w X Los ffloading | (1—w)
Tros
x ELOS - Eoffloading % 100%, (38)
Eros

where T ¢ rioading and Eof fioading denote overall time and
energy consumption of one specific offloading scheme, re-
spectively. Tros and Eros denote the time and energy
consumption of LOS, respectively. w is the weight trade-off
parameter between time and energy, which can be set by
the decision-maker. The larger w is, the more sensitive the
response time is.

Figs. 4, 5, and 6 present the offloading gain of different
offloading schemes under different weights. Compared with
LOS, all the other offloading schemes benefit a lot with regard
to time consumption and energy consumption. PPS-NSGA-II
can obtain the best offloading gain compared with other of-
floading schemes among all the different offloading problems
with different weights. COS achieves a better offloading gain
performance than EOS since the cloud servers take obvious
advantages of powerful cloud resources over edge servers. It
is noted that EOS gains better results compared with ROS
when w = 0.2 and 0.5, while ROS may outperform EOS in
the case w = 0.8 (focus on time consumption) because the
cloud server’s powerful computing capability achieves high
response time efficiency performance.

D. Impacts of Different Parameters

In this section, we analyze the impacts of different param-
eters in collaborative edge-cloud computing networks, and w
is set to 0.5 as well as N is equal to 10. Fig. 7 illustrates the
performance of system cost and offloading gain on different
offloading schemes under the different number of tasks of each
MD. PPS-NSGA-II gains the best performance compared with
other offloading schemes. With the increasing number of tasks,
the system cost of LOS grows much faster than EOS, COS,
ROS, and PPS-NSGA-II. The offloading gain of the different
offloading schemes stays stable since the system cost of EOS,
COS, ROS, and PPS-NSGA-II belongs to a small relevant
proportion of LOS.

Fig. 8 shows the performance of system cost and offload-
ing gain on different offloading schemes under the different
wireless bandwidth between MDs and edge servers. LOS does
not change with the increment of wireless bandwidth. Both
the performance of the system cost as well as offloading
gain of the other four offloading schemes (EOS, COS, ROS,
and PPS-NSGA-II) improve due to larger wireless bandwidth.
In addition, with the increment of wireless bandwidth, the
performance improves very fast at the beginning and then
becomes small. It is worth noting that the offloading gain of



TABLE III: The HV values obtained by TiGE-2, NSGA-II, PPS-MOEA/D, ToP, CMOEA-MS, PPS-NSGA-II, PPS-SPEA2
and PPS-SPEA2-SDE on five offloading problems. The best result in each row is highlighted. ‘N/A’ indicates that no feasible

solution is found.

Problem N TiGE-2 NSGA-II PPS-MOEA/D ToP
Offloading1 10 3.2142e-1 (1.60e-2) —  3.4539e-1 (9.90e-3) —  3.2459e-1 (8.59¢-3) —  2.8488e-1 (2.14e-2) —
Offloading2 30  2.7354e-1 (6.73e-3) —  1.5740e-1 (1.36e-1) —  7.6545e-2 (1.23e-1) —  5.1039e-2 (1.08e-1) —
Offloading3 50  2.6492e-1 (7.76e-3) —  1.8942¢-1 (1.3le-1) —  1.0244e-1 (1.32¢-1) — N/A
Offloadingd 70  2.4061le-1 (8.49e-2) —  2.4333e-1 (8.63e-2) —  1.2822e-1 (1.35e-1) —  5.0319e-2 (1.06e-1) —
Offloading5 100  1.8015e-1 (1.24e-1) —  1.2960e-1 (1.37e-1) —  5.1053e-2 (1.08e-1) — N/A
+/—/ = 0/5/0 0/5/0 0/5/0 0/3/0
Problem N CMOEA-MS PPS-NSGA-II PPS-SPEA2 PPS-SPEA2-SDE
Offloading1 10 3.4966e-1 (9.82e-3) ~  3.5209e-1 (7.42e-3) =~ 3.5051e-1 (7.43e-3) ~ 3.4799e-1 (7.17e-3)
Offloading2 30  2.9020e-1 (7.3%-3) & 2.866%¢-1 (7.55e-3) ~ 2.876le-1 (4.38e-3) =~ 2.8279¢-1 (9.65¢-2)
Offloading3 50 2.8118e-1 (1.17e-2) =~ 2.8837e-1 (5.51e-3) =& 2.8482¢-1 (8.87¢-3) ~ 2.8182¢-1 (1.18e-2)
Offloadingd 70  2.8290e-1 (7.49¢-3) ~ 2.8896e-1 (3.41e-3) & 2.8520e-1 (7.26e-3) ~ 2.8635¢e-1 (2.46¢-3)
Offloading5 100  2.7111e-1 (9.13e-3) & 2.7197e-1 (1.11e-2) & 2.7020e-1 (1.35e-3) =~ 2.7055e-1 (5.87¢-3)
+/ -/ = 0/0/5 0/0/5 0/0/5
_ N=10 N=50 . N=100 ‘
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Fig. 3: The non-dominated solution sets with the medium HV value obtained by TiGE-2, NSGA-II, PPS-MOEA/D, ToP,
CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on different offloading problems.
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EOS and COS may be negative when the wireless bandwidth
is small, which means that a computing task should not be
offloaded to edge or cloud servers due to large communication
cost in the case wireless bandwidth is small enough.

Fig. 9 presents the performance of system cost and offload-
ing gain on different offloading schemes under different edge
server CPU frequency. The performance of LOS and COS do
not change no matter what the CPU frequency of the edge
server. With the increment of edge server CPU frequency, the
performance of system cost and offloading gain of EOS grows
faster than ROS and PPS-NSGA-II. However, PPS-NSGA-II
still achieves the best results among all the offloading schemes.

E. Impacts of Different Types of Applications

Fig. 10 illustrates the performance of system cost and
offloading gain on different offloading schemes under different
types of applications. With the increment of parameter p of
different types of applications, the computing delay increases
directly. The system cost of LOS increases very fast due
to the poor computing capability of MDs, while COS and
PPS-NSGA-II grow slowly due to the powerful computing
resources at the cloud servers. PPS-NSGA-II will make more
offloading decisions to offload the tasks to cloud servers.
On the other hand, the system cost of EOS and ROS grow
gradually and the increasing speed of EOS is slower than ROS.
Furthermore, the performance of offloading gain of EOS, COS
and PPS-NSGA-II is much better than ROS, and the COS and
PPS-NSGA-II achieve the best and similar results due to the
increment of parameter p of different types of applications.

FE. Comparison with Deep Learning Methods

Some deep learning-based methods are used to address the
offloading problems, which often have two research directions.
First, the labeled dataset of sample offloading decisions can
be generated and then the labeled dataset will be used to
train the deep neural networks [19], [20]. In addition, deep
reinforcement learning-based methods are used to generate
near-optimal offloading decisions [21], [22]. Compared with
the proposed PPS-NSGA-II, the deep learning methods can
obtain one solution in a single run based on system cost or
offloading gain with a specific weight parameter w, while
PPS-NSGA-II can achieve a set of non-dominated solutions.
Furthermore, PPS-NSGA-II doesn’t need the labeled database
of offloading decisions. Single-objective optimization methods
(such as GA and MA) also get single solutions once time.
Other traditional methods such as branch and bound (BB) [45]
and integer programming spend more time obtaining a single
sub-optimal solution.

We compare PPS-NSGA-II with two deep learning-based
methods DDLO [19] and DDRO [21] as well as BB [45] to
solve computation offloading problems, where w is set to 0.5
as well as IV is equal to 10. Fig. 11 shows the system cost
and offloading gain obtained by DDLO, DROO, BB and PPS-
NSGA-II. We can observe deep learning-based methods can
get better results than the traditional BB method. However,
PPS-NSGA-II still obtained the best offloading decision.
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VI. CONCLUSION AND FUTURE WORK

In this paper, three constrained multi-objective evolutionary
algorithms (CMOEAs) are developed to solve IoT-enabled
computation offloading problems in collaborative edge and
cloud computing networks. We established a constrained
multi-objective computation offloading model for minimiz-
ing time and energy consumption of IoT devices. NSGA-II,
SPEA2 and SPEA2-SDE are embedded into PPS framework
for solving CMOPs, and then PPS-NSGA-II, PPS-SPEA2
and PPS-SPEA2-SDE are realized. In the push search stage,
PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE algorithms

search for the unconstrained solutions without considering any
constraints. In the pull search stage, the constraint handling
principle (CDP) is integrated into these algorithms to pull
the unconstrained solutions to approximate the constrained
Pareto fronts. Three challenging constrained benchmark suites
(LIR-CMOP, DAS-CMOP, and DOC) are used to test the
performance of the proposed algorithms by comparing them to
the other state-of-the-art CMOEAs. These algorithms are also
adopted to solve the constrained multi-objective computation
offloading problems, and compared the performance with
other different offloading schemes. The experimental results



604

Ul
o

System Cost
N
o
X
X

SRR

w
o
X

RKXXK

20 T
DROO BB

Offloading Schemes

DDLO PPS-NSGA-II

1.004

0.95 1

Offloading Gain

S,
KKK

0.85 T
DROO BB

Offloading Schemes

DDLO PPS-NSGA-II

Fig. 11: System cost and offloading gain obtained by DDLO, DROO, BB and PPS-NSGA-II.

show the proposed algorithms can achieve better performance
than other compared representative algorithms, and outperform
other different offloading policies.

The different tasks in IoT devices are assumed to be
independent in this work. In the future, the dependencies
between the tasks in one application will be considered.
In addition, other objectives in the computation offloading
problems (e.g., monetary cost and security) in mobile edge-
cloud computing networks will be investigated. Furthermore,
the three approaches can be scale to mobility scenarios. The
IoT devices move between different base stations during the
offloading period that may influence the performance of the
task offloading. Considering the mobility in the offloading
process, there exists task migration and information handover
between different base stations. Thus, we can set up a sub
mobility delay model embedded in the offloading decision
model. The response time constraint may change, and the three
proposed algorithms can be used to solve the combined model
to obtain solutions to satisfy the requirements.
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