MULTILINEAR OPERATOR-VALUED CALDERON-ZYGMUND THEORY
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AssTrRACT. We develop a general theory of multilinear singular integrals with operator-
valued kernels, acting on tuples of UMD Banach spaces. This, in particular, involves
investigating multilinear variants of the R-boundedness condition naturally arising in
operator-valued theory. We proceed by establishing a suitable representation of multilin-
ear, operator-valued singular integrals in terms of operator-valued dyadic shifts and para-
products, and studying the boundedness of these model operators via dyadic-probabilistic
Banach space-valued analysis. In the bilinear case, we obtain a T(1)-type theorem without
any additional assumptions on the Banach spaces other than the necessary UMD. Higher
degrees of multilinearity are tackled via a new formulation of the Rademacher maximal
function (RMF) condition. In addition to the natural UMD lattice cases, our RMF condition
covers suitable tuples of non-commutative L-spaces. We employ our operator-valued the-
ory to obtain new multilinear, multi-parameter, operator-valued theorems in the natural
setting of UMD spaces with property a.

1. INTRODUCTION

Singular integral operators (SIOs) take the form

1) Tf0) = [ Kwnfo)dy,  xesptf,

and they are abundant in classical and applied harmonic analysis. On the other hand,
the UMD (unconditionality of martingale differences) property of a Banach space X is a
well-known necessary and sufficient condition for the boundedness of generic singular
integrals on L?(R%; X), see Burkholder [2] and Bourgain [1], or the recentbook [24, Sec.5.2.c
and the Notes to Sec. 5.2]. Further progress on Banach space-valued singular integrals
in the linear setting has been intertwined with applications to rather disparate areas, such
as the geometry of Banach spaces [29, 30], the regularity theory of elliptic and parabolic
equations [3, 43], and the study of quasiconformal mappings [13].

In the literature, classical singular integral operators with scalar-valued kernels K
acting on X-valued functions are usually referred to as vector-valued, or Banach-valued,
singular integral operators. On the other hand, operator-valued theory concerns the more
general case, where the kernel K itself takes values in bounded linear operators between t-
wo Banach spaces X, Y. The systematic study of linear, operator-valued singular integrals
was first sparked by the operator-valued Fourier multiplier theorem of Weis [43], which
is the central tool in the author’s proof of maximal L7-regularity for parabolic equations.
In this setting, the requirement of uniform £(X, Y)-bounds of Hérmander-Mihlin type on
the multiplier must be replaced with the stronger R-boundedness condition; essentially,
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{T1,..., Ty} is an R-bounded set in L(X,Y)if {f; : j=1,...,.n > Tjf;: j=1,...,n}is
a bounded operator from RadX to RadY, where Rad is the Rademacher space. This
approach has been later recast by Hytonen and Weis [26] into a T(1)-type theorem for
operator-valued kernels. Our broad goal is to provide an extension of [26] to the multi-
linear case. Therefore, a first essential difficulty we must deal with is to find a natural
multilinear analog of the R-boundedness condition. As we will see below, this requires
additional care when dealing with linearities of degree three and higher.

We now come to a more detailed description of our main object of study. At least
heuristically, we may think of an n-linear singular integral operator T acting on RY as
being given by,

T(f, ..., f) @) =U(L® - ® f)x,...,x), xeRY, iR >C,

where U is a linear singular integral operator in R™. More precisely, an n-linear SIO T
has a kernel K satisfying natural estimates that can be deduced from the above heuristic
via the linear estimates, and

T f0 = [ Ko [[fmdn,  xe()spts.
i=1 i=1

The study of multilinear singular multipliers and kernel operators began with the seminal
articles of Coifman-Meyer [5] and Christ-Journé [4]. Motivation for this study comes
from applications to elliptic and dispersive partial differential equations, ergodic theory
and complex function theory, among others. We remark that the first general T(1)-type
result for multilinear singular kernels, in the scalar case, is due to Grafakos—Torres [15].

1.1. Main results. Until recently, vector-valued extensions of multilinear Calderén-Zyg-
mund operators had mostly been studied in the framework of ¢/ spaces and function
lattices, rather than general UMD spaces. Boundedness of ¥ extensions is classically
obtained through weighted norm inequalities, more recently in connection with localized
techniques such as sparse domination: see [14] and the more recent [6, 34, 33, 38] for a
non-exhaustive overview of their interplay. The paper [10] finally established L bounds
for the extensions of n-linear SIOs to tuples of UMD spaces tied by a natural product
structure — for example, the composition of operators in the Schatten-von Neumann
subclass of the algebra of bounded operators on a Hilbert space.

Before [10], Di Plinio and Y. Ou [11] considered operator-valued bilinear multiplier
theorems that apply to certain non-lattice UMD spaces. The results of [11] may be
thought of as a first attempt of generalization of Weis” R-bounded multiplier theorem
[43]; however, the treatment of [11] relies upon additional assumptions on the triple of
Banach spaces involved —some bilinear variants of the RMF conditions appearing in [23].
We return to the role of RMF later. In the present article, we develop a complete multilinear
operator-valued theory in the non-translation invariant setting and our assumptions are
less restrictive. Firstly, our bilinear theory is completely free of any RMF assumptions,
providing the following complete generalization of the T(1)-theorem of Hytonen and
Weis [26], and in particular of [43], to the bilinear case. The key notion for our statement
is the R-bound of a set of trilinear forms B € B, B : X; X X, X X3 — C. This is defined as
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the best constant C such that

N
(1.2) Z IBr(x1,k, X2k, X3)| + |Br(x1, X2, X3 1)| + |B(x1,4, X2, X301 < C

k=1
for all choices {By, ..., By} C B and integers N, for all sequences {xjx € X; : k=1,...,N}
with ||xj,k||Rad(Xj) < 1 and vectors x; € X; with [lxjllx;, < 1, for j = 1,2,3. A satisfactory
analogy with the usual notion of R-boundedness of bilinear forms (adjoint to linear
operators) [26] is the following: for each fixed x3 in the unit ball of X3, the bilinear forms
B(., -, x3) are R-bounded on X; X X, in the usual sense.

1.3. Theorem. Let X1, X5, X3 be UMD Banach spaces and Y3 be the Banach dual of X3. Let T
be a bilinear SIO on R whose kernel K takes values in bounded bilinear operators from X1 x Xp
to Y3 and satisfies R-boundedness versions, in the sense of (1.2) above, of the kernel smoothness
and weak-boundedness properties, and some T(1) € BMO properties, see Definition 6.2. Then

2
ITCf, Pl ey S [ [ I fnllom ey
m=1

Theorem 1.3 is a particular case of Theorem 6.4. For a detailed description of the
assumptions as well as for stronger sparse bound type variants, the reader should consult
these results in the main body of the article.

The RMF property of a Banach space X, involving L? estimates for a certain analogue
of the Hardy-Littlewood maximal operator obtained by replacing uniform bounds with
R-bounds, dates back to the work of Hytonen, McIntosh and Portal on the vector-valued
Kato square root problem [23]: see also [21, 31, 32]. The recent multilinear vector-valued
(but not operator-valued) setup of [10] avoids the use of RMF assumptions in all lineari-
ties, arguing by induction on the multilinearity index. On the other hand, the inductive
argument of [10] relies on an abstract assumption modeling the Holder type structure
typical of concrete examples of Banach n-tuples, such as that of non-commutative L?
spaces with the exponents p satisfying the natural Holder relation. Operator-valued
analogs of the Holder-type structures of [10] is left for future work. In the present article,
the n > 3 analog of Theorem 1.3 requires that the (1 + 1)-tuple of spaces involved obeys to
a multilinear version of the RMF assumption, which is described in detail in Subsection
3.2.

A precise statement of the T(1)-theorem for an n-linear SIO on RY with £(X; X -+ X
X, X, +1)—Valued kernel (see Section 2.3 for this notation), when n = 3 and higher, is
provided in Theorem 6.4. Here, we remark that the RMF setup of Subsection 3.2 applies
in the following cases in addition to the trivial X; = C forall 1 < j < n + 1, see Examples
3.27 and 3.28 for details:

o X; = LP(Q;Zj), whenever 1 < p; < co forall 1 < j < n+1isa Holder tuple

Vi<ppa<oo, 3<gz<oo,

and Z; is a tuple of UMD Banach spaces for which RMF holds; by iterating this
observation, X; may be any tuple of reflexive Banach mixed norm L? spaces;

e let 7 c {1,...,n+ 1} be a subset of cardinality 3, and for j € 7, let X; = LFi(A),
where 1 < p; < oo are as before, and LP(A) is the noncommutative LF space
associated to the von Neumann algebra A equipped with a normal, semifinite,
faithful trace 7, while for j € {1,...,n + 1} \ J, X; = C.
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The restriction to having at most three non-commutative spaces in the second example
comes from the RMF assumption. Again, this is in contrast with in the recent vector-
valued (but not operator-valued) setting of [10] where such restriction is unnecessary
regardless of the multilinearity index.

1.2. Tools and techniques. Dyadic analysis is an extremely flexible tool, for example,
as shown by its role in the Banach space-valued singular integral theory [12], non-
doubling singular integral theory [37], and sharp weighted inequalities [17]. The dyadic
representation theorem of Hytonen [17], which extends the Hilbert transform case of
Petermichl [39, 40], yields a decomposition of the cancellative part of a singular integral
into so-called dyadic shifts. These shifts have a very natural form generalising the Haar
multipliers

f=Y (Fhhgr Y Aotfhodhg,  IAgl < 1.
QeD QeD

Hénninen and Hytonen [16] developed the theory of operator-valued shifts in their
proof of a T1 theorem and a representation theorem for linear singular integrals on UMD
spaces with operator-valued kernels. See also the paper by Hytonen, Martikainen and
Vuorinen [22] for further theory and applications of operator-valued shifts in the multi-
parameter setting. As an important technical component of this article, we prove an
n-linear version of the operator-valued representation theorem, Theorem 6.3. Theorem
6.3 is in fact a multilinear, operator-valued generalization of the bilinear, scalar-valued
representation theorem which appeared in [35] by Li, Martikainen, Y. Ou and Vuorinen.

The next step in our analysis is to show the boundedness of these various multilinear
operator-valued dyadic model operators (Theorem 4.1 and Theorem 5.3). This is quite
involved, particularly when working in higher linearities, and requires the development
of new abstract theory concerning e.g. the correct notions of R-boundedness, cf. Section
3. A combination of the representation theorem with bounds for the model operators
yields our main result, Theorem 6.4, which is a boundedness criterion for operator-valued
multilinear SIOs.

1.3. Applications to multiparameter theory. The size of the singularity of the kernel Kin
(1.1) is a fundamental classifying criteria for SIOs. In classical SIO theory, the appearing
kernels are singular exactly when x = y. This one-parameter theory differs from the
multi-parameter theory, where the singularities of the kernels are spread over all the
hyperplanes of the form x; = y;, where x, y € R? are written as x = (xi)le e R x - x R*
for a given partitiond = d; + ... + d;.

The basic philosophy of identifying bi-parameter operators as operator-valued one-
parameter operators dates back, at least, to Journé [27]. In general settings the R-
boundedness plays an important role. For instance, it is required as an input to apply the
abstract results on operator-valued dyadic shifts. Indeed, the R-boundedness of families
of one-parameter operators is necessary for the boundedness (both with or without R-)
of the bi-parameter operators.

In the multilinear setting this general idea is more involved to execute due to the nature
of the multilinear R-boundedness conditions — an interesting difference compared to the
linear theory. In fact, the notions of multilinear R-boundedness we use in our previously
discussed main results are so weak that they do not appear to be sufficient to conclude the
R-boundedness for families of dyadic model operators. This is why we develop stronger
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R-boundedness notions in Section 7. These can be applied in the multi-parameter context,
as detailed in Section 8.

A somewhat loose description of our multi-parameter results is the following. Suppose
X1,X2,Y3 are UMD spaces with Pisier’s property (a). Then bilinear multi-parameter
operator-valued shifts (see Section 8) have the LP'(R%; X;) x LP2(R%; Xp) — L#B3(R%; Y3)
bound whenever p1,p2,q3 € (1,00) with 1/p; + 1/p> = 1/q3. While we do not anymore
explicitly pursue the corresponding (paraproduct free) SIO theory in the bilinear multi-
parameter operator-valued setting, this would simply follow from our result on the shifts
coupled with a suitable representation theorem.

Acknowledgement. F. Di Plinio has been partially supported by the National Science
Foundation under the grants NSF-DMS-1650810 and NSF-DMS-1800628.

K. Li was supported by Juan de la Cierva - Formacién 2015 FJCI-2015-24547, by
the Basque Government through the BERC 2018-2021 program and by Spanish Min-
istry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excel-
lence accreditation SEV-2017-0718 and through project MTM2017-82160-C2-1-P funded
by (AEI/FEDER, UE) and acronym “HAQMEC”.

H. Martikainen was supported by the Academy of Finland through the grants 294840
and 306901, and by the three-year research grant 75160010 of the University of Helsinki.
He is a member of the Finnish Centre of Excellence in Analysis and Dynamics Research
(Academy of Finland project No. 307333).

E. Vuorinen was supported by the Academy of Finland through the grant 306901, by
the Finnish Centre of Excellence in Analysis and Dynamics Research, and by Jenny and
Antti Wihuri Foundation.

2. DEFINITIONS AND PRELIMINARIES

2.1. Dyadic notation. We begin by defining the random dyadic grids that are needed for
the probabilistic-dyadic techniques. These definitions are, for example, as in Nazarov—-
Treil-Volberg [37] and Hytonen [18]. For each w € Q2, where Q = ({0, 1)%%, we define the
lattice

Do ={Q+w: Qe Dy},

where Dy = {275([0,1)? + m): k € Z,m € Z%} is the standard dyadic lattice in R? and

Q+w:=0Q+ Z w27k
k: 27k <€(Q)
Here the side length of Q is denoted by £(Q). The randomness to w — D, is induced by
equipping () with the natural probability product measure IP.
Let X be a Banach space and D be some fixed dyadic lattice. Let LP(X) = L (R%; X),
p € (0, 0], be the usual Bochner space of X-valued functions. For a fixed Q € O and
fe LIIOC(X) we define as follows.

e Ifk e Z, k>0, then Q® denotes the unique cube R € D for which Q C R and
£(Q) = 27%¢(R).

e The dyadic children of Q are denoted by ch(Q) = {Q’ € D: (Q") = Q}.

e Anaverage over Qis (f)g = ﬁ fQ f- We also write Eqf = (f)olo.

e The martingale difference Aqf is defined by Agf = }.enio) EQ'f — Eof-
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e Fork € Z, k > 0, we define the martingale difference and average blocks

Abf= ) Aef and Ehf= ) Exf.
ReD ReD
RO=Q RbO=Q
Haar functions. Haar functions are useful for further decomposing martingale differences
Aqf in terms of rank-one operators. If I C R is an interval, denote by I; and I, the left and
right halves of the interval I, respectively. We define h? =|[I"Y21rand b} = [II72(1;, - 1p,).
Letnow Q =I; X --- X I; € D, and define the Haar function 4., n=(m,...,na) €10, 1)4,
by setting
T"WMe...oKn"
ho=hy, ®---®h .
If n # 0 the Haar function is cancellative: [ h”Q = 0. We can now write Agf =
Yol S, hg)h” , where (f, hg) = [ fhWQ Usually, we exploit notation by suppressing the
presence of 17, and simply write hg for some k), 17 # 0. Similarly, we write Aq f = (f, hodho.

2.2. Definitions and properties related to Banach spaces. We present the required basics
of Banach space theory now — for an extensive treatment see the books [24, 25] by Hytonen,
van Neerven, Veraar and Weis.

We say that {e}y is a collection of independent random signs, if the following holds. We
have ¢x: M — {-1,1}, where (M, p) is a measure space, the collection {ex}; is independent
and p({ex = 1}) = p({ex = —1}) = 1/2. In what follows, {&x}; will always denote a collection
of independent random signs.

Suppose X, equipped with the norm |- |x, is a Banach space. For all xy,...,x)y € X and
p,q € (0, o) there holds that

M p\l/p M 9\1/q
2.1) (] Y enrnl )" ~ (] Y cnta] )
m=1 X m=1 X

by the Kahane-Khintchine inequality. Motivated by this we set
2,1/2
Cemliradc = (B| Y entaf )

where the choice of the exponent is thus of no consequence. The Kahane contraction

principle tells us that if (am)i’\f:l is a sequence of scalars and p € (0, c0], then we have

M p\Lp M P\Lp
(2.2) (IE| E emamxm|x) < max Iam|(1E| E smxm|X) .
m=1 m=1

A minor remark is that (2.2) holds with “<” in place of “<”, if p € [1, 00] and a,, € R (see
[24]).

A Banach space X is said to be a UMD space, where UMD stands for unconditional
martingale differences, if forallp € (1, o), all X-valued LP-martingale difference sequences
(d]')’]?:1 and signs €; € {-1,1} we have

2.3) “ Zk‘ eid;
=1

X

k
< d;
v "~ ||;4 ]
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The LP(X)-norm is with respect to the measure space where the martingale differences
are defined. In fact, a standard property of UMD spaces is that if (2.3) holds for one
po € (1, 00), then it holds for all p € (1, c0).

Sometimes, for example in multi-parameter analysis, the following property is also
needed: for all N, all scalars ;; and all ¢; ; € X, 1 <i,j < N, there holds

2

, 2.1/2 ’ ’ 172
Sigjairjei'j|x) < max |l7li,j|(]E]E| Z €i€j€i,j|X) .
z i i
1<i,j<N / 1<ij<N

(]E]E’

If this holds, the Banach space X is said to satisfy the property («) of Pisier.

Random sums and duality. The reader can e.g. consult the section 7 of the book [25], if
he or she is unfamiliar with the notions of type and cotype of a Banach space. What is
important for us, though, is simply that all UMD spaces have non-trivial type. The next
lemma appears in Section 7.4.f of [25].

2.4. Lemma. Let X be a Banach space with non-trivial type and let F C X" be a closed subspace
of X* which is norming for X. Then for all finite sequences ey, . ..,en € X we have

N N
IE' ; eiei|X ~ sup {' ;(ei,ei> },

where the supremum is taken over all choices (e;f)ﬁ 1 in F such that

N
]E‘ Z 81'8;
i=1

The decoupling inequality. The following decoupling estimates originate from McConnell
[36], but in their current form they essentially appear in Hytdnen [18] and Hanninen—
Hytonen [16]. We record a special case of the decoupling estimate that is of relevance for
us.

Let D be a dyadic lattice and Q € D. With V5 we mean the probability measure space

Vq = (Q Leb(Q), 1QI™! dxlQ),

where |Q7! dx|Q is the normalized Lebesgue measure restricted to Q and Leb(Q) stands
for the Lebesgue measurable subsets of Q. We define the product probability space
V= HQEQ Vg, and let v be the related measure. If y € V, we denote the coordinate
related to Q by yg.

Letk€{0,1,2,...},j €{0,...,k} and define the sub-lattice D;; C D by setting

<1
Xx»

(2.5) Djr = {Q € D: £(Q) = 2"**V¥ for some m € Z}.
If Xis UMD, p € (1, o) and f € L?(X), Theorem 6 in [16] implies that

2.6) /}R d| y Abf(x)[( dx~F /}R d [v ‘ ¥ €Q1Q(x)Abf(yQ)idv(y)dx
QD QeDjx

forany /€ {0,1,...,k}. The point of the subcollections Z)]-,k is that now Aég f is constant on
every Q' € Dj such that Q" C Q. This is required by the abstract decoupling theorems.
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Pythagoras’ theorem. A collection S of cubes in IRY is said to be n-sparse (or just sparse),
n € (0,1), if the following holds. For all Q € S there exists a subset Eg C Q so that
|[Egl > n|Q| and the sets Eg are mutually disjoint. The point of the following theorem is
that sparse collections are essentially as good as disjoint collections for some L estimates.

Let D be a dyadic lattice, S C D be sparse and X be a Banach space, and suppose that
for every S € S we have a function fs: R — X such that fs is supported in S, [ fsdx = 0
and fs is constant on those S’ € S such that S’ € S. Then, Lemma 4 in [16] — Pythagoras’
theorem for functions adapted to a sparse collection — says that

P
27) “ Zfs px Z ”fS”Z’(X)'
SeS SeS

2.3. Multilinear operator-valued singular integrals. We specify the class of operators
that we study. First, we define the operator-valued basic kernels. Let 2 < n € Z and
let X3,..., Xy, Yn+1 be Banach spaces. We denote by L(X; X --- X X;, Yy,41) the space of
n-linear operators B: X; X - -+ X X, = Y},41 satisfying

n
Bt Xy, < C [ [ bemlx,,
m=1

and the best constant C is denoted by |[B||x,x..xx,-Y,.,- We will sometimes write B acting
on (x1,...,X,) as above and sometimes like B[x1, ..., x,].
Suppose K is a function

n
K: Rd(n+1) \A—- ‘L( H Xm, Yn+1)/ A= {(X1, cee /xn+1) € Rd(n+l): X1 = = X,
m=1
such that for alle,, € X,;,, m € {1, ...,n}, the function
X = K(x)[elr ce /ei’l] € Yn+1
is strongly measurable. Define the collection of n-linear operators

n+1

dn
Cuize(K) = {( ) v = xul) K1, Xna1): (61,0, X11) € R\ A),
m=2

Fora € (0,1]and j € {1,...,n + 1} let Cy,j(K) be the collection of the operators

n+1

2.38) ey = (Y ey =) (K - KGO,
m=2

/

(RIS Xpi1) € RACHD) satisfy

wherex = (x1,...,%41) € R D\ Aand ¥’ = (xX1,...,%j-1,%

[xj — x| < 271 max |x; — xpl-

] 2<m<n+1
We say that K is an operator-valued n-linear basic kernel if there exists a € (0, 1] so that the
families Cgize(K) and Cqn(K), m € {1,...,n + 1}, are uniformly bounded. We also write
Ccz,a(K) = Csize(K) N N2 Com(K).

If X is a Banach space, we denote by L;°(X) the functions in L (X) with compact support.
Let K be an operator-valued basic kernel as above. Let T be an n-linear operator defined
on tuples of functions (f1, ..., fu), where f,, € L(Xy,), so that T(f1,..., fu) € L}OC(Y,,[H).
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We say that T is an n-linear operator-valued singular integral operator (SIO) related to the
kernel K if

<T(f1/ cee /fn)/ fn+1> = / (K(xp41,x1, - .. /xn)[fl(xl)r e /fn(xn)]/fn+l(xn+l)> dx

RA(n+1)
whenever f, € LZ(Xy), m =1,...,n+ 1, are such that spt f; N spt f; = 0 for some i # j.
Here we use the convention X, := Y., that is in force from this point on. We are
quite relaxed with the bracket notation (-, -) — it means the natural duality pairing in each
situation.

2.4. BMO,(X) and T(1). The representation theorem involves a certain BMO assumption
related to “T1”. Since, as usual, T1 is not necessarily well defined as a function the
BMO condition is stated in terms of the pairings (T1, hg) (we recall below how to define
these pairings). Therefore, we define the BMO conditions for collections of elements of a
Banach space.

Let X be a Banach space and D be a dyadic lattice. Suppose a = (ag)gep C X is a
collection of elements of X and let D’ C D be a finite subcollection. Let p € (0, c0). We
define
P

1/p
U’(X))

Ila”BMOD//p(X) SLLIZ)) |QO| “ Z €QAQ 75172 |Q|1/2

QCQU
and then we define ||ﬂ||BMOD,,,(X) to be the supremum of ”a”BMOD//,,(X) over all finite subcol-
lections 9’ € D. Notice thatif 9’ and 9’ are two finite subcollections such that 9’ ¢ D",
then by Kahane’s contraction principle (2.2) there holds that ||ﬂ||BMOD,,,,(X) < IIaIIBMOD,,,p(X).

The X-valued John-Nirenberg inequality for adapted sequences, Theorem 3.2.17 in
[24], implies that

(2.9) llallBmon,,x) ~ llallBMoy,, (), 0<p,q<oco.

Indeed, let ©" C D be finite. Fix some 0 < g < p < co such that p > 1. Let {eg}gep be a
collection of independent random signs on a probability space Q. Let Y = LF(€; X). From
Theorem 3.2.17 in [24] we deduce that

1o py\ip
210 sup  sup eoa ’
kez Qen 1Qol Jo ng:)f Qo2 y)
(Q=2+ 3o
(Q)=27*
is comparable to
1o [\1/g
@11) sup sup (i55 €00 — '
keZ QueD (lQol o & RITE y)
Q=2+ ot
(Q=2*

In view of Kahane’s contraction principle (2.2) (it allows to remove the restriction £(Q) >
2% inside the Y-norm) we have that (2.10) is equal to IIaIIBMOD,,p(X). Likewise, (2.11) is
equal to

Z . ~ lall X
> I Q €QAQ 512 I BMOyy ,(X)/
QueD | ol Jago & |Q|1/2 o ,4(X)

QcQo
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where we applied the Kahane-Khintchine inequality (2.1).

Let Xj,..., X, and Y, be Banach spaces. With respect to these spaces, suppose T is
an n-linear SIO with a basic kernel K as in Section 2.3. We turn to define the pairings
(T1, hg) and other similar pairings.

Let @ = (¢1,...,¢n) be an n-tuple of scalar-valued bounded functions. Assume that
Q c R is a cube, and that pg: RY — C is a bounded function supported in Q with

[podx=0.LetC>2 Vd. By CQ we denote the cube with the same center as Q and with
side length C€(Q). If e;, € X;y, m € {1,...,n}, we define

n

(2.12) (T@rer,-. duen) ) = ) (T@Ter, .., difen) po)
’ m=1

+ <T(1CQ¢1€1, o, lcoPuen), (PQ>,

where 5}” = Icg¢y for 1 < I < m, 5% = 1coy¢m and 5}“ = ¢ form <1 < n, and
(T(qg’lﬂel, ey 5,”116”), g0Q> € Y41 is defined using the kernel K by the formula

/"/<an—m@ym@wmmnﬁmwmmdm@¢n
]Rd ]Rd”

The uniform boundedness of the operators (2.8) combined with spt (}5% C (CQ)° imply
that this integral is absolutely convergent. The definition of <T(qb1el, ory Pney), goQ> is

independent of the constant C > 2 V4.
Now, we define the n-linear operator (T®, pg): X1 X - X X;; = Y,41 by

(2.13) (T0, pQ)ler, ..., en] := (T(@rey, ..., duen), PQ).

By (T1, hg) we mean the operator (T®, hg) with @ = (1,...,1). The BMO condition related
to the pairings (T1, hg) which appears in the representation theorem will be formulated
in Definition 6.2.

2.5. Multilinear operator-valued shifts. Let 2 < n € Z and suppose Xj, ..., X,, Yy41 are
Banach spaces. Assume k = (ky,...,ky+1), 0 < ki € Z. Let D be a dyadic lattice in RY. An
n-linear dyadic shift Sg) is an operator of the form

SI_(D(flf “e /f?’l) = Z Z aK,(Qi)[(fll‘EQl >/ ey <fn/‘EQ,,,>]‘EQ,,+1/
KeD Ql,...,Qn+1€D
ok

where f,, € Llloc(Xm) and ag ) = aK0,..0m1 € LI =1 Xim, Yne1). Inaddition, we demand
the following. There exist two indices jo,j1 € {1,...,n + 1}, jo # j1, so that hg, = hg, if

i € {jo, 1} andEQi = hOQ,- ifi ¢ {jo, j1}; in other words there are two specified slots where the
Haar functions are cancellative and in all the other slots they are non-cancellative. One
may think that only finitely many of the operators ag g, are non-zero so that the shift is
well defined for locally integrable functions. If Sg) is a shift as above, we denote by C(S';D)
the family of the normalized coefficient operators

n
ki
|mw@ymgwq@ﬂeaQP:@.

(2.14) C(sk) =
2 {Z;@m
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In Section 4 we show the boundedness of shifts under certain conditions on C(Slg)) and
the underlying Banach spaces.

2.6. Multilinear operator-valued paraproducts. Let Dbe a dyadic lattice in RY. Suppose
X1,...,Xn, Yns1 are Banach spaces and ag € L(I1},_1 Xm, Yns1), Q € D, are given. Let
a = (aQ)gen- An operator-valued n-linear paraproduct is an operator of the form

mpalfi- s fi) = Y gl fda -, (fudalhg,

QeD

where f,, € Llloc(Xm). As with dyadic shifts, this is well defined for example if only
finitely many of the operators ag are non-zero. In Section 5 we consider the boundedness
of paraproducts.

2.7. Bounding dyadic operators by sparse operators. The boundedness of shifts and
paraproducts will be considered in Sections 4 and 5. Here, we formulate an analogue
of the sparse domination results of [6, 7, 35] in multilinear, operator-valued setting of
Theorem 6.4 below. The proof follows exactly the outline of the multilinear version of
[35]. We refer to the above references for the, by now standard, definitions and generalities
on sparse collections and forms.

2.15. Lemma. Let 1 <n € Z. Let Xy,..., Xy and Yy41 be Banach spaces and X1 := Y,

Suppose we have functions fm, € L (Xm), m =1,...,n+1. Let D be a dyadic grid and n € (0, 1).
Then there exists an n-sparse collection S = S((fu), n) C D so that the following holds.

n+1

Letk = (ki,...,kn+1), 0 < ki € Z,and assumepy, ..., pu+1 € (1,00)aresuchthat }, "~ 1/pm =
1. Suppose that we have operators axg,,..Q,., € LTy Xim, Yns1), where K,Q1,...,Qus1 €D

and Ql(.k") = K, such that ax g, := axQ,,..Q.,, satisfies

T 1Qul2

K| |em|X,,,-

Kakple, - - - enl ens) < Aq
m=1

Suppose further that for some scalar-valued functions um,q = Y.gewmQ) Cmo lo satisfying
|tim,0l < |QI7Y/2 the operators

UD’(gll oo ;gn) = Z Z ﬂK,(Qi)Kgl/ U]’Q>, ey <g711 un,Q>]un+1,Q/ DI C D/

Q"=k
satisfy
n+1
KUp (g1, ---,8n)s Sne1)l < A2 H Igmlrei(x,,)/ 81, 8n+1 € LPI(Xip).
m=1
Then we have
n+1
(2.16) KUn(fir - fu), first)] S (A1 + Aric + Ag) (;S Ql Hl (1fulx.) o
€ m=

where x = max k.
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We conclude this preliminary section by recalling the well-known fact that (weighted)
boundedness in the full range of expected exponents follows from a sparse estimate of
the type stated in Lemma 2.15. A proof of this exact statement is given in [10], and
further consequences in the weighted setting are formulated in [8, 35] and references
therein. Let Xj,...,X, and Y41 be Banach spaces. If T is an operator such that for all
tuples f,, € L°(X,,), there exists a dyadic lattice D = D((f,,)) and a sparse collection
S = S((fn)) € D so that

n+1

KT ) fretdl 5 )1 T (Uil ) o
QeS m=1
then
(2.17) WT(f1, - flllims gy, S H Il forellpm ()
m=1

where py, € (1, 0] are such that 1/q,41 := X5, 1/pm > 0.

3. RANDOMIZED BOUNDEDNESS AND THE RMF PROPERTY

3.1. Randomized boundedness. In this section we discuss randomized boundedness
conditions for families of multilinear operators. First, we recall the well-known concept
of R-boundedness of linear operators. If X; and Y; are Banach spaces and 7 € L(Xj, Y2),
we say that 7 is R-bounded if there exists a constant C such that for all integers [ > 1, all
Ty €7 and forall ey € Xy, ex2 € X2 := Y5,k =1,...,1, the inequality

!
IZ <Tkek,1/3k,2>| < Cll(ex,1)lIRadxy) (e 2)IRad(x,)
k=1

holds. The smallest constant C is denoted by R(7"), and called the R-boundedness
constant of 7. If 7 is not R-bounded we set R(7") = co.

3.1. Remark. Suppose that Y, has non-trivial type (e.g. Y> is a UMD space). Let R(T)
denote the best constant C such that

[ l
(32) (IE’ Z €ka€k|iz)l/2 < C(IE| Z ekek’; )1/2
k=1 k=1

holds for all e, € X;. Then we have by Lemma 2.4 that
R(T) < R(T) < R(T).

In fact, (3.2) is the most commonly appearing standard definition of R-boundedness.

For a positive integer 1, we write 7, for the discrete interval {1,...,n + 1}. Throughout
this section, let Xy, ..., Xy, X;+1 be reflexive Banach spaces and denote Y; = X; Below,

we customarily enumerate J C ), increasingly so that 1 < j; <--- < j, <n+1. We use
the tuple notation

(ej)jej = (6]'1,...,6]'[) € Xj = HX]'.
g
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The following discussion pertains to the case n > 3. We set some notation for the
multilinear R-boundedness condition associated to an (1 + 1)-linear contraction

n+1

(33) ®: X7, > C oy, ) < [ [lenx,,  em € Xon.

m=1

This condition will involve suitable partitions of the set of indices J,,. We say that
P = ({jp}, Prad, Prv) is an admissible partition of J, if {jp}, Prad, PrMm C T are pairwise
disjoint, their union is J, and #Prm < 11 — 2. Letnow J € J, with1 <#J <n -2 and
veEJn\J. Foraset A C Xg, define

K
(3.4) IAllrst(o,5) = 50p | Y, @(ers - o ni1 )],
k=1

where the supremum is taken over all K € IN and over all choices of

e tuples (¢jx)jes €A, 1<k <K,
e elements ¢, € X, with |ey|x, <1,
o sequences (¢;)f, C X; with [I(ej)_; lIRad(x;) < 1, where

JE€JRaa =11,...,n+ 1} \ (T U {v}).

Here (e]-,k)kK:1 denotes the sequence ¢;1, ..., ¢k of elements of X;, and this should not be
confused with the notation (¢j) ey € Xg meaning a tuple of elements; later, this distinc-
tion should be clear from the context. Let also [|Allry(o,q) be defined just as [|Allrm,(0,9)
in (3.4), except that in addition there is the requirement that the tuples (¢j1)jcg € A satisfy

€j)jeg # (jr)jeg ifk £ k.

3.5. Lemma. There holds that lAlRM, (0,97 = IIAlIRM,(@,9)- that is, when testing the constant
AllRM, (o,9) it is enough to consider a sequence of distinct elements of A.

Proof. Let # be the admissible partition with jp = v, Prm = J. Fix elements ¢j; € X,
wherek € {1, ..., K}, as in the definition (3.4). Write {1, ..., K} as a disjoint union UAm/I:1 Ko,
so that (ejx)jeg = (ejx)jes if k and k’ belong to the same Ky, and (ejx)jcy # (€jx)jeg if
k and k" belong to different sets K,,. If j € J and k € K,,, we denote ejk = fjm- Write
PRrad = {i1,--.,iu}, where i; <ijq1. To ease the notation, for m € {1,..., M} let Ay, be the
u-linear form obtained from @ by keeping the elements f;;, j € J, and e, fixed. We have

K M
Z @1 - Cns1f) = Z Z A€ )
k=1 m=1 ke‘Km

Fix one m for the moment. Let {si}szl, j€{l,...,u—1}, be collections of independent

random signs. We denote the expectation with respect to the random variables ei by E/,



14 FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

and write IE = E! - - - E“~!. Then we have the identity

Z Am(ez1 kre+s€ik )

keKm
_ 1,122 . -1 _
(3.6) =E Z €1 € s €k Skul Am(elllkl, e Ciky)
k1/~-~rktl€7(m
_ 1, 1.2, u-1
_IEAm( Z €y Cir ks Z €y, €k, Cinkar v+ s Z € ezu,ku)
kl E(](nl k2 e(](m ku 67(,,,

Now, we combine the last two equations and use the definition of ||A||RM;,(@, ) This
gives that

K
| Z (D(el,k/ ey
k=1
u-1
< MAlksagonE[( Y elens) (Y el eless)
- RM, (@) k“hk m=1lIRad(X;,) ko kK m=1
1

k€K =2 keKy
M
u—1
H €k ei”’k)mzl

Rad(X;)

Rad(X;,)”

where the expectation is less than

M o2 1244 M 2 12
T e T E D e )
7 m=11IRad(X;, ) , k ik m 1lIRad(x;)
keXKn 1 j=2 ke /
M 2 1/2
e |
( ( “k el“’k)mzl Rad(Xiu))
k€K
Denote the expectation and the random signs related to the Rad-norms by E and {?m}ff:l.
We have
2
e, =B S E el ]
EE ”( ExCijk )m 1lIRad(X;) =EEE ” Smg g e,] Xi
ke m=1ke¥k,, i

= ||(31],k)k 1”Rad(X ) = <1

The remaining last two terms satisfy the corresponding estimate. Thus, we have fin-
ished the proof of ||Allrm,(@,.7) < lAllRM (0,9 As the reverse estimate is immediate, the
conclusion of the lemma follows. O

3.7. Remark. We record an observation based on Lemma 3.5, which will later be used
without explicit mention. Let again J € J,, 1 <#J <n-2andv € J,\J. Suppose
that K € N and we have elementsej; € X, j € J, k€ {1,...,K}. Then

(3:8) €)oo = sup | Y, @erss - e, ensi)],
k=1

where the supremum is taken over elements eix € Xj, j € In \ (Jufv), kefl,...,K},
such that ||(ej,k),I(<:1||Rad(X],) < 1 and over e, € X, with |e,|[x, < 1. Indeed, “>" is clear just
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by definition. On the other hand, the right hand side of (3.8) clearly satisfies RHS(3.8) >
1{(ejn) jer Yo IRm (@,9)-

3.9. Remark. In the same setup as in the previous remark, assume J = Jo U J1, where
J1 # @ and Jo N J1 = @. Suppose we have elements e € X;, j € J, k€ {l,...,K}. Then

(3.10) {(ej)jeg ey IRMu @97 < IH(€j0)jego ey IRM. (@, 70) H ”(ej,k);I((:l”Rad(X]-)-
j€J1
To see this, we use Remark 3.7. Let P = {{v}, Prag, J} be the corresponding admissible
partition and ¢;; € X; for j € Praq U {v}, k =1,..., K, and assume that e, = e, =: €p.
Assume first that Jo # @. Then, by definition, we have

K
| Z m(el,k/ ceey en+1,k)|
k=1

< II{(ejx) jejo}lllellRMv(@,jo) H ”(ej,k)kK:l”Rad(X]-)lelez,/
JET1VPRad
which proves the claim.

On the contrary, if Jo = @, then using random signs as in (3.6) and boundedness of @
(Equation (3.3)) we get that

K
K

|§ O(el,k,---,enﬂ,k)lﬁ | | l1ej)) k= IRad(x)) leolx;,

k=1

j €JUPRad
which gives the claim.

3.11. Example. Let (Xj,..., X,+1) be a tuple of reflexive Banach spaces and @g: X4, — C
be as in (3.3). Let (Q, u) be a measure space and associate the tuple

n+1

(LPY(Y; X1), . .., LP(Q); Xs1)), pm € (1,00), Z 1/pm =1,
m=1

with the (n + 1)-linear mapping @: Hﬁzll LPn((); X)) — C,
(3.12) Ofireoes fort) = [ @00, frr @) du).

We obviously have
n+1

@(fi, -, fust)] < [ [ Mfonllirmisn:
m=1
Suppose J C Jn, 1 <#J <n-2andv € J,\J. Itis not hard to see that

(iR er il om S o = 1K@ jerli v o qy

where

Up(@) =Y 1/pj.
&I
We now demonstrate that the corresponding lower bound also holds. We will show that

(3.13) ) eIt o.9) 2 M@ T Iratann e
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and the claim follows by monotone convergence.

Write 7 = J, \ J. Using Remark 3.7, for w € Q let p;(w) € X;,i € I,k € {1,...,K},
be such that ||(g0i,k(w))kK:1||Rad(Xi) < 1fori # vand @yi(w) = Pyr(w) = Py(w) satis-
fies |py(w)lx, < 1. Furthermore, let the elements @;(w) be such that @y acting on
fix(w) and @;(w) is non-negative for all k and such that the sum over k of these is

2 ||{(]‘},k(w))j€j}kK:1IIRMU((DOJ). For i € T write

—— K I/ pi
B = [H(Fix (@) jes Haallrmt oo [ seniay

define )
fir@) = B pi @) (fixl@)jer ey i 4,
and write f, = f, . Fori € I \ {v} there holds that

ICfi)peq IRad(1ri i) ~ ||||(fi,k(a)))kK:1“Rad(X,-)”Lp,v(Q) <1

and [|follrro(q;x,) < 1. Define the exponent p(X) by 1/p(Z) = }.;cr 1/pi- We also have that
K K
|3 00k )] = [ Y @is(@h fursae)
k=1 =

- 1+p(J)/p(Z
2 [T5 | M@t
icl Q
K
= (I ety Irmon e
This proves (3.13) concluding our demonstration.

In the special case that X1 = --- = X,;,1 = Cand @o(e, ..., en+1) = H;‘:;ll e, itis not hard
to see that

l(ein)jes il on) = sup | | lejul
k ]G[f
Therefore, the above gives in this case that

(3.14) I{Cfin) je toor IRM (0,9 ~ || sup H | fjx(w)l
k .
v

Q)

Next, we define a related multilinear R,-boundedness condition for families of opera-
tors. Due to the invariance under permutation of the spaces X, j € 7, of the previous and
upcoming definitions, we do not lose in generality by working with n-linear operators
on H;lzl X; with range in Y;41. Also, it will be convenient to define the notion of tight

admissible partition : an an admissible partition # of }, is tight if #Pr.q =2 .

3.15. Definition. Let n > 2 and suppose that 7 ¢ L(I),_; X, Ys+1) is a family of opera-
tors. Assume that @ is an (1 +1)-linear mapping satisfying (3.3) and P is a tight admissible
partition. We say that 7~ is R, p-bounded if there exists a finite constant C so that

K
' Z(Tk[el,k celnkl €n+1,k>|
=1

K K
< CIH(ejx) jepru it IRM;, (@ Pru) H l1(ej0)=qlIRadxlejp|x,
jEpRad
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holds for all K € IN, all choices of Ty € T, {ej: k=1,...,K} ¢ Xj, j € Jn, such that
€jpk = €jpk = €jp, for all k and k’. The smallest possible constant C is denoted by R, »(7).
If 7" is R p-bounded for all tight admissible partitions P, we say that 7 is R,-bounded
and write R,(7") for the supremum over all tight admissible partitions # of Ry, (7).
Otherwise, we set Rp(7") = oo.

Notice that if n = 2, then the R,-boundedness condition does not depend on @ at all,
and it reduces to a more simple estimate as in Equation (1.2). Therefore, in the case n = 2
we will just talk about R-boundedness.

3.16. Remark. Suppose T C L(IT;,_1 Xm, Yn+1) is an Rp-bounded family. Suppose P is a
non-tight admissible partition. Let Ty € 7 and ejx € X fork =1,...,K, and as usual
assume thatej, := e, x = €, k. Write Praq = Jo U J1, where #J1 = 2. Then

K
' Z(Tk[el,k/ ey el’l,k]/ elfl+l,k>|
k=1

(3.17) < ﬂm(T)ll{(ej,k)jePRMujo}kK:1IIRM,P((D,PRMuJo) H ”(ej,k)llle”Rad(Xj)lejrp|X]¢
j€J1

K K
< Ro(TI(ej) i rllin, P | | 1€, Ikaaes,lejp x;,.
JEPRad

where in the last step we applied Equation (3.10). We will apply this form of the Rp-
boundedness (where not necessarily ¥ is a tight partition) later.

In the representation theorem we will need the fact that R,-boundedness is preserved
under averages in the sense of the following lemma.

3.18. Lemma. Let T € L(IT),_; Xm, Yn+1) be an Rp-bounded family of operators. Let A(T") C
L(IT7,—1 X, Yn+1) e the collection of operators of the form

L(y)A(y)dy,
/]Rd(nﬂ) (y) (y) y
where L: RA™D — L([T%_y X, Yus1) is such that L(y) € T for a.e. y and A: R0*D — €
satisfies [ |A| < 1. Then we have
Ro(A(T)) S Rao(T).

3.19. Remark. The space R plays no role here (it could be some measure space), but
this is what appears later. Moreover, we have by definition that

L(y)A(y)d yoeosln] = L s enA(y) dy,
([ LMD eidi= [ L, e]AG) dy
and the assumption on L is that the mappings

y = Lyley, ... en]
are strongly measurable.

Proof of Lemma 3.18. This result could be reduced to the corresponding linear result. For
the linear theorem, see for example Theorem 8.5.2 in [25]. We give another self contained
proof.
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Suppose Ty = [LiAx € A(T) for k = 1,...,K. We may assume that L(y) € 7 for
every y € R and that [|A4] = 1 for every k. For each k define the probability
space Yy := (RY"™D 1), where wy := |A¢ldy. Let (¥, u) be the product probability space
(T Ve T )

Fix a tight admissible partition , and let {e]',k}kK:1 C X be such thatej, :=¢j,x = ¢j, k-
Now, we have that

K K
Z(Tk[el,kl ceey en,k]r en+1,k> = Z / |/\k2y;|Lk(y)[el kre-s en,k]/en+l,k> d‘“k(y)
k=1

/Z c\kiik) yk [ €1ks-- ’e”,k]/en+1,k>dy(y),

where in the last line we denoted by y; the coordinate of y € Y related to Y. For each
y € Y the absolute value of the integrand in the last line is dominated by

K K
Rop(TIejk) jepra ir | IRM), (0, 2ru0) H 1(ej0)i=q IRad(xplejp|x;, -
jEPRad

Since (Y, p) is a probability space this proves the claim.
O

3.2. The RMF,, property. Related to the R, condition we will need a certain RMF,
condition of the tuple of spaces (Xi, ..., X,+1). This condition is only defined when n > 2.

Suppose @ is an (n + 1)-linear contraction as in (3.3). Let J C J, be such that 1 <
#J < n—2. Suppose f; € L; (X)) for all j € J. Denote by (f})jes the tuple of functions

(firs- -+, fj,)- Let D be a dyadic lattice in RY. For v € J, \ J, we define the multilinear
Rademacher maximal function RMyp o, 74[(fj)je7] by

RMop0,7.01(f)jes10) = [{(fojer: x € Q€ D}||RMUW)-

Let p; € (1,00) for j € J,, and define for all J C J, with 1 < #9 < n — 2 the exponent
p(I) by 1/p(T) = Ljeg 1/pj- We say that (Xy, ..., Xy+1) has the RMF,, property relatively

to a given dyadic lattice D in IR? and the tuple of exponents (p ;) if

RMp,o,70: [ [ 17/(X)) = PORY)| < o0
<7

(3.20) max min max
J1,72€Tn v€Tn\ 1.2} T T\ 1, 72,0}
h#j2
The number defined in (3.20) will be referred to as the RMF (D, (p;)) constant of the tuple
X1, Xnr1)-

Independence of the RMF,, property (3.20) on the dimension d and the lattice D can
be proved with the same procedure used for the linear case by Kemppainen [32]. In
particular, this means that if we have two lattices O and O’ in R?, then RMF,(D, ) =
RMF, (D', (pj))- On the other hand, Lemma 3.22 implies that the RMF,; condition is
independent of the tuple of exponents in the sense that if (;) is another set of exponents
then RMFq (D, (p))) ~ RMF,(D, (9;)). Lemma 3.22 also shows that it is not important to
have a fixed tuple (p;) in (3.20); for each J appearing in (3.20) we could have related

exponents p‘]j € (1,], j € g, such that the corresponding target exponent is finite.
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Henceforth, we are authorized to not mention the dimension d, the choice of the lattice
D and of the exponents, and refer to a tuple (Xj, ..., X,+1) enjoying (3.20) as a tuple of
spaces with the RMF,, property.

3.21. Remark. The original definition of an RMF property of a Banach space X is in
Hytonen-McIntosh-Portal [23]. If A C X, then define

K
JAllrv == sup EII Y exAialix,
k=1

where the supremum is over K € IN, ax € A and over scalars A, such that Zszl > < 1.
In [23] the Rademacher maximal function Mg was defined by
MR p, f(x) := Mrf(x) == [l{{f)o: x € Q € Dolllrm,

where Dy is the standard lattice in R? and fe Llloc(X), and it was defined that X has

the RMF property if Mg: L>(X) — L? is bounded. The Rademacher maximal function
has further been studied for example by Kemppainen [31, 32]. The boundedness of
Mg: IP(X) — L7 isindependent of the dimension d and the lattice  used in the definition,
as well as of the exponent p € (1, c0). A definition akin to the one given in this article was
previously given in [11].

The proof of the next lemma is a twist on a sparse domination argument presented in
[8] by Culiuc, Di Plinio and Ou.

3.22. Lemma. Let D be a dyadic lattice in R Letn>3andlet J € J, withl <#F <n—2.

-1
Supposev € Ju\J . Assume that for some q; € (1,00], j € J, such that q := ( Yieg 1/q]-) <00
the estimate

IRMp,0,70[(f))jeg s < H7 fillix,
JE

holds. Then, for all p; € (1,00], j € J, such that p := (Z]'Ej 1/;9]-)_1 < oo we have the estimate

IRMp,0,7,o[( el < | [ 1Fllric
&g

Proof. We abbreviate RM := RMgp, g,. First, we prove the weak type boundedness
RM: [] = Ll(X]-) - L%'O", where ¢ := #9. Then, we show that it implies a suitable
pointwise sparse domination for certain finite maximal functions, from which the claim
follows.

We turn to the weak type estimate. Let f; € L'(X)), j € J, and fix some A > 0. It is
enough to assume that ||| Li(x) = 1 and show that

_1
IRMI(f))jeg] > A}l s A77.

We perform the usual Calder6n-Zygmund decomposition. Let D, denote the collec-

tion of the maximal cubes Q € D such that (|f;| Xj>Q > Af. As usual, we write f; = ¢; + bj,

where
gi=lupufi+ ), (fale and b= ) (i~ {fole

QeDj, QeDj,
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Write J = {j1,...,je}. We have

¢
(3.23) RM((f)jes] < Z RMI(&j, - -+ &jirs Vjis fiisrsr -+ -1 fi)] + RMI(gjy, -, &)1
i=1
The assumed boundedness gives that

£ [ PV
A . _ e
) . o q 19 q 1 19/4j 7
I{RM[(gh"“’g”)] g £+1}| sA I Il 187l = 24 I Il A Wil <A™
= =

where we used the facts that ||gjll.~(x;) < At and IgillLicx;) < ”f]’”Ll(X].) =1.

Fix some i € {1,...,]} and consider the corresponding function from the sum in the
right hand side of (3.23). Since | Dj, 1| < A1, itis enough to consider
(3.24) fre | JDja: RMI), -0 8jis b fiunr -0 £i)]) > fi—l}
Suppose x ¢ UD;a. f Q € Dand Q' € D, ) are such that x € Qand QN Q" # 2,
then Q' ¢ Q. Using this and the zero integral of b;, in the cubes Q" € Dj, ) we see that
RM[(&ji, -+ &jivr Ujis fiisar - - -+ fi)I(x) = 0. Thus, the set in (3.24) is actually empty. This
finishes the proof of the weak type estimate.

We move on to prove the sparse domination. Let 4 C D be any finite collection such

that there exists a cube Qp € D so that Q C Qo for every Q € €. We consider the related
maximal function

RMi[(f))jer)(0) = [{(fo)jer: x e Qe 7|
Define the related truncated versions for every Q" € D by
RMy o [(f)jes10) = [{(fdo)jer: xe Qe %,Q c Q')
and also the numbers
RMY [(f)jer] = [{(fdo)jer: Q€ 4,0 > Q')

Notice that RMy o, = RMg.
Fix some functions f; € Llloc(X j)- Let 8 denote the weak type norm of RM. We show
that there exists a sparse collection S = S((f})je5) C D of subcubes of Qp so that

RM,(@.7)

RM,(@,7)”

|RMv(mJ>'

(3.25) RMy[(f))jeg] < 2'8 Z H<|fflxj>Q1Q-
QeSjeT
This follows via iteration from the estimate
(3.26) RMy[(f)jer] < 28] [Ufilxdalan+ Y, RMigl(f)iesl,
€T Qe&(Qo)

where &(Qo) is a collection of pairwise disjoint cubes Q € Qg such that }ncgg,) IQl <

1Qol/2.
We prove (3.26). Define the collection E(Qp) to be the set of the maximal cubes Q € D,

Q C Qy, such that

RMZ[(f)jes] > 2'8 [ [Ufilx o
jeI
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If Q € &(Qo), then RMy[(filg,)jer1(x) = RMe[(f)jeg1(x) > 2'B T e < filx,)q, forallx € Q.
Therefore, applying the weak type boundedness, we have that

Y <2 (]« f]-|x,.>QU)_% [T fjlgonfl(xj) =27Ql.

Qe&(Qo) jegJ €I

If x € Qo \ U&(Qo), then RMg[(f))jer](x) < 2'8 Hj€j<|ﬁ|xj>QO' On the other hand, if
x € Q € E(Qy), then

RM[()jeq 100 < RMZ"[(f))jer] + RMeg ol () e 1(0),

where RMgl)[( fiieg] < 2IBT] je Al flej>QU by the stopping condition. Thus, we have
proved (3.26), and therefore also (3.25).
From (3.25) it follows that each RMy: ]y LP/(X;) — L is bounded for all p; as in the

statement. There exist cubes Q; v € D, where 1 < i < m for some m < 29 and N € NN, so

that £(Q;n) = 2V, Qin C Qine1, Qin N Qi = 0 if i # 7/, and U; Uy Qi = R?. What the
number m is depends on the lattice D. Let %;n := {Q € D: Q C Q;n, £(Q) = 27N}. Then,

Y RMy, [(£)jer 1) / RMI(f)jeg)@), N = o,
i=1

for every x. Thus, by monotone convergence, we have that RM is also bounded. O

3.27. Example (The RMF,; property in the function lattice case). We continue with
the setting and notation of Example 3.11. We also assume that (Xj, ..., X,+1) has the
RMF,, property. Suppose J C Ju, 1 < #J < n—-2and v € J, \ J. Suppose
fi € LPi(RY; LPi(Q; X)) = PI(RY x Q; Xj) for all j € J, and fix a dyadic lattice D. We
have by Example 3.11 that

RMp,0,7,0[()jeg100) < || = RMop, 0,57, (fi (- @) jeg 1@y oy
so that

|| RMZ)/@/j,v[(fj)jej](x)||LP(«7)(]Rd) < |||| RMD,caoJ,v[(fj('/ O)))jej](x)“Ln(J)(Rd)||Ln(7>(Q)
< | TTsce e,
N
< H ”fJ'”L”/‘aRde;X]-)-
€
This shows that (LP1(€; X), ..., LP»1(€); X,,+1)) has the RMF,, property. In particular, by
iterating the previous we have obtained that any Holder tuple of iterated Banach function

L) Q)

1 m 1 m
lattice spaces (L1 --- 1)1 S ,Lp”*1 ... IP"1) enjoys the RMF,, property with respect to
p 151 Hm H1 H1 ] y p p y p

n+1

(D(fl,...,fn+1)=/Hfj(tl,...,tm)dyl(tl)..-dym(tm).
j=1

3.28. Example (Noncommutative RMF property). We are interested in operator valued,
multilinear singular integrals acting on products of noncommutative LP-spaces; to this
purpose, we need to study the corresponding Rademacher maximal function theory. We
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begin with a quick summary of the relevant definitions. For comprehensive background
material on noncommutative L” spaces and their role in noncommutative probability and
operator algebras we refer to the classical survey by Pisier and Xu [42], to the recent
monograph [41] by Pisier and references therein.

Consider a von Neumann algebra A equipped with a normal, semifinite, faithful trace
7. For 1 < p < oo, the corresponding noncommutative space LF(A) is defined by the norm

el = |T ((s*s)g)]’l’ .

Notice that LF(A) is a UMD space for all 1 < p < co. An enlightening example is obtained
by choosing A = B(H), the space of bounded linear operators on a complex separable
Hilbert space H with orthonormal basis {¢; : j € IN} equipped with the usual trace

(&) = Z(éei, e;)
=1

In this case L (A) is usually referred to as the p-th Schatten class and denoted by SF.

Let now (£, u) be a o-finite measure space and A a von Neumann algebra as above.
We conveniently recall that M = L*(QQ) ® A is also a von Neumann algebra equipped
with normal semifinite faithful trace

v(f®£)=(/0de)T(é),

and that we have the isometrically isomorphic identification L7 (M) ~ LF(€); LP(A)).

We turn to the study of noncommutative multilinear Rademacher maximal functions.
This concept was first explored in the bilinear setting in [11]. Let2 < x < n + 1, and
p1,---,Px € (1,00) be a Holder tuple of exponents. We are interested in the Rademacher
maximal functions associated to the tuple of spaces Xj, ..., X;,+1, where

o Xi=LVi(A)for1<j<x,
e Xj=Cforx<j<n+l,

equipped with the (1 + 1)-linear contraction

K n+1
D&, Enn) = T[H 5]’) I1 ¢
j=1 j=r+1

We are able to establish a satisfactory multilinear Rademacher maximal function estimate
for the above tuple of spaces when x < 3. This is an improvement over the results of [11],
where the restriction ¥ = 2 was imposed. Notice that the analysis of [11] concerned the
nontangential version of the Rademacher maximal function, but the arguments therein
can be recast in the dyadic setting as well.

3.29. Proposition. Suppose k = 2 or k = 3. Then the above defined tuple of spaces X1, ..., Xp+1
has the RMF,, property.

Proof. We work with the dyadic lattice Dy in dimension d and therefore make use of
the identification LP(M) ~ LP(IR%; LP(A)), where M = L*(R?) ® A. The proof is split into
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several cases, all of which will make use of the following celebrated result of Junge [28]:
if f € LP(M), we may find ay, by € L?(M) and contractions y,, 7 € Msuch that

(3.30) lapllze Al ll2rany < N lleomy
and
(331) E[f = Z EQf = Elfyg,fbf.
QeDy
(Q)=2""*

By the definition of RMF,, (3.20), we will prove the result according to the following cases:

(1) {jlljz} N {11 .. -/K} = @/

(i) #{j1, 2} 0 {L,...,x} =1,

(iii) #{j1, 2} N{L,..., x} =2
In case (i), we will take jp =1, so that#9 N {1,...,«x} canbe 0, 1 or 2(if ¥ = 3). In case (ii),
without loss of generality, we can assume that 1 §E {1, j2} so that we can still take jp =1,
then #9 N {1,...,«x} can be 0 or 1(if k = 3). In case (iii), if k = 3, agam we can assume
1¢ {j1,/2} and take jp =1, then#J N{1, k} = 0; if k = 2 we will take jp = 3 and in this
case #9 N{1,...,x} = 0. Let us consider the last situation first. We have

RMop,0,73[(f))jeg](x) = ” <f]>Q)]ej XEQEZ)O ||

RMs(@,9)
< sup sup 'Z T(Ee1€e0) H % H Eefi( x)|
||€[14||Rad(L7’lf (A )—1 i€PRad (1,2} i€PRraq\{1,2} j€g
u=1,2 llEill 2=1
= sup sup ]E’ Z exxa Z ke H &g, H Et’fj(x))|
[I€e ullRad(LPu )—1 i€PRrad \(1,2} i€Praa \{1,2} ]Ej
u=1,2 llSill 2=1

< sup H |Eefi(x)] < H Mf(x),

jeg jeg

where we have used Holder’s inequality and Kahane contraction principle. We conclude
this case by using the boundedness of [];cq Mfj(x). Now we are left to deal with the
remaining cases, keep in mind that we always have jp = 1.

Case#9 N{1,...,«x} = 2. This forces that x = 3. We are then allowed to estimate

RMa,0,7[(f)jes 1) = [[{(fo)eg s x e Qe Duf|[

< sup sup|T(f1(x)E€f2(x)E€53)’ H Mf;

|§1|LP1 (_7{)=1 4 j€IT\2,3}

3
< [ L@z log Ol 0 ] M

j=2 jeT\{2,3}
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where the first inequality follows from the definition and the second by (3.31) and
Holder’s inequality. For g1 = (p1)’ Holder’s inequality yields

3
IRM o, 0, 7 [ Mimarey < [ [sllznolbslizngng ] IMAlle
' j€T\{2,3}

j=2

3
<[y [T WAlee-
j=2

jeg\2,3}
In view of (3.30), we obtain the bound

3

RMDO,@J:[H LPf(JRd;LPf(ﬂ»]x[ 11 L°°<1Rd>]ewl<ﬂzd>
j=2 jeI\2,3}

and conclude the required condition for this class of J by means of Lemma 3.22.
Case#J N{1,...,«x} = 1. Thisis actually the most complex case. If k¥ = 2, we may proceed
similar as in the previous case, details are omitted. We are therefore left with treating the

case where x = 3 and without loss of generality we assume 2 € 7, \ J. We may estimate
the Rademacher maximal function corresponding to the RM; (@, J') norm

RM,.0,71[(f)jegr 10 = [{(Fo)jer: xe Qe Dl

< sup sup | ZT[El(x)EK,ZEKfS H A{,z‘J H Eé’fj(x)
l

€ ullRaaqrn (=1 i€Prad \2 i€Prag\(2) j€T\(3)
u=1,2 1A gillRaa=1

< ( sup ||A5Eff3(x)||Rad(LP3(ﬂ))] H Mfj,
IA¢llRaa=1 €T\3)
where the second step is obtained via Holder’s inequality and the Kahane contraction

principle. Now using (3.31), we obtain

”AfEé’f?v(x)”Rad(Lps(ﬂ)) N ||af3(x)||L2”3(ﬂ) ”/\fyfrf?)(x)bﬁ(x)||Rad(L2P3(&’l))

2
< llag, (@)l [Z |A§|||yg,f3<x>bf3<x>||§2,,3(ﬂ»] < 12, (20 101 Ol 25
4

We have crucially used type 2 of L?P3(A) when passing to the second line. Taking LP3(IR%)
norm and using (3.30), we realize that we have proved the estimate

RMopy, 0,71 : [P(RGIPA) x [ LURY) — 1R
JET\(3}
which completes the proof of this case.
Case I N{1,...,x} = @. This is the easiest case. If x = 2 it can be proved similarly as the

the previous case (even easier as we don’t need to deal with E,f3). And if x = 3, it can be
proved similarly as at the very beginning. O
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4. OPERATOR-VALUED MULTILINEAR SHIFTS

Our basic result concerning the boundedness of n-linear operator-valued dyadic shifts
is summarized by the following sparse domination principle.

4.1. Theorem. Let n > 2, suppose X, ..., Xn, Yn+1 are UMD spaces and denote X1 = Y,
Assume that (X, ..., Xy41) has the RMF,, property with some @ as described in Section 3.2. Let
fm € LX) form =1,...,n+ 1. Suppose D is a dyadic grid and ) € (0,1). Then there exists
an n-sparse collection S = S((fim), ) C D so that the following holds.

Suppose Sk .= SIE), k=(ki,...,kos1), 0 < ki € Z, is an n-linear dyadic shift with complexity
k and with coefficient operators axq,y € L(I1h_1 Xm, Yu+1). Recall the collection C(S¥) of
normalized coefficients from (2.14). We have

n+1
(4.2) (S (fur- s fis fusD)l Sy (141 Ro(CSD) Y I T (Ufinlx.,) o
QeS m=1

where kx = maxk;,.
In particular, if p1, ..., pn € (1,00], gus1 € (1/n,00) and Y5 1 1/pm = 1/qGn+1, then

(4.3) IS (A1, .. o fillLam (v, S (1 + k)" 1R, (C(SM)) H I frrllzpm (5,

m=1
Proof. The estimate
n+1 |Q |1/2 n+l
m

|<aKf(Qi) [e1, ... enl ens)| < R@(C(Sk))L H

K| len|x,,
m=1

follows directly from the definition. We are considering a shift

S, f) = ) Ak(fir oo )

KeD
where _ L
Akf-f) = Y ak@llAhg) - (B g,
Q1 Qn+1€D
Q=K

By Lemma 2.15 it remains to prove that

n+l
(4.4) (S (R o fods fast)] S (L 1) Ro(CEN [ T M fonllom

m=1

n+1

for some py, € (1, 00) satisfying )./ "; 1/p, = 1. Notice that by proving this, we also prove
the corresponding estimate for all subshifts S';), = Y.xery Ak, where 9 C D. This is
required in the assumptions of Lemma 2.15.

If n > 3 we assume the following. Let jo, j1 € J, be the indices such that the cor-
responding Haar functions of the shift Sk are cancellative. Then, since (X, ..., Xu41) is
assumed to have the RMF,, property there exists a v € 7, \ {jo, j1} so that the maximal
functions RMy 4 7, are bounded for all I C J, \ (J U {jo, j1}), see (3.20). Notice that

hg, = h% . For convenience of notation we assume that v = n + 1 but the general case is
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handled similarly. If n = 2 there are no RMF,, assumptions involved and we assume for
convenience that ﬁQ3 = h%s

Having made the initial assumptions we proceed with an arbitrary n > 2. We let
{{n +1}, j Ra d,j 0} be the admissible partition such that #j 0 =2and hQ] = hQ/ for

j € jg & for j e j}gM we have hQ]. = hOQj. Ifme jlgad’ then (fm,th) = (A];('”fm,th), and

ifme jIgM, then <fm,ﬂl:liQm> = (E];(’”fm, hOQm). By writing for m € j’gM that

km—1

Ekmfm = Z A fm + EKfm/

we see that the shift S can be split into at most (1 + x)" 2

Y APy, PLf),

KeD
where the following holds. We have 0 <[, € Z and I,;, < k;,. If I,, # 0 then Pllg’ = AZ’, and
if 1, = 0 then PlK’" = Pk can be either Ak or Ex. Form € jlgad wehavel,, = k;, and P;z’ = AII’<”.
Now we fix one such operator and show that it is bounded as desired. Let . I,QM c 9, IgM

be the subset of those indices m such that Pég’ = Ek, and set . éa qa= {1,...,n\J g Recall
the lattices D, ] € {0,...,x}, from (2.5). We fix one j and start to consider the term

(4.5) (Y AKPLf, .., Pif), fusr).

KeDj

operators of the form

We prove an estimate that is independent of ;.
Let K € Dj,. Define an operator-valued kernel ak : RA4(+1) L(IT5,21 Xim, Yus1) by

EIK(X, y1/ ey yi’l) = Z |K|naK,(Q1)hQ1 (yl) e hQn (yl’l)hQn+1 (x)
Ql r~'~rQn+l €D
Q=

Notice that ak is supported in K™1 and that if x, Yi,...,Yn € K, then for some € € {-1, 1}
we have eax(x, y1,...,Yn) € C(Sk) . Thus, there holds

Ro(lax(e, y1, -, yn): K€ D, X, Y1, ..., yn € RY)) < Ro(C(S¥)).

Below we write ax(x, y) = ax(x, y1, ... ,yn) fory=(y1,...,yn) € RY", We have that

@6 AP PRRW = oo / ak(, YIPLf(), -, P2 fu(y)]l dy.

Let (V,v) be the space related to decoupling, see Section 2.2. Let also V" be the n-fold
product of these, and let v, be the related measure. If y = (y1,...,yx) € V", then y,, k for
m € {1,...,n}and K € D denotes the coordinate of y,, related to K. If y € V", we write yx
to mean the tuple (y1, ..., ynk)- If K€ Dj, then we can rewrite (4.6) as

@47)  Ax(Plfi,...,Plf)(x) = / ax (X, YOIPLAWLK), -, P fa(yn )] dva(y)-
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Applying (4.7) it is seen that (4.5) equals
Z (ak(x, yK)[Pé}fl(yl,K), et P RO, fus1 (1)) dvi(y) dx.
RY Sy KGD]'K

Notice that here we may multiply each of the functions inside ax(x, yx) by 1x(x), since
ak(x,-) = 0 unless x € K. Applying the Rp-boundedness (see Remark 3.16) of the kernels
gives that the absolute value of (4.5) is dominated by

Lo TT 10kl futwmien, s,
Rd Jeyn meg’
(48) Rad

X ||{(1K(X)EKfm(ym,K))mejI,{M3 KeDj}

Let Fg, be the tuple of the functions f,, with indices m € Jg, ;. We notice that for all
x € R? and y € V" there holds that

d dx.
RM(w,jI’{M,nH)lan(x)|X”” vu(y) dx

||{(1K<x>EKfm<ym,K>)m€jI,{M: K€ Djcllsioss rury < EMD T 1 E )
and by assumption we have that
1/r
(4.9) ( /1R , [v RMopo,g7, n+1 (g )0 dvan(y) dx) S H I finllLem (x,)-
MmeJ b

Here r is the exponent defined by 1/r =}, T 1/pm.
Let m € J; - Then Kahane-Khintchine inequality (2.1) shows that

I .
/]Rd [w I(AKEAY for(Ym &)k, N a(x,y Avn(y) dx

~ > lm Pm Pm
B[] Y ecte@l fulmol, dxdvt) 1A o

KeDj,

(4.10)

The last step is based on the decoupling estimate (2.6).
Now, if we use Holder’s inequality in (4.8) and combine the result with (4.9) and (4.10),
we finally see that
n+1

@5 < | [ fllirm -
m=1
This concludes the proof. m]

5. OPERATOR-VALUED MULTILINEAR PARAPRODUCTS

We begin with some definitions. Suppose Xj, ..., Xy, Y,+1 are Banach spaces. Suppose
T € L(IT,-1 Xm, Yn+1). Letk € {2,...,n} and e, € X,y for m € {k,...,n}. Define the

operator Tle, ..., e,] € L(Hkm;ll X, Yns1) by
(T[ek/ ey eﬂ])[ell ey ek—l] = T[ell oo /en]/
wheree,, € X,,, m € {1,...,k—1}. We see that for k € {2,...,n — 1} there holds that

(51) ||T[€k, ceey en]”‘c(n’rfn;ll Xon,Yrus1) < |€k|Xk||T[€k+1, ceey en]”L(H’:”:l Xon,Yrus1)
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and that
(5-2) ITTend ot 9,000 = enbli Tlzqrn ., x,0,0

Let a = (ag)gen, Where

n
ag € L( H X, Yn+1).
m=1

Assume that there exists a UMD subspace 7} C L(Hizl X, Yns1) for every k € 1,1 so
that

IZQ € Tn
and fork <n
aglexs1, ..., en] € Ty, forevery e € Xiy1, ..., 6n € Xj.

If these conditions are satisfied, we say that a satisfies the UMD subspace condition.
The next theorem generalises the result about boundedness of operator-valued para-
products from [16] to the multilinear context.

5.3. Theorem. Letn > 2, Xy, ..., X, be Banach spaces, Y ,+1 be a UMD space and X,1 = Y,
Let f, € LY (Xy) form =1,...,n+ 1. Suppose D is a dyadic grid and n € (0,1). Then there
exists an n-sparse collection S = S((fi), n) C D so that the following holds.

Suppose a = (ag)gep satisfies the UMD subspace condition as above. For a paraproduct
T := Tt , we have for all v € (0, c0) that

n+l
(5.4) KRCfrs oo S St Sy lalloion,ry Y, 1QUT T (Vfinkx, )
QeS m=1

In particular, if p1, ..., pn € (1,0], gus1 € (1/n,00) and Y7, _1 1/pw = 1/qn+1, then

n
(5.5) I(fr, - -0 fullloner (v,en) S llallBMoy,,(77) H I fallzpm (x,,)-

m=1

Proof. We first fix r € (1, c0) and assume that |lallpmo,,,(7;,) = 1. We will use Lemma 2.15
again. First, the correctly normalized estimate

|Q|n/2+1/2 n+l

|Qr

< |em|Xm

1
| aQ[el/'--rei’l]/en+l>

QI

follows directly from the BMO assumption.
Choose py, € (1, o) so that anzl 1/pm = 1/r. We show that

m=1

n
. < m
(56) | Y- acttmraiall, < [Tl
QeD m=1
QcQo

where Qp € D is arbitrary and (F)g = ({(f1)q,--.,{f1)0). We denote by D(Qp) the set of
cubes Q € D such that Q C Qy.
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We begin by constructing a collection of stopping cubes. Set Sy := {Qo}, and suppose
that Sy, ..., Sy are defined for some k. If S € Sy, we define chg(S) to be the collection of
the maximal cubes Q € D such that Q ¢ S and

(|f1|x1>Q,m, <|fn|Xn>Q) - o
(filx,)s (I fulx,)s
Then, we define Siy1 := Uges, chs(S) and finally S := Ureo Sk- If Q € Dand Q € Qu, then
the unique minimal cube S € S containing Q is denoted by ng(Q). If S € S we define
E(S) := S\ Usecngs) S

It follows from the construction that S is a sparse collection. For S € S define Fs :=
(f1,8,---/ fus), where

(5.8) fms = Z (fm)s1s + 1g(s) fun-
§/cchs(S)

(5.7) max (

From the stopping condition (5.7) it is deduced that

(5.9) I fim sl < I fmlx,)s-
Equation (5.8) implies that
(5.10) (F)g = (Fs)o

for all Q € D(Qp) such that tgQ = S.
Pythagoras’ theorem (2.7) and Equation (5.10) give that

H Z ag[{F)glhg
QeD(Qo)

(5.11) |

Lr(YrH—l)

2 agl(Fs)qlho '

)1/r
SeS QeD(Qo) L'(Yirn)
ﬂsQZS

It will be shown that for all S € S there holds that

n

(5.12) “ Z aQ[<gl>Q/~--/<gn>Q]hQ||, < | | gmllzecx,) ISV
L'(Yn+1) i
QED(Q) m=1
nsQ=S

for all g,y € L*(Xy,), m € {1,...,n}. This combined with (5.9) and (5.11) implies that the
left hand side of (5.11) satisfies

rHsGa) < (Y T4 fmlxm>g|5|)1/r <TT(Y Wb Sl)l/pm

SeS m=1 m=1 Se8S
n
< H | fullLom (x,),
m=1

where the last step followed from an application of the Carleson embedding theorem
based on the sparseness of S.

Fix S € § and suppose g, € L*(X,,), m € {1,...,n}. Let {eg}gep be a collection of inde-
pendent random signs. For all x € R? the collections of random variables {¢ohg(x)}loen
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and {eglho(x)l}gep are identically distributed. This gives, using the UMD property of
Yn+1/ that

| Y acltgno,. - (swalhl

QeD(Qo)
ngQ=S

~ IE” Z SQHQKgl)Q, cen
QeD(Qo)
nsQ=S
Notice that |hg| = 1o/ |Q[/2. This allows us to use Stein’s inequality in the next estimate.
The UMD-valued version of Stein’s inequality is due to Bourgain, for a proof see e.g.
Theorem 4.2.23 in the book [24].
The right hand side of (5.13) satisfies

LYoy

(5.13)

RHS(5.13) =E Y eQ(aQ[gl(-),-..,<gn>Q])Q
QEDQy)
TtsQ:S
SE| Y conalgiOh - gm0,
QeD(Qy)
ﬂsQZS
< E|g1lx, Z €QaQ[<g2>Q/---/<gn>Q]|hQ|||7_||U
QEDQy) '
nsQ:S
< lIg1llzex)E Z eoagl{g2>q, - - -, (gn)ollhgl Ty
Q<D0 1
TtsU=

Because 77 is assumed to be a UMD space we can repeat the above estimate with g, in
place of g;. In course of doing so, after applying Stein’s inequality, we use the estimate

Y, conolga®), (g0 {gmallhoW|

QeD(Qo)
nsQ=S
< 1£2(0)Ix, Z eoagl(g3)q,-- -,
QeD(Qo)
TtsQ:S

see (5.1) and (5.2). Iterating this we arrive at

RHS(5.13) < H l1gmlz (xn,>1E" egaglhol

QED(Qo)
ﬂsQ S

L'(Tw)

Finally, the BMO assumption gives that

]E“ Z ‘SQanhQ|HU(TH) < llallsmoy, @IS = IS

QeD(Qo)
ﬂsQZS

This concludes the proof of (5.12), and hence of (5.6). Lemma 2.15 now gives (5.4). It
remains to recall the John-Nirenberg inequality (2.9). O
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6. THE REPRESENTATION THEOREM

Letn >2andlet Xy, ..., X;, Y,+1 be UMD-spaces. With respect to these spaces, suppose
that T is an n-linear operator-valued SIO with a basic kernel K. In addition, T"" denotes
the mth adjoint of T for m € {1, ..., n} — that s, there are n-linear operator-valued SIOs T
satisfying the identity

<T(f1/ cee /fn)/fn+1> = <Tm*(f1/ cee /fm—lzfn+1rfm+1r .- -/fn)rfm>~

Assume that there exist UMD subspaces 7} C L(H£1:1 Xm, Yns1) so that for all dyadic
lattices D the sequence [T1]p := ((T1, hg))gep satisfies the UMD subspace condition (see
Section 5) with these spaces. Recall that the operators (T1, hg) were defined in Section
2.4. We abbreviate this by saying that T1 satisfies the UMD subspace condition. Let
m € {1,...,n}. Likewise, we say that T""1 satisfies the UMD subspace condition if the
corresponding UMD subspaces 7" exist. Notice that here the spaces X,, change places,

so that for instance
m—1 n

T e L H X; X Xpi1 X kH+1 Xk, X;,)
= =m

If Gum: R - C, m =1,...,n+1, are bounded and compactly supported and @ =
(¢1,...,Pn), then we can define the n-linear operator

n
(T®, prar): | [ X > Yura

m=1

by setting
(61) <TCD, ¢1’l+1>[ell' . -/en] = <T((P1€],. . -/¢nen)/¢n+l>/ em € XI’VZ

We define the following collection of n-linear operators []),_; X,y — Y41 by setting
Cweak(T) = {IQI"XT(1g, ..., 1), 10): Q c R? is a cube}.

6.2. Definition. Letn > 2, Xy,..., Xy, Y11 be UMD spaces and X1 = Y] _,. With respect
to these spaces, suppose that T is an n-linear operator-valued SIO with a basic kernel K.
Suppose that @: X; X --- X X,,41 — Cis an n + 1-linear contraction as in (3.3). We say that
T satisfies T1 type testing conditions if:

(1) We have
IKllcz,,0 := Ro(Ccz,a(K)) < oo.
(2) We have
ITIwBp,o := Ro(Cweak(T)) < 0.
(3) Forallm € {0,1,...,n} the UMD subspace condition for 71 holds, and there exist

exponents rg, 71, ..., € (0, 00) so that

IT"™ Ulsmo,, (77 = sup IKT™ 1, hg))genllBmO,,, (T7m) < ©°,
D

where the supremum is over dyadic lattices on R?.
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Good and bad cubes. Recall the random dyadic lattices from Section 2.1. We introduce
the good and bad dyadic cubes of Nazarov—-Treil-Volberg [37]. Let y € (0,1) and r €
{1,2,3,...}. We say that a cube Q € D, where D is a dyadic lattice, is (), r)-good if for all
R € D with £(R) > 2"¢(Q) there holds that

d(Q,dR) > ((Q)EL(R)' 7,

where dR is the boundary of R. If Q is not (y,r)-good, we say that it is (), r)-bad. Let
Q € Dy (where Dy is the standard dyadic grid) and define the probability

Prad(y,7) = P{lw € Q: Q + w is (y, r)-bad}).

This probability is independent of the cube Q € Dy and Ppaq(y, ) — 0, asr — co. In what
follows we make the explicit choice y(dn + a) = /2 and then fix r large enough — at least
so large that Pgood = Pgood(y,7) = 1 = Praa(y,7) > 0, and that certain calculations below
are legitimate. Now that y and r are fixed we simply write D04 and Dypaq for the good
and bad cubes of a given lattice D.

6.3. Theorem. Let n > 2 and let Xy,..., Xy, Yn+1 be UMD spaces. Denote X1 = Y,
Suppose that (X1, ..., Xu+1) satisfies the RMF,, property with some @, as in Section 3.2. With
respect to these spaces, suppose that T is an n-linear operator-valued SIO with a basic kernel K as
in Section 2.3. Suppose that T satisfies the T'1 type testing conditions of Definition 6.2.

Let fu: R* — X,,, m = 1,...,n+ 1, be compactly supported and bounded functions. Then we
have the representation

<T(f11 .. ~lf71)/fi’l+l>

n
= C[IKlicz,0 + ITlwee.o + Y IT™ sy, (770

m=0

X [IEQ, Z 2—amaka/2 Z(Slgo,u(flr cee /fn)/ fn+1> + i(anqu(flr o /fn)/fn+1>]-
u m=0

kezn+1

Here C < 1 and the sum over u is a finite summation. The operators Sk, , are dyadic shifts of

complexity k defined in the grid D, and satisfy Ro(C(SK,,)) < 1. The operator T, pneq is the

paraproduct Tp [Tmw1], ] related to [T™1]p
@,800

w,good *
Using Theorem 4.1, Theorem 5.3 and (2.17) we get:

6.4. Theorem. There exist dyadic grids D;, i = 1,...,3%, with the following property. Let
n € (0,1). Let Xy,..., X, and Y41 be Banach spaces and fy,: R > X, m=1,...,n+1, be
compactly supported and bounded functions. Then for some i there exists an n-sparse collection
S = S((fn), n) € D; with the following property.

If T is an operator-valued n-linear singular integral satisfying the T1 type testing conditions,
then

n
KT(R, o fi) ) g [IKlcz,0 + [ Tlp,o + Y IT" Ulsnio,, )|
m=0

(6.5)

n+1

x ) 1T T (Ifubx, )

QeS m=1
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In particular, if p1,...,pn € (1,0], gus1 € (1/n,00) and Y5 1 1/pm = 1/qn+1, then

n
WT(f1,- -0 fillliansay,.y) S [”K”CZMD + || Tllwsp,o + Z ||Tm*1||BMo,,,,,(T,;")]

m=0

(6.6) i
x | [ Wfaullornx,-
m=1

Proof of Theorem 6.3. We show the proof under the additional assumption that T is a priori
bounded, say from []},_, L"(X,,) to LO+D/7(y, ). At the end we comment why this is
enough. With this assumption, all the steps in this subsection can be made rigorous.

For every m € {1,...,n + 1} suppose f, is a X;-valued, bounded and compactly
supported strongly measurable function. Write F = (fy, ..., f,). We start considering the
pairing (T[F], fu+1)-

Multilinear reduction to good cubes. Fix for the moment a random parameter w € Q.
Writing the functions as fi = }.,.en, A, fm We have

<T(f1/-~~/fn)/fn+1>
= Z (T(Ag, fi - A, fu), Mg, fus)

er~-~rQn+1 EDm

= Z (T(Ag, fi, - AQ, o), Mg, st )
m=1 Q1,-,Qu+1€Dw
Q1) A(Qm—-1)>E(Qm)
K(anl) ----- f(Qn‘Fl)Zf(Q;ﬂ)

For k € Z there holds that
Z A8 =Eypx8  Eupi8:= Z (8)ola-
QEDw QeDa)
£(Q)>2* (Q)=2

Thus, form € {1,...,n} we have
Y (T(Aqufir-- s D fi) A fusr) = Y, Anl@Q),
Q1,--Qn+1€Dy QeD,,
g(Qerl)r---r{(QnH)Zf(Qm)
where A,,(Q) is defined, for Q € D,,, to be

<Tm*(Ew,f(Q)f1, e s Ew,0Q) frn-1 Ew,@fnﬂ, Ew,@fmﬂ, ey Ew’@fn), AQfm>-

Similarly, for m = n + 1 we have

Z (T fr - AQ fi) Ag, fura) = Z An+1(Q),

Ql/~-~/Qn+1 €Dy QGDm
Q1) (Qn)>E(Qn+1)

where

(6.7) Ap41(Q) = <T(Ew,£’(Q)flr .. ~/Ew,€(Q)fn)/ Aan+1>, Q€ Dy.
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Recall that D, is the lattice {Q + w: Q € Dy}. Hence, the average over w € Q of
Ygen,, An+1(Q) can be written as

1
Pgoo

1
= E, Z 1good(Q + w)Ap+1(Q + w)

Pgood 0eDy

Ey Z A1 (Q)/

Qeﬂw,good

E, ) Aui(Q+w)=

QeDo

Z IE:w[lgood(Q + a))]]EwArHl(Q + a))

d QeDy

1
Pgood

where independence of the functions w — 1g504(Q+ @) and w > Ay41(Q +w) was used in
the second identity. Since the same argument can be clearly made for every Y nep,, An(Q),
we have shown that

n

(68) T fu) = —E Y, Y A@+ Y, Am(Q]

P
gOOd m=1 QEDw,good QEDa),good

Expansion back to martingale differences. Now that the probabilistic reduction is done,
we fix one w € () and suppress @ from the notation; all the dyadic concepts are with
respect to the lattice D := D,,. Letfirstm € {1,...,n} and Q € D, and consider the pairing
An(Q). Just for notational convenience define for the moment

fi, jell,...,n}\ {m},
(69) g;n = fﬂ+1/ j: m,

fm, j=n+1

By writing E«o g1 = De@)8m + Ee@ 8, where Dykg = Y6, ¢g)=2+ Agg, we have
2

An(Q) = (T™(Ea8ls - Ex@8&h-1: Der @ E 1@ Ecagh) Aogiy)

+(T™(Ec8}- - EeQ8m Ee@ 81+ E@gﬁ), Aga )

Continuing in the same way with the second term on the right hand side, it is seen that

n

An(Q) = Z (T™(Ee8?, - Ee@8ty Du8!' E 18- E @gl’f)f Aggit)

j=m
+ Am(Q)/
where we have defined
(6.10) An(Q) = <Tm*(Ef<Q)gTr e Et’(@g;’?)/ AQ8T+1>~

The terms A,(Q), m € {1,...,n}, are completely symmetric with the term A,1(Q) in
(6.7). Hence, we will concentrate on finding the model operator structure for the sum

6.11) Y AmQ.

QeD good
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The terms
(6.12) Y, (T (Ecosl' - Eao g}y Deo8) Ea i Exa i) Aogia).
QEDgood

where m € {1,...,n} and j € {m,...,n}, will be handled separately in Section 6.6. Apart
from a certain diagonal part, the shift structure for these will follow from our arguments
concerning (6.11).

Now we start to consider the term (6.11). Fix the cube Q € Dgooq for the moment.
Since by a priori boundedness there holds

T(Ezkfl,...,Ezkfn) —0, ask— oo,

we have
(T(Ec@fir- Ea@fu) Dafun) = Y [(T(Exfir- Exfu) Aofus)
kez
226(Q)

~(T(Exe fi, . Egen fu), A fus )]
Let k € Z be such that 25 > £(Q). Then
(T(Exfir--- Eaifa) Agfist) = (T(Eges fi, ., Egeot fu), Ag s )

n
=Y (T(Egea fir -, Byior fis, Dy iy Ege firs - Egifu), Ao fosa )
i=1

Forie€ {1,...,n} the corresponding term in this sum can further be written as

Z (T(Eaifir - Eqis it Ao fi EQua fivts -+ EQu fu) A fusa )-
Ql/'“/QHED
((Qu)=r=0(Q)=21
((Qun)==C(Qu)=2¢

Let us agree on the following conventions. Let Z;,i =1, ...,n, be defined by
D = {R =X X Qi Q. , Qu €D,
UQr) =+ = Q) = 26(Qis1) = -+ = 26(Q)}.
Suppose R = Q1 X --- X Q, € Z;and Q € D. Define {(R) := £(Q1) and
d(Q, R) = maxd(Q, Qm)-

Set Vi F to be the n-tuple of functions

VRE = (EQufi, - EQu fi-1, 80 fi EQuu fiss - EQ, fo)-
Using the above splitting we have

n

(6.13) Y, Ma@=), ), Y (TIVRFL Agfun).

QEDgOOd i=1 QEDgood ReZ;
{R)>HQ)
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Most of the time we will consider each i separately. However, related to every i there will
be a paraproduct type term. These will be summed together in Section 6.4 giving one
simple paraproduct.

Let us rewrite the pairings (T[V;'{F], A fus+1) using Haar functions. Expanding

AQfus1 = {fus1, hodhg
there holds
(T[VRF], Ag fur1) = KTIVRF] hg), { fu+1, ho))-
Related to the set R = Q1 X --- X Q,, € %, define the n-tuple
— (10 0 0 0

(6.14) hri=(h " "hQH’hQi’th’”"hQn)'
Using hg ; we can write

(TIVRF], h) = (Thg i, h)[F, hr )],
where (Thg ;, hg) is the natural operator defined using (6.1) and

<F/ hR,i) = ((fl/ h%l >/ ceey <fi—l/ h%i—l >/ <fl/ hQi>/ <fi+l/ h%iﬂ >/ ceey <fn/ h%n >)
Altogether, we have
(TIVREL Agfas1) = (Thri, ho)(F, hr ), {fas1, 1))

We now fix one i in (6.13) and start to study the related term

(6.15) Y ) Thii hg)CE hr )], fuan, Q)
Q€Dgood  ReZ;
LR)>L(Q)

6.1. Step I: separated cubes. Here the part

EEY Y (Th,i, hQ)(E i )], fran, hQ))
Q€Dy00 Re;
w0

AQ.R>E(Q) (L(R)/2)'

of (6.15) is considered. We begin with the following lemma on the existence of nice
common parents. A short proof is given, albeit it is morally the same as in the case n = 1
in[19]. R =Q1 X --XQy € Z;and Q € D are such that there exists a cube K € D so that
Q,Q1,...,Qn € K, then the minimal such K is denoted by Q Vv R.

6.16. Lemma. Suppose R = Q1 X -+ X Qu € Z; and Q € Dygooq are such that there holds
d(Q, R) > £(Q)”(€(R)/2)'~7. Then there exists K € D so that Q; U--- U Q,, U Q C K and

d(Q,R) 2 UQ) U(K)' .

Proof. LetK € Dbe the minimal parent of Q for which both of the following two conditions
hold:

o {(K) > 2"(Q);

o d(Q,R) < UQ UK.
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If we had that Q,, C K for some m, we would get by the goodness of the cube Q that
QUK < d(Q,R) < UQY UK,
which is a contradiction. Moreover, we have
UQY (E(R)/2)'™ < d(Q, R) < L(Q) {(K)' ™

implying that {(K) > ¢(R). Thus, there holds Q; U---UQ, UQ C K.

[t remains to note that the estimate d(Q, R) > £(Q)?¢(K)'™” is a trivial consequence of the
minimality of K. There is something to check only if £(K) = 2"¢(Q). But then £(K) < ¢(R)
and so

d(Q,R) 2 L(Q) E(R)™ 2 £(Q) LK) .

We use the common parents to organize ¢’ as

1

617) D) fz D)

QEZ)good RE@i KeD QEDgOOd,R€@j
{R)>HQ) d(QR)>E(Q) (E(R)/2)-7
dQR)>LQY (LR 2116(Q)=272 ¢(R)=((K)

QVR=K

Suppose j1, j2, K, Q and R are as in the above sum. We will show that for some large
enough constant C there holds that

2aj1/2 IK|"
C TTh=1 1Qult2IQIM2

Here we are using the notation defined in Lemma 3.18. This then implies that for fixed j;
and j, the inner double sum in (6.17) multiplied by

(6.18) (Thg,i, hg) € A(Ccz,a(K)).

2(Xj1 /2

C[lKllcz,,0 + ITlwep.o + o 1T Uigvio,, (7|

is an operator-valued n-linear shift as in the representation theorem acting on fi,..., fu
and paired with f,,1. The complexity of this shift is k = (ky, ..., ky41), where k; = --- =
ki = 2kiz1 = --- = 2k, = j» and ky41 = j1. Therefore, (6.17) is of the right form for the
representation theorem.

We turn to prove (6.18). We write R = Qq X --- X Qy, and suppose first that d(Q, R) <
Cat(Q), where C; is a dimensional constant. From the proof of Lemma 6.16 it is clear that,
if r is fixed large enough, then K ¢ Q) implying that £(K) ~ £(Q) and j; <r < 1.

If x € R? and y=W1...,Yn) € RY" are such that (x,y1,...,yn) € RA(+1) \ A, where A
consists of the diagonal points (x, ..., x), define

1 —dn
(6.19) Ay = () re=yal)
m=1

By slight abuse of notation we write

ri(y) = B, (1) - (yi-ho, (U, (Wis1) -+ 1Y, (o).
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In (6.14) we gave a different definition for hg,;, but it should be clear from the context
which one we use (see the next equation, for instance).
We write out (Thg , hg) as

K ’
(6.20) (Thg;, hg) = /}R d /}R i Ag ]Z;/\(x, Whe(Pho(x) dy dx.

Notice that this integral does not make sense as such, but has to be interpreted as in (2.13).
There holds that K(x, y)/A(x, y) € Ccz,(K). Because d(Q, R) > £(Q), there also holds that

/ / Ith(y)hQ(x) dvde < RIZIQIM o Timn 1Qul21QI2
n - dn n *
R (s b= ) 1 A

This together w1th (6.20) proves (6.18) in the case d(Q, R) < C;£(Q).
Consider then the case d(Q, R) > C;€(Q). If (cg, y1,---,yn) € A, define

1 —(dn+a)
(6.21) Aolr,y) =l =col( Y e —yml) .
m=1

The zero average of hg allows us to write

K(x,y) — K(cg, v)
(Thy,i, ho) = / d /IR e e y)Q Ao, g i()ho(x) dy dx.

Since d(Q,R) > C;{(Q), it holds that here (K(x,y) — K(cq, ¥))/Aq(x,y) € Ccza(K). In
addition, using the fact d(Q, R) 2 €(Q)"¢(K)'™” from Lemma 6.16 we have the estimate
/ / lx — CQ|“|th Yho()| dydx < QM RIMAIQIM IRIMAIQM2
e o (g e — g QR T 2R
where we recalled that )/(dn + @) = /2. This proves (6.18) in the case d(Q, R) > C4£(Q).
We are done with Step L.

6.2. Step II: nearby cubes. We now look at the sum

b= ). Y. (Thr,i, hQ)[(E g ), fusr, QD).
QEDgDOd R=Q1X-XQn€Y;
UR)>HQ)

d(QR)<UQ) (L(R)/2)!~Y
QmNQ=0 for some m

LetQeDand R = Q1 X - XQ, € ¥ be as in G;. Suppose Q, is a cube such that

Quy N Q = 0. If £(Quyy) = £(QM), then the goodness of the cube Q implies that

d(Q,R) = d(Q, Qug) > £(Q) €(Quy)' ™ = QY (E(R)/2)'7,

which is a contradiction. Thus, we have €(R) < 2£(Qy,) < €(Q"). Suppose Q, N QM =0
for some m. Then

d(Q,R) = d(Q,(Q")) > €Q Q™)™ > £Q) (¢(R)/2)' 7,

which is again a contradiction. We conclude that Q vV R c Q).
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These observations show that

oh = Z Z Y Y (Th i, hQ)CE, g )1, fsn, hQD)-
]1 1]2 0 KeD QEDgOOd,RE.@i
d(QR)<L(Q)Y (L(R)/2)'Y

QmNQ=0 for some m
2/16(Q)=2/2£(R)=C(K)
QVR=K
Similarly as in Step I, we need to show that if ji, jo, Q, R and K are as in aé, then
2aj1/2 IK|"
C Il 1Qul'21QIY/2

—d
Recall the function A(x, y) = ( Yo g lx— yml) " and write

(Thg i, hg) € A(Ccz,a(K)).

M) = [ [ FE o o) dy d.

Here we have K(x, y)/A(x,y) € Ccza(K). Let mg € {1,...,n} be such that Q,, N Q = 0.
Then, using the estimate [p.(c + [x — y)™*# dy <ap ¢ P, where ¢, p > 0, we have

hr,i(y)h
/ / | R, (y) Q( ) — dydx < |R|—1/2|Q|—1/2// ;ddymo du
62 T (e b= yml) 0 Jang Ix = Yum,|

_ B . R|1/2|Q|1/2
< 1/2 1210 w11/2| =l
S IR[THEQITEIQL ~ 2 K
This concludes Step II.
6.3. Step III: error terms. We start working with the sum

= Y. Y. (Thg i, hQ)ICE, g M, < fosa, ),

QGDgood Reg;
R=(QW)ix(Q*-D)-1 for some k>1

which is what is left after Step I and Step II. Here and in what follows Q' = Q X --- X Q,
where there are i members in the Cartesian product. First, we define abbreviations related
to certain error terms. Let Q € Dgy0q and 1 < k € Z. We will define the function tuple

Do ij = (qle/k,i/j, s Py ) forevery j=1,... n 1f j <i—1 weset

1 =. (k -1/2 (k)-1/2
Poasi = = Paisy = 1QUT% 911 =1QO L gy
Ao *)-1/2 ; B
(PQ,k,i,j - = ¢le] Q™™ 1w, ¢1Q,k,i,j = hQ(k>/
i+l o 1A k=1)-1/2
cPZQJr,k,i,j == QZ)Q,k,i,j = |Q®-Y Toe.
If j =iweset
qle,k,i,i = = Qkazz |Q(k)|_1/2, (l)iQ,k,” 1(Q(k—1) [— hQ(k) + <hQ(k)>Q(k—1>]

1 ... _1nk=1)-1/2
¢1Q+,k,i,i - ¢nQ,k,i/i = |Q( )| / ].Q(k—l).
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Finally, for je {i+1,...,n} we set

1 _ il o012 i
qbQ,k,i,j - qle,k,i,j = |Q( )| 2, ¢1Q,k,i,j = <hQ(k)>Q(k—1),
i1 _ . _ 1 Ak =172 i Ak=1)=1/2
qbQ,k,i,j - = ¢Q,k,i,j =1Q | r Pokij = Q | 1(Q(k—1))61
- o
(P]QJr,k,i,]' = = qan,k,i,j — |Q(k 1)| 1/21Q(k_1)'

With the same abuse of notation as with kg ; we set for y = (y1,. .., y,) € R¥" that

Ok j(y) = [ [ 0 m)-
m=1

We are ready to move forward. Suppose Q and R are as in aé with £(R) = 2K£(Q). We

will denote the function hg; also by ug ;. Note thatif y = (y1,..., y,) with y,,, € Q%=1 for
all m, then ug i ;(y) = (ugx,i)gr- With the previous definitions we have the identity

n
(Thei, hg) = (T, ho) = Y (Tqyj ho),
1

where we recall that the operators (T1, hg) and (T®g ,; ;, ho) are interpreted as in (2.13).

This gives that aé = aé . ']7:1 03, 7 where
(623) b= Y Y (ugrdor(TLhQ)E g (fust, hod)
QEDgood k=1

and

Ohoi= Y ) (TP i ho)(Fugrl (fusr, ho)).
QGDgood k=1
;
3,1 )
section. Now we look at the error terms 013 o We consider each of them separately, so
we fix j€{1,...,n}.

The term aé i can be written as

The term o  will become part of the paraproduct that is considered in the next

Ghyi =Y Y Y (TP ho)(E g, (fust, ).
k=1 KeD Q€Dyo0d
oW=k

From here it is seen that this produces a series of shifts that satisfy the requirements of
the representation theorem once we have shown that if k, K and Q are as in ag o then
(624) CT2 M AKAQI X TR 5, ho) € ACcza(K)).

Notice that we have the right normalisation since

IKI2IQI7Y2 ~ |QW QD2 g 2 Ky,
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Recall the functions A and Ag from (6.19) and (6.21). Notice that the j-coordinate of
O ;i is supported in the complement of Q. Therefore, using the definition (2.13) of
Qk,i,j PP P &
(T®qk,ij, hg), we have that (TP j, ho) is the sum of

K(x, y)
(6.25) /IR”’ /CdQ)” A(x, v) /\(x y)‘Plej(y)hQ(x) dydx
and
K(x, y) - K(cg, y) N
(6.26) S L o ™y At 001 () dy .

Let us first consider the case k < r. Using the pointwise normalisation |Pg,; i(¥)| <
|QW[=/2 = |K|7"/2 we get, similarly as in (6.22), that

[Pk (o)l /2y 1
/ / — 5 dydx < IKI™2Q) 1/2// g dyjdx
ROCQ (£ = )" e /e v =yl

< IKI721QIM2.
In the same way, there holds that

Ix - co|*|D ho(x)| 1/2 o
/IRd /C nyc . - . ]( )d'?'fa) dy dx s ||§||n/2 /c |C KEQ).|d+a dy]
(CaQ)") _leg - yml) QleQ—Yj

< K 21Q1M2.

These estimates prove (6.24) in the case k < r.

Assume then that k > 7. The j-coordinate of @ ; is supported in (Q* V). Because
Qis a good cube, we have Q%1 5 Q1 5 C;Q, which uses the fact that r is large enough.
Thus, the integral (6.25) is zero. Related to (6.26) there holds by the goodness of the cube
Q that

lx — col*|P, ho(x)| 1/2 (0
/Rd /Rdn Q ka](]/)di-(a) dydx < -||I%|n/2 /(Q(kl))c |—C EQy).|d+“ d i
et g = ) Q=Y
O 1 (%)
S K2 QY K-y
Since 1 — y > 1/2, we also get the right geometric decay. We have proved (6.24) also in
the case k > r.

6.4. Step IV: paraproduct. We consider the term

b= Y Y gk (T BQICE uginl, fust, ho))

QEDgood k=1

from (6.23). Here we will sum up the corresponding terms a ,1€{l,...,n}, to get one

paraproduct.
Recalling the implicit summation over the cancellative Haar functions we have that

(uo iy {T1, hg)[{F, ug il
=(TL, h)[(fidgw, - - -, {fi-1)qw, (Agw fid own, {fi+1)gwn, - - -, { fud ge-n)]-
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Summing these together overi € {1,...,n} yields
n
Z(uQ,k,i>Q”<Tlth>[<F/ ugkid] = (T, ho)[{F)qun] = (T1, hg)[{F)qw],
i=1

where (F)g denotes ({(f1)g, - - ., {f1)0)- Finally, we get the desired paraproduct:

Y o= Y Y (ML Q)P gun] = (T h)F)gi ], (fusr, 1))
i=1 Q€Dy0q k=1
= Z {T1,hQ)[KF)gl, {fu+1,hg)) = <7TZ),[T1]@gOOd[F]/fn+1>-
QEDgood

6.5. Synthesis of the steps I-IV. We summarize what we have done so far. We have

shown that the terms 01'1, aé and ¢! ., where i, j € {1,...,n}, can be represented in terms

3.e,j’
of shifts. Also, we proved that the sum }'_; 05 _ produces a paraproduct. Therefore, one
of the main terms

n

Y M@= Y[ v+ Yo, ]

QEDgood i=1 j=1

satisfies the required identity for the representation theorem. By symmetry, this gives the
corresponding identity for the terms Y. ey Am(Q), m € {1,...,n}.

good

6.6. Step V: diagonal. To finish the proof of Theorem 6.3 it remains to consider the term

Z (T™(Ea@8}'s - e} s D)8l E Q81 E@g?), Aggi1),
Qeﬂgood

where m € {1,...,n} and j € {m,...,n}. This is the term from (6.12). For notational
convenience write g; := g;ﬁ and G = (g1,...,8n)- The term under consideration can be

Y, ), (T™IVRGLAggun)

Q€Dgood  ReZ;
UR)=(Q)

written as

=YY T he (G, i (g, Bo)).
j=0 KED  QeDgo0d,REZ;

2/6(Q)=2/ t(R)=L(K)
QVR=K

Notice that the common parents exist since the cubes Q are good. Those pairs (Q, R),
R = Q1 X---xQy where QN Q, = 0 for some u, can be handled with the arguments
presented above: either Q and R are separated as in Step I, or then Q and R are close to
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each other as in Step II. So the new part here is

YooY Ty Q)G ) (e, i)
QGDgood R=Q: X"'XQnegj

Q1=-=Q;=Q

Qj+1 ~~~~~ Qn€ch(Q)

(6.27) _ — -
=) Y 30000l o) faTio )t By,

Qj+1r-~/Qn€Ch(Q)

where ag 0, = 40,0,..,0,11 = 1g00d(Q)(T[ﬁQ], ... ,EQW],EQM) We defined for Q € D that
1g00d(Q) = 1if Q is good and 14,,4(Q) = 0 if Q is not good. If j = m, then hg, = h(()g,- for
i€f{l,...,n}\{m}and hg, = hg, fori € m,n+1}. If j€ {m+1,...,n}, then hgo, = h%, for

— ]
i€fl,...,n+1}\ {m,j} and hg, = hg, for i € {m, j}. We divide (6.27) into two by splitting
the coefficients as ag o,y = 20,1 + 40,(Q;),2, Where

0,1 = lgood(Q) Z (Tlghg,,-- -, 1ghg, 1 g, h,..)
Q;,Q. €ch(Q)

Q,#Q for some u and [

and
Q,Qi)2 = 1good(Q) Z (TMlghg,,---, 1ghg,] 1ohg,..)-
Q’ech(Q)

Let Q1 = -~ = Qj = Qus1 = Q € D and Qjyy,...,Qn € ch(Q). Consider first the
coefficient ag 1. Suppose Q}, ..., Q; ., € ch(Q) are such that Q;, # Q; for some u and [.
—d

Recall the function A(x, y) = ( et X — yml) n. Then
628)  (Tgho,, ... 1o koL 1o Tfo,.,) = / KO D) ey dydx
1 17/ 4 n nds el n+1 R JRdn /\(x/y) 4 4

where
o, y) = A0 ) | | 1o, o, (ym)lg,, g, , ().
m=1

Similarly as in (6.22) we see that [[ |p(x, y)|dxdy < |QI"™*+D/2|Q]. Since ag,Q),1 s a finite
sum of terms of the form (6.28), this shows that

n+1

C  [1Qul™21Q1"ag, )1 € ACcza(K)).

m=1
Consider then the coefficient ag g, . Suppose Q" € ch(Q). We may obviously suppose
that Qj41 = -+ = Qu = Q’. Then, we have
|Q,| <T[1Q’r---/1Q']l 1Q’>
IT55 1Qm[!72 Q1
where (T[1g, ..., 1], 10)/IQ’] € Cweak(T). Since ag g, is a finite sum of operators of
this type, we are done with Step V.

<T[1Q/F]:Z'Q1, ceey 1Q'F]:;Qn]/ 1Q/Fil'Qn+1> ==+

7
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6.7. Step VI: T is not a priori bounded. It is possible to first prove a representation
theorem in a certain finite set up, where no a priori boundedness is needed to make the
calculations legitimate (as all the sums are finite to begin with). The proof is similar to the
above except for some initial probabilistic preparations related to the finite setup inside a
given fixed cube. Reductions of this type appear e.g. in [9] and [20]. We omit the technical
details in our setting as they are similar. A corollary of such a special representation is
the boundedness of T, say from [],_; L"(X,,) to L*D/n(y, ;). After this, we can run
the above argument. We are done with the proof. m|

6.29. Remark. We make a remark here about the WBP in the linear setting, and describe
a seemingly weaker condition in that setting, which can still be used to estimate the
“diagonal” in the T1 argument.

Suppose X1, X» are UMD spaces and 1 < p < oo. Let T: [F(X;) — LP(X}) be a bounded
linear operator. Then, for {eg}oep C X1, we have

(630) E EQ<T(€Q1Q)>Q1Q
QeD

Indeed, the left hand side is dominated by

1E|| Z eqQT(eqlq)
QeD

(X))

< 4
) ”T””"X])*”’(Xz)]E” QXE;‘) “otela

L (X)

by Stein’s inequality, from which the claim follows using linearity. We denote the smallest
possible constant in (6.30) by Ryeak (Which may depend on the exponent p).
We recall that our usual WBP means the R-boundedness of the operators

IQI"(T1g, 10) = (T1g)qa,

which means the estimate

(6.31) | QZEZ‘) sQ<T(eQ1Q)>Q||X; < CwerE| Q;‘) ngQ”Xl.

We show that Ryeak S Cwpp. Actually, there holds that

Cwap = sup R(((T1p)o: x € Q € D)) =: Cwgp,

xeR4

and we show that Ryeax < EWBP. The proof is quite immediate. Raising the left hand
side of (6.30) to power p and using Kahane-Khintchine inequality we are left with

E /]R d H QEZ;‘)EQ<T(eQ1Q)>Q1Q(x)||’;; dx

< / ER((T1o)o: x € Q € @})PH y ngQ1Q(x)Hi dx
R? ) 1

< CyppE /]Rd || Q;‘)eQteg(x)HXl dx,

which gives the proof.



MULTILINEAR OPERATOR-VALUED CALDERON-ZYGMUND THEORY 45

We then look at how the Ryeak-condition handles the diagonal in the T1 argument. We
consider a zero complexity shift whose coefficient operators {ag}gep satisfy the estimate
(6.30) (so ag in place of (T(1g))g). Then we simply have:

HQ;‘)aQ(f, hQYhg oy ™ IE”QZ;‘)EQQQ(f, hQ>1Q/|Q|1/2HU,(XE)
(6.32)
STH| Q;Degq, hoMo/IQA|, < Il

Finally, we remark that we do not know how to formulate a similar weak boundedness
condition in the multilinear setting.

7. R-BOUNDEDNESS OF BILINEAR SHIFTS

In this section we consider the R-boundedness properties of families of shifts. Let
X1..., X, Yns1 be UMD spaces, X;41 = Y}, and let@p: [1,, Xisu = Cbea contraction asin
(3.3). Fix some exponents p,, € (1,00) such that "' 1/p,, = 1andlet@: [],, L""(X;;) — C
be as in (3.12).

Suppose {S;}; is a family of shifts, all of them defined with respect to a grid O and
having a fixed complexity k. Recall the families C(S;) from (2.14) that consist of the
normalized coefficients. It seems that the R;-boundedness condition from Definition
3.15 is not suitable for proving that

Ro({sj: [ ] () = P (Vi) )

m=1

is dominated by R, (LJ jC(Sj)), that is, we can not prove that if the family of coefficients
U; C(S)) is Ro,-bounded, then {S;}; is Rp-bounded.

Currently, we are only able to come up with a suitable R-boundedness condition that
works for families of shifts in the bilinear case. But even here we need to modify the one
we used previously: we need a somewhat stronger condition, but then also the conclusion
is stronger — i.e., the families of shits will satisfy the said stronger condition. We now
start considering the bilinear case, and here, as usual, no contraction @ is needed.

We now introduce this stronger bilinear R-boundedness condition, which we call R-
boundedness. After this we will show that if the spaces X, have Pisier’s property («),
then R((S)})) < R(U; C(S)).

We denote by Rad;(X) the space of those doubly indexed sequences (ellm)l","m:1 of ele-
ments of X such that

< 00.

- > 2.1/2
l1€1m)] =1 IRada (%) = (JE” Z €1,m€l,m||x)
ILm=1

7.1. Definition. Let Xj, X, and Y3 be Banach spaces and write X3 = Y;. Suppose T C

L(X1 X X2,Y3) is a family of operators. We say that 7 is R-bounded if there exists a
constant C such that forall N € N, T}, € 7, e}’u € Xy, €%, € Xy and ¢ € X3, where
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t,u,v€{l,...,N}, there holds that

N 3
1 2 3 1 N
Y KTeuolel €2 ol es ) < C [ e, )0, IRadacy:
tu,o=1 i=1

The smallest possible constant C is denoted by ’75(7").

7.2. Theorem. Let X1, X, and Yz be UMD spaces with Pisier’s property () and suppose
p1,p2, 73 € (1,00) satisfy Y., 1/pm = 1. Let D be a dyadic lattice in R and fix some complexity
k = (k1,k2,k3), 0 < k; € Z.. Suppose {S;}jcy is a family of operator-valued bilinear dyadic shifts
with respect to the spaces X1, Xp and Y3, where each S; = S’bj is a shift of complexity k with
respect to the lattice D. Then

RS L7 (X1) X IP2(X) = LF5(Ya): je TH < (1+ max KR(|Jcs)).
j

Proof. We divide the collection {S;}cs into three subcollections according to the type of
the shifts, that is, according to the place of the non-cancellative Haar function. We show
that each of these subcollections satisfies the required estimate, and therefore their union
satisfies it also. Thus, we assume that each §; is of the form

St )= Y ah o [A ), (fo, 1)
KeD LD
%=k

The other two cases are handled symmetrically.
Let N € N and suppose S0 € {Sj}jes, ftlu € L/ (X4), f2, € LP*(X,) and ffv € LP3(X3) for

t,u,vef{l,...,N}. Abbreviate C := |J j C(S;). We need to show that for arbitrary €, € C
with |et o] = 1 there holds that

N
| Z et,u,z)(St,u,v [fgu/ fp%,v]l ff,)v>

tu,o=1

(7.3) _
< ROt ullrada @1 I (fio ol [Rada @72 p I fio )t ollRada(wrs (x3))

~ R(ONF1lzr1 Rady(xy ) IF2l172 Rado (%)) 1F 31173 (Rada (X))

where F;: R? — Rad(X1), F1(x) = (ftu(x))t, and similarly Fp = ( fz%,v)u,v/ F3 =( fgv)t,v. The
last step was obtained using the Kahane-Khinchine inequality. We will now construct a
new shift S so that

N

(7.4) Y etuo(Suuplfi f21, £, = (S(F1, Fa), F).

t,u,o=1

Then we show that
(S(F1, F2), F3)l  RC) [ [ IFllrada -
i

from which the desired estimate (7.3) follows.
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Denote the coefficients of S¢ .., by a Let I,Ip,1I3,K € D be such that I(k) K. Define
the operator ag ) € L(Radx(X7) X Radz(Xz) Rad,(Y3)) by
N

<aK,(Ii)[ell€2]/eS>: Z etuU(aK(I)[etl,ureirv]/ezy%

tu,o=1

where ¢! = (e; im € Rada(X;). The shift S is defined with these coefficients by

5(Gy,Go) = Z Z ag,1)[{G1, by, ), (G2, h?2>]h13,
KeD ;€D
1%

where G; € LFi(Rad(X;)), i = 1,2. We see that (7.4) is satisfied.

It remains to show that the shift S is bounded, which follows by Theorem 4.1 from the
R-boundedness of the family of coefficients {ag )}k, (notice that Rad(X) is UMD if X
is). To check this, let the admissible partition be for example {{1},{2,3}}. Choose some
W e N. Foreachw = 1,..., W let ay, := agu),1,w)) be one of the coefficients of S, and

accordingly write a’;"” := a?(lzf),(li () Also, let e! € Rady(X;) and e = (e;::;)l,m € Rady(X;)

fori=2,3andw=1,...,W. Then

1Z<aw[e ], = |Z Z ety ek ) 6]

w=1tu,v=1

We see that the pairs (v, w) appear in a’y"*, e5% and 63 . Therefore, we look at the last sum

as a sum over triples (f,u, (v, w)). Thus, we see that
W —_—
| Y (@ule!, 21,85 < ROk, eallracsr
w=1
1/2 2
2, 3,w
X (IEH Z Eu,v,wl v Xz) (]EH Z gt,v,wew X
0=1,...,.N 1
Using the fact that X, has Pisier’s property (a), we have that

Lo 2w
Z éw‘('u veu 0

2

)1/2‘

2

1/2
)~ e

)1/2

X2

)1/2‘

Rady(X2)

Doing the same estimate for the term related to X3 we have shown that

w
| Z<aw[el, "], 63”")'
w=

2.0\W oW
)u ) w=1lRad(Rada(x3))-

< et lRada e l€*™)Y IRad(Rada(xa) I

which is what we wanted to show. This concludes the proof. O
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8. MULTI-LINEAR MULTI-PARAMETER ANALYSIS

In this section we apply our operator-valued theory to prove multi-parameter esti-
mates in our multilinear setup. Such a strategy requires R-boundedness estimates, so
in light of the previous section we will eventually have to restrict to the fundamental
bilinear case. Focusing only on the essentials, we will simply prove estimates for dyadic
shifts. After this, the full paraproduct free singular integral theory in the same bilinear
multi-parameter operator-valued generality would only require the development of the
corresponding representation theory. We do not anymore pursue this rather lengthy
avenue here.

We define an n-linear m-parameter operator-valued dyadic shift in

m
R = Hlef, d>1.
i=1

Suppose Xi, ..., Xy, Yn+1 are Banach spaces. Let also D = Hm D where D% is a dyadic
grid in R%,i=1,...,m. Fix the complexity k = (k; Ve ki = (kl)m kZ > 0. In what follows

6 1j=1" =1’
hy € (hy, W)} if I € DA for some 1.
An n-linear m-parameter operator-valued shift S¥ = SIE) has the form
S f)= Y, Afi )
K=[I", K€D

where

A(f o fo) = Z ax (i) (for g, )i
Here f; € Llloc(le; X;),

=1

i i k; ’ m
Q] HQ ir Q € Z)d ( ) H(Q )(kf) and h = ®i:1hQ;'

We assume that for all K and the related (Qy, ..., Qn+1) we have for every i = 1,...,m that
in exactly two fixed positions, depending on i (but on nothing else), of the tuple (th )”+1

we have cancellative Haar functions, e.g. that
n+1 ) 0 0
(th) (hQi’hQ”hQ"" hQim).
Moreover, we form the collection

(8.1) C(sh = {WlQll/z k@): K Q... Qui1 €D, Q(k) }
j

Define Ds; := D1 x .. x Dn t = 1, ...,m—1, so that we can write D= Z)<t X Dt

Define similarly e.g. IRd = R%1 x ... x R, kist = (k;)l 141+ For K1, , ,Qn+1 e Dt
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and functions g;: IR‘i1 — X define

SKl,(Q})(gL--.,gn)

= Z Z uK'(Q/)Kgl’ ]:lQl,>1 >’ s <gn; i;lQn,>1 >]i:lQn+1,>1’

K>1=H;’;2 Ki€D>1 Q1,>1/---/Qn+1,>1 61)>1
(ki>1)
>
Q]‘,>1 —K>l

where K := K! X K1, Qj = Q} X Qj,>1. Notice that we can write

Sk(flr . ,fn) = Z Z SKl,(Q})Kfl/EQ% >, ey <fn/ le})]le}H].

Kleph Q. QL eDh

n+1

@)=k
Let @: "+1 X; — C be a contraction as in (3.3) and suppose (Xi, ..., X,+1), where
Xns1 ==Y, 4, satlsfles the RMF,, condition. Fix p; € (1,00) so that Z”” 1/pj = 1 and

let @s1: H"+1 LPi ( 1 Xj) — C be as in (3.12). Example 3.27 says that the tuple of
UMD spaces (L (]R>1,X1), , LPn+1 (]Rd ; Xn+1)) satisfies the RMF,_, condition. Viewing
Sk as an n-linear operator-valued shift of complexity (kjl.)’jt“l1 acting on functions f; €
LPi(R™M; LPI(IRY 5 X)) = LPi(RY; X ;) Theorem 4.1 says that

ISKCfa -0 fidllpamn ey, .y S (1 + max k)" Ry H il
j=1

where

I T piemd ;o
Rot 1= Ro, ({WSK o H LPIRE ;X ) = Lot (RE 35 Y 0):
]:

1
K, Q) e o, Q)" = K).

Now we need to revert to the bilinear setting, since as explained in Section 7, we do not
have a suitable theory for the R-boundedness of n-linear shifts if n > 2.

8.1. Boundedness of bilinear multi-parameter operator-valued shifts. Suppose we have
a family {S},cqs of bilinear multi-parameter operator-valued shifts as above. Suppose
X1,Xp,Y3 are UMD spaces with Pisier’s property (a). Recall that spaces of the form
LP(€); X) are UMD and have Pisier’s property (a) if X is UMD and has Pisier’s property
(). Therefore, we can iterate the above scheme using Theorem 7.2 to get that given
p1,P2,93 € (1,00) with 1/p1 + 1/p2 = 1/93 we have

RUSE: LP(IRY; X1) x LP2(RY; X,) — LB(RY; Y3): u € UY)

H(1 + maxkl)R (1 Jcsh)

uel
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