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INSTABILITY OF THE SOLITARY WAVES FOR THE GENERALIZED
BOUSSINESQ EQUATIONS

BING LI, MASAHITO OHTA, YIFEI WU, AND JUN XUE

ABSTRACT. In this work, we consider the following generalized Boussinesq equation
Ofu — 02u + 02(d2u + |ulPu) = 0, (t,z) € R x R,

with 0 < p < oo. This equation has the traveling wave solutions ¢, (x — wt), with the
frequency w € (—1,1) and ¢,, satisfying

_amm¢w + (1 - w2)¢w - ¢f}+1 =0.

Bona and Sachs (1988) proved that the traveling wave ¢, (x — wt) is orbitally stable when
0<p<4 i< w? < 1. Liu (1993) proved the orbital instability under the conditions

0<p<4,w?< Borp>4, w? < 1. In this paper, we prove the orbital instability in the

2_7p
degenerate case 0 <p < 4,w* =1 .

1. INTRODUCTION

In this paper, we consider the stability theory of the following generalized Boussinesq
equation

Ofu — OPu + 02(0%u + |ulPu) = 0, (t,z) e R x R, (1.1)
with the initial data
u(0,2) = up(x), w0, 2) = uy(x). (1.2)
Here 0 < p < 0.

The Boussinesq equation is a model describing the phenomenon that the propagating
water wave occurs transformation affected by water flow, barrier and so on. The water wave
will generate complex phenomenon of scattering, reflecting, dissipation of energy and other
physical changes.

The equation (ILI]) has the solitary wave solution u(z,t) = ¢,(z — wt), where ¢,, is the
ground state solution of the following elliptic equation

— O + (1 — W, — ¢PT =0, lw| < 1. (1.3)

The ground state solution ¢, is an even function and it has the property of exponential decay,
that is, |p,| < Cre~“2*! for some C1, Cy > 0 and |0,¢,,| < Cse~C4*! for some Cs, Cy > 0.

The equation (L)) has the equivalent system form

{ut — (1.4)

vy = (—Ugp + u — |u|Pu),.
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Then the system ([L4]) has the following solitary wave solution

(0)en=( o)

For the H' x L?-solution (u,v)” of (LI)-(L2Z), the momentum @ and the energy E are
conserved under the flow, where

Q ( . ) - /Ruvdx; (1.5)

u _1 2 2 2 1 p+2
() =g [P+ P pPyde - o [ ur2a (16)

There are several related results for the generalized Boussinesq equation. For the local
existence result, Liu [9] proved the system (L4) is locally well-posed in H'(R) x L?(R).
For the stability theories, Bona and Sachs [2] proved when 0 < p < 4, § < w? < 1, the
solitary wave solution is orbitally stable. Liu [d] proved the orbital instability if 0 < p < 4
and w? < & or p > 4 and w* < 1. Liu [I0] proved that when the wave speed w = 0,
the solitary wave solution is strongly unstable by blowup. Later, Liu, Ohta and Todorova
[TT] further showed that when 0 < p < oo and 0 < 2(p + 2)w? < p, the solitary wave
solution is strongly unstable by blowup. For the abstract Hamiltonian systems, we refer to
Grillakis, Shatah and Strauss [3], [6] for the general stability /instability theories, in which
the Vakhitov-Kolokolov’s stability criterions of the solitary waves were confirmed except the
degenerate cases. In the degenerate cases, it was also proved by Comech and Pelinovsky
[4] (see also [14]) that the solitary wave solution is orbitally instable under some regularity
restrictions in the nonlinearity (for example, p should be suitable large in our cases). In
this paper, we consider the stability theory on the solitary wave solutions of the generalized
Boussinesq equation and aim to show the instability in the degenerate cases without any
regularity restriction. It is worth noting that none of the frameworks of Grillakis, Shatah
and Strauss [0, [6] and Comech and Pelinovsky [4] are available in our cases, either because
of the degeneration or because of insufficient regularity of the nonlinearity.

Before starting our theorem, we give some definitions. Let vg = f_xoo ui(y)dy, u =
— —
(u,v)T, @y = (ug, vo)T, and O, = (¢, —we,)T. For e > 0, we denote the set U, (wa) as
—> —
U.(®,) = {u € H'(R) x L*(R) : inf [|d — @y (- — y)l|m1xrz < e} (1.7)
ye

Definition 1.1. We say that the solitary wav(:s)olution ¢o(x — wt) of ([LT) is stable if for
any € > 0, there exists 6 > 0 such that if ||ty — Py || g1xr2 < 9, then the solution u(t) of (LI

with @(0) = wy exists for all t € R, and @(t) € U.(Dy) for all t € R. Otherwise, ¢.,(z — wt)
15 said to be unstable.

Then the main result in the present paper is
Theorem 1.2. Let 0 < p < 4, w € (=1,1) and ¢, be the solution of [L3J). If |w| = \/%

then the solitary waves solution ¢, (x — wt) is orbitally unstable.

The main method that we use in the present paper is from [19], in which the instability
of the standing wave solutions of the Klein-Gordon equation in the degenerate cases was
proved. Instead of construction of the Lyapunov functional, the argument in [I9] is to use
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the monotonicity of the virial quantity to control the modulations. However, this argument
is much problem dependent, the key ingredients in our proofs are the following.

(1) The non-standard modulation and coercivity properties are given. More precisely,
define the functional S, as

S.(i0) = E(ii) + wQ().

Inspired by [12] 13| 18], we establish the following non-standard coercivity properties. We

—
show that for some suitable directions 'y, ¥, € H'(R) x L?(R) such that the following
coercivity properties hold. Suppose that 7 € H'(R) x L*(R) satisfies

(7Y = (1) =0

(se@2ytii) 2 5o

— — —
The choices of T',,, ¥,, play important roles in our estimation. W, can be regarded as the

then

%
negative direction. However, we remark that I', ¢ Ker(S/(®,)), which is much different
from the standard. Moreover, by suitably setting the translation and scaling parameters
y, A\, we can establish the modulation by writing

7= (7+ 0 ) (- = y(®)

— — — —
such that 17 verifies similar orthogonal conditions above (by replacing I',, ¥, with I'y, Uy
respectively).

(2) A subtle control on the modulated translation parameter is obtained. Instead of
the rough control of the modulation parameter y as §y — A = O(||7]]|| g1 xr2), we obtain the
following finer estimate,

— —

i =2 = llal2 [Q(E) — (8] — loall Qi) — Q2| + Ol «.2)-

The subtle estimate is benefited from the choices of IT:, \IT: in the first step and the dynamic
of the solution. This estimate has great effects when we set up the structure of virial identity
I'(t) in the following.

(3) The monotonicity of the virial quantity is constructed. The key ingredient here is to
suitably define a quantity /(#) and obtain its monotonicity. To this end, the crucial issue is
to prove the following structure of I'(t) as

I'(t) = pliio) + h(A) + R(iD),
where for some positive constant C', Cs,
p(ﬁ(]) Z Clav
h(X) > Co(A — w)* + O(a(XA — w)?) + o(A — w)?,
and R(u) is a remainder term which can be dominated by p and h. Here a is the difference be-
tween the initial data and the soliton. The obstacles in the proof come from non-conservation
terms among I'(¢), and the cancelation of one-order terms with respect to 77 and A, these

make much technical complexity. By a delicate analysis and the utilization of the estimates
above, we overcome all difficulties and finally obtain the monotonicity of I(t).
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The rest of the paper is organized as follows. In Section 2 we give some preliminaries.

In Section B we show the coercivity property of the Hessian S” (@w). In Section [l we show
the existence of modulation parameters. In Section B, we control the modulation parameters
obtained in Section [ In section [@] we show the localized virial identities. Finally, we prove
the main theorem in section [7

2. PRELIMINARY

2.1. Notations. For f,g € L*(R) = L*(R,R), we define

(f.g) = /f

and regard L2(R) as a real Hilbert space. Similarly, for f,§ € (LQ(]R))2 = (L*(R, R))Q, we
define

() = / @) - (o) da.

1

For a function f(z), its Li%-norm || f| . = ( |f(x)|qu> " and its H'-norm || f|m; =
R

(1132 + 102 f132)2. For f'= (f,9)7, its H' x L*morm || fllas.rz = (| £} + llgl32)2-

Further, we write X <Y or Y 2 X to indicate X < C'Y for some constant C' > 0. We
use the notation X ~ Y to denote X <Y < X. We also use O(Y) to denote any quantity
X such that | X| < Y; and use o(Y') to denote any quantity X such that X/Y — 0if Y — 0.
Throughout the whole paper, the letter C' will denote various positive constants which are
of no importance in our analysis.

2.2. Some basic definitions and properties. In the rest o_f) this paper, we consider the
case of 0 < p < 4, and w, = w = tw.. Let @ = (u,v)T, = (P, —wo,)T. Recall the

conserved equalities,

Qi) = /R wo dz,

47

N 1
E(u) = 5(HUH%2 + 72 + ll0l72) = Y QHUHZﬁQ-

First, we give some basic properties on the momentum and energy.

Lemma 2.1. Let |w| = \/g, then the following equality holds,

7Q®)| o

=W

Proof. Note that for A € (—1,1)
H
Q(®x) = —Alldall7.- (2.1)
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By rescaling in (L3]) we find

Ox(@) = (1= X2)2 60 (VI— V). (2.2)
This implies that

Q(B3) = ~M(1 = X5 goll3

By a straightforward computation, we have
= 2.3 4
0,Q(®3) = ~(1= A5 F (1= %) a1
Finally, we substitute \? = & into the equality above and thus complete the proof. (l

Now we define the functional S,, as

S,(U) = E(U) + wQ(u). (2.3)
Then we have
o v
Q@w:(u), (2.4)
_ _ p
B(@) = ( Ol +Uu |u|Pu ) ’ (25)
b e +u— |uPu 4 wo
Su(t) = ( v+ wu ) ’
Note that S/, (QT:) =0. Moreover, for the vector f: (f,9)T, a direct computation shows
niTN P _8xxf+ f - (p+ 1)¢f)f+w9

and for any vector E, 7,

(Su(®@2)E7) = (SL(®)7.€)
Moreover, taking the derivative of S/, (CIT:) — (0 with respect to w gives
S1(@2)0.,%, = Q' (B2). (2.7)

Then a consequence of Lemma [2.1] is
Corollary 2.2. Let A € (—1,1), |w| = w,, then
— —
Sx (@) = Sa (D) = o((A = w)?).

Proof. From the definition of S, (%) in (Z3]), we have
S3(B3) = $3(B2) = S(®3) — 5, (82) + (A —w) (Q(®)) — Q(&.)).
Recall that S/ ((IT:) = 0, then we use Taylor’s expansion to calculate

Sy (®3) — 51(®2)

(10D (8- w). (71 - 22))
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+ (=) (QE)) — Q(8.)) +o((A - w)?). (2.8)
Note that
O3 — By = (A — w2, + o(A - w),
then we find
(su@l)(a-al), (21— al))

—(A— 2<S _j)awqi,aﬂQ +of )2)

(A —w)? < (cﬁ),@wif> +o((

=—(A\—w) 8)\Q((IT>)\) ‘/\:w +o((A—w 2)’

here we have used equality (2.7)) in the second step. Using Lemma 2.1 we have

2Q(®3)| =0,
Hence,
(se(@2) (21 - 22), (21— 2)) = o((r —w)?).
and
Q(®) - Q(E) = o(A—w).
Taking these two results into (2.8]), we obtain the desired estimate. U

3. COERCIVITY

H
In this section, we have a coercivity property on the Hessian of the action S” ((IDw). First,

H
we study the kernel of S/ (<I>w) in the following lemma. The proof is standard, and it is a
consequence of the result from [17].

Lemma 3.1. The kernel of S/ (QT:) satisfies that
Ker(S4(80)) = {C0,0.: C € R},

- —
Proof. Firstly, we need to show the relationship “2”. For any f € {C’@m@w :C e R}, using
the equation (L3]), we have

" " N (_ :v:v(bw (1_w2)¢w_¢5+1) _n
(@) f = 5! (3 )(cachw)_c( e )_0.

o —
Then it implies that f € Ker (SZ ((Pw)>, and we have the conclusion

Ker(S0(82)) > {C0.8.: C € R},
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: : W — g " o
Secondly, we prove the reverse relationship “C”. For any f € Ker (Sw((bw)), by the
%
expression of S//(®,,) in (Z0), we have

{ 0 f + (L= w)f = (p+ )OS =0, o
g+wf=0.
By the work of Weinstein [I7], the only solutions to (31I) are
= C0,¢.,
{Jg::—Cf@mw, CeR.

This implies that fE {C’@x@_: :C e R} and we have

Ke’r’(SZ(iZ)) C {C@mCIT: :C e R}.
Finally, combining the two relationship gives us

Ker(SZ((IT:)) = {C@xCIT: :C e R}.
This gives the proof of the lemma. O

%
The second lemma is the uniqueness of the negative eigenvalue of S” ((IDw).
%
Lemma 3.2. S"(®,,) exists only one negative eigenvalue.

Proof. It is known that the operator —0,, + (1 —w?) — (p+1)¢P has only one negative eigen-
value (see [I7]), and we denote it by A_;. Then there exists a unique associated eigenvector
¢ € H'(R), such that

—02aC + (1= )¢ = (p+ 1)L = AaC. (3.2)

H
Using the expression of S”(®,,) in (2.6]), we have
— = —>>

(800085, .
= [ (Ouata t 6= (04 DO = 0, b + 0 ( o ) da
R w

= —pllulli;Z <0.

_>
This implies that S”(®,) has at least one negative eigenvalue, says 9. Assume its associated
eigenvector 77y = (&, m0)7, that is,

= — —
So(@u)ilo = poo-
Using (2.6 again, the last equality yields
{ — 0280 + &0 — (P + 1)PLE + wio = poéo,

Mo + w8 = foMo-

From the second equality we have ny = —ﬁ&). Then we substitute it into the first equality
to get
2

L= po

~Ohato + (1= )0 — (p+ D660 = o = +1) .
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Hence, by ([B.2), the equation above has only one solution—pair (1, &) with g (— + 1)
A1, & =, then (o, 7o) is exact the pair satisfying

1 ¢
;mza(x4+w2+L—¢v1+2w2—nx4+@ﬂ+1y>, = wlC |. (3.3)
po —1
H
This implies that S (®,) has exactly one simple negative eigenvalue. This completes the
proof of the Lemma. (l
The next lemma gives one of the negative direction of S (CIDW).
Lemma 3.3. Let
T 1 aw(bw = o (bw
ww—$<_w8w¢w>a \I’w—(o)
Then
— - =
S (q)w)z/;w =V,. (3.4)

Moreover, if |w| = w,, then
(8@, ) < 0

Proof. Taking the derivative of equation ([L3)) with respect to w, we have

—0r (0uts) + (1 = w*) 0 — (P + 1)L 00 = 2who. (3.5)
Using (2.6]), we have

" _a:rm aw(bw + 1 - wZ aw(bw — P + 1 (bzaw(bw
S = (TPl 00— |
This combining with (B3 gives

niEN T o ¢w _ =
Si(Pu)th, = ( 0 ) =0, (3.6)
Now we show <S”( w)ww,ww> < 0. From (B4]), we have

(@) i) = (. 0) = /R(ebw,O) = ( o ) a
:%4%%%®=$Mm%- (3.7)

Note that 0, (w|[¢w]|22) = ||¢w|2e + wdy||du|%., then we substitute this into (B7) to obtain

1 2 1 2
(S2(8) st ) = 5 0u(—oll0ul) = 50l
Using (20), we further get

(0@ ) = — 50, (Q(@0)) — gl
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Finally, by Lemma 2.1}, we have

— - - 1 9
(SL(@)bur) = =50l < 0.
This completes the proof. O

Now we prove the following coercivity property.
Proposition 3.4. Let |w| = w,. Suppose that 77 = (£,m)T € H'(R) x L*(R) satisfies
— —
<ﬁa a$(1>w> = <ﬁ> \I/w> =0, (38)
%
where W, = (4,,,0)T. Then
=\ - - _
(S0(®2)7.77) 2 13z

— —
Proof. From the expression of S (®,,) in (Z0), we can write S (®,,) as

SI(®L) = L+,

— — P
where L = Ora +1 w), and V = ( (p+1)¢%
w 1 0

of the self-adjoint operator L.
%
Step 1. Analyse the spectrum of S (<I>w).

8) . Hence V' is a compact perturbation

We firstly compute the essential spectrum of L. Note that for any f = (f,¢)T € H'(R) x

L(R),
wi=((5 () ()

R

= 10 f1I72 + 1£1Z2 + 20(f, 9) + llgll7
= (|11l xz2 + 20(f, 9). (3.9)
For the term 2w(f, g), applying Holder’s and Young’s inequalities, we have

20(f, ) < 1wl 17 w2
Taking this estimate into ([33), we have

(LF,f) = (= DIl e

Since |w| < 1, we get

(LF ) 2 1 1 e

This means that there exists § > 0 such that the essential spectrum of L is [d, +00). By
Weyl’s Theorem, S/ ((ID_:) and L share the same essential spectrum. So we obtain the essential
spectrum of S” (<I>_w)) Recall that we have obtained the only one negative eigenvalue po of
Sy (<I>—w>) in Lemma [3.2] and the kernel of S/ ((IT:) in Lemma 3.1l So the discrete spectrum of

%
SV (CIDW) is o, 0, and the essential spectrum is [J, +00).
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Step 2. Positivity.
The argument here is inspired by [II, §]. By Lemma B.2], we have the unique negative

eigenvalue 11y and eigenvector 77y of S/ ((IJw). For convenience, we normalize the eigenvector
7o such that ||7o]|z2xz2 = 1. Hence for vector 7j € H'(R) x L*(R), by spectral decomposition

theorem we can write the decomposition of 77 along the spectrum of S (<I>w),
- . =
n= %770 + bnaxq)w + gm
%
where a,, b, € R and g, in the positive eigenspace of S, (CIDW) satisfies
" \o o = |2
(SU(®0)35) = olGallEnses o >0. (3.10)

_>
Since 17 satisfies the orthogonality condition <77, 0m<I>w> = 0 in ([3.8), we have b, = 0, and
thus
1 = o + G- (3.11)
o . =\ o
Substituting (BI1) into <Sx (q)w)n,n>, we get

(SL@L)i 7Y = (SL(®2) o+ Go)s i + )

= a%<5£ (‘1)_:)770, 770> + 2M0an<§n, 770> + <SZ ((IT:)@], g7,7>.
Due to the orthogonality property of eigenvector (g,,7) = 0, we have
(Su(@2)i ) = a2 S (@), i) + (S22 i 5
= poaz (7o, o) + <SZ (@)§W,§n>
= o + {SL(22)7.3y) (312

- I
To 1, by spectral decomposition theorem again and noting that <1/1w, 0m<I>w> =0, we write

by = arjo + g,

%
where a € R, g in the positive eigenspace of S ((IDw). A similar computation as above shows
that

—) — —
For convenience, let —dy = <S¢Z ((IDW)@/)W, 1, ). Then by Lemma B.3] we know dy > 0. More-

over, we have

—00 = poa + (S1(®2)7,7). (3.13)
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Using the orthogonality assumption <n, v > =0 in (B]) and (3.4]), we have

0= (7,9.) = <anno+gn, L(®0))
<anno + gn, S1(®2) (aifo + g)>
<anno, " ano> <9n,5” w)>
= poacy (i, 7o) <s~( 23,

= [oQay + <S(Z ((I)w)ga §n>

So we get the equality
1 — - =
0 = poaa, + <Sw (®.)d, ,7>.

By the Cauchy-Schwartz inequality, we have

(o) = (SU(®0)3.3)

This gives
/ = pediliong ! — —
(—00®) (—pu0a2) < (SL(D2)7,5)(SL(D2) s Gn ). (3.14)

The last equality combining with (3.13]) implies

(@) (SL@a)g ) (PGSR )
Holy = — [ - <Sﬁ§((IT:)g7,g7 ) )
that is,
(5(®2)3.5)(SL(®2) 31,50
poay > — <S;: @)gﬂgﬁw% (3.15)

Inserting (B.15) into (B.12), we obtain
(G = =
(@) 2 (1- S i@y g

~ (su(®)5.5) + o

Recalling that g, satisfies (BI0), we have

—> 0 .
(s0(@2)i1.7) = e el 11| AP (3.16)

- H .
(81(®2)7.9) + 6,
From the expression of 7 in (B.I1) and the inequality (3I5]), we have

171 222 = llawilo + GallZz 2 = an + I1GallZ2x 12
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L
1 <S”( )7, g><5’(<1>w)gn,gn>
' —
T (8(®0)7.5) + o
S NGl Zesre-

Therefore, this together with (B.10) gives

<S/l( )77 77> > HQUHLQXLQ pe HT}HL2xL2 (3.17)

< 191172 2

To obtain the final conclusion, we still need to estimate

(SU(®2)7.7) 2 13z

Using (2.0), we have
(SI(22)7.7) = /(—&m§+§—(p+1)¢£€+wn,n+w€)- ( fz ) dz
R

— 10u€lEs + g+ 2 [ Ende = (oo+1) [ feulre?as.
Thus by Hélder’s and Young’s inequalities and (3.17]), we get
2 "z P
0,613 = (SL@77) ~ 2 [ endos (p+1) [ 10P€ de — 132,
%
< (Su(®@0)7 n>+2|w\|r£|rL2|rn|rLz+<p+ Dlgul 1172
_)
< (S0@)7.7) + (ol + (0 + Dl gullie 131
< (SL(@2)7 ) + Wil esse S (SL(R2)7.7). (3.18)
Therefore, together ([B.17) and (B.I8]), we obtain

— —| _> — =
3012 = 10uE 130 + Wl e S (S (@2)7,7)-

Thus we obtain the desired result. O

Applying Proposition B.4] we have the following corollary, which is the non-standard
coercivity property we need in this paper and is one of key ingredients in our proof. The
corollary shows that we can replace the orthogonal condition from the kernel by a suitable
defined vector which essentially effect on the estimates of the translation parameter in Section

Bl
Corollary 3.5. Let |w| = w,.. Suppose that i € H(R) x L*(R) satisfies

<ﬁF_w>> = <ﬁ, \ITZ> =0, (3.19)
where F_LZ € HY(R) x L*(R), and &BF_LZ = \IT:, = (¢,,0)". Then
=\ = = -
(0(®@2)7.7) 2 [ll30, 10 (3.20)



INSTABILITY OF SOLITARY WAVES 13

Proof. We define

E= i+ 10,8, €€ H\(R) x L*(R).
Choosing
(o)
T
then
<5 cIT>> 0.

Moreover, by ([319), we have

Recalling that ¢,, is an even function, we have

b<8x(17w),\17£> . b/ (0.6, (~)020.) ( %J ) dz = b/ D,y dr = 0,
R R

— —) —
Hence, <§ \I/w> = (0. Therefore, £ satisfies the orthogonality conditions (B.8) in Proposition
3.4l Hence, using Proposition B4 and S (P )8 <I> =0, we get

(su@yi i) = (su@) (§-vo,0l). (£ vo,®))
= (SUBLEE) — 2 S1®1 0,8, E) + (510,82, 0.80)
= (SU@DEE) 2 18z

_>
where we have used the self-adjoint property of the operator S”(®,,) in the second step.

Now we claim that HEH%M 12 2 171131« 2+ Indeed, using the orthogonality assumption

319), we have
(€)= (0080 EL) == [ (0 -won)- () = ol

Thus, by Holder’s inequality, we have

- =
€l .
bl = o S 8l (3.22)
6,11
Now from (3.22]),
—| = —> d d
7z = ||§ = 00.22)| < €l S
HlxL? Hlx L2

This completes the proof. O
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4. MODULATION

We now suppose for contradiction that the solitary wave solution is stable, that is, for
any € > 0, there exists 0 > 0 such that when

L =
Huo - (I)WHHle2 <0,
we have
_>
i € U(Dy). (4.1)

Then the modulation theory as presented in the following shows that by choosing suitable
parameters, the orthogonality conditions in Corollary can be verified. The modulation
is obtained via the standard Implicit Function Theorem.

Proposition 4.1.L>Modulation). Let |w| = w.. There exists ¢ > 0 such that for any
e € (0,e9), U € Us (@w), the following properties are verified. There exist C'-functions

y:R—R, MN:R—RT
such that if we define 17 by

. 5 —
(t) = a(t, - +y(t) — Paw, (4.2)
then 1 satisfies the following orthogonality conditions for any t € R,
B L
<77>F)\(t)> = <7), ‘I’A(t)> =0. (4.3)

— - —
where 'y € HY(R) x L*(R), and 9,T') = ¥y, = ( (%)‘ ) . Moreover,

17l xze + [A —w| S e (4.4)
Proof. Define
. —
p=(TAy),  po=(Pu;w,0);

1

Fi(p) = < :

Firstly we have
Fi(po) = Fa(po) = 0.
Secondly, we prove that

R 0,1

J:
171 ‘@@ 0P |

Indeed, a direct calculation gives that
— % —
OnFi(p) = 03 (7, T3 ) = ox{(t, 2 + () — B, T

= <ﬁ(ta T+ y(t)) - (I))\(t)a 8)\PA
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—
When p = py, we observe that ﬁ(t, x4+ y(t)) — @) = 0, and the first term vanishes. For the

second term, we note that I'y is an odd vector and 0\®,) is an even vector, so we get

0,\F1(p) =0.

Pp=po

A similar computation shows that

oRp)|  =(odw+y.T)| =28 T =—feul

p=po P=po P=po

— — 1 1

3,\F2(p) = —<a)\q))\, \I/)\> = —<8)\(b)\’¢>\>) — __aAH(b)\”%Q — _H(bWH%Q;

P=Dpo P=po DP=po 2 P=Po 2w

— =

O e R R

P=Po P=Po R P=Po

Then we find that
O\Fy 0 F 1 4
‘ 0NFy 0,F | ~ %”(bw”ﬂ # 0.
P=Po

Therefore, the Impli_c)it Function Theorem implies that there exists g9 > 0 such that for any
e € (0,e9), U € Us (CIDW), there exist unique C'-functions

Y UE(CITW)) R, X: UE(CIT:) — R,
such that

Furthermore,
O 0N\ g Oy 0, Fy
8uy 8@?/ B 8uF12 avFQ )

%
|)\—w‘ g ”'l,_l:— (I)UJ”H1><L2 < €.

This finishes the proof of the proposition. O

This implies that

5. DYNAMIC OF THE PARAMETERS

In this section, we control the modulation parameters y and A. The effect of giving a
precise control on modulation parameters is to obtain the structure of I'(¢) in Section[7l The
main result is

H
Proposition 5.1. Let @ = (u,v)” be the solution of () with @ € U.(®y,), where € is
the constant obtained in Proposition[J.1. Let y,\, 17 = (£,m)" be the parameters and vector
obtained in Proposition [{.1. Then
%
)

i = A= 16 2[Q®) - Q@] — lealz2 Q) — Q®2)] + O (I s + 1A = il 2.
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and
A= Ol <z2)-
The proof of the proposition is split into the following two lemmas. The first lemma is

Lemma 5.2. Under the same assumption in Proposition [5.1], then

5= A = —lléallz20m, 63) + O (Il eze + A =l c2).
and

A= O(HﬁHHle?)

Proof. Recall the definition 7j(t) = (¢, + y(t)) — QT@) in ([A.2)), that is,
u(t,x) = ¢x(x —y(t) +&(tx —y(t)),
{ o(t,x) = = (z — y(t)) +n(t,z —y(1)).
Using the first equation of the equivalent system (L4]), we have
AONDA — (5 — N)Dupr = —E + (§ — N)0o€ + A0,E + Ouny. (5.2)

(5.1)

_>
We denote v, as the first component of I'y. Now we multiply both sides of equality (2] by
~vx and integrate to obtain

A@A@Nﬁ - (y - )\)(31%, ’VA)
= (=&, )+ (T — M€, 1) + M0oE,72) + (0am, ) (5.3)

We know that d)¢, is an even function, and ~, is an odd function, so (O\¢»,7r) = 0. By
the orthogonality conditions ([A3]), we have

<8:1:§7 /7)\> = _<ﬁ7 \I,—>)\> = 07

so we get
. L= .
<§77)\> = 8t<€7/y)\> - <€7 8t7)\> = 8t<777 F)\> - <§a at’Y)\> = _<§a at’Y)\) - _)‘<§a a)\V)\>'
Moreover, (D,¢x,7x) = —(Pr, Ouya) = —||@al|72. Thus we simplify equality (53] to obtain

(5 = NIl = ME ) = =0, ). (5.4)
Next we multiply both sides of equality (5.2) by ¢, and integrate to obtain
AOrdA.B2) — (51 — N)(Dubr, B2)
= (=&, 02) + (5 = N)(0a&, D2) + M0l 02) + (a1, 1) (5.5)
Now we consider the terms in (5.5]) one by one. From Lemma 21} we have 0, |¢,[3. =

_”(b)\)!lLQ + O()\ _ CL)), S0

. 1. A
MNOrpr, Pr) = 5)‘8AH¢>\H%2 = —ﬁllaﬁxlliz-

The term —(y — A\)(0,bx, ¢») vanishes since ¢, is an even function. By the orthogonality
conditions (Z3]), we have

(€,00) = OE, 6a) — (€, 0un) = BuliT, Ts) — (€, Drp)
= —(&,0i0y) = —}\<578A¢A>-
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Thus we simplify equality (5.5) to obtain
. 1 .
A = sxlloaliiz = (603020 + O = w)| + (5 = (€, Babn) = =N+, 8un). (5:6)

— = =
Since U, I'y, @, are smooth functions with exponential decay, combining (5.4]) and (5.6]), we
get

(7 = Mdallz = Mg ) + O\ —w) = —(n, 6),

: 1 (5.7)
A[ — 53 lI9allZz — (&, MA)] + (1 = NE, 0002) = O(|i7ll 1 x12)-

We denote

A= ( —(&, 0) 161172 )
—allli: = (€ hd) + O —w) (£,0.01) )

Then by a direct calculation, we get
( )\ ) _ Afl ( _<n7 gb}\) ) _ ( L O(||77||H1><L2) ) )
y—A O (7l 1) —lloallz2 (s dx) + O (1711371 22 + 1A = @Il rrrx2)
This proves the lemma. O

The second lemma we need is the following.

Lemma 5.3. Under the same assumption in Proposition [21], then
— —

[ nonds = [Qt@) - ()] + [Q(EL) - Q@)] + 0100

Proof. Using equality (G.I) and the expression Q) = [,
am-a( _Bre)

uv dzx, we have

Ao+

:/R—Agbidx—A/}R§¢Adx+/Rn¢Adx+/R§ndx.

H
Now we analyse the last equality one by one. By (2.]), we have Q(@ ,\) = fR — A3 dz. Recall
—
that we have the orthogonality condition <ﬁ, \I/,\(t)> =0 in (£3)), then

—
—)\/qu)\dx = —)\/ﬁ-llf)\(t) dz = 0.
R R
The final term gives [, énda = O(||77]|%:, ;2). Therefore,

ﬁ = ,
Q@) = Q) + [ nondo -+ Ol o)

From the conservation law of momentum, we know

, = -

[ oo = Qi) = (&) + O (Il 12
. — — — .
= Q@) - (32)] + [Q(®2) — Q)] + O(IT112)-

This proves the lemma. U

Now we are ready to prove Proposition [B.1]
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Proof of Proposition[5.1. Combining the estimates obtained in Lemmas and 0.3, we have
b= 2=l [ nrdo+ O (1l cos + 1A= ol Tl cr2)
R

—loal2[Q(®3) ~ Q(B2)] ~ sl [QCo) ~ Q®2)] + O (Il s + A — wl Tl xz2)-

This gives the proof of the proposition. O

6. LOCALIZED VIRIAL IDENTITIES

The following lemmas are the localized virial identities. One can see [I1] for the details
of the proof.

Let v is a H?-solution of 9,v = u, and

L(t) :/I/atl/dl‘.
R

Lemma 6.1. Let @ € H'(R) x L?(R) be the solution of the system (L), then
L) = llollze = lulfe — lluallZe + lull 752

Let
L(t) = /Rw(:c — y(t))uv da,

then we have the following lemma.

Lemma 6.2. Let ¢ € C3(R), @ € HY(R) x L2(R) be the solution of (L4, then

1 2(p+1)
))uvdz — = "z —y(t <3u12+v2+u2—7u”+2>dx
7 5 [ ¢ =) (31 el

/l/

-y
1
- 2d
5 [ ¥ u T.

+

%\»%\

7. PROOF OF THE MAIN THEOREM
This section is devoted to prove our main theorem.

7.1. Virial identities. Let ¢(z) be a smooth cut-off function, where

v, |2l <R, -
g”@)_{o, 2| > 2R, -y
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and 0 < ¢’ <1, |¢"| < 5z for any & € R. Moreover, we denote

I(t) = (% - 2) L) + 2L (t).

Then we have the following lemma.

Lemma 7.1. Let R > 0, y, \, i7 = (£,n)T be the parameters and vector obtained in Propo-
sition[{.1. Then

') = — 2(% + l)E(ﬁo) - <4>\% + 2>\>Q( o) + (2 _opdzp )||¢>A||L2

4
~2(i- A) @) + (2 - 202 )H£HL2+27HA§+?7HL2+R( @), (7.2)
where

By 1, 1o pil
R(u) /R ¢ (z—y()) | (yuv + 2ux + 2u + = 5" p+2\u\ dz

+ /R ¢" (z — y(t))u* dz. (7.3)

Proof. From Lemma [6.2] and the conservation law of momentum, we change the form of I}(t)
as

o1 2(p+1) 1
I5(0) = = §0Q() = 5 [l + e + ol = 2 ullit] + 5 [ (@ - po)a? do

3 1 1
+/R [1 — ¢ (z — y(t))] (yuv + §|um\2 + 51)2 + §u2 — %MV’”) dx.
Then a direct computation gives

I'(t) :(% — 2) I (t) + 215(t)

1 4 4 2(p+4)
== (5 el + (0= 8) ol (=) + 1)l S0 ll2,

3 1 1 1
i Q/R [1 B <p'(a: a y(t))] <yuv + §|Um\2 + 51)2 + §u2 — %‘u‘zﬂﬂ) de

+ [ (@ -y de - 290(a0).
R
From the conservation law of energy, we have
. 2
2B (tho) = |Jus|l72 + [lvlI72 + lJullz> — mlluxlliﬁz-
Then

4 4 4 2p+4) oo
)l (L)l (= )l 22 D
<p [ |72 p [v][72 " [Jwllzz p<p+2)|! [

2(4—19)[ P 2 2}
; 4_pHUHLz+HvHL2

2(4 — p)
Tp[

=— 2(% +1) B (@) +

4 d
:—2(5+1)E(u0)+ Wlulls + o] +2(1 - 222 ; 2 |l
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2(4—p)
p

B 4 B ) 4—p 4 —
=2+ 1)B(@) + Jo-+ Ml — =L Qi) +2(1 = X= L) Jull.

By orthogonality condition (3] and formula (5.1]), we have the following equalities

lullZz = leallZz +2(éx, &) + 18117

_>
= lloall7> + 2025, 7) + 1€]172 = loall7> + 181172,
lv+ MullZ2 = [| = Ada + 1+ Ay + AE[72 = [|AE + 172

Hence, using the equalities above, we obtain

4 2(4 — 4 — 4 —
1) == 2(5 + 1) Bl + 2 o xal - 022 QG) +2(1 - L) s

p
1 1 1
+ 2/R 1= (= y() | (v + ;’u v - i%w“) do
T / (1 — y () u? de — 25Q(d0)
R

= —2(3 + 1) B + 24 gl - 0220

4 —
ro1- 2t )(H@uwugug)

3, 1 1 p+1
[ -] b2 L)

+ /Rgo’” (:1: — y(t))u2 dr —2(g — A+ V) Q(tp)
4 4— 4—
_ 2(}—9 + I)E(ﬁo) - 2A(27p + 1)@(@0) + 2( 2 p) PN
4 —
= 25— Q) +2(1 - ¥ L) el + 25 IAE s + R(@),
This proves the lemma.

Now we consider R(%) in (T.3).

Lemma 7.2. Let R(u) be defined in (T.3), then

. . 1
R(i@) = O([iflf1 <12 + 35).

Proof. Using the definition of the cut—off function ¢ in (1), we have

ST (BT

. 3o, Lo 1o p1 o, m 2
N guv + Z|ug|” + zut + zv* — ——|ul? )dx—l— " (x —y(t))u"dx
( P 2" T2 T pt2 i ( )

1
</ (141 (e = o)1) (el + s+ w2 7 4 ?) e+
{lz—y(@®)|>R}
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By Holder’s inequality, |¢'| < 1, and |g]| < 1 (from Lemma [5.2)), we have

1
|R(7)] < g |* 4+ u? + v + |[uPT?) do + —
™ J{e—yw)> R} R

z—y

< / [(am + 0,67 + (0a + €2 + (Ao — ) + [oa + £ da + iQ
{l=|>R} R

where we have used equality (£2) in the last step. Further, using the property of exponential
decay of 0,¢,, we have

/ (9:2)"de < C / el dx
{|=|>R} {|=|>R}
Then the Young inequality gives

;UIQ

{lz[>R}
S| @o+ e
{lz|>R}
1
< =+ 0.6l (7.4)
Using similar method we can prove
| orerde < el (7.5)
{lz|>R}
JCER C<R + i), (7.6
{lz[>R}
[ Jerreran < og + el (r7)
{lz[>R}

Thus, we combine (Z4)-(Z7) to obtain

| R(u)| < C(R + 171l o)
This implies that
. . 1
R(@) = Ol <2 + 3).
This proves the lemma. U
7.2. Structure of I'(t). In this subsection, our purpose is to control the difference between
u and the modulated solitons, and the modulated scaling parameter. Note that the quantities

involved in [’(t) are non—conserved, the main issue is to analyse the quantities in detail. In
particular, we structure I’(t) as follows.

Denote
pliin) = — 2(% +1) [B(@) - B(2)] - QA(Q% +1) Q) - Q(&2))]
+ 2 onll3Q0) [ QR) - ()] (7.5)

0
h(\) = — 2(% n 1)E(q7) — 2A(247p + 1)@(@73) + 2(1 — A2$) ENR
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- 220G [Q(E3) - Q(®2)] . (7.9)
Riw) =R(@) +2(1 - 2L el + 272 ¢ +
~ . 1 — —
- 2@(“0){(19 —A) - ToxE [Q(Cb)\) - Q(‘I)w)}
+ a3 Qi) - Q(@2)] } (7.10)

Now we rewrite I’(t) as follows. From the formula below, we remark that there are no
one-order terms with respect to 77 and .

Lemma 7.3.

I'(t) = p(ido) + h(X) + R(4).

Proof. We will make a direct calculation. From ([.2]) we know that

') = —2(;% + I)E(ﬁo) - 2A(24p%p + 1)@(&0) + 2(1 - A?U) N
- 205 = QL) + 2(1 = ¥ L) el + 27=LIa¢ + s + R(@
_ —26 +1) [B() - E(cIT:)] - 2A<24]Tp +1) [Q(a’o) - Q(qu)}
+ 20 2Q(0) () — Q(®2)]
—2<%+1>E(<1Tj) 2A<247p+1)c2(§)+2( )||¢A||L2

B - (@)

— 2jall 2Q0) [Q(®) - Q(@2)
4-— 4—
+ R +2(1 = X E el + 2 FIAe +nlis

—

- 2@@0){@ =0 = el [Q(@) - Q(82)] + llenlz3 Q@) - @(@7,)]}

= pliiy) + h(\) + R(@0).
This completes the proof. O

By Lemma and Proposition (.1l we obtain

-~ . 1 .
R(@) = Ol x22 + 5 + N = @l cr2)- (7.11)
7.3. Positivity of the main parts. As the main parts of I'(t), p(uy) and h(\) are consid-

ered in this subsection. We shall prove their positivity in the following.

%
Lemma 7.4. Let iy = (1+ a) (CDW), for some small positive constant a. Then

1) p(tp) > Cra,  for some C; > 0;
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2) h(\) > Co(A — w)* + O(a(X — w)?) + o((A —w)?), for some Cy > 0.

Proof. 1) Firstly, by Taylor’s type expansion, we have

Using the expression of E’ (CIT:) in (2.5) and (L3), we have
E<ﬁo> B E((I)w) = a/<_8:m:¢w + (bw - (bf;Jrla _W(bw) : ( _iu;b ) dx -+ O(CL2)
R w

= a/(wQQSw,—wgbw)- ( —f}tb ) dz + O(a?)
R w

= 2aw?|| ¢ |72 + O(a?). (7.12)
Next, we compute the term Q(uy) — Q(CIT:),
— — L, = L=
Qi) = Q(®2) = (Q'(®2), o — B2 ) + O (1T — PL3,2)

Using the expression of @)’ (QT:) in (24), we have
Q(ty) — Q((bw) = a/(—wq5w,¢w) : ( —igb ) dz + O(a?)
R w
= —2aw||¢,||72 + O(a®). (7.13)
Then we put (Z12) and (Z13) into the expression of p(iy) in (Z.8) and then obtain

—

p(ity) = — 2(% + 1) [E(ﬁo) - E(cITj)] P (24%’ n 1) [Q(ﬁo) - Q(@w)}
+ 20l 3Q(0) [ Q(70) - Q(22)]
_— 2(% + 1) [2aw2||¢w||%z + O(aZ)} - 2>\(24%p + 1) [ — 2aw||du 22 + O(aZ)}

+ 26x7Qd0) | - 2awllu|E: + O(a?)]

1o l72
a7
+ O(a?). (7.14)

4 4 —
=~ 4w (0 1) [0l + dawd (27— + 1) I — daw (i)

For the term 4awA (24?%” + 1) | P2, we have

4 — 4 —
4aw)\<27p 1) pull72 = 4aw® (271) + 1) |pull7e + O(alX — w)). (7.15)
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2
For the term —4aw@ () ||||Zw|”§2, we use the expression ¢, (z) = (1 — wz)%gbo (V1—w?z) in
A L2
[22) and Taylor’s type expansion again to calculate
L2 1 —w2)o 3 2 1 —w2) 2
_4an(ﬁo)”¢ ||§2 = —4%)@(170)( - )2 1 190z = —4aw (ﬁo)—( = )2 1
oAz (1= 7%)72|gol[2 (1—72)ns
= —AawQ(E)(1 ~ )P ¢ (1 =& + O(1A —w)
= —dawQ(up) + O(a|A — wl).
From the definition of Q(#) in (ILHl), we have
5 —
Qi) = Q((1+a)2Z) = ~wlléul3: + O(a).
Combining the last two estimates, we obtain
2
—dawQ(ty) Hzi”f = daw?|| ¢, |72 + O(a®) + O(a|lX — w)). (7.16)
L2

Finally we put (C.I3) and (ZI6) into ((Z.I4) to obtain
n 4 8—p
plito) = = da? (- 1) [9uf: + 4o Ellgu 7,
+ 4aw?|| ¢y, |72 + O(a|lX — w|) + O(a?)
4 —
:4aw27pu¢w|@2 +O(aA — w]) + O(a?).

Choosing a and gy small enough, where gy is the constant in Proposition 1] then by (Z4]),
we obtain the conclusion 1.

2) Recall the definition of h(X) from (7.9,

h()) = —2(é+1>E(<I>_:) _ 2A(24ﬂ n 1)@(%) + 2(1 _ AZLL%’) da]|2

p p
— 2fonl2Q(@) [Q(E3) - (@) . (7.17)
First, we consider the last term, and claim that
2l 2Q() [Q(®1) — Q(22)]
= 2[Q(®)) - Q(82)] +o((A — w)?) + Oa(r — w)?). (7.18)

To prove ([TI8), we need the following equalities which can be obtained by the Taylor’s type
expansion and Lemma 2.7

QB) - Q(BL) = 1Q(E)| (A —w)+0((A—w)?)
= O((\— w)/\QL,U (7.19)
Q(ilo) — Q(@,) = O(a), (7.20)

a2 = 18wl 72 = O(1A — w)). (7.21)
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Using (ZI9)—(Z.21]), we obtain
2l 2Q() [Q(2)) - Q(®.)]
= — 2| Q(®.) [Q(
Further, from (2.1)) we get
~2lle] 0(22) [Q(®)) - Q(®.)]
= 2l (~wllould) - [Q(®) — ()]
= 20[Q(®)) - Q(®.)].
Thus, we obtain (Z.I8]).
Inserting (ZI])) into (TIT), we get
o,

h(\) = — 2(% + 1>E(<1Tj) . 2A<24P%p + 1)@( L)+ 2(1 _edze )||¢A||L2

—

D)) — Q(‘IT:)] + o((A = w)?) + O(a(X — w)?).

+ 2w [Q(a) - Q(<I>_:)] +o((A=w)?) + O(a(X — w)?).
Let
hi(\) = — 2(% +1)B(®.) - 2A<24p%p +1)Q(®.)
24;19 9 " =\ A7
+2(1- ; Mioall +20]Q(33) - Q(@2)] (7.22)
Then
h(A) = hi(A) + o((A = w)?) + O(a(X — w)?). (7.23)
Now we claim that
hi(w) =0, hj(w)=0, hj(w)>0. (7.24)

We prove the claim by the following three steps.
Step 1, hy(w) = 0.
By the definition of h;()), we have
4 — 4 — — 4 —
h(w) = — 2(— + 1>E(<I>w) 2w (2—p + 1)@(%) + 2(1 - w2—p> bull2.
p p p
7\ .
By (1) and E(®,,) in (LH), we have

) = =2(5+1) (5 [ (00 + [0 + | = wou)dr = — [ 0,2 a)

4 — !
22 L 1) ([ —witde) +2(1-w —) 6.l
p R p
8
=~ oPlgulfs + 20l =0,

where we have used w? = £ in the above. Therefore, we have h;(w) = 0.

1
Step 2, hj(w) = 0.
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Using the definition of h;(A) in ([22)) again, we have

4— 4
B = — z(sz +1)Q(82) - DLl
21 AZ%)@A(H@H;) 1 200,Q(T)). (7.95)

By (21) and Lemma 2.1} we have

4— 4 — 4—
M) = —2(27F 4 1)Q(®) +4—LQ(E)) +2(1 - F)ar(ll12)

p A=w
— 4 —
= -2Q(22) +2(1 - F)or(Ialia)],_ (7.26)
Now we compute the term 9y (||¢x]/22) N Note that
o) — 2\ _ 2 2
AQ(Pr) = A(=Alloallz2) = —lloallze — AdalIoallZ,
then Lemma 2.1] gives
1
Allenlts| = —2laule (7.7

Taking this result into (Z.26]), we get
4—p 1
() = 206l +2(1 - = F) (= S llulih)

2 4—0p
= = (W -1+ =)l
W p

24,
= (= —1) W22 = 0.
w(pw 1¢wllzz =0

Thus we prove the result i) (w) = 0.
Step 3, hi(w) > 0.
Taking the derivative of (Z.25]) with respect to A, we have
4

—p 4—p
hi(A) = — 4Tll¢wlliz — 8\ ; M (llorll72)

4 —
-%2(1--753A2)a§0m“uig-+2wa§Q(5§)

Since
%
03Q(®x) = —35 (Alleall72)
= =20\ (lloallz2) — A3 (lloallZ2).
we have
" _ 4—]? 2 4—]9 2
R = = 4= Fllbuliz — 4 (27 Fa+ w)ar(I672)

4 —
+ 2(1 - Tpv - Aw)ai(u@y\;).
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Hence,
4 — 8 — 4
() == 4= Ll — 4w Lor(loal})|_ +2(1 - o")aRlonle|
Using (Z27) and w? = £, we have
4—p 8—0p 16
R (w) = — 4—= || |122 + 4—= || ||?2 = —||du|?2 > 0.
1(w) p ey , 16wz » ey
Thus we prove the result A7 (w) > 0. This gives the claim (7.24]).
Using (C.24)) and Taylor’s type extension, we get
1
hi(A) = hi(w) + P (w)(A —w) + éh'l’(w)()\ —w)®+o((A —w)?)
> Oy(\ — w)? + o(\ — w)?,
where C5 = $h{(w) > 0. Putting this into (Z2Z3), we obtain the conclusion 2. O
Hence, combining Lemma [T.4] and ([Z.11]), we have
1
I'(t) > Cra+ Co(A — w)* + O(HT_]'H?{lez +a(d—w)? + ﬁ) (7.28)

7.4. Upper control of ||7]||1«z2. From (.28), to prove the monotonicity of I'(¢), we only
need to estimate ||7]| g1xz2. In this subsection, we give the following estimate on ||7]| g1« 2.

Lemma 7.5. Let 17 be defined in ({4.3), then
1171 <2 S OlalX = w[ +a%) + o((A = w)?).

~Y

%
Proof. Firstly, since @ = (@,\ + ﬁ) (x —y) in (B.1]), we have

. — R 1/ =\ . .
S\ (@) = S () =(4(®2).7) + 5{ U@, 7) + ol [l1s12).
Using S/, (<I>_w>) — (), we have

. — L/ =\ 2 .
S\ (@) = S (®3) =5 (SV@)T,7) + ol 1),
Then by the estimate ([B.20) in Corollary B3 we get
, — _
Sa(@) = Sx(®x) 2 177w g2
Secondly, note that
5 — 5 —
SM@) = Sx(Px) = Sa(tio) — Sx(Pu) + S (D) — Sa(Dn).
By Taylor’s type extension, we have
Sa(ilo) — Sy(82) = Bliio) — B(®2) + A (Q(ih) — Q(32))
. — . —
= S.(ii0) — Su(®5) + (A - w) Qi) — Q(®2)
= (S(02), ity — @) + O(I1do — B2 ) + (= w)O Ity — 1z
= O(a® + a|\ — w|).



28 BING LI, MASAHITO OHTA, YIFEI WU, AND JUN XUE
By Corollary 2.2, we have
— —
S)\ ((I)w) - SA((I))\) = 0(()\ - w)Q).
Finally, we get the desired result

— — — —
170131 2 S Sa(@) — Sa(®r) = Sa(tio) — Sa(Puw) + Sa(Pw) — Sx(P)
= O(alA — w| +a®) + o((A — w)?).
This completes the proof. O

H
7.5. Proof of Theorem [I.2l As discussion above, we assume that @ € U, (@w), and thus
|IA —w| < e. Firstly, we note that from the definition of I(¢) and the Young inequality, we
have the time uniform boundedness of I(t),

H
sup 1(t) % R(11(22) 5 z2 + 1). (7.29)
S
Now we estimate on I'(t). From (7.28) and Lemma [T.5]

1
I’(t) Z Cl(l -+ CQ()\ — w)2 + O(HﬁH?—leLQ) + O((I()\ — CU)Q + ﬁ)

> 3050+ Co0 0"+ Ofah ol +.47) +o{(h - ) + O(3).

By (44), choosing R satisfying % < a?, and choosing €, ag small enough, we obtain that for
any a € (07 (lo),

1
I'(t) > 501(1 + Co(A = w)* + 0(a® + a|A — w|) + o(A — w)?

1 1
Z 101(1 + 502()\ — w)Q.

This implies I(t) — 400 when ¢t — +o00, which is contradicted with (Z.29). Hence we prove
the instability of the solitary wave ¢, (x — wt) and thus give the proof of Theorem [[L2
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