OPTIMAL SMALL DATA SCATTERING FOR THE GENERALIZED
DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS

RUOBING BAI, YIFEI WU, AND JUN XUE

ABSTRACT. In this work, we consider the following generalized derivative nonlinear Schrédinger
equation

i0pu + Opztt + i|u[*?0pu =0, (t,z) ER x R.

We prove that when o > 2, the solution is global and scattering when the initial data is
small in H*(R), % < s < 1. Moreover, we show that when 0 < o < 2, there exist a class of
solitary wave solutions {¢.} satisfying

[Pl @) — 0,

when ¢ tends to some endpoint, which is against the small data scattering statement. There-
fore, in this model, the exponent o > 2 is optimal for small data scattering. We remark
that this exponent is larger than the short range exponent and the Strauss exponent.

1. INTRODUCTION

In this paper, we consider the small data scattering of the Cauchy problem for the
following generalized derivative nonlinear Schrodinger equation (gDNLS)

i0pu + 0%u + i|ul* Opu = 0, (t,z) €e R x R,
u(z,0) = ¢(z).

Here 0 > 0, u : R — C is an unknown function.

(1.1)

The generalized derivative nonlinear Schrodinger equation describes the physical phe-
nomenon of Alfvén waves with small but finite amplitude propagating along the magnetic
field in cold plasmas (see for example [56]).

The class of solutions to equation (1.1) is invariant under the scaling
u(t,z) = u(t,z) = )\%u()?t, Az) for A >0, (1.2)
which maps the initial data as
w(0) = uy(0) := Azgp(Az) for A > 0.
Denote
1 1
S¢ == ——,
. 2 20
then the scaling leaves H® norm invariant, that is,

lull rse = U]l grse -
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When o = 1, take a suitable gauge transformation

T

u(t,x) — u(t,z)exp < — %/ lu(t, y)|? dy>,

then the equation in (1.1) is transformed into the standard derivative nonlinear Schrodinger
equation (DNLS)

i0pu + 02u + 10, (|ul*u) = 0. (1.3)

For o # 1, (1.1) is regarded as a generalization of (1.3). The well-posedness theory and
the long time behavior of the solution for the equation (1.3) have been widely considered by
many researchers. For the local well-posedness result, Hayashi and Ozawa [31,32] proved that
equation (1.3) is locally well-posed in the Sobolev space H'(R) (see also the previous works
[19,73]). Very recently, Mosincat and Yoon [60] proved the unconditional well-posedness
in H*(R),s > 3 (see also Dan, Li and Ning [13] for the previous work in H*(R),s > 2).
With regard to the theory of global well-posedness, Hayashi and Ozawa [31] proved that it is
globally well-posed in H'(R) under the condition that the initial data satisfies ||ug||z> < /2.
Wu [75, 76] showed that it is globally well-posed in H'(R) under the condition ||ugl|/z: <
2y/m. Guo and Wu [21] later proved that it is globally well-posed in H %(R) under the same
condition of initial data (see also [9,10,61] for the previous results on the low regularity).
The same results also hold in the periodic case (see Mosincat and Oh [59] in H!(T), and
Mosincat [58] in Hz(T)). More recently, Jenkins, Liu, Perry and Sulem [38] proved that the
Cauchy problem (1.3) is globally well-posed in the weighted Sobolev space H*?(R).

The equation in (1.1) in the case of o # 1 also attracts a lot of researchers in recent
years. Firstly, for the local well-posedness result, when 0 < ¢ < %, Linares, Ponce and
Santos [47,48] proved the local well-posedness for a class of data of arbitrary size in an
appropriate weighted Sobolev space. When % < 0 < 1, Hayashi and Ozawa [34] proved that
(gDNLS) is locally well-posed in H?(RR), and Santos [67] showed the local well-posedness in
a weighted sobolev space. When ¢ > 1, Hayashi and Ozawa [34] proved that (gDNLS) is
locally well-posed in energy space H'(R). Hao [29] proved that it is locally well-posed in

1

Hz(R), when o > 3. Santos [67] proved that it is locally well-posed in H 2(R) with small
initial data when o > 1. Secondly, compared with the local well-posedness, there are only
few results of global well-posedness. When 0 < ¢ < 1, Hayashi and Ozawa [34] showed the
global existence without uniqueness of (gDNLS) in H*(R). When ¢ > 1, Fukaya, Hayashi
and Inui [15] gave a sufficient condition of initial data for global well-posedness in H'(R).
Some other results related to the stability theory and inverse scattering theory can be found
in [7,8,16,18,20,37,39,44,45,50-55,63,64,69] and the references therein.

The equation that we investigate in (1.1) in this paper can be also treated as the form
of

10w + Au = P(u,u, Oyu, 0,0). (1.4)

The well-posedness theory of equation (1.4) has been studied by many researchers. Here we
only introduce some works and readers can seek further literatures from related references,
when P is a polynomial of the form P(z) = Zdé\alél Co2z® and [, d are integers with { > d.
For general cases with d > 3, Kenig, Ponce and Vega [42] showed that the equation (1.4) is
locally well-posed with small initial data in Hz(R). Some further results have been acquired
when P is only composed of @ and 0, under some suitable assumption. Griinrock [28] proved

that the equation (1.4) is locally well-posed for s > 3 — = when P = 9, () and s > 3 —
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when P = (9,u)? respectively. Hirayama [36] later extended Griinrock’s results to the small
1

data global well-posedness for s > 1 — -1 when P = 9,(u?). Recently, Pornnopparath [65]
proved that when each term in P contains only one derivative, the equation (1.4) is locally
well-posed in Hz(R), and when a term in P has more than one derivative, the equation (1.4)
is locally well-posed in H 3 (R). Moreover, Pornnopparath also proved that when d > 5, (1.4)
is almost globally well-posed in H*(R) when P has only one derivative and s > %, or when
P has more than one derivative and s > % For higher dimension and more related theories,

see [1,2,11,42,74] and the references therein.

All of the results above are related to the theories of local and global well-posedness. To
our knowledge, there is no scattering result yet to (gDNLS). The related result on modified
scattering can be found in [23,33] and the references therein.

One of the motivation to prove scattering is that we believe the small data scattering
result of the present paper is significative to our further study. In order to consider the long-
time behavior of the solution to (gDNLS), the small data scattering theory is initially needed
in some situation, for example, long-time perturbation theory when we use the concentration-
compactness argument.

Moreover, it was known that when o = 1, there exist solitary wave solutions which can
be arbitrarily close to zero. This implies that the small data scattering is not true when
o = 1. So one may wonder the optimal value of o such that the scattering statement holds
when the initial data is small enough in some Sobolev space. This is another motivation in
the present paper.

For semilinear Schrodinger equation, there are two important exponents named short
range exponent and the Strauss exponent. When the nonlinear power is larger than the
short range exponent 3 (1 + % for general dimensions), one has the global well-posedenss
and the existence of the wave operator for small data (see for examples [6,17,62]); when the

nonlinear power is larger than the Strauss exponent @ ~ 3.56 (—W for general
dimensions), one has the scattering for small data (see [68]). According to these, especially
because of the short range exponent, one may ask whether ¢ = 1 is the optimal exponent for
scattering. However, there is no such general result for non-semilinear Schrodinger equation
(related results see [12,14,25,30] and the references therein). In fact, it is of much model
dependence when the nonlinearity contains derivatives. In the present paper, as what we will
show in the following, the situation for the nonlinear Schrodinger equation with derivatives
is of much difference, compared with the semilinear Schrodinger equations, and the models
mentioned in the references above, the optimal exponent for scattering is 5, which is much
larger than the short range exponent and the Strauss exponent.

For all o > 0, the equation (1.1) has a two-parameter family of solitary waves,

uw,c<t> = eiwt¢w,c(x - Ct);

where the parameters ¢? < 4w, and ¢, . is the solution of the form

buele) = pucla)exp (Gin = 1o [y, (15

with

(0 +1)(4w — ?) 3
Pucl@) = {Qﬁcos}j—(a\/mx) - c} '
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Firstly, we show that there exists a sequence of solitary waves which are arbitrary small
in H'(R) when 0 < o < 2; while all of the solitary waves are away from the origin when

o>2 Let Q={(w,c):ce€(-2yw,2yw)}.
Theorem 1.1. Let ¢, . be defined in (1.5), and (w,c) € Q, then
(1) when o € (0,2),
| pwcllmr@y — 0,  when ¢ = —2y/w;

(2) when o > 2, there exists a constant ¢y = co(0) > 0, such that for any (w,c) € Q,

[t

Hse(R) > Cp.

Hence, the small data scattering is not true for all 0 < ¢ < 2, but from (2) in Theorem
1.1, it is reasonable to conjecture that the small data scattering holds when ¢ > 2. Our
second result aims to show this assertion. Note that we can not replace the norm H* by
LPe p. = 20 in Theorem 1.1 (2), although the latter space is also invariant under the scaling
(1.2) (see Remark 3.1 below).

Before stating our second main result, we define the working space

[oafpes :HUHL?H;([O,T]xR) + HawuHLgOLf(Rx[o,T]) + sup HUHLngO(Rx[o,T])
q€[4,N0}

s 1
+ llullzszee o mxm) + HD 2“| LALY (Rx[0,T7])

+ ||DS_%8IU|

+ ”DS_%“HL;ngo [ (1.6)

L L2(Rx[0,T)) 0,71xR)"

Here N is any fixed arbitrary large parameter. Now our second main result is

Theorem 1.2. Let o > 2, % <s<1andy € H*(R). Then there exists a constant g > 0,
such that if ||o||gs@) < 0o, then the corresponding solution u is global, and

lullxr S lellaem-
Moreover, there exists a unique us such that for any 0 < s’ < s,

||u(t) — eimui| -0 as t— £oo.

H¥'(R)

Remark 1.3. The same result is also true when we consider the nonlinearity P(u, 4, d,u, 0,4)
and d > 5 in (1.4) with P has only one derivative. As a comparable result, Pornnopparath
[65] proved that when o > 2, and is an integer, the equation in (1.1) is almost globally well-
posed in H*(R), s > % Here “almost” is in the sense that given an arbitrary large 7' > 0,
there exists a constant C' = C(T) > 0, such that for any initial data wug : ||uo||gsm) < C, the
corresponding solution is in [0,77]. Theorem 1.2 improves Pornnopparath’s result. On one
hand, we do not restrict that ¢ is an integer. On the other hand, as a byproduct of scattering,
we prove the global well-posedness in H*(R), % < s <1, which contains the “endpoint” case
s = % and the global well-posedness in the general sense.

We believe that the index s = % is optimal for local well-posedness in the sense of
uniform continuity of the solution flow. However, it is not proved in this paper and leaves

us an interesting problem to pursue later.

Moreover, it is worth noting that our scattering result is not applicable in H?® if the
initial data ¢ € H*(R) since the index s" in Theorem 1.2 satisfies s’ < s.
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Based on the local well-posedness result of Santos [67], we use the bootstrap argument
to prove Theorem 1.2. More precisely, by defining the working space X1 as above with any
fixed time T', our purpose is to show the uniform-in-time estimate:

ullx, < Culloll @) + Callull3 (1.7)

Here (', C5 are the constants independent of T'. The tools we use in the present paper are
the smoothing effects and the maximal function estimates. Compared with the low power
case 0 < 2, the maximal function estimates in the case of 0 > 2 provide many benefits. This
enables us to handle the nonlinearity properly and establish the uniform-in-time estimate.
However, since our desired result is stronger than the previous ones, the situation here has
more obstacles. The key ingredients in our proofs are presented below.

(1) A suitable working space is constructed. In order to establish the uniform estimation
on time T, a related complicated working space need to be constructed. We define the
working space ||ul|x, in (1.6). We shall prove that the estimation of each norm in Xr is
closed. The selection of norms plays an important role in our paper.

(2) A key split on the terms involved the fractional derivatives is carried out. The
endpoint Kato-Ponce inequality recently proved by Bourgain and Li [4] shall be used to deal
with some L*°-L> type Leibniz rule for fractional derivatives. Moreover, a regular process
using Holder’s inequality fails to control these terms by ||u|| x,., since most of the mixed norms
like supye s no) 114l 22 oo (R x[0,77) are the norm of time ahead. So the subtle split is established,
thus we are able to change the order of the mixed norm in some applicable way. This idea
has significant influence to obtain our whole estimation on the form of |lul|x,..

The rest of the paper is organized as follows. In Section 2, we give some basic notations
and some preliminary estimates that will be used throughout in our paper. In Section 3, we
prove non-scattering result for (gDNLS) in H'(R) when o € (0,2). In Section 4, we prove
scattering result for (gDNLS) in H*(R) with small initial datum when o > 2.

2. NOTATION AND PRELIMINARY

2.1. Notation. We write X <Y or Y 2 X to indicate X < CY for some constant C' > 0.
The notation a+ denotes a+¢ for any small e, and also a—¢ for a—. Denote (-) = (14|-|?)2
and D* = (—0?)2. The Hilbert space H*(R) is a Banach space of elements such that
(€)*a € L*(R), where .Z denotes the Fourier transform Zu(§) = a(§) = [, e *™fu(x) du,
and equipped with the norm |jul|gs = [|{§)*u(&)||zz. We also have an embedding theorem
that [|u|lgs1 S ||ul|gs2 for any s; < sy, 51,52 € R. Throughout the whole paper, the letter
C will denote various positive constants which are of no importance in our analysis. We use
the following norms to denote the mixed spaces L{ L ([0,7] x R) and L’ L{(R x [0,T7]), that

is,
T 1
q
lallsgasoaress = (|l ey )
0

and

follzeastor = ([ llliggor dz)’
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2.2. Preliminary. In this section, we state some preliminary estimates of the linear
Schrédinger operator e® which will be used in our later sections. Firstly, we recall the
well-known Strichartz estimates.

Lemma 2.1. (Strichartz’s estimates, see [5]). Let I C R be an interval. For all admissible
pair (q;,75),J = 1,2, satisfying

2 1 1
2<gqj,rj<oc0 and - =_-——,
q; 2 1
the following estimates hold:
HeitAfHijL;f(]XR) S ||f||L2(R); (2'1)
and
t (t—t")A
i(t—t’ / / < .
H/O dt-OMP (5 1) dt 11 % 1y (2.2)

LAL (IxR) ™

1,1 11
where(p%—qé—m—l—ré 1.

The next lemma is the smoothing effects.

Lemma 2.2. (Smoothing effects, see [41,49]). Let I C R be an interval, including I = R.
Then

1)

1D fl 2y < 1 2o (23)
for all f € L*(R); and
2)

t
HD% / AR (2, t)) dt!
0

< .
L L2(IxR) I L2y (2.4)

3)

t
o, / A F (g, 1) df < F s oy (2.5)
0

|

forall F € LLL?(R x I).
7t

L L?(Rx1I)

Next, we introduce the following maximal function estimates for the linear Schrodinger
equation.

Lemma 2.3. (Mazimal function estimates, see [40,43,57,66,67]). Let I C R be an interval.

Let4§p<ooand52%—%. Then we have

||eitAf”L§L§°(R><I) N ||f||HS(R)§ (2-6)

and

t
| [ ewospaear | IPssznn + 1 sz, (2.7)
0

LELY® (R

Next, we show the Leibniz and chain rule for fractional derivatives, see [4,41,46] and the
references therein.
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Lemma 2.4. (Leibniz and chain rule for fractional derivatives). Let I C R be an interval.

Then
1) Let s € (0,1), 1 < p < o0, and 1 < p1,pa, P3,Ps < 00 wz’th%:pil—i-é, %:pig+ L and
let f,g € S(R), then
HDS(fg>HLp(R) S HDSfHLpl(R)Hg”LPQ(R) + ||DngLP3(R)HfHLp‘l(R)' (28)
2) Let s € (Oa ]-) and P;q,P1,P2,q2 € (1700)»(11 € (1700] such that
1 1 1 1 1 1
-=—+— and - =—+—
p P P2 a @1 42
Then
HDSF(f)”LiLg(RxI) 5 ||F/(f)||L§1L§1(Rx1)||DSfHL§2L§2(Rx1)- (2-9)

3) Let s € (0,1),51,82 € [0,s] with s = s1 + so. Let p,p1,02,q,q1,q2 € (1,00) be such that

1 1 1 1 1 1
- =—4+— and - =—+—.
p p1 P2 q q1 q2
Then
||Ds(f9) - fD°g— gDSf||L£L§(R><I) 5 ||D81f||L?;1L§1(RxI)||D529||L£2L§2(1Rx1)- (2-10)

Moreover, for s; = 0 the value ¢ = oo is allowed.
4) Let s € (0,1), 81,80 € [0,s] with s = s+ s9. Let p1,p2,q1,q2 € (1,00) with 1 = pil + p%
and % = qil —i—q%. Then

||Ds(fg) — fD?g — gDSfHL}CLf(IRXI) 5 ||Dslf||L§1L§1(Rx1)||D529||L£2L§2(Rx1)- (2-11)

3. PROOF OF THEOREM 1.1

In this section, we consider the solitary wave solutions described in Introduction, and
give the proof of Theorem 1.1. Let Q = {(w,¢) : ¢ € (—2y/w,2y/w)}.

Proof. Note that ¢, . is the solution of the following equation
—02¢ + wo + cid,d — i|¢[*7 0, = 0.

Multiplying on both sides with z0,¢. ., taking the real part and integrating over R, we
obtain that for any (w,c) € €,

10: P cllZ> = Wl P ll72- (3.1)

Hence, for the statement (1), we only need to consider ||@, || r2(r)-
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Now we fix w > 0 and denote o« = V4w — 2. From (1.5), we find that
[ toueldz = [ Joua(o) do
R R
_/{ (0 +1)(4w — ?) };dx
~ Jr L2y/weosh(ov/iw — 2 z) — ¢
o+1\s 2 1
(2\/c_u> “ /R<cosh(aozx) — 5 ) .

Q=

e
2<0+1>3, 2_1/°°< 1 >;d
= — O[O' —_—_—mmm x
o\ 2y/w o \coshz — o=
o0 1
—C,ar! ;yd 3.2
wo® /0 <coshx— . v (3.2)

2o

al-

where C,, , = %(%) . For convenience, we denote

Moreover, we denote ¢, as

Q=

CUZI(—Q\/@)Z/:O(

1
— ) d
cosh z + 1) T

which makes sense since the last integral above is finite. Note that I(c) is an increasing
function, thus we have that for any ¢ : —2y/w < ¢ <0,

ce < I(c) < 1(0). (3-3)

This combining with (3.2) yields that
/ |pwc|” dz < CM,UI(O)O;’1 — 0, when ¢ = —2yw.
R

This proves the statement (1).

For the statement (2), we split into two cases: —2zpy/w < ¢ < 2y/w and —2y/w < ¢ <

—2zpy/w. Here zy € (0,1) is a constant close enough to 1 (one may set zg = ).

Case 1: —2zpy/w < ¢ < 2y/w. We denote p. = 20, then by Sobolev’s inequality, it
reduces to show that there exists a constant ¢y > 0, such that for any (w,c) € Q,

| Pw,c|| Lre @) > co-
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From (1.5), we get that

/ (Gl da = / Puel@)” da

/ (0 +1)(4w — ?) e
2y/wcosh(ov/4w — 2 x) — ¢

o+1 2 1 Ao
2\/_ r cosh(ocax) — N
200 +1

Denote 3 = 2/“=¢ then 8 > 0. Hence,

SNERE
o 1 o 1 1
0 COSh:L'—2\/‘; o coshzx —1+4+p o]

Hence, this last inequality combining with (3.4) gives that

) 20+1) o 1 _20+1) [2Vwtc 20+1) [T-2 _ ,
/R|¢w,cpdx2 o 2\/ZE_ o 2\/5_0 o 14 2 _Cg (35)

Case 2: —2y/w < ¢ < —2z9y/w. Let ¢ = —2zy/w, then z5 < z < 1. First, we rewrite
ODu.cr Puw.c i the following forms. Let

hele) = (ﬁ) '

Since z > 0, there exist positive constants ci,, Cjs,j = 1,2,3 which are independent of z,
such that

o < el o € Cloy || Be] fpaoie < Coor [|Oh2]| 12 < Ciso (3.6)

Moreover, we rewrite

Pue(x) = [2(0 4+ 1)] %wﬁ(l - 22)ihz(\/5\/ 1— z%z),

and thus
Guel) =[2(0 +1)] s (1 = 22)3 . (Vv T = 21)
Vov1—22z
.exp{—izx/@x—im/_ h}f(y)dy}.
Denote

g.(x) =(1— 22)21 h. (V1 — 2%x) exp {—2\/1 - z2/ hz" )dy},

then

Guwe(T) = [ (0+1)} 2"w4a exp{—izv/wr}g.(vVwz).

Hence, by scaling, we get that

el . = [2(0 +1)] 2| exp{—iza}g.|

. . (3.7)
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So it reduces to estimate || exp{—izz}g.|

;;aéch@@+szf

fie-

/{|€<on1—22}

fyse- For this, we have

H exp{—izx}gZ’

25¢

3.(6)|" de

> 1€ — 217 |g.(6)|” d,

where Ay is a big constant decided later. Since 0 < 1 — 2% < 1, we further get

) 1
e 25

16.(6)[ de. (3.8)

|| exp{—izm}gz‘ /
{l§]1€A0vV1—-22}

Now we claim that by choosing Ag large enough,

[N
—~
w
Ne)
~—

. 2 1 1_
/ a0 de > L1 - 2k
{l€]<A0v1—22}

Indeed, on one hand,

lg:llze =||(1 = 22)2 b, (VI = 2%2) ||,

=(1 = 22)2 || ha |2 > c1p(1 — 22)25 5. (3.10)
On the other hand,
~ 2 _ _ 2
[ @< aa-2rtos.
{l¢]>A0v1-22}

Moreover, by (3.6), there exists Cy, > 0 such that

100g:][ > (=222 W2 (VT = 220)| o + (1= 22)5 3 |0 (VI = 220)
S(U= 22 |20+ (1= 23 4|0 .
<Co(1 — 2%)2 4,

Hence,

[NIE

/ 16.(6)[" de < C2 A2 (1 — 22)+ 3,
{I¢1> A0v1=27}

Choosing Ay = v/2¢;,Cyy, then the last estimate above combining with (3.10) gives the
claim (3.9). Thus combining with (3.9) and (3.8), we get
Jexp{=izalo-] .. > gonl1 = )%
eXPL—i2T}0z| o 2 5C10 z .
Now together with the last estimates above and (3.7), and noting that o > 2 and 1 — 2% <
1 — 2%, we obtain that

1 1 11
free 2 5 200+ D] ¥ 1o (1 — 25)2 75 (3.11)

[buel

Therefore, we establish the desired result in the second case. This proves the Theorem
1.1. O
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Remark 3.1. One may find from the computation above that for any (w,c) €  and ¢ < 0,
there exists some ¢, > 0 such that

«

Pedg <
[ 16l o <ers 2

[ 12

Therefore, we can not replace H* norm by LP norm in Theorem 1.1 (2). This may be
helpful to understand the structure of the equation.

Hence, for any o > 0,

Pedy —0, asc— —2y/w.

4. PROOF OF THEOREM 1.2

In this section, we give the proof of Theorem 1.2. Given s > % and ¢ € H*(R). Recall

the locally well-posed result of Santos [67], that is, u € C(]0,T]; H2(R)) for sufficient small
initial data in the case of o > 1 for (1.1). Based on this, fixing 7" > 0, we only need to show
the uniform-on-time estimate (1.7). Then the bootstrap argument yields that there exists
do > 0, such that when ||| gs®) < do,

lullx, S llollsm)

for any 7" € R. In the following, we only consider the positive time. Since the negative time
direction can be obtained in the same way.

To show (1.7), according to the definition of ||u||x,., we control the norms in the right—
hand side of (1.6) one by one.

4.1. Estimates on |[ul[ze= ;s (j0.7)xr)- In this subsection, we give a priori estimate of the
solution in H*®, which is important for global well-posedness. Moreover, one may find that
its proof also plays a crucial role in the proof of scattering in the end of the section. Before
stepping into the complicated details, we give some remark here. It is worth noting that the
maximal function estimate in Lemma 2.3 has both local (p < 4) and global results (p > 4),
see [66]. The local version was heavily relied on in previous papers to establish the local
well-posedness, see for examples [65,67]. Unfortunately, we emphasize that to obtain the
global well-posedness, the local version can not be used in our estimate.

The main result in this subsection is

[l oo s o.11x%) S ol mz ey + [ull3H (4.1)

We prove (4.1) by the following two steps.

20+1

Step 1, ||u )+ Uy,

LEL2(0TIXR) S ||90|

Using the Duhamel formula

t
u(t) = et — / e A (Ju|* 0pu) () (4.2)
0
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and the Strichartz estimates (2.1) and (2.2), we get

t
- < || ,itA i(t—t')A 20 / /
”uHLt L2([0,T]xR) ~ H€ SOHL?"L%([O,T]XR) + H /0 e ("LL| a’Bu) (t ) de L5°L2([0,T]xR)

< 290, _ 4.3
S Wellzgo + lufooua, o (43)
Next we consider the term H |u|**0,u . We claim that
L}L2([0,T]xR)
20 2041
d, < . 4.4
[RIRCY - 1 5 (4.4
Now we write
H|u|2”(9zu = H|u|2 Nul*20,u . (4.5)
LLZ([0,T]xR) L{LZ([0,T]xR)
We consider the inner integration L? first. By Holder’s inequality, we have
2 202 2 252
H'“l [l O ‘Lg(m) S el @ - H'“' | 1 ay
Hence,
20 2 20—-2
D, S [ D, |
H'“’ Uiz qoymy lellize e - [l “lzee Li(0,7))
2 252
Sl oy - =20 LAY (4.6)

For the term H |ul*~20,u

, note that 2(20 — 2) > 4, by Holder’s inequality again
L2L2(Rx[0,T7])
we obtain

< U 20—2
2(20—2
L2L2(Rx[0,1]) ~ | ”Lz( AL R[0T

S i (4.7)

H |u|20728xu

B ||3mu||LgOL$(Rx[0,T])

Putting this result into (4.6), we get

2 2 20—1
[lr70uu], o Slans oy - Il (4.8)
Sllull3

Thus we have proved claim (4.4). Then by (4.3), we have

lull e 2 0. m1xm) S el macry + Null 3T (4.9)

Thus we have finished the proof on Step 1.

20+1

Step 2, | D*ul mar) + ||ul[ 3

rer2qorxr) S ¢
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Using the Duhamel formula (4.2) and the Strichartz estimate (2.1), the smoothing effect
(2.4), we have

t
itA s 1 it—t)A ys—1 20
| D* u||L°°L2 (0,TIxR) ~> S He D 9DHL°°L2 ([0, T]xR) + HDQ/O 2D 2(|u| &tu) L& L2([0,T]xR)

S IDoll 2wy +

(|u|2"8 u)

LL2(Rx[0,T])

S el + |03 (0 9u)| (4.10)

LLL2(Rx[0,T])
Next we claim that

S 3 (4.11)

1
Ds—f 208 ‘
H * (|uf**0,u) LLL2(Rx[0,T]) ~

To prove this claim, we split it into two cases: s = % and % <s< 1.
1

5.

By Holder’s inequality, note that 20 > 4 | we have

Case 1: s =

H |u\2"8xu‘

Z| oy - el o)

LiLF(Rx[0,T)) L (R)

<HUHL20L°°(IR><[O,T]) : HazUHLgOLf(Rx[o,T])
Slullg (4.12)

Case 2: %<s§1.

By the Leibniz rule for fractional derivative (2.11), we get

o3 7o

LL1L2(Rx[0,17])

S TR

H|u|2" D* 20,u

LLL2(Rx[0,17) LLL2(Rx[0,T7])

+ |t ()

LA L Rx(0.T]) 10 ull - 2+ xio,21)- (4.13)

We estimate on terms above one by one.

For the first term DS_%(|u|2") - Oyt n (4.13), by Holder’s inequality, we

LLL2(Rx[0,T7])
have

1

Dz ([u*) - O,u

LLL2(Rx[0,17])

A

D5~ (Jul*) HL?WO,T]) ' Haxu”ﬁﬂ[o’m‘

Ds—%(|u|2cr)

L;(R)

N

LA L ®X[0,T]) 1921/l 5o 22+ o, m- (4.14)



14 RUOBING BAI, YIFEI WU, AND JUN XUE

To the term HDS’% (Jul*)
get

[T ——— n (4.14), using (2.9), note that 3(20 —1) >4 ,we

| D=5 ()

) SH |u’2crfl
Lt L™ (Rx[0,T])

Slhule || D4

1

L%L“’(IRX[O T1) LA L2~ (Rx[0,T7])

LAY L~ (Rx[0,T])

By interpolating between ||DS_%8IU||L30L§(R><[0,T]) and ||| z1 oo (rx[0,7]), We have that for some

81 € (07 1))

o1 s—1 1—6
L N P [ ey e
S llullx,- (4.15)
Then
1
D72 (|ul* < |l 416
[ 2P e oy = 1005 (4.16)

To the term || Oyul| oo 2+ gy o7y in (4.14), it follows from the interpolation between

HDS" L2 Ex[0.1]) and HDS_lu . that is, there exists 65 € (0,1),
o1 =Ly ||
H@ UHLOO—L2+(Rx[0T] NHD 2(Rx[0,T7) HD 1)
NHUHXT- (4.17)
Inserting (4.16) and (4.17) into (4.14), we have
1
D¥ 2 ([u]*) - 0, < JullE 4.18
H ([uf*?) - Oru LLL2(Rx[0,T]) lull (4.18)

Thus we complete the estimate on the first term of (4.13).

w2 - D*~30,u n (4.13), by Hoélder’s inequality, note

LL1L2(Rx[0,17])

For the second term ‘

that 20 > 4, we have
H|u|2" . D" 30,u

S [ et P

OT]‘

LALZ(Rx[0.7)) LL(R)

SHU”L%ULW(RX[O,T]) ’ HDS_E(“)QEU L L2 (Rx[0,T])

Sl (4.19)
Thus the estimate on the second term of (4.13) is also completed.
For the third term HDS’%(\UPU)
(4.16) and (4.17), we have

HDS—% (|u|20)

LI L (x0T [0zul| poo- 12+ mxory) I (4.13), using

20+1
L+ Lo~ @ [0T]) ] xu||L°° L2 (Rx[0,T]) ~ < ”U” . (4.20)

Inserting (4.18), (4.19) and (4.20) into (4.13), we have

| Db (e 0.u)| < Jlull2. (4.21)

LLL2(Rx[0,T])
Owing to the above two cases, we finish the proof of claim (4.11). Putting (4.21) into (4.10),
we finish the proof on Step 2.
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4.2. Estimates on ||0,ul| e r2mxo,r)-  Using the Duhamel formula (4.2) and the smooth-
ing effects (2.3) and (2.5), we get

t
8:1:/ ei(t—t/)A(|u|208xu)(t/> d¢
0

CitAang‘

Ot e < ‘ ‘
|| ||LI LZ2(Rx[0,T]) ~ Lo L2 (Rx[0,T))

L L2(Rx[0,T7])

Slell g+ |[luP o .
HZ (R) LLL2(Rx[0,T])

By (4.12), we have

HﬁﬂquLgOLf(Rx[O,T]) S ol Hs(R) T ||U||§g;rl (4.22)

4.3. Estimates on sup ey n) |4l 22120« [0,7)- By Duhamel’s formula (4.2) and the maxi-
mal function estimates (2.6) and (2.7), we have

t
Julleestomy S 1€ lanszepuy + || [ €02 (uPo0uu)¢)
0

LAL5e (Rx[0,T))

S Ielmzm + | w0 o [CRE

LLL2(Rx[0,T LIL2([0,T]xR)’

where we have used the condition s > 3 > 1 —
obtain

in Lemma 2.3. By (4.4) and (4.12), we

1
q

e + |l

sup HUHLngO(Rx[o,T}) S el
q€[4,N0]

4.4. Estimates on [[u| sz (o7)xr)- By Duhamel’s formula (4.2) and the Strichartz esti-
mates (2.1) and (2.2), we get

t
itA i(t—t")A 20 / /
el s e o,y S €7@l Larse o,1yxm) + H/O e (|ul*?0,u) (t") dt LAL5 (0.TIxR)

S lellzzm + H’“FCI@IU L L3([0,T]xR)

By (4.4), we have

lull s g qo.ixry S lpllzzcey + llull3

4.5. Estimates on HDS*%u| AL (RX[0.7])" It is worth noting that the endpoint Kato-Ponce
Tt ’
inequality in [4] plays a significant role in our estimates in which we meet the Leibniz rule

for fractional derivatives in L°°. Thanks to this inequality, we are able to deal with the term
s—1
1072 (Juf*) | Lo (m) -
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Using Duhamel’s formula (4.2) and the maximal function estimates (2.6) and (2.7), we
get

Dk

) SH‘?“ADS%SA

LALE (Rx[0,T LALE (Rx[0,T7)

t
+ H / ei(t—t/)ADsf% (|u|2"8xu) (t/) d¢’
0

LALge(Rx[0,17)

L1L2(Rx[0,17])

LIL2([0,T)xR)’

S—l o
Slellasm) + HD 2 (Jul? 8xu)‘

L1L2(Rx[0,T))

+ HDS*%(\m?"axu)‘ (4.23)

LIL2([0,T]xR)

is already estimated in (4.11). So we

Recall that the term HDS_%(’UVU&EU) L12(Rx[0,T))
LLL2(Rx[0,T

only need to consider the term HDS*% (Ju|*0pu) H . Now we claim that
LILZ([0,T]xR)

[0 a0

< 2041 4.24
Y (4.24)

Again, we split it into two cases: s = % and % <s<1.

Case 1: s = 1.
is already estimated in (4.4).

The term H |u|??0,u
LIL2(0,T]xR)

Case 2: %<s§1.

Using a similar treatment as (4.5), we have

(e

_ HDs—%(MQ _ |u|2”_28xu)

LIL2([0,T]xR) LYL2([0,T]xR)

Further, using the Leibniz rule for fractional derivative (2.8), we have

HDs—%(|u|2 . |u|2"_28xu)’

<o)
i S 27H(P)

_1 o
ol - || D7 (a2 0,0)|

‘|u|20—28zu

Le®) ‘ 12(R)

)

L2(R)

x

then

| D= (ju0,)

L1L2([0,T]xR)

"u‘Zonazu‘

S| )

L2L2°([0,T]xR) L2L2(Rx[0,T7])

2 ,s—l 20’—2
+ HUHL;ngO([O,T}XR) ) HD ’ (|u| a$u)‘ L2L2(Rx[0,17])
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Note that the term H\u!Q"_Q&Eu has been considered in (4.7), so we only need

L2 L2(Rx[0,T])
to deal with the terms HDS*%(|U|2)

respec-
L2L2(Rx[0,T])

and HDS’% (|u|2"’28xu)‘
LZLZ ([0, T]xR)
tively.

For the term HDS_%(|U|2)‘ , by (2.8) and the Holder inequality, we have

L2L([0,T]xR)

| D5 (uf?)

o1
L2L2([0,T]xR) Slullgazeqor - |12 QUHL?L?([QT}XR)

Sl -

, we claim that

For the term HDS%(‘U’%_Q&EU)‘ 2 12 (Rx[0,7])
L2L2(Rx[0,T

| D= (ju20,)

< 201 4.25
Y 1 (4.25)

Indeed, using the Leibniz rule for fractional derivative (2.10), we obtain

HDS_%(‘U|20_2833U)‘

L2L2(Rx[0,17)

SJHDS_%(|U|20_2) O X H|u|2a—2 ' DS_%ﬁmu‘

L2 L3(Bx[0.7)) L2L2(Rx[0,T))

s—1 o
+ HD 2 (|u|2 2)} ) Haa:U”LgO*L,%*(Rx[o,T])'

L2T L™ (Rx[0,T1)

, using the Holder inequality, (2.9) and (4.17),

To the term HDS_% (Jul*~2) - O,u
L2L2(Rx[0,T7])

note that 4(20 — 3) > 4, we have

D53 (|u\2"*2) - Oy

L2L2(Rx[0,17])

”DS_% (Jul*~?) HL?"‘([O,T}) ' Haf“HL?*([QTD’

N

L3 (R)

N

D53 (|u\2"*2)

L2F L (Rx[0.T]) 19zl o= 2+ oy

1

N

|u|2o—3‘

LA Lo~ ®x[0T]) Il

. (4.26)

LT LS~ (Rx[0,T7)

LAL2RX[0T]) ‘

Shullge - | ol

Hence, by (4.15), we get

HDs—%(|u|2g—2) O

S

L2L2(Rx[0,17])

, using Holder’s inequality, note that 2(20—2) > 4,

To the term H |u|2"_2-Ds’%8xu’
L2L2(Rx[0,T])

we get

H |u|2072 . Dsféaxu

1
<|Jul]*%e2 : HD“”T@ u‘
L2L2(Rx[0,T1) Sl L3%77 Lo (Rx[0,T)) ‘

Slull¥

L2 L2 (Rx[0,T7])



18 RUOBING BAI, YIFEI WU, AND JUN XUE

To the term HDS’% (Jul*~2)
(4.26), we have

PR—— [0zul| 2o 12+ (mx[o,77)> @S the same estimation in
T + ’

s—1 202 201
|20 | o oy Nl oy S el
Thus we finish the proof of claim (4.24) and (4.25) and obtain
s—= o
HD 2u LALS® (RX[0,T)) ”SOHHS ®) T “UH2 .

4.6. Estimates on HDS Using Duhamel’s formula (4.2) and the smooth-

ing effects (2.3) and (2.5), we get

[0,7])"

_1 1
HDS 20, ztADs 28

2(Rx[0,T1) NH@ 0,7))

t
&c/ ei(t_t,)ADs_§(|u|2"3xu) (t")
0

SD*elluge, + |27 (00|

L L (Rx[0,T))

LLL2(Rx[0,T7)

1
D (o) .
B+ H (|u] u) LLL2(Rx[0,T])

n (4.21). Then
LL1L2(Rx[0,17])

Note that we already have the estimation on HDS_% (]u|208zu)’

+ ||u||2‘7+1.

(I

7(Rx[0,T17)

4.7. Estimates on HDS_%u”UlLoo By Duhamel’s formula (4.2) and the Strichartz

$ L2 ([0,T]xR)”
estimates (2.1) and (2.2), we have

”DS 2UHL4LO<> [0,T]xR) NHeltADkigOHL‘le([O’T]XR)
[ sy
0
S04l g0, + 10 (i 000)

L}L([0,T]xR)

HLng([o,T]xR)

Slellmsm) + HDS_i [ul*? 9u) HL1L2 ([0,7]xR)"
Note that the estimation on HDS 2 (Jul*0,u) HLILQ([O T|xR) 15 obtained in (4.24). Then we
have o
D=~ 2uHL4Lw( m® + llulle

Finally, all the estimates on ||ul|x, are obtained and we have

+ HuH2a+1

uniformly on 7. Hence we get [|ul|x, < ||cp| Hs(r), which gives the proof of the global

well-posedness.
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Next we prove the scattering statement. Set

o . ee fztA 20
Uy = ¢ . (| | 8u)

Using Duhamel’s formula (4.2), we have

+o00
u(t) _ eitAu+ — / ei(tft')A(‘u’%axu) dt’.
t

By interpolation, for any 0 < s’ < s, we have that for some 6 € [0,1) ,

lu(t) = €S|l gy S Nult) — e Supllfag) - lut) — e Sup 0. (4.27)
For the term |lu(t) — e*®uy | 2w, by (4.8), we have
) it <H 200,
lut) = € i llay Sflul™ O L} L2([t,+00] xR)
<||u||L4L°° [t,4-00] XR) lu HQU g
Since ||lul|x., < Rr), We get
||U||L;1Lgo([t,+oo]xR) — 0, when ¢ — +o0.
Therefore
Ju(t) — e u | 2@ — O, when t — +o0. (4.28)
For the term [ju(t) — e®*u, | #s(r): DY smoothing effects (2.4) and (4.11) , we have
itA < Y i(t—t')A ys— 20
lu(t) = €*uy s e S || D3 A (up ar|
< |[po (i o.u)
LLLZ(Rx[0,400])
S ¥
Hence, we have
lu(t) = " Sull ey < el iy- (4.29)

Combining the estimates (4.27), (4.28) and (4.29), we get
||lu(t) — eitAu+HHs/(R) — 0, as t— +oo.

This proves the scattering statement and thus finish the proof of the Theorem 1.2.
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