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Abstract Developing effective individualized treatment rules (ITRs) for

diseases is an important goal of clinical research. Much effort has been de-

voted to estimating individualized treatment effects in the recent literature.

However, there have not been systematic studies on the robust inference

for individualized treatment effects when there exist potential outliers. We

propose a monotone ITR in the framework of a semiparametric generalized

regression with two treatments and estimate the treatment effects via a

smoothed maximum rank correlation procedure. We provide sufficient con-

ditions under which the proposed estimator has an asymptotically normal

distribution whose variance can be consistently estimated based on a resam-

pling procedure. We evaluate the finite-sample properties of our proposed

approach via simulation studies. We also illustrate the proposed method by

applying it to a data set from an AIDS clinical trials study.
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1 Introduction

In clinical studies, treatment effect heterogeneity is often observed. For example, a

treatment may be beneficial for all the patients but with different levels of magnitudes, or

may only be effective for a subset of patients with certain characteristics. Often, the tradi-

tional “one size fits all” approach is not effective, due to significant heterogeneity in response

to treatments. Thus, treatments should be tailored to patients according to their own prog-

nostic data. This research area has received much attention in the literature. For instance,

Qian and Murphy (2011) proposed a two-step procedure that first estimates a conditional

mean for the response and then estimates the rule maximizing this conditional mean. Zhang

et al. (2012) proposed inverse propensity score weighted (IPSW) and augmented IPSW

(AIPSW) estimators for optimal treatment regimes in a missing data framework. Based

on support vector machine techniques, Zhao et al. (2012) considered an outcome-weighted

learning approach and Zhou et al. (2017) proposed a residual-weighted learning method,

respectively. McKeague and Qian (2014) developed a way of estimating optimal treatment

policies based on functional predictors. Zhao et al. (2015a) and Shi et al. (2017) considered

dynamic treatment regimes with sequences of decision rules. Laber and Zhao (2015) and

Cui et al. (2017) presented tree-based methods for individualized treatment regimes. Zhao

et al. (2015b) and Jiang et al. (2017) developed novel methods for estimating an optimal

individualized treatment rule for censored data. Song et al. (2017) proposed a semipara-

metric additive single-index model for estimating individualized treatment effects. Fan et al.

(2017) proposed a concordance-assisted learning method to estimate optimal individualized

treatment regimes, among others.

In this article, we propose a rank-based monotone individualized treatment rule in the

framework of a generalized regression model. One main feature of the proposed method is

that the optimal treatment regime is derived by a rank-based procedure, which is robust

to potential outliers. Second, we use a generalized regression to model the relationships

between the response and treatment assignments as well as other covariates, which can

explicitly describe the effects of covariates and treatment on response. Third, we establish
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the n1/2-consistency and asymptotic normality of the proposed estimator. A resampling

method is developed to estimate the asymptotic variance of the proposed estimator, which

can be used to make statistical inference about the optimal treatment rules.

The remainder of the article is organized as follows. In Section 2, we describe some basic

notation and concepts, and propose a monotone individualized treatment rule. In Section 3,

we propose a smoothed maximum rank correlation estimation procedure. In Section 4, the

asymptotic properties of the proposed estimator are established. In Section 5, simulation

studies are conducted to evaluate the finite sample performance of our method. In Section

6, an application to an AIDS clinical trials study is presented. Section 7 contains some

concluding remarks. The proofs are relegated to the Appendix.

2 Monotone individualized treatment rule

Suppose the data of interest are collected from a randomized trial with two-arm treat-

ments denoted by 1 and −1. Denote the treatment assignment by A ∈ A = {1,−1}. Let

X = (X1, ..., Xp)
′ ∈ X be a p-dimensional vector of prognostic variables or covariates, and let

Y be the observed clinical outcome or response. Without loss of generality, we assume that

a larger value of response is preferable. The sample includes independently and identically

distributed (i.i.d.) observations {(Xi, Ai, Yi), i = 1, ..., n}. The ITR, D(x), is a function from

the sample space X to A, which is tailored to each patient according to his or her prognostic

data. An optimal ITR D∗(x) is a rule that maximizes the expected response Y . In other

words, D∗(x) = argmaxD{E(Y |X = x, A = D(x))}.

The outcome variable Y can be affected by the covariate effects and the interaction

(treatment benefit) between A and X. Ideally, larger treatment benefit leads to larger re-

sponse. To evaluate the treatment effect, we adopt a generalized regression model (Han,

1987; Sherman, 1993), which relates the response to covariates and interaction effects,

Y = g{h(X ′γ + AX̃ ′β, ϵ)}, (2.1)

where g : R 7→ R is an unspecified increasing function of its argument, h : R2 7→ R is an
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unspecified and strictly increasing function of each of its arguments; X̃ = (1,X ′)′ ∈ Rp+1,

γ = (γ1, · · · , γp)′ is a vector of coefficients for the covariates and β = (β0, β1, · · · , βp)
′ is a

vector of parameters for interaction effects; ϵ is a random error term. Note that model (2.1)

includes many interesting regression models as special cases (Han, 1987). For example, if

we take h(u, v) = u + v, model (2.1) reduces to a standard linear regression model when

g(w) = w; a binary choice model when g(w) = I(w ≥ 0); a censored regression model when

g(w) = wI(w ≥ 0).

For given γ and β in model (2.1), it is clear that A = sign(X̃ ′β) leads to a larger

response because of the monotonicity assumption on g and h, where sign(x) = 1 for x ≥ 0,

and sign(x) = −1, otherwise. The primary interest is to estimate the interaction effect β in

(2.1), from which the optimal treatment regime is given by D∗(x) = sign(x̃′β). This is also

known as the decision function (Zhao et al., 2012). The generalized regression framework in

model (2.1) has some advantages in developing individualized treatment strategy. First, it

provides a more flexible semiparametric modeling of the interaction between treatment and

covariates, while traditional parametric models potentially suffer from model misspecifica-

tion. Second, we can easily derive the best treatment strategy with a simple linear decision

function, which is interpretable. Third, the proposed rank-based estimator is robust to po-

tential outliers. Moreover, the asymptotic distribution of the proposed estimator is available,

which can be used to develop valid inference procedures.

3 Estimation procedure

In this section, we present a rank-based approach to estimate the parameters of interest

in model (2.1). Given that the response is a stochastically monotone function of the covari-

ate effect and treatment benefit, then the rankings of Yi, and rankings of X′
iγ + AiX̃

′
iβ are

expected to be positively correlated. This motivates us to apply the maximum rank corre-

lation (MRC) estimation method (Han, 1987) to the present problem. The MRC objective
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function is

Gn(θ) =
1

n(n− 1)

∑
i̸=j

I(Yi > Yj)I(X
′
iγ + AiX̃

′
iβ > X ′

jγ + AjX̃
′
jβ), (3.1)

where θ = (γ ′,β′)′ ∈ R2p+1, and I(·) is the indicator function. For identifiability, we further

require ∥γ∥ = 1 and ∥β∥ = 1, where ∥ · ∥ is the Euclidean norm.

Because the MRC objective function Gn(θ) is a weighted sum of indicator functions, it is

difficult to optimize (3.1) when p is relatively large. To deal with this computational problem,

we adopt the sigmoid function sn(u) = 1/{1+exp(−u/σn)} to approximate I(u > 0), where

σn is a sequence of strictly positive and decreasing numbers with limn→∞ σn = 0 (see Figure

1). As suggested by Song et al. (2007), we can use σn = cn−1/2 with some positive c (e.g.

c = 3). The smoothed version of Gn(θ) is

Sn(θ) =
1

n(n− 1)

∑
i̸=j

I(Yi > Yj)sn(X
′
iγ + AiX̃

′
iβ −X ′

jγ − AjX̃
′
jβ). (3.2)

Theorem 1 below shows that Sn(θ) is a consistent approximation to the maximum rank

correlation function Gn(θ). A smoothed maximum rank correlation (SMRC) estimator of θ

is defined as

θ̂ = argmax
θ

Sn(θ). (3.3)

Based on (3.3), an estimated optimal individualized treatment rule is D̂∗(x) = sign(x̃′β̂).

The optimization of (3.3) can be done by using a standard optimization algorithm, such as

the optim function in R (Nash et al., 2018; R Core Team, 2019). The criterion function S(θ)

depends on the ranks of Yi rather than their numerical values, which implies that the SMRC

estimator θ̂ is more robust than the methods using the numerical values in the presence of

outliers in Yi. The robustness property of θ̂ will be studied via simulation in Section 5.

4 Asymptotic properties

We now investigate the asymptotic properties of the SMRC estimator θ̂. Denote θ0 =

(γ ′
0,β

′
0)

′ as the true parameter. For simplicity of presentation, we first introduce some
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notation. Let Z = (X, A, Y ) and z = (x, a, y). Define

τn(z,θ) = E[I(y > Y )sn(x
′γ + ax̃′β −X′γ − AX̃′β)]

+E[I(Y > y)sn(X
′γ + AX̃′β − x′γ − ax̃′β)],

where the expectation is taken with respect to Z. Let ▽mτn(z,θ) be the mth partial deriva-

tive operator with respect to θ. Define

|▽m|τn(z,θ) =
∑

i1+···+im=m

∂mτn(z,θ)

∂θi1 . . . ∂θim
.

To establish the asymptotic results, we assume the following regularity conditions:

(C.1) The true value θ0 is an interior point of the parameter space Θ, which is a compact

subset of R2p+1.

(C.2) The support of X is not contained in any linear subspace of Rp. The dth component of

X has an everywhere positive Lebesgue density, conditional on the other components. The

random error term ϵ is independent of X in (2.1).

(C.3) Let N be a neighborhood of θ0. For each possible value z = (x, a, y) of Z,

(i) the second derivatives of τn(z,θ) with respect to θ exist in N .

(ii) there is an integrable function M(z) such that for any z ∈ Z, θ1 and θ2 in Θ,

∥▽2τn(z,θ1)− ▽2τn(z,θ2)∥ ≤ M(z)∥θ1 − θ2∥.

(iii) E{|▽1τn(z,θ0)|2} < ∞; E{|▽2|τn(z,θ0)} < ∞.

(iv) the matrix E{▽2τn(z,θ0)} is negative definite.

(v) both 2V = limn→∞ E{▽2τn(·,θ0)} and H = limn→∞ E{▽1τn(·,θ0)[▽1τn(·,θ0)]
′}

exist, and V is negative definite.

Conditions (C.1)−(C.3) were also used to establish the large sample properties of the

rank-based estimators in Sherman (1993).

Theorem 1. Under conditions (C.1)−(C.3), we have supθ∈Θ |Gn(θ)− Sn(θ)|
P−→ 0 as

n → ∞, where
P−→ 0 denotes convergence in probability.
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The above result ensures that the approximation in (3.2) is asymptotically accurate.

For the SMRC estimator θ̂, its asymptotic distribution is stated in the following theorem.

Theorem 2. Under conditions (C.1)−(C.3), the SMRC estimator θ̂ satisfies

n1/2(θ̂ − θ0)
D−→ N(0,V−1HV−1), (4.1)

where 2V = limn→∞ E▽2τn(·,θ0), H = limn→∞ E▽1τn(·,θ0)[▽1τn(·,θ0)]
′, and

D−→ denotes

convergence in distribution.

Since the plug-in estimator of the variance matrix V−1HV−1 can be unstable and

sensitive to the choice of σn, inspired by the methods of Jin et al. (2001) and Cai et al.

(2005), we use a resampling approach to estimating the variance. Specifically, consider a

stochastically perturbed version of the SMRC objective function

S̃n(θ) =
1

n(n− 1)

∑
i̸=j

ξiξjI(Yi > Yj)sn(X
′
iγ + AiX̃

′
iβ −X ′

jγ − AjX̃
′
jβ),

where ξ1, · · · , ξn are i.i.d. exponential variables with mean 1. Similar to Fan et al. (2017),

let θ̃ = argmaxβ S̃n(θ). The variance of θ̂ is approximated by the empirical variance matrix

of θ̃ from repeatedly generating {ξ1, · · · , ξn}. The following result justifies the use of the

above resampling procedure.

Theorem 3. Under conditions (C.1)−(C.3), for the perturbation based estimator θ̃,

we have
√
n(θ̃ − θ̂)

D−→ N(0,V−1HV−1), as n → ∞,

where V and H are defined in (4.1).

5 Numerical simulation

In this section, we conduct simulation studies to assess the finite sample performance

of the proposed method. We consider the following two models:

Model I: Y = 1 + (X′γ0 + AX̃′β0)
3 + ϵ,
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Model II: Y = 1 +X′γ0 + AX̃′β0 + ϵ,

where X = (X1, · · · , Xp)
′ is generated from a normal distribution N(0,Σ) with Σij =

0.5|i−j| and p = 8. The treatment A is generated from {−1, 1} with P (A = 1) = 1/2,

and the random error ϵ follows N(0, 1). Similar to the settings in Fan et al. (2017), we

set γ0 = (0.5,−0.5,−0.5, 0, 0,−0.5, 0, 0)′, and β0 = (0.5,−0.5, 0, 0, 0.5,−0.5, 0, 0, 0)′ with

∥γ0∥ = ∥β0∥ = 1. We consider two situations. Case A: the response Y is generated from

Models I and II; Case B: Y is generated from Case A, except that three outliers are contained,

which follow from a Cauchy distribution with location parameter 0 and scale parameter 500.

All the results presented below are based on 200 replications with sample size n = 300. All

the computations are done in the R (R Core Team, 2019).

To assess the performances of our proposed estimator, we report the estimated bias

(BIAS) given by the sample mean of the proposed estimates minus the true value, the sam-

ple standard deviation (SSD) of the proposed estimates, the sample mean of the estimated

standard errors (ESE), and the empirical coverage probability of the 95% Wald-type confi-

dence interval (CP), where the standard errors of the SMRC estimators are estimated by the

resampling method in Section 4 with 200 repetitions. First we try to provide some evaluation

of the sensitivity of our proposed method for σn = cn−1/2 with different choices of c. We

set c = 1/3, 1 and 3, respectively. In Table 1, we only report the results for β̂ in Model

I with Case A (the other cases are similar). From the results, we can see that the choice

c = 1/3 has the lowest SSD, and c = 3 gives much higher SSD values. This indicates that

the proposed method is sensitive to c. Hence, we need to carefully choose the value of c.

Based on the overall performance of the three choices in Table 1, we suggest to use c = 3 in

the following simulations and real data analysis.

Fan et al. (2017) suggested that the doubly robust concordance-assisted learning (CAL-

DR) estimator is more efficient than the IPSW and AIPSW estimators of Zhang, et al.

(2012). Moreover, the single-index model in Song et al. (2017) is based on the least-squares

type estimation, which is sensitive to outliers. Thus, we only compare the proposed SMRC

estimator with the CAL-DR estimator of Fan et al. (2017) in the simulations. To assess
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the performances of the estimators γ̂ and β̂, we report the BIAS, SSD, ESE, and CP,

respectively. Here the standard errors of the SMRC estimators for γ and β are estimated

by the resampling method in Section 4 with 200 repetitions. To evaluate the accuracy of

estimated optimal treatment rule D̂∗(X̃) = sign(X̃ ′β̂), we calculate the sample mean and

sample standard deviation of the percentage of making correct decisions (PCD), defined as

1 − (2n)−1
∑n

i=1 |sign(X̃ ′β̂) − sign(X̃ ′β0)|. Let Y ∗(a) denote the potential outcome that

would result if the subject was given treatment a ∈ A, then E[Y ∗{D(X)}] ∆
= V is called

the value function of a given treatment regime D. This value function is a classical index

to assess the treatment regimes (Zhang et al., 2012). Below, we report the sample mean

and standard deviation of the value functions for the estimated optimal treatment regime

via the simulation-based method in Fan et al. (2017). To be specific, we generate data with

N = 10000 subjects from Models I and II, and obtain the estimated value function V̂ for

D̂∗(X) as

V̂ =
1

N

N∑
i=1

[1 + {X′
iγ0 + D̂∗(Xi) · X̃i

′
β0}3], (5.1)

and

V̂ =
1

N

N∑
i=1

[1 +X′
iγ0 + D̂∗(Xi) · X̃i

′
β0]. (5.2)

Similarly, we can compute the true value function (V0) for the optimal treatment regime as

(5.1) and (5.2), respectively.

From the simulation results in Tables 2, 3 and 4, we can draw the following conclusions.

First, our proposed SMRC estimators for γ and β are nearly unbiased. Second, the estimated

standard errors are close to the standard deviation of the SMRC estimators, and the empirical

coverage probability of 95% confidence interval is close to the nominal level. Third, the PCD

and V̂ of the CAL-DR have slightly better performance than our proposed method in Case

A. However, the performance of the CAL-DR is very poor in Case B when there exist

outliers. One possible explanation for this phenomenon is that the concordance function

of CAL-DR method involves the value of Y rather than its ranking. Hence, the CAL-DR
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estimator is sensitive to outliers in the responses. In summary, the proposed SMRC method

is competitive with the CAL-DR method.

Finally, to further study the robustness of the proposed method against misspecified

models, we consider the following two models:

Model III: Y = 1 + 2(X′γ0) + 3.5(AX̃′β0)
3 + ϵ,

Model IV: Y = 1 + (X′γ0)
3 + AX̃′β0 + ϵ,

where the regression parameter’s mechanism is the same as Models I and II. Similarly,

we generate data with N = 10000 subjects from Models III and IV. The estimated value

functions for D̂∗(X) are

V̂ =
1

N

N∑
i=1

[1 + 2(X′
iγ0) + 3.5{D̂∗(Xi) · X̃i

′
β0}3],

and

V̂ =
1

N

N∑
i=1

[1 + (X′
iγ0)

3 + {D̂∗(Xi) · X̃i
′
β0}],

respectively. In Table 5, we report the BIAS, SSD, ESE and CP for the estimate of γ. The

results for the treatment rules are presented in Tables 6 and 7. It can be seen that our

proposed method is robust to misspecification of models. Hence, our rank-based approach

is acceptable to developing personalized treatment rules in practice.

6 Application to AIDS clinical trials study

We illustrate the application of the proposed method by analyzing the AIDS Clinical

Trials Group Protocol 175 study (ACTG175), which consists of 2139 subjects infected with

the human immunodeficiency virus (Lu et al., 2011; Fan, et al., 2017). In the study, the pa-

tients were randomized to four different treatment groups: zidovudine (ZDV) monotherapy,

ZDV + didanosine (ddI), ZDV + zalcitabine and ddI monotherapy. We consider the subset

of patients receiving the treatment ZDV + ddI or ZDV + zalcitabine, with the goal to find

their individualized optimal treatment rules. We use A = −1 to denote the treatment ZDV
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+ zalcitabine (524 subjects), and A = 1 to denote the treatment ZDV + ddI (522 subject-

s). Let Y be the CD4 cell count (cells per cubic millimetre) at 20 ± 5 weeks post-baseline.

We use 12 covariates, including five continuous variables, age (years), weight (kilograms),

Karnofsky score (a scale of 0 − 100), CD4 cell count at baseline and CD8 cell count (cells

per cubic millimetre) at baseline, and seven binary variables, haemophilia (0 = no; 1 = yes),

homosexual activity (0 = no; 1 = yes), history of intravenous drug use (0 = no; 1 = yes),

race (0 = white; 1 = non-white), gender (0 = female; 1 = male), antiretroviral history (0

= naive; 1 = experienced) and symptomatic status (0 = asymptomatic; 1 = symptomatic),

where the five continuous covariates are normalized with mean 0 and variance 1 (Fan et al.,

2017).

We apply the proposed method to estimate the optimal treatment strategy and conduct

statistical inference for the corresponding parameters. The estimates for the coefficients

(Est), standard errors (SE), 95% confidence intervals (CI) and P-values are reported in

Table 8, respectively. It can be seen that age, haemophilia, homosexual activity, history of

intravenous drug use and race are significant covariates at the level of 0.05, where age was

also selected as significant covariate by Fan et al. (2017). We refit the proposed estimator

with the above three significant covariates, which yields the estimated optimal treatment

regime as sign(0.6957+0.4621 ·X1− 0.0214 ·X6− 0.3652 ·X7− 0.0308 ·X8− 0.4094 ·X9). In

other words, if 0.6957 + 0.4621· age − 0.0214· haemophilia −0.3652 · homosexual activity

− 0.0308· history of intravenous drug use − 0.4094· race > 0, the optimal treatment for

this patient is ZDV + ddI, otherwise, the optimal treatment rule is ZDV + zalcitabine.

According to the estimated optimal decision rule, 759 out of 1046 patients (72.6%) should

be assigned to treatment ZDV + ddI.

7 Concluding remarks

In this article, we propose a robust approach to estimate optimal individualized treat-

ment rules based on the smoothed maximum rank correlation method under a semiparamet-
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ric generalized regression model. The asymptotic properties of the proposed estimator are

established under reasonable conditions. The performance of our method is evaluated via

simulation studies. An application to an AIDS Clinical Trials Group Protocol 175 study is

provided.

Note that we use σn = cn−1/2 in the sigmoid function, and the simulation results imply

that the choice of c matters. Ideally, c would be treated as a tuning parameter to be

estimated somehow, and this issue requires further investigation. Moreover, the proposed

method can be generalized to the case of censored survival data. Specifically, let Y denote

the survival time in model (2.1), and C denote the censoring time. The observed data

consists of (Ỹi,∆i,Xi), where Ỹi = min(Yi, Ci), and ∆i = I(Yi ≤ Ci), i = 1, · · · , n. Similar

to (3.2), we construct a smoothed rank correlation function

S∗
n(θ) =

1

n(n− 1)

∑
i ̸=j

∆jI(Ỹi > Ỹj)sn(X
′
iγ + AiX̃

′
iβ −X ′

jγ − AjX̃
′
jβ).

The resulting SMRC estimator θ̂∗, as the maximizer of S∗
n(θ), is consistent and asymptot-

ically normal, which can be derived by the proof techniques in the Appendix. As pointed

out by one reviewer, the topics on optimal treatment rules with three or more treatments

are of great practical importance (Lou et al., 2018; Qi et al., 2018). It is still unclear how

to extend our rank-based method to the setting with multiple treatments, which requires

further research efforts.
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8 Appendix

Proof of Theorem 1. For convenience, denote uij = γ ′(Xi −Xj) + β′(AiX̃i − AjX̃j).

From the definition of Gn(·) and Sn(·), we can derive that

|Gn(θ)− Sn(θ)| ≤ 1

n(n− 1)

∑
i ̸=j

|I(uij > 0)− sn(uij)|.

For any v > 0,

|Gn(θ)− Sn(θ)| ≤ Tn1 + Tn2, (8.1)

where

Tn1 =
1

n(n− 1)

∑
i ̸=j

|I(uij > 0)− sn(uij)| · I(|uij| ≥ v),

Tn2 =
1

n(n− 1)

∑
i ̸=j

|I(uij > 0)− sn(uij)| · I(|uij| < v).

Since |I(uij > 0) − sn(uij)| ≤ exp(−|uij|/σn) < exp(−|v|/σn) on the set {|uij| ≥ v}, then

σn → 0 implies that sn(w) → I(uij > 0) uniformly. Thus, Tn1 converges to 0 uniformly over

Θ as n → ∞.

Because sn(·) is bounded by 1, the second term T2n ≤ 1
n(n−1)

∑
i ̸=j I(|uij| < v). By the

uniform convergence theorem of U-processes (Nolan and Pollard, 1987), the right-hand side

converges almost surely to P (|uij| < v). Under condition (C.2), we can prove in a similar

way as Lemma 4 of Horowitz (1992) that limv→0 P (|uij| < v) = 0, and Tn2 converges to 0.

Therefore, the right-hand side of (8.1) converges to 0 uniformly over θ ∈ Θ. This completes

the proof. �

Proof of Theorem 2. For each θ ∈ Θ, write Γn(θ) = Sn(θ)− Sn(θ0), then θ̂ maximizes

Γn(θ) over Θ. For each (z1, z2) ∈ Z ⊗ Z and θ ∈ Θ, define

fn(z1, z2,θ) = I(y1 > y2)[sn(x
′
1γ − x′

2γ + a1x̃
′
1β − a2x̃

′
2β)

−sn(x
′
1γ0 − x′

2γ0 + a1x̃
′
1β0 − a2x̃

′
2β0)].
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Because Γn(·) is a U-statistics of order 2, we have the Hoeffding decomposition:

Γn(θ) = EΓn(θ) + Png(·,θ) + Unh(·, ·,θ),

where

g(Z,θ) = Ef(Z, ·,θ) + Ef(·,Z,θ)− 2EΓn(θ),

h(Z1,Z2,θ) = f(Z1,Z2,θ)− Ef(Z1, ·,θ)− Ef(·,Z2,θ) + EΓn(θ),

Pn is the empirical measure that places mass 1/n on each observation Zi = (Xi, Ai, Yi) ( i =

1, · · · , n ), and Un is the U-process operator given as Unh(·, ·,θ) = 1/[n(n−1)]
∑

i̸=j h(Zi,Zj,θ).

First, we prove that as θ → θ0,

Γn(θ) =
1

2
(θ − θ0)

′V(θ − θ0) + o(∥θ − θ0∥2) + op(1). (8.2)

By the Taylor expansion of τn(Z,θ) about θ,

τn(Z,θ) = τn(Z,θ0) + (θ − θ0)
′▽1(Z,θ0) +

1

2
(θ − θ0)

′▽2(Z,θ
∗)(θ − θ0), (8.3)

where θ∗ is between θ and θ0. By conditions (C.1)-(C.3), for each θ in Θ and Z ∈ Z,

∥(θ − θ0)
′[▽2τn(Z,θ)− ▽2τn(Z,θ0)](θ − θ0)∥ ≤ M(Z)∥θ − θ0∥3. (8.4)

Taking expectations in (8.3), together with (8.4) and the integrability of M(·),

2Γn(θ) = (θ − θ0)
′E▽1τn(·,θ) + (θ − θ0)

′V(θ − θ0) + o(∥θ − θ0∥2) + op(1). (8.5)

It follows that Γn(θ) is maximized at θ0, and the coefficients of linear term in (8.5) must be

zeros. Hence it can be concluded that E▽1τn(·,θ) = 0, and (8.2) holds.

Next, we need to show that

Png(·,θ) =
1√
n
(θ − θ0)

′Wn + o(∥θ − θ0∥2), (8.6)

where Wn
D−→ N(0,H) as n → ∞. Using g(Z,θ) = τn(Z,θ)−τn(Z,θ0)−2EΓn(θ), together

with (8.2), (8.3) and (8.4), we have

Png(·,θ) =
1√
n
(θ − θ0)

′Wn +
1

2
(θ − θ0)

′Bn(θ − θ0) + o(∥θ − θ0∥2) + Tn(θ) (8.7)

14



uniformly over op(1) neighborhoods of θ0, where

Wn =
√
nPn▽1τn(·,θ0) =

1√
n

n∑
i=1

▽1τn(zi,θ0),

Bn = Pn▽2τn(·,θ0)− 2V,

and |Tn(θ)| ≤ ∥θ − θ0∥3PnM(·). By E▽1τn(·,θ) = 0 and the Slutsky’s theorem, Wn

converges in distribution to N(0,H). The law of large numbers implies that Bn
p−→ 0 as

n → ∞. Moreover, by the integrability of M(·), we have Tn(θ) = op(∥θ − θ0∥2).

Finally, by Theorem 4 of Sherman (1993), we can prove

Unh(·, ·,θ) = op(n
−1) (8.8)

uniformly over op(1) neighborhoods of θ0. Thus, (8.2), (8.6) and (8.8) indicate that

Γn(θ) =
1

2
(θ − θ0)

′V(θ − θ0) +
1√
n
(θ − θ0)

′Wn + o(∥θ − θ0∥2) + op(n
−1) + op(1). (8.9)

Since V is a negative definite matrix, it follows from Theorem 2 of Sherman (1993) that

√
n(θ̂ − θ0) = −V−1 1√

n

n∑
i=1

▽1τn(zi,θ0) + oP (1). (8.10)

Hence the central limit theorem and the Slutsky’s theorem show that

√
n(θ̂ − θ0)

D−→ N(0,V−1HV−1) as n → ∞.

This ends the proof. �

Proof of Theorem 3. Note that

S̃n(θ) =
1

n(n− 1)

∑
i̸=j

ξiξjI(Yi > Yj)sn(X
′
iγ + AiX̃

′
iβ −X ′

jγ − AjX̃
′
jβ).

Due to ξiξj are independent of the term I(Yi > Yj)sn(X
′
iγ + AiX̃

′
iβ − X ′

jγ − AjX̃
′
jβ),

following similar arguments as in the proofs of (8.10), we have

√
n(θ̃ − θ0) = −V−1 1√

n

n∑
i=1

ξi▽1τn(zi,θ0) + oP (1). (8.11)
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In view of (8.10) and (8.11), some straightforward calculations show that

√
n(θ̃ − θ̂) = −V−1 1√

n

n∑
i=1

(ξi − 1)▽1τn(zi,θ0) + oP (1).

Because ξi are i.i.d. random variables with E(ξi) = 1 and V ar(ξi) = 1, it follows from the

central limit theorem and the Slutsky’s theorem that

√
n(θ̃ − θ̂)

D−→ N(0,V−1HV−1).

This ends the proof. �
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Figure 1. Plots of the sigmoid function s(x) = 1/{1 + exp(−x/σ)}.
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Table 1. Evaluation results with different choices of c in the term σn = cn−1/2.

Statistic β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

c = 1/3 BIAS 0.0027 0.0043 0.0085 -0.0002 -0.0022 0.0102 0.0091 0.0011 0.0032

SSD 0.0336 0.0351 0.0402 0.0479 0.0346 0.0368 0.0408 0.0443 0.0374

ESE 0.0409 0.0392 0.0462 0.0467 0.0395 0.0386 0.0463 0.0469 0.0448

CP 0.975 0.995 0.970 0.950 0.975 0.970 0.970 0.970 0.985

c = 1 BIAS -0.0004 0.0059 0.0022 0.0045 -0.0117 0.0058 0.0037 -0.0022 0.0064

SSD 0.0494 0.0460 0.0579 0.0595 0.0475 0.0386 0.0535 0.0568 0.0474

ESE 0.0529 0.0524 0.0634 0.0635 0.0524 0.0512 0.0634 0.0645 0.0594

CP 0.970 0.985 0.965 0.970 0.965 1 0.985 0.990 0.975

c = 3 BIAS -0.0001 0.0059 -0.0055 0.0027 -0.0164 0.0188 -0.0095 0.0061 0.0020

SSD 0.0574 0.0606 0.0761 0.0800 0.0551 0.0537 0.0745 0.0742 0.0710

ESE 0.0626 0.0662 0.0804 0.0809 0.0633 0.0644 0.0807 0.0822 0.0724

CP 0.960 0.955 0.950 0.945 0.965 0.960 0.955 0.975 0.940
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Table 2. Simulation results of the SMRC estimate for γ.

Model Case Statistic γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7 γ̂8

I A BIAS -0.0091 0.0192 -0.0102 0.0022 0.0022 0.0021 -0.0024 -0.0036

SSD 0.0585 0.0509 0.0597 0.0765 0.0793 0.0796 0.0809 0.0753

ESE 0.0591 0.0559 0.0666 0.0808 0.0806 0.0753 0.0823 0.0722

CP 0.935 0.970 0.960 0.955 0.945 0.935 0.955 0.925

B BIAS -0.0038 0.0237 -0.0063 0.0107 -0.0189 0.0075 -0.0121 0.0036

SSD 0.0542 0.0501 0.0692 0.0779 0.0790 0.0755 0.0844 0.0695

ESE 0.0614 0.0598 0.0687 0.0841 0.0836 0.0786 0.0848 0.0747

CP 0.975 0.980 0.960 0.960 0.950 0.945 0.935 0.950

II A BIAS -0.0279 0.0230 -0.0028 0.0084 -0.0222 0.0135 -0.0026 -0.0103

SSD 0.0761 0.0683 0.0743 0.1113 0.1116 0.0868 0.0990 0.0849

ESE 0.0767 0.0704 0.0794 0.1010 0.1018 0.0907 0.0978 0.0874

CP 0.935 0.955 0.955 0.925 0.930 0.960 0.925 0.945

B BIAS -0.0137 0.0215 -0.0229 0.0166 -0.0071 0.0140 -0.0100 0.0034

SSD 0.0715 0.0624 0.0835 0.1117 0.1147 0.0883 0.1095 0.0962

ESE 0.0755 0.0703 0.0808 0.1011 0.1003 0.0896 0.0964 0.0873

CP 0.955 0.970 0.950 0.915 0.915 0.955 0.915 0.920
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Table 5. Simulation results of the SMRC estimate for γ.

Model Case Statistic γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7 γ̂8

III A BIAS -0.0321 0.0241 -0.0091 0.0607 -0.0542 -0.0123 -0.0175 -0.0001

SSD 0.0630 0.0578 0.0604 0.0811 0.0823 0.0780 0.0923 0.0744

ESE 0.0627 0.0565 0.0658 0.0857 0.0856 0.0763 0.0817 0.0717

CP 0.910 0.940 0.975 0.890 0.910 0.930 0.915 0.935

B BIAS -0.0380 0.0212 -0.0019 0.0441 -0.0511 -0.0134 -0.0087 -0.0034

SSD 0.0603 0.0543 0.0642 0.0911 0.0798 0.0746 0.0729 0.0699

ESE 0.0646 0.0575 0.0665 0.0866 0.0868 0.0768 0.0823 0.0732

CP 0.920 0.945 0.955 0.885 0.930 0.940 0.975 0.955

IV A BIAS -0.0224 0.0182 -0.0112 0.0180 -0.0212 0.0131 -0.0131 -0.0002

SSD 0.0706 0.0652 0.0799 0.0987 0.0998 0.0990 0.1007 0.0883

ESE 0.0728 0.0670 0.0774 0.0967 0.0964 0.0869 0.0958 0.0854

CP 0.955 0.940 0.940 0.965 0.940 0.905 0.920 0.945

B BIAS -0.0059 0.0154 -0.0212 0.0314 -0.0276 0.0210 -0.0028 -0.0107

SSD 0.0720 0.0646 0.0788 0.1005 0.1031 0.0869 0.1008 0.0827

ESE 0.0743 0.0688 0.0796 0.0984 0.0989 0.0890 0.0963 0.0861

CP 0.975 0.965 0.965 0.920 0.925 0.955 0.945 0.950
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Table 8.

Estimated optimal treatment regimes for the ACTG175 data.

Est SE CI P-value

β̂0 0.5258 0.1093 [0.3114, 0.7402] < 10−5

β̂1 0.1519 0.0612 [0.0319, 0.2719] 0.0130

β̂2 -0.0635 0.0670 [-0.1950,0.0679] 0.3433

β̂3 -0.0017 0.0456 [-0.0912,0.0876] 0.9685

β̂4 0.1331 0.0895 [-0.0423, 0.3086] 0.1370

β̂5 -0.0794 0.0523 [-0.1820, 0.0230] 0.1287

β̂6 -0.4021 0.1424 [-0.6814, -0.1229] 0.0047

β̂7 -0.4561 0.0885 [-0.6297, -0.2825] < 10−5

β̂8 -0.3302 0.1451 [-0.6147, -0.0456] 0.0229

β̂9 -0.3624 0.1043 [-0.5669, -0.1579] 0.0005

β̂10 0.2413 0.1283 [-0.0101, 0.4928] 0.0600

β̂11 -0.0605 0.1098 [-0.2757, 0.1547] 0.5817

β̂12 0.0131 0.1269 [-0.2356, 0.2619] 0.9174

γ̂1 -0.0455 0.0328 [-0.1100, 0.0189] 0.1662

γ̂2 0.0160 0.0408 [-0.0641, 0.0961] 0.6949

γ̂3 0.0555 0.0271 [0.0023, 0.1087] 0.0405

γ̂4 0.8068 0.0384 [0.7314, 0.8822] < 10−5

γ̂5 -0.1090 0.0277 [-0.1635, -0.0546] 8× 10−5

γ̂6 -0.1322 0.1037 [-0.3356, 0.0711] 0.2025

γ̂7 -0.0581 0.0690 [-0.1934,0.0770] 0.39931

γ̂8 0.2099 0.0795 [0.0539, 0.3659] 0.0083

γ̂9 -0.2698 0.0650 [-0.3973, -0.1423] 3× 10−5

γ̂10 -0.0277 0.0934 [-0.2109, 0.1555] 0.7668

γ̂11 -0.4367 0.0650 [-0.5641, -0.3092] < 10−5

γ̂12 -0.0493 0.0659 [-0.1785, 0.0799] 0.4546
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