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Abstract 
The diffusion of particles in suspension is investigated by a thermostat based on fluctuating hydrodynamics for 
dynamic simulations of implicit-solvent coarse-grained model which can take into account both hydrodynamic and 
Brownian effects. Particles with cut-and-shifted Lennard-Jones and Gaussian-core potential are studied. The results 
show that their diffusion process can be characterized by three regimes: ballistic motion, short-time diffusion and 
long-time diffusion. We observe that the mean square displacement (MSD) of regime I, ballistic motion, is 
proportional to t2. For the other two regimes, its MSD is proportional to t with different slopes. Furthermore, we 
study the diffusion coefficients of spherical particles from MSD at different volume fractions. For the cut-and-shifted 
Lennard-Jones potential model, we observe the diffusion coefficients decrease monotonously with the increase of 
volume fraction (0.02-0.3), and consistent with the results of the experiment. However, for the Gauss-core potential 
model, the curve of long-time self-diffusion coefficient as a function of dimensional density (0.001 to 1) appears to 
be nonmonotonic. It shows that the long-time self-diffusion coefficient decreases monotonically when the 
dimensional density is below 0.3, and then increases anomalously when the dimensionless density passes through 
0.3. 
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1. Introduction 

Diffusion of particles in suspensions is widely 
encountered in nature and science, for example the silica 
nanoparticles in polyethylene glycol [1], polymer coils in 
solution [2], dendrimer solutions [3-6] and protein 
solution [7,8], polystyrene nanoparticles [9]. The 
investigation of diffusion of particles in suspensions must 
take into account both hydrodynamic and Brownian 
effects. A variety of studies on diffusion can be found in 
the literature; there have been experimental work [7,11-
12], analytical work [12-14], and numerical work on 
studying diffusion. 

The diffusion of particles in suspension will also be 
affected by the interaction between particles. And there 
are different types of particles, in particular hard and soft. 
A cut-and-shifted Lennard-Jones potential model, 
proposed by Week, Chandler, and Andersen[15], known 
as WCA potential, is introduced to study hard particles, 
which is impossible to overlap between particles, for 
example biological bacteria [16,17], macromolecular 
protein [7], nanomaterials et al. For soft particles, 
Stillinger [18] in 1976 proposed Gaussian-core potential 
[19–22], in which interaction between particles is given 
by the Gaussian potential and particles may overlap with 
each other. With Gaussian-core potential models, we 

obtain the dynamic anomalous behaviour of the soft 
particle system compared with hard sphere models.  

The diffusion coefficient of a single spherical 
particle in infinitely diluted suspension for Brownian 
motion is characterized by Stokes-Einstein relation [23]. 
However, this result is not applicable in high 
concentration suspension or near boundary wall cases. For 
a single particle in dense suspension, the fluid field around 
it would be driven by the movement of nearby particles. 
One may expect, as the suspension becomes denser, the 
particles diffusivity goes more complex. Additionally, the 
viscosity of suspension will be also affected by the 
interaction or the aggregation of particles [24]. Hence the 
study of Brownian particles in different volume fractions 
becomes necessary.  

Segrѐ [25] studied the short-time diffusion of 
particles suspended in a liquid by simulations based on the 
fluctuating Lattice Boltzmann method. Heinen [26] and 
Banchio [27] reported the short-time dynamics of charged 
colloidal spheres by accelerated Stokesian dynamics and 
Brownian dynamics simulation, where the interaction 
between particles is given by a hard sphere plus repulsive 
Yukawa pair potential. Napoli et al. [9] investigated the 
effects of channel, ionic and pH value on the diffusivity 
of spherical particles by experimental method. Ando et al. 
studied the effect of macromolecular shape and 
importance of hydrodynamic interaction on diffusion by 
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Brownian dynamics [28]. And there are also many other 
numerical methods which can be used to study the 
importance of hydrodynamic interaction on the dynamics 
of colloidal suspensions, such as multi- particle collision 
dynamics [29], Stokesian dynamics [30] and dissipative 
particle dynamics [31] and molecular dynamics [7]. 
Beenakker and Mazur [12, 13] presented a theory about 
the short-time self-diffusion coefficient as a function of 
volume fraction, where the hydrodynamic interaction 
between an arbitrary number of spherical particles are 
taken into account. Hoh and Zia [14] studied the 
contributions of hydrodynamic, Brownian and 
interparticle to the self-diffusion respectively through 
theoretical analysis. There are also many other theoretical 
works that can study Brownian motion, such as dynamical 
density functional theory [32], and mode-coupling theory 
[19].  

The paper is organized as follows: Section 2 
describes the mathematical formulation of the problem 
using the Stochastic Eulerian Lagrangian Methods [33] 
and the hard and soft sphere models. Results of simulation 
are discussed in Section 3. The final section will be 
devoted to summarize the article and provide an outlook.  

2. Methodology  

Diffusion characteristics of nanoscale particles in 
suspension are simulated by the Stochastic Eulerian 
Lagrangian Method (SELM) which is developed by the 
following: the interaction force between the particles is 
calculated by the molecular dynamics software LAMMPS 
[34]. Secondly, the interaction between particles and fluid 
is derived from the immersed boundary method [35]. 
Finally, Brownian motion of the particles is modelled by 
introducing thermal force.  

The particle in an incompressible fluid flow satisfies 
the following equations:  

   
 0,Ñ× =u  (1.1) 
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where the simulation domain is [-Lx/2, Lx/2]×[-Ly/2, Ly/2] 
×[-Lz/2, Lz/2] with periodic boundary. The velocity and 
the pressure of the solvent fluid is denoted by u and p. The 
X, v denotes positions and velocities of the particles. The 
m, ρl, µ and Ф are the mass of the particles, the mass 
density of the solvent, the shear viscosity and the potential 
energy between particles, respectively. The operator Γ 
and operator Λ are provided for coupling structure and 
fluid dynamics, and ¡  serves to calculate the drag force 
when the velocity is different between the microstructure 
and the surrounding fluid 6 Rpµ¡ =v v , where R is the 
radius of spherical particle. 

Thermal forces fthm and Fthm are introduced by the δ- 
correlation Gaussian random fields with mean zero and 
covariances,  
          ( ) ( ) 2 ( ) ( ),T

thm thm Bs t k T t sµ dá ñ = - -L¡G -f f !  (1.5) 
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kB and T denote Boltzmann constant and temperature, 
respectively. The drag force on the particles exerted by 
the local fluid flow is calculated by the term ( )-¡ -Gv u  
through the operators ¡ and G . The operator Λ then 
serves to model for the drag force how the equal-and-
opposite forces exerted on the solvent are spatially 
distributed within the fluid body. It is important that the 
coupling operators satisfy the adjoint condition *G = L  
[36]. This adjoint condition makes sure that the 
dissipation occurs only through the drag ¡  rather than a 
consequence of the interconversion operators G and Λ. 
For thermal fluctuations, the correlation between the 
random drive field and its algorithm for computational 
generation can be also greatly simplified through this 
form of the adjoint condition. We will use the specific 
coupling operators 

 ( ( ) ( , )) ,t t dh
W

G = -òu y X u y y  (1.8) 

 ( ( )) .thL = -F Fx X  (1.9) 
The Peskin δ-Function given in [35] is chosen as the 
kernel function ( )h x . This choice replaces the Dirac δ-
Function to ensure that the mobility of an independent 
particle has a finite effective hydrodynamic radius within 
the fluid and behaves a good approximation of the 
translation invariance of the coupling compared with the 
discretization mesh. While other choices of the coupling 
operators are possible, the SELM has been shown to 
provide a computationally efficient method for obtaining 
correct far-field hydrodynamic correlations and has a 
well-characterized near-field interaction [33]. We refer 
to the coarse-grained fluctuating hydrodynamics 
approach given in equations (1.1)-(1.7) as SELM. 

3. Results 

We study the diffusion coefficients with hard sphere and 
soft sphere models, and the WCA potential model and the 
Gauss-core potential model are introduced to simulate 
these two models respectively. The simulation box is a 
cube with Lx=Ly=Lz=20nm. The fluid temperature is set at 
T = 298K and the thermal energy is given by kBT, with the 
Boltzmann constant 0.008314 (𝑎𝑚𝑢 · 𝑛𝑚))/(𝑝𝑠) · 𝐾) . 
The fluid is assumed to be water with viscosity taken to 
be 602𝑎𝑚𝑢/(𝑛𝑚 · 𝑝𝑠) , and the particle density is the 
same as the fluid density, which is set to be 602𝑎𝑚𝑢/
(𝑛𝑚G).    

3.1 The WCA Potential Model 

For simulations of the hard spherical particles, the WCA 
potential between particles is introduced to prevent the 
particles from overlapping: 

12 6( ) 4 [( / ) ( / ) ] ,
,
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c
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ε is equal to the depth of the potential energy well, which 
is fixed at ε=kBT, and σ is the distance in which the 
interparticle potential is ε, and set to be the particle 
diameter, rc is the cutoff. The values of σ and rc are taken 
to be 1nm and 1.12nm respectively. Then our particle 
radius R is σ/2=0.5nm. 

The self-diffusion of a single particle at finite 
volume fraction is described by three time regimes, 
ballistic motion, short-time diffusion and long-time 
diffusion, 𝑡 < 𝜏K , 𝑡 ≤ 𝜏M , and 𝑡 > 𝜏M . 𝜏K = 𝑚/6𝜋𝜇𝑅  is 
the Brownian relaxation time that characterizes short time 
scale from pre-Brownian ballistic regime to Brownian 
diffusion motion, where m is the particle mass. The time 
for a single particle to diffuse a distance of its radius is 
defined by 𝜏M = 𝜎)/𝐷T , where 𝐷T = 𝑘M𝑇/6𝜋𝜇𝑅  is the 
short-time self-diffusion coefficient of a single spherical 
particle in infinitely domain. It is a time scale when the 
direct interactions between surrounding particles (mainly 
hydrodynamics and excluded volume effect for hard 
particles) is more important. For 𝑡 > 𝜏M, particles move 
away from the cage by diffusion with a smaller slope. The 
latter two regimes diffusion coefficients can be obtained 
by the calculating the mean-square displacement as 
following: 
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where ∙  is the ensemble average and ∆𝑿Y 𝑡  is the 
displacement of the particle i within time t. 

Initial configurations are generated by arranging 
particles in an orderly manner. After a long period of 8𝜏M 
with total simulation time 10𝜏M, which is sufficient for the 
system to balance, the displacements data are extracted to 
calculate MSDs. Then the short-time and long-time 
diffusion coefficients are obtained by fitting the slopes of 
the MSD lines during 0-0.5𝜏M and 1-1.5𝜏M, respectively. 
 The three diffusion regimes are gained by analysing 
the MSDs which is reported in Fig. 1. For ballistic regime, 
we obtain the MSD result in Fig.1(a) by zooming into the 
initial part of the Fig.1(b). A smaller time step, 0.01ps, is 
used for simulations, and we can get the MSD is 
proportional to t2 which is consistent with the theoretical 
formula: 

 2 2 ,( ) Bk Tt t
m

áD ñ =X  (1.12) 

resolved from Langevin equation reported in [37]. In 
Fig.1(b), the time step is chosen to be 1ps to speed up the 
simulation. We can observe that there is a visible drop in 
the slope when the time exceeds 𝜏M , which shows the 
existence of other two regimes, short-time and long-time 
self-diffusion. Then the MSD curve can be fitted to two 
straight lines of different slopes that can be used to 
measure the diffusion coefficient of two regimes. 
 

 

(a) Ballistic regime 

 

(b) Short-time and long-time self-diffusion regime 

Fig. 1 Mean square displacement of the three regimes 
with WCA potential model  

We also measured the short-time self-diffusion 
coefficients of hard spherical particles at different volume 
fractions ranging from 0.02 to 0.3.  The number density   

 / ,N Vr =  (1.13) 
where N is total particle number in suspensions, V is the 
volume of the simulation domain. The volume of a single 
particle vsingle sever to define the volume fraction  

 
34 .

3single
NRv
V

pf r= =  (1.14) 

Fig.2 depicts the MSD at two different volume 
fractions. The line of lower volume fraction has larger 
slope than the one of high volume fraction, which implies 
that the self-diffusion coefficients is indeed affected by 
the volume fraction. 

For low volume fraction f, Beenakker and Mazur [12] 
proposed the diffusion 

 2
0 (1 1.73 0.88 )sD D f f- +=  (1.15) 

We compared our simulation results of normalized short-
time self-diffusion coefficients as a function of volume 
fraction with the Langevin simulation with LAMMPS,  
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Beenakker and Mazur’s results[12], experiments[10] and  
the Monte Carlo and Stokesian dynamics simulation 
(MCSD) [38] in Fig 3. We observed that the normalized 
short-time self-diffusion coefficients decrease with 
increasing volume fractions. As the volume fraction 
increases, there are more particles in the solvent. The 
differences between the results of the Lagenvin 
simulation, which is missing hydrodynamic interactions, 
and the others are obvious, as the particle motion is 
affected by the flow of solution caused by particles’ 
movement. The hydrodynamic effects of the surrounding 
particles play an increased role, as the increasement of the 
volume fraction, and our results is in agreement with  
MCSD with lubrication model and experiments. 
Comparing to others work, the SELM naturally takes into 
account fully interations between the particles and the 
fluid.  

As observed in Fig 1(b),  the MSD curve slope will 
decrease when the time exceeds 𝜏M, which means that the 
long-time diffusion coefficient is smaller than the one of 
short-time regime. And we find its value also decreases as 
the increasement of the volume fraction, too. 

 
Fig. 2 Mean square displacement at low and high volume 
fractions 

Fig. 3 Volume fraction f  dependence of short-time self-
diffusion coefficients Ds (f)/D0 for a suspension of hard 
spherical particles  
 
3.2 The Gaussian-core Potential Model 
 
In the case of Gaussian-core potential model, in which the 
pair potential of the particles is different from WCA 

potential model, is given by an ultrasoft Gaussian 
potential and formulated as follows: 

 ( ) [ / ],r exp re sF = -  (1.16) 
where ε is the depth of the potential energy well, which is 
chosen to be ε=kBT. And σ is the potential range which 
acts as the characteristic diameter of the soft particle. The 
dimensionless units T*=kBT/ε=0.08 for temperature is 
larger than the upper freezing temperature T*≈0.01, which 
guarantees a stable fluid state at any density [21, 22]. Here 
we choose σ to be 1nm, then the characteristic time scales 
𝜏K and 𝜏M is the same as the values used in WCA potential 
case. For soft particles, we use ρσ3 to represent the 
dimensionless density of the particles, ρ is the number 
density defined the same as the density in equation (1.14). 
 Similar to the WCA potential model，particles  are 
initially set in an orderly manner, and the data chosen after 
a long period of 8𝜏M with total simulation time 10𝜏M are 
used to calculate the results.  

In the case of Gaussian-core potential model, three 
regimes of Brownian motion are also found, as shown in 
Fig 4, which is similar to the results of the WCA potential 
model. For ballistic regime, shown in Fig 4(a), when 

nt t! , the MSD is proportional to t2, while for diffusion 
regime, when time scale t ~ 𝜏M , shown in Fig. 4(b) the 
MSD is proportional to t with two different slopes before 
and after time t = 𝜏M . Compared to Fig. 1(b), the 
difference between short-time and long-time diffusion 
coefficients are smaller the WCA potential case.   

We next study the MSD for different particle 
densities. The MSD diagram at ρσ3=0.003, 0.3, 0.6, 1.0 are 
shown in Fig 5. Compared to Fig 3, we can see that the 
diffusion coefficients are no longer decreasing 
monotonously as the increasement of the volume fraction. 
ρσ3=0.3 is smaller than other three cases.  

To further show the relation between the diffusion 
coefficient and dimensionless density, we compute long 
time diffusion coefficient for the dimensionless density 
from 0.003 to 1.0, and show the results in Fig. 6. For 
Langevin simulation without hydrodynamic interation, 
the volume fraction of particles has few effects on the 
diffusion coefficient, and we can not catch the correct 
tendency as the increasement of the volume fraction. For 
SELM model, which takes fully account of hydrodynamic 
effects,  we find a non-monotonic curve occurs compared 
to the monotonous decline of the WCA potential model. 
Mausbach and May[20] studied the diffusion coefficients 
of the Gaussian core model liquid by using the molecular 
dynamics simulation, and found the dimensionless 
density at the minimum diffusion coefficient  was almost 
independent of the dimensionless temperature T*, and its 
value is approximately 0.33.  

In Fig. 6, we can see that the results simulated by 
SELM quantitatively agree with the results from their 
work, but smaller. What they study is a single Gauss-core 
potential liquid, and there is no particle plays in their 
model, while our model contains both the soft particles 
and the fluid, and the hydrodynamic effect between the 
particles and the fluid can reduce the diffusion of the 
particles. Our results show that the diffusion coefficient 
gradually decreases when the density ρσ3 is less than 0.3 
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and becomes minimal 0.32D0 at density ρσ3=0.3. Crossing 
the minimum point, the diffusion coefficient values show 
an anomalous increase. An obvious non-monotonic curve 
is characterized, which indicates that the diffusion 
coefficients for small densities are close to one, and the 
diffusion coefficient at the high density (ρσ3=1.0) we 
simulated has regained about 50% from its minimum. 

 

(a) Ballistic regime

(b) Short-time and long-time self-diffusion regime  

Fig.4 Mean square displacement of the three regimes 
with Gaussian-core potential model  

 

Fig.5 Mean square displacement of Gaussian-core 
potential model at ρσ3=0.003, 0.3, 0.6, 1.0  

 

Fig. 6 Dimensionless density ρσ3 dependence of long-
time self-diffusion coefficients DL/D0 for a suspension of 
soft-spherical particles  

4. Conclusions 

In summary, we have studied the short-time and long-
time self-diffusion of the spherical particles at different 
volume fractions through two models with the WCA and 
the Gaussian-core potential respectively by using the 
SELM method which takes into account both 
hydrodynamic and Brownian effects. The diffusion of the 
particle at finite concentration described by three time 
regimes is confirmed. The relationship between the self-
diffusion coefficient and the volume fraction is obtained 
and shows different features. For WCA potential model, 
the diffusion coefficient decreases monotonically with the 
increase of the volume fraction, while for Gauss-core 
potential model, the diffusion coefficient decreases 
initially, and reaches its minimum at ρσ3=0.3, it then turns 
to increase with increase of  the volume fraction and 
regains about 50% from its minimum at ρσ3=1.0. The 
SELM method is also suitable to study the hydrodynamic 
properties of polymers (L-shape, rod-like, dumbbell) [39-
43]. Furthermore, the method can be extent to study the 
hydrodynamic properties of active particles and charged 
particles by adding an external force or Coulomb potential. 
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