Cp, ESTIMATES FOR ROUGH HOMOGENEOUS SINGULAR INTEGRALS
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ABsSTRACT. We consider Coifman—Fefferman inequalities for rough homogeneous singular
integrals T and Cp weights. It was recently shown in [33] that

1Tell e (w) < Cp, 1wl M fr w)
for every 0 < p < oo and every w € As. Our first goal is to generalize this result for every
w € Cq where ¢ > max{1,p} without using extrapolation theory. Although the bounds we
prove are new even in a qualitative sense, we also give the quantitative bound with respect
to the Cy characteristic. Our techniques rely on recent advances in sparse domination theory
and we actually prove most of our estimates for sparse forms.

Our second goal is to continue the structural analysis of C} classes. We consider some
weak self-improving properties of C}, weights and weak and dyadic C}, classes. We also
revisit and generalize a counterexample by Kahanpidid and Mejlbro [27] who showed that
Cp \U,s, Cq # 0. We combine their construction with techniques of Lerner [29] to define
an explicit weight class 5’,) such that Uq>pC - 5,, C Cp and every w € ép satisfies
Muckenhoupt’s conjecture [36]. In particular, we give a different, self-contained proof for the
fact that the Cp4. condition is not necessary for the Coifman—Fefferman inequality and our
ideas allow us to consider also dimensions higher than 1.

1. INTRODUCTION

It is a long-standing open problem in harmonic analysis to characterize the weights w that
satisfy the Coifman—Fefferman inequality

1T fllzrw) < CIMFl o) (1.1)

for a fixed 0 < p < oo and a uniform constant C', where T is a singular integral operator
and M is the Hardy-Littlewood maximal operator (see Section 2 for precise definitions of
these and subsequently mentioned objects). The inequality was first verified for A, weights
and maximally truncated Calderéon—Zygmund operators by Coifman and Fefferman [10, The-
orem III| who combined it with Muckenhoupt’s theorem [35] to conclude that Muckenhoupt’s
A, condition implies the uniform weighted LP-boundedness of Calderén-Zygmund operators.
Over the last decades, Coifman—Fefferman type domination inequalities have had an impor-
tant role in many advances in harmonic analysis, see e.g. (6, 21, 32, 12, 37, 7|. It was later
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shown by Muckenhoupt [36] that weights satisfying (1.1) can actually vanish on a set with
infinite measure and thus, the A,, condition is too strong to characterize the inequality. In
addition, he showed that if (1.1) holds for the Hilbert transform, then the weight has to satisfy
the so called C), condition: there exist constants C,e > 0 such that for every cube () and every
measurable set £ C () we have

€
w(E) < C <’E‘) / (M1g)"w. (1.2)
Q) Jrn

He conjectured that this condition is also sufficient for (1.1). Sawyer [39, 40| noted that (1.1)
holds also for weak A,, weights, extended Muckenhoupt’s result for the Riesz transforms and
gave a partial answer to Muckenhoupt’s conjecture: if the weight w satisfies the C),4 ) condition
for some A > 0 (which is stronger than the C), condition), then (1.1) holds for Calderén—-
Zygmund operators. Later, Kahanpééd and Mejlbro [27] showed that the C),1 ) condition is
not necessary for (1.1) in dimension 1, but the full answer to the conjecture is still not known
in any dimension. Finally, we note that Martell, Pérez and Trujillo-Gonzélez [34| showed via
extrapolation methods that there exist singular integral operators that do not satisfy (1.1) for
any 0 < p < oo and any w € A.

The C) classes resemble Muckenhoupt’s A, classes in some ways (for example, C), weights
satisfy Reverse Holder type inequalities) but their overall structure is much more chaotic.
In particular, it was shown by Kahanpéd and Mejlbro [27] that unlike all A, weights, some
C, weights do not have any kind of self-improving property with respect to p, ie. Cp \
Uq>p Cy # 0. Naturally, this and some other unfortunate properties of these weights have
made it impossible to use any straightforward A, type techniques for the problem. However,
although Muckenhoupt’s conjecture is still open, many authors have managed to study other
parts of the C), theory, see e.g. [44, 3, 38, 29, 2|.

In this paper, we have two goals. Our first goal is to prove Sawyer type C), estimates for
rough homogeneous singular integrals, i.e. integral operatos T defined as

/
Tof@) =pv. [ ey
re Yl
where y' == y/|y[, @ € L>®(S""!) and [y,—, Qdo = 0. These operators have been studied
intensively by numerous authors both in unweighted and weighted settings, see e.g. [14, 22,
8,9, 42, 13, 41, 26, 20|. Our results complement the recent work of Cejas, the second author,
Pérez and Rivera-Rios [5] who discussed Coifman—Fefferman inequalities for these operators
in |5, Remark 5|. They can also be seen as a continuation of the work of the second author,
Peréz, Rivera-Rios and the third author [33] who proved these types of estimates for rough
homogeneous singular integrals and A, weights, and the work of the first author [4] who
recently introduced the C), constant [w]c, (see Subsection 2.1 for the definition) and studied
quantitative Coifman—Fefferman inequalities.
Let us be more precise. We prove the following inequalities:

Theorem 1.3. Suppose that Tq is a rough homogeneous singular integral with Q@ € L (S"~1)
satisfying fSn—l Qdo = 0. Then the following inequalities hold:
I) ifl<p<qg<ooandwe Cy, then

3
1T fll o) < Crpa(wle, +1) log ([wle, + €) 12| oo [|M £l Lo ()
2



II) if 0<p<1<qg<ooandw e Cy, then

1Tas vy < Cnpa(fwle, +1) 7 log? ([wle, +e) [ 1MF] o)
The constant Cy, ;4 satisfies Cy pq — 00 as q¢ — P.

We want to emphasize that the main novelty of this result is the qualitative estimates that
(to the best of our knowledge) were not known earlier. We do not know if our bounds are sharp
with respect to [w]c, but we strongly suspect that they are not. We also note that previous
proofs for the case 0 < p < 1 and w € Ay used extrapolation theory which is not available
for C,, weights. Our method and quantitative bounds are new even for weights w € A

Our proof relies particularly on a recent sparse domination result of Conde-Alonso, Culiuc,
Di Plinio and Ou:

Theorem 1.4 (|11, part of Theorem A|). Suppose that Tq is a rough homogeneous singular
integral with Q € L>=(S" 1) and Jn—1Qdo = 0. Then, for any 1 < p < co we have

(Taf, 9)] < cnd'[|Q| oo (sn-1) sup Z<|f’>@<’9\>p@v
S Qes

where the supremum is taken over all sparse collections S (see Section 2).

An alternative approach for this result can be found in [31]. Thus, instead of working
directly with rough homogeneous singular integrals, we use Theorem 1.4 to reduce the question
to proving bounds for sparse forms:

Theorem 1.5. Let A = Af,s’ﬂY be the sparse form defined as

A(f.g) = () Y (DD g,

QeS
where S is a sparse collection of cubes, t > 1 and 0 < v < 1.
I) Suppose that 1 < p < g < oo and w € Cy. Then there exists 1 < s < 2 such that

AL (f.gw) < Copg(wle, + 1) log ([wle, + €)M fll oy gl 1o ()

IT) Suppose that 0 < p <1 < q < oo and w € Cy. Then there exists 1 < s < min{2, = p}
such that

AL (f,w) < Copg([wle, + 1) log ([wle, + €)M FI] -

The constant Cy, ;4 satisfies Cy pq — 00 as ¢ — P.

Part I) of Theorem 1.3 follows from Theorem 1.4 and part I) of Theorem 1.5 in a very
straightforward way but for part II) we need some additional considerations. In particular,
we need to modify some results proven by Lerner [31] and prove a variation of the sparse
domination result for the case 0 < p < 1 (see Theorem 5.1).

We note that in [11], the authors proved similar sparse domination results also for other
classes of operators, namely rough homogeneous singular integrals T with more general kernel
functions 2 and Bochner-Riesz means. Their results combined with Theorem 1.5 give Cg-
Coifman—Fefferman estimates also for these operators for 1 < p < oo but for simplicity, we
only consider the operators T with Q € L>°(S"™1) satisfying [, Qdo = 0.

Our second goal is to continue the structural analysis of C), classes started particularly by
Buckley [3, Section 7|. We consider:
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i) weak self-improving properties of C), weights,
ii) weak and dyadic C), classes,
iii) examples of C), weights,
iv)

iv) Oy classes of Lerner [29],
v) generalizations of the Kahanpdd—Mejlbro counterexample [27].

As a corollary of our considerations we are able to give a new proof for the fact that the C)4
condition is not necessary for (1.1) in any dimension; see Corollary 9.12 and Theorem 9.22.

Our motivation for this analysis comes particularly from the fact that most known C,
techniques are heavy or very restricted and this is mainly because not many characterizations
and non-trivial properties of (), weights are known. Naturally, the C, theory cannot be as
comprehensive and rich as the A, theory because the C), classes are much bigger than the A,
classes. However, existing results already show that at least some parts of the A, theory have
counterparts in the C), world.

This paper is structured as follows. First, we introduce the notation and some definitions
that will be used throughout the paper. In Section 3 we present some C), techniques that will
be useful for us later. Sections 4 and 6 are devoted to the proofs of Theorems 1.3 and 1.5.
In Section 5 we state and prove a sparse domination result for rough singular integrals that
is useful in the range 0 < p < 1. In Sections 7 and 8 we consider structural properties of C,
classes and new classes weak C, and dyadic C),, which are actually equal to C,. Finally, in
Section 9 we revisit results of Kahanpad and Mejlbro [27] and Lerner [29] to show that there
exists a weight class 6}; such that ., Cq C ép C C, and the C~’p condition implies (1.1).
Unlike some earlier considerations related to this topic, our ideas work in any dimension.

2. NOTATION AND DEFINITIONS

We use the following notation and terminology in the paper.

e The letters ¢ and C denote constants that depend only on the dimension and other
similar parameters. We call them structural constants. The values of ¢ and C may
change from one occurence to another. In most cases, we do not track how our bounds
depend on these constants and usually just write v; < 9 if 71 < ¢y9 for a structural
constant ¢ and 7y & vy if 1 < 9 < 1. If the constant ¢, depends only on structural
constants and some other parameter k and v < cgy2, we write v1 Sy Yo.

e The Lebesgue measure of a measurable set E C R” is denoted by |E|.

e The characteristic function of a set E is denoted by 1.

e A weight is a non-negative locally Lebesgue integrable function that is non-zero in a
set of positive measure.

e Suppose that f is a locally integrable function, w is a weight, £ C R” is a measurable
set with |E| > 0 and 0 < p < co. We denote

mm:éwm mpaémWﬂaﬁjm U = (L FPY L7

w'—i wdzx
D= o [ Foie

e For any cube @ we denote the side length of @ by £(Q).
e The collection of dyadic cubes 2 is defined as

2 = {275(0,1)" +2): k€ Z,z € Z"}.
4



e Suppose that 0 < v < 1. A y-sparse collection S is a collection of cubes such that for
every (@ € S there exists a Fg C @ such that
(1) [Eql > 410,
(2) if Q,Q € S and Q # @', then EgNEg = 0.
In most cases, we assume that v = % and do not specifically mention this every time.
We note that we do not require our sparse collections to be subcollections of Z but
any ~y-sparse collection can be embedded inside a bounded number of dyadic Gln—sparse
collections. This follows from e.g. |25, Lemma 2.5]|.
e We say that a function f: R™ — R is lower semicontinuous if the set {x € R": f(x) >
A} is open for every A € R.

2.1. A,, Awx, C, and Reverse Holder weights. Suppose that w is a weight. We denote

we Ay for 1 <p<ooif
__1\p1
[w] 4, = sup (][ w> <][ w P*l) < 00,
Q V@ Q

where the supremum is taken over all cubes. We say that w satisfies a q-Reverse Hdélder
inequality for 1 < ¢ < oo and denote w € RH, if there exists a constant [w]rpy, < oo such

that
(f )" < Wl f v

for every cube ). We denote w € Ay if the Fujii—Wilson constant of w is finite, i.e.

1
[w]a, = sup/ M(1lgw) < oo.
Q w@Jo ¢
By [10, 17, 43|, we know that the following conditions are equivalent:

i) we A,
i) we Up>1 A,,
i) w € Uq>1 RH,,
iv) there exist constants C,e > 0 such that for every cube @ and every measurable set
E C @ we have
E|

w(E) < C(@‘)ew(Q). (2.1)

Recall from (1.2) that w € C, for 1 < p < oo if there exist constants C,e > 0 such that for
every cube @ and every measurable set £ C () we have

w(E) < C(:QI?Y/R”(MlQ)pw'

Recently, the first author [4] introduced a Fujii-Wilson type C), characteristic. Let w € C,,.

o If [5.(M1g)Pw = oo for some (and thus, all) cubes Q, we set [w]c, = 0.
o If 0 < [p. M(1g)Pw < oo for some (and thus, all) cube Q, we set

1
[wle, = SngW/QM(le)-

Theorem 2.2 ([4, Section 2|). Let 1 < p < oo. We have w € Cy, if and only if [w]c, < oc.
5



We note that although [w]4_, > 1for any w € Aw, the characteristic [w]c, can be arbitrarily
small [4, Example 2.11]. When comparing the definition (1.2) and the characterization in
Theorem 2.2, it was noted in [4, Remark 2.16] that if 0 < [w]c, < oo, then (1.2) holds for
C =2 and

1 — 2—n(p—1)
= gm0
In particular, the constant C' in the definition (1.2) is fairly irrelevant.

€ min{1, [w]ai} (2.3)

Remark 2.4. If [w]c, = 0, then [, (M f)Pw = oo for all p < ¢ and all nonzero function f.
Since most of the estimates we are going to prove have || M f||1»(,) on the right hand side, we
may always assume without loss of generality that [w]c, > 0.

The first author also proved a quantitative Reverse Holder type estimate for C), weights
(see also [2, Section 8.1] and [3, Lemma 7.7] for qualitative Reverse Holder type estimates for
C), weights):

Theorem 2.5 (|4, Section 2|). Suppose that 1 < p < oo and w € Cp. Then there exists a
constant B = B(n,p) such that

(]2 w1+5>1i“ < g' | (g (2.6)

for a structural constant C, every cube Q and every 0 < § < Conversely, if

1
B max{[w]c,,1} "
there exist constants C > 0 and § > 0 such that (2.6) holds for every cube Q, then w € C,,.

2.2. Maximal functions and singular integrals. Suppose that f is a locally integrable
function. The Hardy-Littlewood maximal operator M is defined as

zwm:géwmm

where the supremum is taken over all cubes @) that contain z. For every s > 1, we define the

s-mazimal operator M, as
1/s

M f(x) = (M(|f]*)

Since the Hardy—Littlewood maximal operator is of weak type (1, 1), i.e.

[M fllree < Cnll fll
for every f € L'(R™), it is straightforward to check that M; is of weak type (s, s), i.e.

1M, fllzece < O3 |

for every f € L5(R™). In our constructions and proofs, we use repeatedly the fact that
the Hardy-Littlewood maximal function M f is lower semicontinuous (see e.g. [19, proof of
Theorem 2.1.6]).

Let T be a bounded linear operator on L?(R") that has the representation

Tf(x) = » K(z,y)f(y)dy

for every = ¢ supp f. We say that T is a Calderdon—Zygmund operator if the kernel function

K satisfies the size estimate
Ck
|z —y["

K (2, y)] <

6



for all z,y € R™, z # y, and the smoothness estimate
@ — 2"

K (9) = K@)l + K () = K| < Cuep s

for some A > 0 and all z,2’,y € R™ such that |z — y| > 2|z — 2/| > 0.

3. MARCINKIEWICZ INTEGRAL ESTIMATES

We start by recalling and refining some estimates related to Marcinkiewicz integral opera-
tors. These operators are one of the key tools in C}, analysis due to their good boundedness
properties with respect to certain weights. For our needs, the most convenient way to define
the operators is using a Whitney decomposition of level sets as in [40, Section 3].

Lemma 3.1 ([40]). Suppose that R > 1 and Q@ C R™ is an open set. Then there ezists a
constant C = C(R,n) independent of Q and a collection of disjoint cubes Q = {Q;}; such
that

i) Q= Uj Qj;

ii) for every j we have

dist(Qj, Qc)
diam Q) ;

iil) >, 1rg,(z) < Clo(z) for every x € R™.

Let h be a non-negative lower semicontinuous function, 0 < p,q < oo, and k € Z. Then
the level set Qp = {x : h(z) > 2} is open and we can use the previous lemma to get
the decomposition Q = {J; Q?. We denote Qy = {Q?}j for each k € Z and define the

Marcinkiewicz integral operator M), , by setting

SR < < 15R,

1

M, oh(z) = (Z okp Z MlQ(m)q) 7

kEZ QEQy

Note that the dependency on h on the right hand side is coded in the families Q. For each
k € Z, we define the partial Marcinkiewicz operator My, , the same way as in [5]:

1
My, pgh(2) = (2kp Z MlQ(az)q)p.
QEQy
Thus, we have
> My pgh(@)P = Mygh()P.
kezZ
These operators arise naturally when estimating LP(w) norms with w € C,. Indeed, by the
layer cake representation [19, Proposition 1.1.4] , we have

By = [ bl (h > )t~ 2 352 3 (@)

kezZ QeQk

The role that w(Q) plays in the Ay, theory is often played by [p, M(1g)%w in the Cy context.
Therefore, the natural C; counterpart of the above expression is

> oty / (M1g)%w = / (M, gh)Pw
k;eZ QeQ; R
7



The proof of the following lemma can be found in [4, Lemma 5.8|. Although the range of
exponents is not explicitly stated there, it holds for all exponents described below.

Lemma 3.2. Let f be a compactly supported function and w € Cy with 1 < g < oo. Suppose
that 0 < p < q. Then

[ 010 < entygmax(, wle, loglule,) | (MFPw.
R

n

Lemma 3.3. Let Q be a cube and S a sparse family of cubes that are contained in (). Suppose
that w € Cyq with 1 < g < oo. Then

/ > (M1g)"w < ([wle, + 1)/ (M1g)%w.
" Res R
Proof. We start by noticing that if x ¢ 2¢), then we have

Z M1g(z)" 5 Rze;s (distif}@)")q S Z (dis‘!ijé})”)q

ReS ReS
o ZRES ‘ER‘q <

Q¢
N diSt(ﬂ’j7 Q)nq - (dlst(x’Q)n> S M]‘Q(x)qa

where Eg is the exceptional set given by sparsity and we used the assumption ¢ > 1 in the
estimate ) p g [ER|? < |Q|?. Thus, it is enough to bound f2Q > res (M1g)w.

Since Eg C R and |Eg| > £|R| for every R € S, we have the pointwise bound

> (M1g)T <) (Mlg,)"

ReS ResS

by Lemma 8.1. Also, since the sets Er are pairwise disjoint, we have > p(1g,)? <1 € L™.
Thus, by [15, Theorem 1 (3)] there exists ¢ > 0 such that for every A > 0 we have

By = [{z €2Q: ) Mlg(z)? > A\}| < ce” Q. (3.4)
Applying the C, condition to F) C 2@Q) now gives us

2.3),(3.4)

€ ( e
w(Fy) < C(g‘g‘) /Rn(Mng)qw < e Mot /n(MlQ)qw. (3.5)

Thus, for any fixed A > 0 we have

/2 Z(MlR)qw:/Ooow(Ft)dtZ/OAw(Ft)dt—i—//\oow(Ft)dt =1 + .

Q Res
For I, we can use Lemma 8.1 to see that

I < w(2Q) = )\/ laqw < A M(120)"w S A M(1g)%w.
n R” R

For I, we can use (3.5) to get

oo t
I 5/ . c[w]cq+1dt/ (M1o)"w < c(fuwlc, +1)e
)\ n

Thus, we have

e

wlog F1 / (M1g)%w.

n

S U
I +1 < (A + ([w]e, +1)e [“’]Cq“) / (M1g)%w
8



and choosing A\ = [w]c, + 1 completes the proof. O

Lemma 3.6. Let h be a non-negative lower semicontinuous function, w € Cy, 1 < g < oo and
0 < p < oo. Suppose that k € Z and let S = {R;} be a sparse collection of cubes contained in
Q= {x: h(z) > 2}, Then

o Z/ (M1p,)w < ([wle, +1) /Rn(MkJ,’qh)Pw

R;eS

Proof. Fix k € Z and let Qx = {@Q;}; be the Whitney decomposition of Q. For each Q; € Oy,
let Si; be the family of cubes R; whose center is contained in ;. Then, by the properties
of the Whitney cubes and the fact that R; C €, we have R; C ¢,@Q; for every R; € Sk .
Moreover, each R; € S is contained in exactly one of the Sy .

The desired estimate follows now from applying Lemma 3.3 to each of the collections Sy, :

2’“?2/ (M1pg, qw—zkpz Z / (M1g,)?

R;€S Q1€Qk RjES K,
< ([wle, +1)2% Z / (M1g,)%w
QEQy
= (e, +1) [ (Mpgh)w: =
Rn

Corollary 3.7. Suppose that S is a sparse collection of cubes, f is a locally integrable function,
we Cy forl <gqg<ooand0<p<gq. Then

Z<f>%/ (M1g)%w < Cmp,q([w]Cq + 1)2 log([w]cq + e)||MfH1£p(w)

QeS "

Proof. We start by making a level decomposition of the sparse family: for every k € Z, we set
={Qes: 2" <(|fl)g < 2"}

Clearly we have S = J,cz Sk. Now, for each Q € Sk, we have trivially Q@ C {Mf > 2k},
Thus, Lemmas 3.6 and 3.2 give us

Z(;fw/ (M1g)iw < 20 "2k Z/ (M1g)%w

Qes kEZ QESy,

< 2°([wle, +1) Z/ (Mp g M f)Pw

kEZ
= 27([w]e, +1) /Rn (M, M f)Pw

< cnpa([wle, + 1) 1og ([wle, + ) [MFIY, - O

4. PROOF OF PART I) OF THEOREMS 1.3 AND 1.5

As we stated before, part I) of Theorem 1.3 follows easily from a combination of part I)
Theorem 1.5 and Theorem 1.4. Indeed, let s be the one given by Theorem 1.5. We apply
9



Theorem 1.4 with parameter s and we get

ITafllew) = sup KTaf,gw)| < en|Q|o s sup p Y (Nalyw)selQl
=1
Qes

< Cnpal oo ([wle, + 1) 10g ([wle, + €)M £l Loqw)

where we used part I) of Theorem 1.5 in the last inequality.
We now give the proof of part I) of Theorem 1.5. Let us start by recalling the dyadic
Carleson embedding theorem that we need a couple of times in our proofs.

9l ()= ol -

Theorem 4.1 (|24, Theorem 4.5]). Let D be a collection of dyadic cubes, w a weight and ag
a non-negative number for every QQ € D. Suppose that there exists A > 0 such that for every
R € D we have

Z ag < Aw(R).
QeD,QCR
Then, for all 1 < o < 00 and h € L*(w), we have

(3 an(n)®))" < A% o 4l o)

ReD

Let us then prove part I) of Theorem 1.5. Suppose that 1 < p < ¢ < oo, and w € C;. We
want to show that there exists 1 < s < 2 such that

' > (1 Nallgw)sel@l < conpallM flrw gl Lo (-
Qes

By rescaling we may assume that || M f||zow) = |9l 1 (w) = L To simplify the notation, we
also assume f, g > 0. By the remark we made in Section 2 when we defined sparse collections,
we may assume that S C 2.

Let 0 be the Reverse Holder constant from Theorem 2.5 and set s =1+ % and r =1+ ﬁ.
It is easy to check that

1 1 -1
sr<1l+—<p and (s—f>r’:s+87<1+5. (4.2)
2p r r—1

In particular, (s — %)r’ is an admissible exponent for the Reverse Holder inequality in Theo-
rem 2.5. Therefore, by Hélder’s inequality and Theorem 2.5 we have

1

S (felgwlsal@l < 3 (helew)g (e "E Q)

QEeS QeS
1—L
S Qg7 w) g (M1g)*w) ™|Q
cgze;g (|Q\ R" 9 )
=2 (/ (1)) (g8 w( @)
QES

Let us then split the sparse family into two parts. We set

<05 ([ ongyw)

|-

Sy = {Q eS: ((g™)5) T w(Q):

10



and Sy = S\ §;. For the collection S, we use Corollary 3.7 to see that

=5 1) smay & 1
Q§1<f>Q(/Rn(M1Q)qw) ()8 F (@)
< Q%ff)@(/n(MlQ)qw)l—w(f>£(/H(MlQ)qu
- X0k [ gy

< Cmp,q([w]Cq + 1)2 log([w]cq + e)||MfH’£p(w)
= capgl[wle, +1)* log([wle, + ).

The collection S, is trickier. Recall that by Remark 2.4, for any cube Q, fRn(MlQ)qw < 00.
Thus, we have

1

> alena)* ([ 0r1g)) " u@)

QES> "

SQEZSQ (<9 >Q) (Q)(fRn(MlQ)q“)

= S () e ( Q)

QES: Jen (M1g)tw

w@ &
o = w0 (D)
? Jrn M (x@) w
for every cube @ € Sy. By (4.2), we know that a > 1. Suppose that there exists some A > 0
such that for any R € Ss we have

> ag < Aw(R). (4.3)
QES2,QCR

Then, by the Carleson embedding (Theorem 4.1), we know that

ST\ W 2 Q %_1 sryw\ &
Q% ((g™)8) ”w@(fw&lé)qw) = Y agle™E)
< (Aallg” o) ® = A llgll, ) < cp A

In the last inequality we have used that, by the choices of r and s, we have 1 < rs < 1+ i

and therefore p’ —rs >p' — 1 — ﬁ = 455) tll), which gives

/ p’ /

P\ PN AP P
(5)"=G=) <Gr) =«
rs p—rs 3p+1
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Thus, it is enough for us to show that there exists a constant A > 0 such that (4.3) holds. For
this, fix R € So. We further split Ss into subcollections Sy ;, j > 1, defined as

Sy = {Q € Sp: 27 1(Q) < / (M1g)tw < 2jw(Q)}.

Let &5 = Sg’j(R) be the collection of maximal subcubes in Sz ; which are contained in R.
We now have

Z w(Q)<%)ii (2 Z 9l- ]/H(MlQ)q I [ MlQ)qw>1

n

QES, fRn(MlQ)qw QESy fRn Mlg)tw
QCR QCR
_ 9l—j+(1- J)(*fl) Z / (M1g)%w
QESs 5 R
QCR
205 3 3 [ ngy
PES; ; Q€S
QcP
(B)
< 2D ([, +1) Y / (Mlp)*
pes; I R"

% 2(1*7')%”([10]0‘14—1) Z w(P)

Pes;

(©) A
< 2(1—1)57+J([w]cq + 1)w(R),

where we used (A) the definition of the collection Sy ;, (B) Lemma 3.3 and (C) the fact that
the cubes in &; ; are disjoint. We now sum over j and get

ZCLQ ZZGQ< C’+12”Z2j

QES2 J>1 QEeSs ; j>1
QCR QCR

Therefore (4.3) holds with
A= ([w]e, + 1)2% Zzﬂ'(l‘%) et ([wle, +1).

_91 =%
= 1 91—p'/sr
Putting all of the above together, we proved that for s =1 + % we have
' Y (Ifhallawl)sel@l < 8 (cnpa(lwle, +1)*log([w]c, + €) + ep([wlc, +1))-

QeS
The constant ¢, p 4 is the same constant as in Corollary 3.7 and thus, we have

/ _Pq
~ mn qg—
Cnypg N Cp2 "M ap

by [4, Lemma 5.8|. In particular, ¢,,, — 00 as ¢ — p. Since § = where
B = B(n,q) (see [4, Theorem 2.13|), we have

8
s = §+1N8meaX{[ Joy 1}

1
B max{[w]c,,1}

12



Hence we see that
3
$ Y (1 Dellgw)s@lQl < Crpg(lwle, + 1) log ([wle, + €)
QES

for a constant C,, 4 4 such that Cy, , , — 00 as ¢ — p.

5. SPARSE DOMINATION FOR ROUGH SINGULAR INTEGRALS REVISITED

Before we prove part IT) of Theorems 1.3 and 1.5, we revisit the sparse domination principle
in [11] and prove a version of it that is more suitable for the case 0 < p < 1. Let us first
consider a Calderén—Zygmund operator T'. It is now well-known (see e.g. [28, 26, 30]) that T’
satisfies a pointwise sparse bound of the type

Tf(x) <Cr Y lg@){fe
,QES;
Now, for 0 < p < 1, we trivially have
Tf@)P <Ch Y Lo@)If)e,
i,QGSi

and thus, for ¢ =1+ X and w € C; for any A > 0, Corollary 3.7 gives us

/ TrPw < S w@)f

1,QES;

<cn S U /R (M1g)hw

< Chenpqllwle, +1)*log([wle, + )M 17,

Qualitative version of this result was proven recently as a part of |5, Theorem 17| using different
techniques.

To mimic this proof strategy for rough homogeneous singular integrals, we prove the fol-
lowing sparse domination result:

Theorem 5.1. Suppose that 0 < 0 <1 andl < s % Then there exists a sparse collection

S such that
[ TafI” 9)] S (") 12 oo sy Z QUG 9] s.0-
Qes

Our proof is strongly based on techniques used by Lerner in [31]|. For a sublinear operator
T and 0 < 0 < 1, we define

MS5)@) = 50 /Q IT(Flrms0)| 9] dy.

= |Q|

Our main tool is the following variant of [31, Theorem 3.1|:

Theorem 5.2. Let 1 < g<7r,0<6 <1 ands>1. Assume that T is a sublinear operator
of weak type (q,q) and ///:,Q satisfies the following estimate:

A7 (f, 9o < NIFIZrlgllze,
13



for exponents satisfying the relation

Then for every compactly supported f € L"(R™) and every g € Lj, ., there exists a sparse
collection of cubes S such that

(T 1% 19l) < Crv Y 1QUIN .o 9Ds.e:

Qes
where Cr.n = cn (| T|%4_s fae + N).

Proof. The proof is essentially the same as the proof of [31, Theorem 3.1]. The only difference
is the definition of the sets F; and FEs: the first set is the same, namely

By ={z € Qo: [T(fl3qo)l > Al f])g3Q0}

and we define the second set as

Ey = {x € Qo: M7 o, (f,9)(x) > B{f) 30, 9))s.00 }-

The rest of the proof works as it is with the the obvious changes. ([l
With the help of Theorem 5.2, the proof of Theorem 5.1 is fairly straightforward.

Proof of Theorem 5.1. Let Tq be a rough homogeneous singular integral. We want to apply

Theorem 5.2 with ¢ =1 =r. Let 1 < s < . Since T is of weak-type (1,1) by [41], we
only need to check the bound for .Z 99. To be more precise, we need to show that

15, (£, 9)|voe < NIFIZllglzs, (5.3)
where =0+ 1 Let us define an auxiliary operator .4/° o1, DY setting

Nfp () = Zgr; |Q,/ ITa(flrmsg)l” dy)

Notice that we have %OTQ flx) = (e/lﬁoyTQ f (:U)) . By Holder’s inequality, we have the point-

wise bound
1

1
EAYY s
(100w < s ([ [Tatrizmao)”) ([ ol
0
< NG 1o F@) Mg (x) = (Ng 1, [ (7)) Misg ().
Now, combining this pointwise bound with Hélder’s inequality for weak spaces (see e.g. [19,
Ex. 1.1.15]), the straightforward estimate ||(4.}, Tnf)g
type (s,s) of M (see Section 2.2) we get
1, 9 1 0
12, (f. llpvee < v 87055 [[( Ay iy /) || 3 oo I Mgl
1,9 1
Svv0 s | A, Fll T oo g e
By [31, Theorem 1.1, Lemma 3.3|, we know that

| A0 10 f 100 S 801 oo g1y | £ 1
14
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provided that 1 < s’ < oo which is equivalent to 1 < s < 1719 Therefore, we have

1,91
13 (£, )|z S 0707055 (50)° | Q|0 g1y | F I 1 g 25
< (N1 e g I F 122 9 2o
since § <1 <s,v=s/(0s+1) and
v 005 (50) = s70(s)0 (50 + 1)0T5 < s+ () < (8)°.
Thus, (5.3) holds for N = cn(s’)GHQHQLw(Sn_l). Since [|Tallp1 100 S || Loo(sn-1y by [41], we
can apply 5.2, which finishes the proof. O
6. PROOF OF PART II) OF THEOREMS 1.3 AND 1.5

Firstly, we deduce part II) of Theorem 1.3 from the sparse domination presented in Theorem
5.1 and the bound for the sparse form from Theorem 1.5. Let 0 < p < 1, we have

1 1
1Tofllzrw) = 1T f 1P 71y = K Taf P, w)F.

Now, we use Theorem 5.1 to dominate the term [(|Tqf|?, w)|, and apply part II) of Theo-
rem 1.5. We get

(Tt )P 5 1905 (3 1N (w)e0)”
QeS
([wle, + 1) log? ([wle, +€) 1M £ 1oy,

We now turn to the proof of part II) of Theorem 1.5. Suppose that 0 < p <1, w € C, for
some ¢ > 1 and S is a sparse collection. We want to show that there exists 1 < s < rnln{2, = p}
such that

Scn,

Z |QI( ’f‘ 5,Q < Cu,p, quMfHLp(w
Qes
We choose s = 1 + pd, where § is the Reverse Holder exponent from Theorem 2.5. Hence
s" < ([w]e, +1)/p and we have

P Y QU wee 5 (TN S0 [ (ig) e

QeS QES
S p_p([w]cq + 1)p+2 log ([ ] + e)HMfHLp (w)’

where we have used Corollary 3.7 in the last step. The implicit constant ¢, p 4 satisfies ¢, p 4 —
oo as ¢ — p by the same arguments as in the end of Section 4. This completes the proof of
Theorem 1.5.

7. REVERSE HOLDER AND WEAK SELF-IMPROVING PROPERTIES OF Cp

It is well-known that A, weights are self-improving: if w € A, then there exists ¢ > 0
such that w € A,_. [10, Lemma 2|. Since this is a particularly convenient property in many
proofs, it would be desirable if C}, weights had a similar property, i.e. for every w € C,
there existed € > 0 such that w € Cp,y.. In particular, this property together with Sawyer’s
results would prove Muckenhoupt’s conjecture. Unfortunately, this is not true due to an
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example by Kahanpéad and Mejlbro [27, Theorem 11]. We discuss their counterexample and
its generalizations in detail in Section 9.

The failure of this self-improving property raises natural questions about weaker self-
improving properties of (), weights. For example, although the well-known self-improving
property of classical Reverse Holder weights [18, Lemma 3| fails in spaces of homogeneous
type [1, Section 7], the weights are still self-improving in a weak sense even in this more gen-
eral setting [1, Section 6] (see also [45, Theorem 3.3]). Although we show in Section 8 that
weakening the definition of (), in an obvious way does not actually change the structure of
the corresponding weight class, various self-improvement and Reverse Holder questions remain
open. In particular:

Open problem 7.1. Suppose that w € C), for some 1 < p < oo and let 0 be the Reverse
Hélder parameter from Theorem 2.5. Does there exist ¢y > 1 such that

1
e 1
c(1+46) | c+9) - M(1,)P
w < w
(J_Q ) Q| Jrn (1)

for every cube Q and every 1 < ¢ < ¢, ?

In this section, we record two observations related to Problem 7.1. First, we prove the
following analogue to the well-known A, result “w € Ay, = w't® € A, for small &7 (see e.g.
[26, Corollary 3.17]):

Proposition 7.2. Let w € C), for some 1 < p < oo. Then there exists eg > 0 such that
wl™e € Cp for every 0 < e < &.

Proof. Let & be the Reverse Holder parameter from Theorem 2.5 and set ¢g = 2. Then, for

2
s=1+ Q;jré’ we have s(1 +¢eg) =1+ 0. Thus, we get

(f,u) < (g Lonere) * = (i [ riore)™
1+eg

<y 0007 (& [ omarr)
< (eap))™ - @ /R (Mig)rw't=,

where we used first Theorem 2.5, then the standard Hélder’s inequality and finally the LP-
boundedness of the Hardy-Littlewood maximal operator. Thus, the weight w!*e0 satisfies a
Reverse Holder inequality in the sense of Theorem 2.5 and therefore w!*<0 € C,,.

The fact that now also w!'™® € Cp for every 0 < € < gg follows easily from Holder’s
1

1 1
inequality: for every cube @) we have (w1+5>é?+5 < <w1+80>é2+£0. O

IN

In the light of Proposition 7.2, answering the following question would solve Problem 7.1:

Open problem 7.3. Suppose that w € C), for some 1 < p < 0o. Do there exist g > 0 and
C > 1 such that
1 T4 1
(7 (M1Q)pw1+f) o= [ (Mlg)w (7.4)
Q[ Jrn Q[ Jrn
for every cube QQ and every 0 < e < egg?
As a consequence of Proposition 7.2 we get something slightly worse than (7.4):
16



Corollary 7.5. Suppose w € C, for some 1 < p < oo and let dy be the Reverse Holder
exponent from Theorem 2.5. Then for every 0 < & < §y and every cube QQ we have

1 E 1 p+s
(@ Rn(MlQ)pwl—i-é) 4o SCn,p,é@ Rn(MlQ)Haw

Since the proof of Corollary 7.5 is a fairly technical computation, we formulate explicitly
the following well-known embedding property of ¢P spaces:

Lemma 7.6. Let 0 < a < 8 < oo. Then, for positive numbers a,, n € N, we have
1 1
(Xe) = (Ea)"
n n

Proof of Corollary 7.5. We argue by discretizing the tail. By [4, Lemma 3.2], we have

1
M1 ~ o—n(p-1k
(M1g)Pw ~p E 712/9 w,

1Ql Je 2

for 1 < p < oo and any weight w. The implicit constants do not blow up when p tends to 1,

but th_ey do blow up when p — co. We get

(M1g) pyl+ &) 22 n(p—1) ]ékaIH
%22 n(p— 1)k ’2%2‘/ (MLyeg)u 1+5
Nnﬁp(g Zz n(p— 1)k(22 n(p— 1)]]£j+kQ w)1+a
(Z 9PV 15 9—n(p- 1>J]£Hka)1+5
T

m=0 =0

(%) < i 2_n(p_1)1;gé]£mQ w)1+5

m=0

1
@ Jre

sed the Reverse Holder inequality, (C) applied

calculated the geometric sum and made obvious

where we (A) used the discretization, (B
(
(|

Lemma 7.6 with a = 1+5 and 8 =1, and
estimates.

— o
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8. ON WEAK ()}, AND DYADIC C),

When we compare the characterizations of A (2.1) and C) (1.2), it is obvious that A C
C), for every p. However, A, weights are not good representatives of C, weights because the
C), classes are much bigger than the A, class. For example, Ay, weights are always doubling
and they cannot vanish in a set of positive measure whereas C), weights can grow arbitrarily
fast and their supports can contain holes of infinite measure. Thus, the structure of a general
() weight can be very messy.

In this section, we consider some examples and properties related to C), weights. We also
introduce weak and dyadic C, weights as an analogy to weak and dyadic A, weights. Although
these new classes of weights seem like they are larger than C), this is not the case: weak and
dyadic C}, weights are just C, weights.

We start by proving an elementary lemma for the Hardy—Littlewood maximal operator that
we already used in the previous sections:

Lemma 8.1. Let Q9 C R™ be a cube and Ey C Qp a measurable subset such that |Ep| > n|Qo|
for some 0 < n < 1. Then there exists a structural constant Cy, such that

Cn
M(1g,)(x) < 7M(1EO)(95)
for almost every x € R™.

Proof. Let Q(x,r) be the cube with center point x and side length 7. There exists a structural
constant ¢, > 1 such that

Ey C Qo C Q(z, cp(dist(z, Qo) + £(Qo))).
The proof now consists of two cases:
1) Suppose that dist(z, Qo) < €(Qo). Then Qo C Q(z,2¢,4(Qo)) = Qo and [Qo| ~ [Qa.

Thus,
EonQ. |E
M(1g)(a) = B0l 105 s b1, @)
2) Suppose that dist(z, Qo) > ¢(Qo). Then
Qo N Q(z,7)| cnlQol
M(g)@) = sp (QOC@IL g Gal@l
@ r>dist(z,Qo) ’Q(l', T)’ r>dist(z,Qo) |Q(‘T7 QCHT)’

/ / /

< sup Cn |E0| _ Cn ‘EO N Q(:‘Ca QCn’I”)| c

—= = < 2M(1g,)(x). O
r>dist(z,Qo) 7 |Q(:L‘,20n7")| r>dist(2,Q0) T |Q(.’E,26n7")| n ’

8.1. Weak A, weights. Let us recall the definition of the weak Ay, classes. The Fujii—
Wilson type characterization of these weights was studied in detail in [1] but earlier they have
appeared in other forms in the study of e.g. weighted norm inequalities [39] and elliptic partial
differential equations and quantitative rectifiability; see e.g. [23] and references therein.

Definition 8.2. Suppose that v > 1. We say that a weight w belongs to the v-weak Ao class
AL if there exist positive constants C,§ > 0 such that
|E|

mmgc<@QZM@ (8.3

for any cube @ and any measurable subset E C @, where 7@ is the cube of side length v4(Q)
with the same center point as Q.
18



We denote AYe2K = U, >1 AL, Tt was shown in [1] that this definition does not give us
a continuum of different weak A, classes but the dilation parameter « is irrelevant for the
structure of the class as long as v > 1:

Theorem 8.4 ([1]). We have

i) Ao C Al for every v > 1;
i) AL = AY for every v > 1;
iii) w € A% if and only if for every A > 1 there ewists a constant [w]Aéo such that

/ M(1gw) < [w] 4, w(AQ)
Q

for every cube Q.

8.2. Examples and some properties of C, weights. Let us then gather some known
results from the literature and consider some other examples and properties of C), weights.

i) From A, theory, (8.3), Lemma 8.1, [1] and Theorem 9.2, it follows that for 1 < p <
q < oo we have

k
AlgApgAquoogAgfa GCC GG GO

ii) If follows easily from the argument in [1, Example 3.2] that A¥®® contains all non-
negative functions that are monotonic in each variable. By i), all these functions are
also contained in C), for every p. In particular, C), weights are generally non-doubling.

iii) If w € C) is a doubling weight such that w(Q) < 2Pw(Q), where @ is the concentric

dilation of @ with ¢(Q) = 24(Q), then w € A |3, Section 7.

iv) If w € Ao, then wljg ) € O for every 1 < p < oo [36].

v) More generally, if w € As and g is a convezely contoured weight (i.e. a weight such
that {z € R™: g(x) < a} is a convex set for every a > 0), then wg € C), for every
1 < p < o [3, Proposition 7.3|.

vi) If w is a compactly supported weight, then w ¢ C, for any p. It is straightforward to
prove this. Let us denote P := suppw. For every k € N, let P, be a cube such that
P C Py and |P;| > 2¥|P|. Now, for E = P, we have

/ (M1p,)Pw = / (M1p,)Pw = / w = w(P) € (0,00)
n P P
for every k since w is locally integrable. However,

() = Gl) o ke

for every ¢ > 0. Thus, there do not exist constants C' and ¢ such that (1.2) holds for
every cube Q). This argument also proves that if w € C,, then w ¢ L1 (R™).

vii) Even though C), weights cannot have compact support, their support can have arbi-
trarily small measure. Indeed, suppose that w € Ao, and P = |32, [10%,10% + 2%]
Then |P| =1 but P is unbounded. We set v(z) = w(x)1lp(x).

o If w(z) = z*, then [p M(1g)*v = oo for every cube Q and thus, v € Cs.
e If w(x) =1, then w is integrable and, by vi), w ¢ C, for any p.
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viii) Suppose that w is a weight such that w(z) > a > 0 for every z € R" \ A, where A is
a bounded set. Since M(1g) ¢ L!(dz) for any cube @, we have

M(1g)w = a M(1q) =
Rn R\ A

and thus, w € C.

8.3. Weak (), and dyadic (). Let us then consider two generalizations of the C), class.
Suppose that v > 1. We write
i) we C9 if w satisfies condition (1.2) for all @ € Z instead of all cubes;
i) we Cg , if w satisfies condition (1.2) for 1,¢ instead of 1¢, and all cubes Q;
iii) w e Cy* if w € |Jys, Cp-
We also define AZ similarly as C}'? .

Usually, these types of generalizations genuinely weaken the objects in question. For ex-
ample, in the case of A, we already saw that A, is a proper subset of AY* and since
Lio,00) € AZ we also have Ay, € AZ. However, because of the non-local nature of the C,
condition, these generalizations for C), classes just end up giving us back C):

Proposition 8.5. We have C), = ng =Cy = pre“k for every v > 1.

Proof. The inclusions
C,CCy and C,CC)cCCyek
are obvious and
Cp D Cy D Cye*
follow from Lemma 8.1. Thus, we only need to show that Cp9 C Cp.
Suppose that w € C'p@ and let @ C R" be any cube and F C () a measurable set. There

exists 2" dyadic cubes @; € Z and a uniformly bounded constant o > 1 such that

1) the cubes Q; are pairwise disjoint,

2) U(Q:i) = U(Q),

3) Q CUle COzQ.
Applying the 09 property to the sets (); N E and Lemma 8.1 to M (1,0) gives us

- uena)<c ¥ (M) [ oner
<3 (i) f Moore

< cz“(lg;)/ (M1g)Pw. 0

9. C’p AND KAHANPAA-MEJLBRO COUNTEREXAMPLE REVISITED

This last section is devoted to the counterexample constructed by Kahanpda and Mejlbro
in [27] and the Cy classes introduced by Lerner in [29]. These classes are generalizations of
C) classes that depend on a Young function 1 instead of p. Because of the limited avail-
ability of |27], and for convenience of the reader, we give a self-contained description of their
counterexample.
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We give a detailed proof of the failure of the self-improving properties of C), classes and
generalize this also to the context of Cy for a carefully chosen 1. Although we use many
central ideas of Kahanpéaa and Mejlbro, the proof we present here is different from the one
given in [27]. In particular, we avoid using the explicit Hilbert transform estimates that had
a key role in [27] and our techniques allow us to consider dimensions higher than 1.

Let us start by recalling the central results and objects.

9.1. The Kahanpidi—Mejlbro weights. As we mentioned earlier, Muckenhoupt’s conjec-
ture would be trivially true if every C, weight was self-improving with respect to p. Unfortu-
nately, this is not true due to a construction by Kahanpaa and Mejlbro. For every k € Z, let
us denote

1 1
Iy = [4k — 3,4k —1] and Q= [4k — 5hu 4k + Sl

where ¢ € (0,1] are numbers such that infgez ¢ = 0. Let also hjy be numbers such that
0 < hg < N for every k € Z and some universal constant N. We define the weight w as

w:th+thlgk. (9.1)

k€EZ keZ

We note that in [27], the sum in the definition of w was indexed as k > 0. Here we write
k € Z because of symmetry and because this way it is easier to generalize the constructions
to higher dimensions.

Theorem 9.2 (|27, Theorem 11, Proposition 12|). Let p > 1. For suitable choices of the
numbers hy, the weight w satisfies w € Cp, and w ¢ Cpi. for any € > 0. In particular,

Co\ | Cq #0. (9.3)

q>p

The property (9.3) can also be seen as a corollary of Theorem 9.11 a).

9.2. The Cy classes of Lerner. The classes Cy, were introduced by Lerner in [29] as inter-
mediate classes between C), and C; for ¢ > p > 1 and a new way to attack Muckenhoupt’s
conjecture. To be more precise, we define generalizations of C), classes that depend on a Young
function 1 instead of p. As we will see, the choice of the function v affects the structure of
the class in a significant way.

Let 9 be a function defined on [0, 1]. We denote w € Cy, if there exist constants Cy,, e, > 0
such that for every cube ) and measurable ¥ C () we have

|E]

w(E) < Cy (@')5“’ /Rn Y(Mlg)w. (9.4)

Without loss of generality, we may assume that C,, > 1.

Example 9.5. If we choose the function % in a suitable way, we recover classes that we have
considered earlier:
o Let ¢p(t) =P, for 1 < p < oo. Then Cy, = C.
e Let Yoo = 1g13. Then we have ¢ (M1g) = 1g and thus, Cy,, = Aoc.
e Let 0 <a < 1and 1, = 1jg;. Then we have ,(M1g) = 1¢,q for some constant
Cy > 1 and thus, Cy, = A¥eak,

For the rest of the paper, we consider a Uy, class with a carefully chosen v:
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Definition 9.6. Let p > 1. We set 5:0 = Cy, for the function ¢, such that ¢,(0) = 0 and
e

log®(1+1)

For notational convenience, we also set ¢, (t) = ¢,(1) for every t > 1. It is straightforward

to check that the function ¢, satisfies the following properties:

(1) lim; 0 Sop(t) =0 and 907’(1) - h)g%Z > 1,

(2) both ¢, and t — t~1p,(t) are increasing functions,
(3) ¢p(2t) < Cpp(t) for some C > 0 and all t > 0 (and thus, p,(At) < Chrpp(t) for any
A>1andt>0),
1
@) [y ootz < 0.
The key property of 51, is that |

©op(t) t € (0,1].

7>p Cq C 6}; and we have

weCy = [IMfllow) SIM fllirw = weGCy, (9.7)

where M?* is the sharp maximal operator of Fefferman and Stein [16]. The implications (9.7)
were first proven by Yabuta [44, Theorem 1, Theorem 2| for w € | 4>p Cq and then improved
by Lerner [29, Theorem 6.1] to this form. By [29, Remark 6.2] and [5, Subsection 1.5, we know

that this result also gives us (1.1) for e.g. Calderén-Zygmund operators and every w € Cp,.

Theorem 9.8 (|29, Remark 6.2],[5, Subsection 1.5]). In any dimension, we have: If w € ép
then (1.1) holds for Calderén—Zygmund operators.

9.3. The Kahanpidi—Mejlbro weights and @,. Since @, (t) S tP for all ¢ € [0, 1], we have

ép C Cp. On the other hand, since t? S ¢,(t) for every ¢ > p, we have C; C C), for any ¢ > p.
Thus, for any p > 1, we have

Uc=UCp-cCpca, (9.9)
q>p e>0
This raises a natural question: Are these inclusions strict? If the first one is not, we get a self-
improving property for C), weights. If the second one is not, we have solved Muckenhoupt’s
conjecture. Unfortunately, we will next show that 5’p \UyspCq # 0 and Cp \ ép # (). This
does not prove or disprove Muckenhoupt’s conjecture but it is one step closer to understanding
the solution.
Our main tool for proving that the inclusions in (9.9) are strict in dimension one is the
following generalization of Kahanpaa—Mejlbro techniques:

Theorem 9.10. Let 1 < p < 0o and let w be a weight as in (9.1).
i) If w e Cp, then hy, < ()P~ L
i) If hi, = (Lg)P, then w € C,.
i) If we Cp, then hy < f(f’“ op(t) %
iv) If hy = %}f’“), then w € (~7p.

In i) and iii) we mean that the inequality holds for all £ with implicit constant independent
of k. One can also prove similar statements as iii) and iv) for the more general class Cy,
assuming that ¢ satisfies certain conditions, but for the sake of simplicity we only consider
the class C).
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Before giving the proof of Theorem 9.10, we use the theorem to prove the strictness of the
inclusions:

Theorem 9.11. We have

a) Cp\ ép #0, _
b) Uex0Cpie C Cp.

=

Proof. We construct weights w of the type (9.1) and then use Theorem 9.10 to prove the
claims.

a) Let us set hy = (£,)P~! for every k € Z. By part ii) of Theorem 9.10, we know that

w € Cp. Let us then use part iii) of Theorem 9.10 to show that w ¢ ép. It is enough

to show that . .
. fo @p(s)?g

inf B 0.
0<t<1 tP—

This can be seen easily by computing the limit as ¢t — 07: by L’Hopital’s rule and the
Fundamental theorem of calculus, we have
t ds _9
S$)% t)t 1 t
lim fo ©p( )32 — lim ©p(t) _ lim ©p(t)
t»ot  tpl t»o+ (p— 1)tP=2  p—1t50+ tP
Thus, by part iii) of Theorem 9.10, w ¢ C~'p.
b) Let us set

eplle) (i
=== =15 —.
k log®(1+ 7)
for every k € Z. By part iv) of Theorem 9.10, we know that w € 61;. We then use
part i) of Theorem 9.10 to show that w ¢ Cp,. for any € > 0. To see this, we prove

tp-i—a— 1

nf .
0ct<1 op(t)t1

As in the previous case, we show this by computing the limit as ¢t — 07. We get

tp+€*1 1 + t 9
lim —— = lim 1 2(—):1‘ # (log(1 + 1) — log(t))* = 0,
et op(t)t—1 wetiiliad t Bare (log(1 +¢) — log(t))
since 2% log(z) — 0 as © — 0T for any a > 0. Thus, by part i) of Theorem 9.10,
w & Cpye. for any € > 0. O

From Theorem 9.8 we know that ép is sufficient for (1.1), but from Theorem 9.11 b) there
exists a weight w € Cp \ Ue>0Cpe. In particular:

Corollary 9.12. The condition Cp. is not necessary for (1.1) to hold for Calderon-Zygmund
operators.

The following counterpart of [27, Proposition 8] will be useful for us in the proof of Theo-
rem 9.10.

Lemma 9.13. Let p > 1 and w € 6'p. Then there exists a constant C' = C 4, > 0 such that
for any cube @ we have

/ op(Mlg)w < C op(M1g)w.
R™ R™\Q
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The constant C depends on ¢, and w.

1
Proof. Let us fix a cube @ and set o = (2¢p(1)Cy,) 7w, where C,, and ¢, are the constants in

the definition of C~‘p = Cy, (9.4). Notice that o > 1. Now applying the @, condition for a@Q
and @ gives us

Qe _ 1
w(Q) = (i) JRr 2o /R ep(M1ag)w
1 1

since M1,9 =1 on @ and ¢,(1) > 1. In particular,

1
w(Q) < / p(M1ag)w.
ep(1) Jrmg " ?
Thus,
/ ep(M1g)w = pp(1)w(Q) +/ ep(M1g)w
n Rn\Q
< / (Pp(MlaQ)w+/ (pp(MlQ>w
4)
<[ ecadigut [ pMigu
R\Q R™M@Q
B)
< Cy @p(MlQ)u%
R™\Q
where we used (A) Lemma 8.1 and the fact that ¢, is increasing, and (B) the doubling property
of ¢p. g
Remark 9.14. If w € C), one can prove with almost the same proof as above that
/ (M1g)Pw < C (M1g)Pw.

Proof of Theorem 9.10. Let us fix an interval I and a subset £ C I. We denote A := |J,, I.
It is straightforward to check that for almost every x € A and every r > 0 we have

AN (z —r,x+7r)| > car, (9.15)
for a uniformly bounded constant c4 > 0.

i) Suppose that w € C,. Notice that by the definition of the weight w, we have hyf =
w(Q). To simplify the notation, we only consider the case kK = 0 and denote h = hy,
0= {}; and Qp = Q. Now applying the C, condition for the set 2 = [—%6, %E] gives us

(4)
h=w() < /(Mlg)pw <C (M1g)Pw =C (M1g(x))Pw(z)dz
R R\Q |z|>£

(B) 2N J\r

= sup w(x) dx
2 >1 <J9x |/ ) (@)

©

<c, <@>pdx < Cpep/ 2| 7P dz < C,tP,
|z|>1 ’JZ‘ |z|>1
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ii)

where we used (A) Remark 9.14, (B) the fact that w(x) = 0 for every x such that

£ < |z| < 1, and (C) for |z| > 1 we have |J| > |z| for every interval J such that
QnNJ#(. Thus, we have h < P71,
Suppose then that hy, = (£;)P~1. We want to show that there exist constants C' > 0

and € > 0 such that they are independent of I and E and

w(E) < C’<||EI||)E/R(M11)pw.

Naturally, we may assume that w(I) > 0. We split the proof into two cases, depending
on the interaction between I and the support of w.

Case 1: [INA| > 0. By (9.15), we know that there exists a point zgp € I N A such
that

}Aﬂ(q:o— ||, zo + |I|)’ > cqlll.

See Figure 1 for this case.

——

[ | [ Fopeen- R T 1\ [ | ]
r 1 T | g T I r 1 1
—_—— N e —
kal Ik Ik+1

(o—|I],zo+[1])

FIGURE 1. Case 1: [INA| > 0.

Thus, since 14 < w < 1 a.e. and it holds that (xg — |I|, zo + |I]) C 31, we have

L |F
fw(E)S\E|§0A1H‘Aﬁ(a:0—\f\,xo+I])‘
1 |E E
< cA1|I|w(3I) < CA’p|I| (M17)Pw,
11 | Jr

where we used Lemma 8.1 in the last inequality.

Case 2: [INA| = 0. In this case, we only have exactly one kg € Z such that
INQy, # 0. Let us consider two subcases.

Case 2a: |I| < |Q,|. In this case, we know that w < (¢,)P~! on E N Qy,. Thus,
we get

_ _ R
WE) < (64" 1 | < (b E| = (6, 919

Since I NQ, # 0 and |I] < |Q, |, there exists IC Q, such that I C3Iand|I|=]I|.
See Figure 2.
Thus, we have

/]R(Mll)pw = /T(le)pw 2 hag I = (Lo )P 1. (9.17)
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I vV
Iy, —— Trg+1
Ekq

FIGURE 2. Case 2a: [INA| =0, |I]| < [Q,]-

Combining (9.16) and (9.17) then gives us
|E|

(Ml;)pw

which is what we wanted.
Case 2b: |I| > |Qy,|. In this case, we have obviously Q, C 3I. See Figure 3.

e
e
-
e
—

Iy Qg Tng+1

FIGURE 3. Case 2b: [INA| =0, |I] > |Q,].

Let = be the center of I. Since w =1 on Ij,41 and |[I| < |Ix,4+1| = 2, we have

/M 1; pw>/( 1] )pw>/ (|—I|)pw
1] + |z — ] Iign N+ |z — 2]

1
it [ () z G
Ik0+1 | k0+1’

Since £y, = |Q,| < |I|, we also have
12]
1]

Combining these two estimates gives us what we wanted. This completes the proof of

part ii).
iii) The proof of part iii) is similar to the proof of part i). We use the same notation as in

the proof of part i). Using Lemma 9.13, the facts that ¢, is increasing and doubling
and that |Q| = ¢, we get

w(B) = (0"~ Qg N B| < Q[P E] < [TPTHE| = 1P

he = w(Q) < C / e(Miyw<C [ o) (Mig())w()de
R |x|>2

14 © 0 ¢ dx
< — < _ — -
<C . (pp<‘$|> dr < C/l <pp<x> dx CE/O op(x) ok

where we used integration by substitution in the last step.
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iv) We argue as in the proof of ii). The cases 1 and 2a are essentially the same, since the
value of hi does not really play a role in these cases. Let us prove the case 2b. We get

1] / 7]
M1)w > (—) > <—>
Loeoriw= [ =) o P\ e —ar)®
1] 1|
2/ ‘Pp<2|l |) = 90p(z> > pr(lf\),
Tig+1 ko+1 Tig+1

since ¢, is increasing and doubling and w = 1 a.e. on Ij,1. Also, we have

©p (Lo ) 2p(IQol) | 1 O (1] £
w(B) = %0, g < Sl g 0 e 1py gt
o |k | 1| 1|
where we used the fact that ¢ — %’T(t) is an increasing function in (*). This finishes
the proof. ]

9.4. Kahanpidi—Mejlbro weights in higher dimensions. Although the definition of 5p
makes sense in every dimension, the proof of Theorem 9.11 works only in dimension one
since it relies on the one-dimensional construction of Kahanpéda—Mejlbro weights and their
properties. In this section, we explain how the construction and the the proofs of Theorem
9.10 and Theorem 9.11 can be generalized for higher dimensions.

For a point = (z1,...,z,) € R” and r > 0, we let Q(x,r) be the (closed) cube centered
at x with side length 27:

Qz,r) =[x —ryx1+7] X ... X [2f — 7y 20 + 7).
Let us construct the n-dimensional analogue of the set A from the proof of Theorem 9.10. For
every m = (my,...,my) € Z", we set
Ry, = Q(4m —2,1) = [4my — 3,4m; — 1] x ... X [dm,, — 3,4m,, — 1].

We now use the cubes R, similarly as the intervals I}, and set A = J,,czn Rm.

Lemma 9.18. There exists a constant cq > 0 such that, for every x € A and r > 0,

|[ANQ(z,7)| > car™. (9.19)
Proof. Let us fix z € A and 0 < r < 0co. Then z lies inside exactly one of the cubes R,,. Let
us denote this cube by Q.

e Suppose that 0 < r < 2. Let us break Q(z,r) into 2" subcubes of side length r. Since
x € Qo and £(Qp) = 2 > r, at least one of the subcubes has to lie inside Q. Let us
denote this subcube by P. Thus,

AN Q)] > Qo N Q7| > |P| = 1"

e Suppose that 24+ 45 <r <2+ 4(j + 1) for some j > 0. There are at least (2j + 1)"
cubes R, contained in Q(z,r). Since each of these cubes has measure 2", we get

. (45 +2)" (45 4+ 2)" 1\"
AN >2j+1)2" =" > = = " O
Let us then construct the n-dimensional weights. For every m € Z", let £, be a number
such that 0 < ¢,,, < 1 and inf,, 4,,, = 0. We set

P, =0Q (4m, €m> = [4m1 — %,47711 +

2

bm
2

b, b,
dmg, — —.,dmy, + — |,
}x x[m 5 m—|—2}
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4 O O ] O o
R R, R, Rz,

0t O ] P(0,0) ] O
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8+ o ] O O o

FIGURE 4. The cubes R, (in red) and P,, (in blue) in R?, with m = (mq, ms),

for ¢, = ﬁ Each R,, has side length 2 and P, has sidelength £,,.

for every m € Z. Thus, we have ¢(P,;,) = £,,. See Figure 4 for a visual description of the sets
A and P, in dimension 2. Now we can define the Kahanpdi—Mejlbro weight w in an obvious
way as

w=1a+ > hmlp,, (9.20)
mezLm™

where h,,, are numbers such that 0 < h,, < N for every m € Z" for a uniformly bounded
constant N. Naturally, these weights share a lot of properties with their 1-dimensional coun-
terparts but because of the dimension, we have to make some modifications.

An analogue of Theorem 9.10 holds for these n-dimensional weights in the following form:

Theorem 9.21. Let w a weight as in (9.20).

i) Ifw e Cp, then hy < (£y)™P1).
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ii) If hyp = (b)Y, then w € C,.
i) If w € Cp, then hu < ™" (1) %.
iv) If hy, = Le(fm, then w € ép.

The correct exponent is now n(p — 1) instead of p — 1 because |Py,| = (£,)".

The proof of this theorem is essentially the same as in the 1-dimensional case. Since
Lemma 9.13 holds in any dimension, the proofs of i) and iii) work also in any dimension. Parts
ii) and iv) also hold because of (9.19) and there are no more cases than the 1-dimensional
cases 1, 2a and 2b. The rest of the computations are essentially the same as before.

With the help of Theorem 9.21, it is straightforward to generalize Theorem 9.11 for higher
dimensions:

Theorem 9.22. In any dimension, we have

a) Cp\ ép #0, _
b) Ues0Cpie € Cp.

In particular, the condition Cpy. is not necessary for (1.1) to hold for Calderon-Zygmund
operators.
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