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Abstract

The diffusion of particles in suspension is investigated by a thermostat based on fluctuating hydrodynamics for
dynamic simulations of implicit-solvent coarse-grained model which can take into account both hydrodynamic and
Brownian effects. Particles with cut-and-shifted Lennard-Jones and Gaussian-core potential are studied. The results
show that their diffusion process can be characterized by three regimes: ballistic motion, short-time diffusion and
long-time diffusion. We observe that the mean square displacement (MSD) of regime I, ballistic motion, is
proportional to 2. For the other two regimes, its MSD is proportional to ¢ with different slopes. Furthermore, we
study the diffusion coefficients of spherical particles from MSD at different volume fractions. For the cut-and-shifted
Lennard-Jones potential model, we observe the diffusion coefficients decrease monotonously with the increase of
volume fraction (0.02-0.3), and consistent with the results of the experiment. However, for the Gauss-core potential
model, the curve of long-time self-diffusion coefficient as a function of dimensional density (0.001 to 1) appears to
be nonmonotonic. It shows that the long-time self-diffusion coefficient decreases monotonically when the
dimensional density is below 0.3, and then increases anomalously when the dimensionless density passes through
0.3.

Keywords: Brownian Motion - Nanoparticles - Self-diffusion - Suspensions

obtain the dynamic anomalous behaviour of the soft
1. Introduction particle system compared with hard sphere models.

The diffusion coefficient of a single spherical
particle in infinitely diluted suspension for Brownian
motion is characterized by Stokes-Einstein relation [23].
However, this result is not applicable in high
concentration suspension or near boundary wall cases. For
a single particle in dense suspension, the fluid field around
it would be driven by the movement of nearby particles.
One may expect, as the suspension becomes denser, the
particles diffusivity goes more complex. Additionally, the
viscosity of suspension will be also affected by the
interaction or the aggregation of particles [24]. Hence the

Diffusion of particles in suspensions is widely
encountered in nature and science, for example the silica
nanoparticles in polyethylene glycol [1], polymer coils in
solution [2], dendrimer solutions [3-6] and protein
solution [7,8], polystyrene nanoparticles [9]. The
investigation of diffusion of particles in suspensions must
take into account both hydrodynamic and Brownian
effects. A variety of studies on diffusion can be found in
the literature; there have been experimental work [7,11-
12], analytical work [12-14], and numerical work on

studying diffusion. o _ _ study of Brownian particles in different volume fractions
The diffusion of particles in suspension will also be becomes necessary.
affected by the interaction between particles. And there Segré [25] studied the short-time diffusion of

are different types of particles, in particular hard and soft.
A cut-and-shifted Lennard-Jones potential model,
proposed by Week, Chandler, and Andersen[15], known
as WCA potential, is introduced to study hard particles,
which is impossible to overlap between particles, for
example biological bacteria [16,17], macromolecular
protein [7], nanomaterials et al. For soft particles,

particles suspended in a liquid by simulations based on the
fluctuating Lattice Boltzmann method. Heinen [26] and
Banchio [27] reported the short-time dynamics of charged
colloidal spheres by accelerated Stokesian dynamics and
Brownian dynamics simulation, where the interaction
between particles is given by a hard sphere plus repulsive
O ‘ ) - Yukawa pair potential. Napoli et al. [9] investigated the
Stillinger [18] in 1976 proposed Gaussian-core p_oter_ltlal effects of channel, ionic and pH value on the diffusivity
[19-22], in which interaction between particles is given of spherical particles by experimental method. Ando et al.
by the Gaussian potential and particles may overlap with studied the effect of macromolecular shape and

cach other. With Gaussian-core potential models, we importance of hydrodynamic interaction on diffusion by
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Brownian dynamics [28]. And there are also many other
numerical methods which can be used to study the
importance of hydrodynamic interaction on the dynamics
of colloidal suspensions, such as multi- particle collision
dynamics [29], Stokesian dynamics [30] and dissipative
particle dynamics [31] and molecular dynamics [7].
Beenakker and Mazur [12, 13] presented a theory about
the short-time self-diffusion coefficient as a function of
volume fraction, where the hydrodynamic interaction
between an arbitrary number of spherical particles are
taken into account. Hoh and Zia [14] studied the
contributions of hydrodynamic, Brownian and
interparticle to the self-diffusion respectively through
theoretical analysis. There are also many other theoretical
works that can study Brownian motion, such as dynamical
density functional theory [32], and mode-coupling theory
[19].

The paper is organized as follows: Section 2
describes the mathematical formulation of the problem
using the Stochastic Eulerian Lagrangian Methods [33]
and the hard and soft sphere models. Results of simulation
are discussed in Section 3. The final section will be
devoted to summarize the article and provide an outlook.

2. Methodology

Diffusion characteristics of nanoscale particles in
suspension are simulated by the Stochastic Eulerian
Lagrangian Method (SELM) which is developed by the
following: the interaction force between the particles is
calculated by the molecular dynamics software LAMMPS
[34]. Secondly, the interaction between particles and fluid
is derived from the immersed boundary method [35].
Finally, Brownian motion of the particles is modelled by
introducing thermal force.

The particle in an incompressible fluid flow satisfies
the following equations:

Vou=0, (1.1)
puoe = UV2U+ AY(V = TW] = 7P + f, (1.2)
m= ==Y (v —Tu) = V,&X) + Fopy (1.3)
Z=v (1.4)

where the simulation domain is [-L./2, L./2]¥[-L,/2, L,/2]
x[-L,/2, L,/2] with periodic boundary. The velocity and
the pressure of the solvent fluid is denoted by # and p. The
X, v denotes positions and velocities of the particles. The
m, p;, 4 and @ are the mass of the particles, the mass
density of the solvent, the shear viscosity and the potential
energy between particles, respectively. The operator I
and operator A are provided for coupling structure and
fluid dynamics, and Y serves to calculate the drag force
when the velocity is different between the microstructure
and the surrounding fluid Yv = 6zuRv , where R is the

radius of spherical particle.

Thermal forces f,, and F,,, are introduced by the &-
correlation Gaussian random fields with mean zero and
covariances,

f, (5, () =-2k,T(ua—AYT)S(t—5), (1.5)
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(F,, (9)E,, (") =2k, TY5(t - ), (1.6)
(£, (9, (") = 2k, TAYS(t ). (1.7)
ks and T denote Boltzmann constant and temperature,

respectively. The drag force on the particles exerted by
the local fluid flow is calculated by the term —Y (v —T'u)

through the operators Y and I' . The operator A then
serves to model for the drag force how the equal-and-
opposite forces exerted on the solvent are spatially
distributed within the fluid body. It is important that the
coupling operators satisfy the adjoint condition I'=A"
[36]. This adjoint condition makes sure that the
dissipation occurs only through the drag Y rather than a
consequence of the interconversion operators I' and A.
For thermal fluctuations, the correlation between the
random drive field and its algorithm for computational
generation can be also greatly simplified through this
form of the adjoint condition. We will use the specific
coupling operators

Tu= [ n(y—XOu(y,0)dy, (1.8)

AF =n(x—-X())F. (1.9)

The Peskin 8-Function given in [35] is chosen as the
kernel function 7(x). This choice replaces the Dirac §-

Function to ensure that the mobility of an independent
particle has a finite effective hydrodynamic radius within
the fluid and behaves a good approximation of the
translation invariance of the coupling compared with the
discretization mesh. While other choices of the coupling
operators are possible, the SELM has been shown to
provide a computationally efficient method for obtaining
correct far-field hydrodynamic correlations and has a
well-characterized near-field interaction [33]. We refer
to the coarse-grained fluctuating hydrodynamics
approach given in equations (1.1)-(1.7) as SELM.

3. Results

We study the diffusion coefficients with hard sphere and
soft sphere models, and the WCA potential model and the
Gauss-core potential model are introduced to simulate
these two models respectively. The simulation box is a
cube with L,=L,=L.=20nm. The fluid temperature is set at
T'=298K and the thermal energy is given by kg7, with the
Boltzmann constant 0.008314 (amu - nm?)/(ps? - K).
The fluid is assumed to be water with viscosity taken to
be 602amu/(nm - ps), and the particle density is the
same as the fluid density, which is set to be 602amu/
(nm3).

3.1 The WCA Potential Model

For simulations of the hard spherical particles, the WCA
potential between particles is introduced to prevent the
particles from overlapping:
O(r)=4el(a/r)? —(a/r)]+e,r<r, (1.10)
O(r)=0,r>r, ’



¢ is equal to the depth of the potential energy well, which
is fixed at e=kgT, and o is the distance in which the
interparticle potential is ¢, and set to be the particle

diameter, 7. is the cutoff. The values of ¢ and . are taken
to be 1nm and 1.12nm respectively. Then our particle
radius R is 6/2=0.5nm.

The self-diffusion of a single particle at finite
volume fraction is described by three time regimes,
ballistic motion, short-time diffusion and long-time
diffusion, t < 7,, t < 7, and t > 15. T, = Mm/6TUR is
the Brownian relaxation time that characterizes short time
scale from pre-Brownian ballistic regime to Brownian
diffusion motion, where m is the particle mass. The time
for a single particle to diffuse a distance of its radius is
defined by 5 = 02/D,, where Dy = kT /6muR is the
short-time self-diffusion coefficient of a single spherical
particle in infinitely domain. It is a time scale when the
direct interactions between surrounding particles (mainly
hydrodynamics and excluded volume effect for hard
particles) is more important. For t > 7, particles move
away from the cage by diffusion with a smaller slope. The
latter two regimes diffusion coefficients can be obtained
by the calculating the mean-square displacement as
following:

N
D=L LS @ax,op, i<,
6t N ‘o
L1 , (1.11)
o N <;(AX, @), t>14
where (-) is the ensemble average and AX;(t) is the
displacement of the particle i within time .

Initial configurations are generated by arranging
particles in an orderly manner. After a long period of 875
with total simulation time 107, which is sufficient for the
system to balance, the displacements data are extracted to
calculate MSDs. Then the short-time and long-time
diffusion coefficients are obtained by fitting the slopes of
the MSD lines during 0-0.5t5 and 1-1.575, respectively.

The three diffusion regimes are gained by analysing
the MSDs which is reported in Fig. 1. For ballistic regime,
we obtain the MSD result in Fig.1(a) by zooming into the
initial part of the Fig.1(b). A smaller time step, 0.01ps, is
used for simulations, and we can get the MSD is
proportional to #* which is consistent with the theoretical
formula:

D, =

axayy ="l (1.12)
m

resolved from Langevin equation reported in [37]. In
Fig.1(b), the time step is chosen to be 1ps to speed up the
simulation. We can observe that there is a visible drop in
the slope when the time exceeds 5, which shows the
existence of other two regimes, short-time and long-time
self-diffusion. Then the MSD curve can be fitted to two
straight lines of different slopes that can be used to
measure the diffusion coefficient of two regimes.
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Fig. 1 Mean square displacement of the three regimes
with WCA potential model

We also measured the short-time self-diffusion
coefficients of hard spherical particles at different volume
fractions ranging from 0.02 to 0.3. The number density

p=N/V, (1.13)

where N is total particle number in suspensions, V' is the
volume of the simulation domain. The volume of a single
particle vy, sever to define the volume fraction
B _47NR’
$= Vsingle P = a

Fig.2 depicts the MSD at two different volume
fractions. The line of lower volume fraction has larger
slope than the one of high volume fraction, which implies
that the self-diffusion coefficients is indeed affected by
the volume fraction.

For low volume fraction ¢, Beenakker and Mazur [12]
proposed the diffusion

D, = D,y(1-1.73¢+0.88¢4) (1.15)

We compared our simulation results of normalized short-
time self-diffusion coefficients as a function of volume
fraction with the Langevin simulation with LAMMPS,

(1.14)




Beenakker and Mazur’s results[12], experiments[10] and
the Monte Carlo and Stokesian dynamics simulation
(MCSD) [38] in Fig 3. We observed that the normalized
short-time  self-diffusion coefficients decrease with
increasing volume fractions. As the volume fraction
increases, there are more particles in the solvent. The
differences between the results of the Lagenvin
simulation, which is missing hydrodynamic interactions,
and the others are obvious, as the particle motion is
affected by the flow of solution caused by particles’
movement. The hydrodynamic effects of the surrounding
particles play an increased role, as the increasement of the
volume fraction, and our results is in agreement with
MCSD with lubrication model and experiments.
Comparing to others work, the SELM naturally takes into
account fully interations between the particles and the
fluid.

As observed in Fig 1(b), the MSD curve slope will
decrease when the time exceeds T, which means that the
long-time diffusion coefficient is smaller than the one of
short-time regime. And we find its value also decreases as
the increasement of the volume fraction, too.
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0.0 7 —4— dense case ¢=0.3
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Fig. 2 Mean square displacement at low and high volume
fractions
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Fig. 3 Volume fraction ¢ dependence of short-time self-
diffusion coefficients D; (¢)/D, for a suspension of hard
spherical particles

3.2 The Gaussian-core Potential Model

In the case of Gaussian-core potential model, in which the
pair potential of the particles is different from WCA

potential model, is given by an ultrasoft Gaussian

potential and formulated as follows:
O(r) = gexp|-r/ o], (1.16)

where ¢ is the depth of the potential energy well, which is

chosen to be e=kp7. And @ is the potential range which
acts as the characteristic diameter of the soft particle. The
dimensionless units 7=k7/=0.08 for temperature is
larger than the upper freezing temperature 7'~0.01, which
guarantees a stable fluid state at any density [21, 22]. Here
we choose o to be 1nm, then the characteristic time scales
T, and 7 is the same as the values used in WCA potential
case. For soft particles, we use po’ to represent the
dimensionless density of the particles, p is the number
density defined the same as the density in equation (1.14).

Similar to the WCA potential model, particles are
initially set in an orderly manner, and the data chosen after
a long period of 87 with total simulation time 10ty are
used to calculate the results.

In the case of Gaussian-core potential model, three
regimes of Brownian motion are also found, as shown in
Fig 4, which is similar to the results of the WCA potential
model. For ballistic regime, shown in Fig 4(a), when
t <« 7, the MSD is proportional to 7, while for diffusion

regime, when time scale ¢ ~ T, shown in Fig. 4(b) the
MSD is proportional to ¢ with two different slopes before
and after time ¢ = 75 . Compared to Fig. 1(b), the
difference between short-time and long-time diffusion
coefficients are smaller the WCA potential case.

We next study the MSD for different particle
densities. The MSD diagram at pa°=0.003, 0.3, 0.6, 1.0 are
shown in Fig 5. Compared to Fig 3, we can see that the
diffusion coefficients are no longer decreasing
monotonously as the increasement of the volume fraction.
po°=0.3 is smaller than other three cases.

To further show the relation between the diffusion
coefficient and dimensionless density, we compute long
time diffusion coefficient for the dimensionless density
from 0.003 to 1.0, and show the results in Fig. 6. For
Langevin simulation without hydrodynamic interation,
the volume fraction of particles has few effects on the
diffusion coefficient, and we can not catch the correct
tendency as the increasement of the volume fraction. For
SELM model, which takes fully account of hydrodynamic
effects, we find a non-monotonic curve occurs compared
to the monotonous decline of the WCA potential model.
Mausbach and May[20] studied the diffusion coefficients
of the Gaussian core model liquid by using the molecular
dynamics simulation, and found the dimensionless
density at the minimum diffusion coefficient was almost
independent of the dimensionless temperature 7", and its
value is approximately 0.33.

In Fig. 6, we can see that the results simulated by
SELM quantitatively agree with the results from their
work, but smaller. What they study is a single Gauss-core
potential liquid, and there is no particle plays in their
model, while our model contains both the soft particles
and the fluid, and the hydrodynamic effect between the
particles and the fluid can reduce the diffusion of the
particles. Our results show that the diffusion coefficient
gradually decreases when the density po” is less than 0.3



and becomes minimal 0.32D, at density pa°=0.3. Crossing
the minimum point, the diffusion coefficient values show
an anomalous increase. An obvious non-monotonic curve
is characterized, which indicates that the diffusion
coefficients for small densities are close to one, and the
diffusion coefficient at the high density (po’=1.0) we
simulated has regained about 50% from its minimum.
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Fig.4 Mean square displacement of the three regimes
with Gaussian-core potential model
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Fig.5 Mean square displacement of Gaussian-core
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Fig. 6 Dimensionless density po’ dependence of long-
time self-diffusion coefficients D;/D, for a suspension of
soft-spherical particles

4. Conclusions

In summary, we have studied the short-time and long-
time self-diffusion of the spherical particles at different
volume fractions through two models with the WCA and
the Gaussian-core potential respectively by using the
SELM method which takes into account both
hydrodynamic and Brownian effects. The diffusion of the
particle at finite concentration described by three time
regimes is confirmed. The relationship between the self-
diffusion coefficient and the volume fraction is obtained
and shows different features. For WCA potential model,
the diffusion coefficient decreases monotonically with the
increase of the volume fraction, while for Gauss-core
potential model, the diffusion coefficient decreases
initially, and reaches its minimum at po°=0.3, it then turns
to increase with increase of the volume fraction and
regains about 50% from its minimum at po°=1.0. The
SELM method is also suitable to study the hydrodynamic
properties of polymers (L-shape, rod-like, dumbbell) [39-
43]. Furthermore, the method can be extent to study the
hydrodynamic properties of active particles and charged
particles by adding an external force or Coulomb potential.

Funding information This work was financially
supported by the National Natural Science Foundation of
China (11601381).

Compliance with ethical standards

Conflict of interest The authors declare that they have no
conflict of interest.



References

10.

11.

12.

13.

14.

15.

Yu M, Qiao X, Dong X, Sun K(2018) Shear thick-
ening effect of the suspensions of silica nanoparticles
in PEG with different particle size, concentration and
shear. Colloid Polym. Sci.296(8):1-8

Louis AA, Bolhuis PG, Hansen JP, Meijer EJ(2000)
Can polymer coils be modelled as ”soft colloids”?
Phys. Rev. Lett.85(12):2522— 2525

Likos CN, Rosenfeldt S, Dingenouts N, Ballauff M,
Lindner P, Werner N, Vogtle F(2002) Gaussian
effective interaction between flexible dendrimers of
fourth generation: A theoretical and experimental
study. J. Chem. Phys.117(4):1869-1877

Go6Tze 10, Harreis HM, Likos CN(2004) Tunable
effective interactions between dendritic
macromolecules. J. Chem. Phys.120(16):7761-7771
Federica LV, Leonid Y, Egorov SA, Kurt B(2011)
Interactions between polymer brush-coated spherical
nanoparticles: the good solvent case. J. Chem.
Phys.135(21):214902

Kroeger A, Zhang B, Rosenauer C, Schliiter AD,
Wegner C(2013) Solvent induced phenomena in a
dendronized linear polymer. Colloid Polym. Sci.
291(12):2879-2892

Biilow S von, Siggel M, Linke M, Hummer G(2019)
Dynamic cluster formation determines viscosity and
diffusion in dense protein solutions. Proc. Natl. Acad.
Sci. U.S.A.116(20):9843-9852

Benke M, Shapiro E, Drikakis D(2008) An efficient
multi-scale modelling approach for ssdna motion in
fluid flow. J. Bionic Eng.5(4):299-307

Napoli M, Atzberger P, Pennathur S(2011)
Experimental study of the separation behaviour of
nanoparticles in  micro- and nanochannels.
Microfluid. Nanofluid.10(1):69-80

Ottewill RH, Williams NSJ(1987) Study of particle
motion in concentrated dispersions by tracer
diffusion. Nature 325:232-234

Cheng Z, Zhu J ,Chaikin PM, See-Eng P, Russel
WB(2002) Nature of the divergence in low shear
viscosity of colloidal hard-sphere dispersions. Phys.
Rev. E 65(4 Pt 1):041405

Beenakker CWJ, Mazur P(1983) Self-diffusion of
spheres in a concentrated suspension. Physica A
126(3):349-370

Beenakker CWJ, Mazur P(1983) Diffusion of spheres
in a concentrated suspension: Resummation of many-
body hydrodynamic interactions. Phys. Lett. A
98(1):22-24

Hoh NJ, Zia RN(2016) Force-induced diffusion in
suspensions of hydrodynamically interacting
colloids. J. Fluid Mech.795:739— 783

Weeks JD, Chandler D, and Andersen HC(1971)
Role of Repulsive Forces in Determining the
Equilibrium Structure of Simple Liquids, J. Chem.
Phys. 54, 5237

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

20.

30.

31.

32.

33.

Baskaran A, Marchetti MC(2009) Statistical mech-
anics and hydrodynamics of bacterial suspensions.
Proc. Natl. Acad. Sci. U.S.A. 106(37): 15567-15572
Lauga E(2016) Bacterial hydrodynamics. Annu. Rev.
Fluid Mech. 48(1):105-130

Stillinger FH(1976) Phase transitions in the Gaussian
core system. J. Chem. Phys.65(10):3968-3974

Shall LA, Egorov SA(2010) Structural and
dynamical anomalies of a Gaussian core fluid: A
mode-coupling theory study. J. Chem. Phys.
132(18):3968

Mausbach P, May HO(2006) Static and dynamic
anomalies in the Gaussian core model liquid. Fluid
Phase Equilib.249(1):17-23

Wensink HH, Lowen H, Rex M, Likos CN, Teeffelen
S van(2008) Long-time self-diffusion for Brownian
Gaussian-core particles. Comput. Phys.

Lang A, Likos CN, Watzlawek M, Lowen H(2000)
Fluid and solid phases of the Gaussian core model. J.
Phys.:Condens. Matt.12(24):5087-5108

Einstein A(1906) Zur theorie der brownschen
bewegung. Ann. phys.324(2):371-381

Kovalchuk NM, Kuchin I, Starov V, Uriev N(2010)
Aggregation in colloidal suspensions and its
influence on the suspension viscosity. Colloid J.
72(3):379-388

Segré PN, Behrend OP, Pusey PN(1995)Short-time
Brownian motion in colloidal suspensions:
Experiment and simulation. Phys. Rev. E 52(5):
5070-5083

Heinen M, Banchio AJ, NdGele G(2011) Short-time
rheology and diffusion in suspensions of yukawa type
colloidal particles. J. Chem. Phys. 135(15):5460-
2324

Banchio AJ, Heinen H, Holmgqvist P, Nédqgele G(2017)
Short- and long-time diffusion and dynamic scaling
in suspensions of charged colloidal particles. J.
Chem. Phys.148(13):134902

Ando T, Skolnick J(2010) Crowding and hydro-
dynamic interactions likely dominate in vivo
macromolecular motion. Proc. Natl. Acad. Sci.
U.S.A.107(43):18457-18462.

Malevanets A, Kapral R(1999) Mesoscopic model
for solvent dynamics. J. Chem. Phys.110(17):8605-
8613

Brady JF, Bossis G(1988) Stokesian dynamics.
Annu. Rev. Fluid Mech.20(1):111-157

Groot RD, Warren PB(1997) Dissipative particle
dynamics: Bridging the gap between atomistic and
mesoscopic ~ simulation. J.  Chem.  Phys.
107(11):4423-4435

Goddard BD, Nold A, Kalliadasis S(2013) Multi-
species dynamical density functional theory. J.
Chem. Phys.138(14):14490

Wang Y, Sigurdsson JK, Atzberger PJ(2016)
Fluctuating hydrodynamics methods for dynamic
coarse-grained implicit-solvent simulations in
lammps. Siam J. Sci. Comput.8(5):S62-S77

. Plimpton S(1995) Fast parallel algorithms for short

range molecular dynamics. J. Comput. Phys. 117(1):
1-19



35.

36.

37.

38.

39.

40.

41.

42.

43.

Peskin CS(2002) The immersed boundary method.
Acta Numer.11:479-517

Atzberger PJ(2011) Stochastic Eulerian Lagrangian
methods for fluid-structure interactions with thermal
fluctuations. J. Comput. Phys.230(8):2821-2837
Bian X, Kim C, Karniadakis G Em(2016) 111 years
of Brownian motion. Soft Matter12:6331-6346
Phillips RJ, Brady JF, Bossis G(1988) Hydro-
dynamic transport properties of hard-sphere
dispersions. i. suspensions of freely mobile particles.
Phys. Fluids31(12):3462-3472

Kiimmel F, ten Hagen B, Wittkowski R, Buttinoni ,
Eichhorn R, Volpe G, Lowen H, Bechinger C(2013)
Circular motion of asymmetric self-propelling
particles. Phys. Rev. Lett.110(19):198302
Schwarz-Linek J, Valeriani C, Cacciuto A, Cates
ME, Marenduzzo D, Morozov AN, and Poon
WCK(2012) Phase separation and rotor self-
assembly in active particle suspensions. Proc. Natl.
Acad. Sci. U.S.A.109(11):4052-4057

Peruani F, Deutsch A, Bar M(2006) Nonequilibrium
clustering of self-propelled rods. Phys. Rev. E
74(1):030904

Pham-Van H, Luc-Huy H, Nguyen-Minh T(2018)
Templat-assisted assembly of asymmetric colloidal
dumbbells into desirable cluster structures. Colloid
Polym. Sci.296(8):1387-1394

Park BS, Jung KI, Lee SJ, Lee KY, Jung HW(2018)
Effect of particle shape on drying dynamics in
suspension drops using multi-speckle diffusing wave
spectroscopy. Colloid Polym. S¢i.296(5):971-979



