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XIAOTAO SUN

Abstract. This survey is based on my lectures given in last a few
years. As a reference, constructions of moduli spaces of parabolic
sheaves and generalized parabolic sheaves are provided. By a re-
finement of the proof of vanishing theorem, we show, without using
vanishing theorem, a new observation that dimH0(UC ,ΘUC ) is in-
dependent of all of the choices for any smooth curves. The estimate
of various codimension and computation of canonical line bundle of
moduli space of generalized parabolic sheaves on a reducible curve
are provided in Section 6, which is completely new.

1. Introduction

Let C be a smooth projective curve of genus g, Q be the quotient
scheme of quotients V ⊗OC(−N) → E → 0 with

χ(E) = χ = d+ r(1− g)

and let V ⊗OC×Q(−N) → F → 0 (where V = CP (N)) be the universal
quotient on C ×Q. There is an SL(V )-equivariant embeding

Q ↪→ G = GrassP (m)(V ⊗ H0(OC(m−N))),

and the GIT quotient UC = Qss//SL(V ) respecting to the polarization

ΘQss := detRπQss(F)−k ⊗ det(Fy)
kχ
r

(where Fy = F|{y}×Q) is the so called moduli space of semi-stable
rank r vector bundles of degree d on C. When r|kχ, ΘQss descends
to an ample line bundle ΘUC

on UC . When r = 1, the sections s ∈
H0(UC ,ΘUC

) are nothing but the classical theta functions of order
k and dimH0(UC ,ΘUC

) = kg.
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When r > 1, the sections s ∈ H0(UC ,ΘUC
) are so called general-

ized theta functions of order k on UC . It is clearly a very interest-
ing question for mathematicians to find a formula of dimH0(UC ,ΘUC

),
which however was only predicted by Conformal Field Theory, the
so called Verlinde formula. For example, when r = 2,

dimH0(UC ,ΘUC
) =

(
k

2

)g (
k + 2

2

)g−1 k∑
i=0

(−1)id

(sin (i+1)π
k+2

)2g−2
.

According to [1], there are two kinds of approaches for the proof of
Verlinde formula: Infinite-dimensional approaches and finite-dimensional
approaches (see [1] for an account). Infinite-dimensional appeoach is
close to physics, which works for any group G, but the geometry behind
it is unclear (at least to me). Finite-dimensional approach depends on
well understand of geometry of moduli spaces, but it works only for
r = 2 (as far as I know).

One of the finite-dimensional approaches is to consider a flat family
of projective curves X → T such that a fiber Xt0 := X (t0 ∈ T ) is
a connected curve with only one node x0 ∈ X and Xt (t ∈ T \ {t0})
are smooth curves with a fiber Xt1 = C (t1 ̸= t0). Then one can
associate a family of moduli spaces M → T and a line bundle Θ on
M such that each fiber Mt = UXt is the moduli space of semi-stable
torsion free sheaves on Xt and Θ|Mt = ΘUXt

. By degenerating C to an
irreducible X, there are two steps to establish a recurrence relation of
Dg(r, d, k) = dimH0(UC ,ΘUC

) in term of g (the genus of C):

(1) (Invariance) dimH0(UXt ,ΘUXt
) are independent of t ∈ T ;

(2) (Factorization) Let π : X̃ → X be the normalization of X, then

H0(UX ,ΘUX
) ∼=

⊕
µ

H0(Uµ

X̃
,ΘUµ

X̃
),

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 ≤ k−1,

Uµ

X̃
are moduli spaces of semi-stable parabolic bundles on X̃

with parabolic structure at xi ∈ π−1(x0) = {x1, x2} determined

by µ and X̃ has genus g(X̃) = g − 1.

In order to carry throught the induction on g, one has to start with
moduli spaces UXt = UXt(r, d, ω) of semistable parabolic torsion free
sheaves E on Xt of rank r and deg(E) = d with parabolic structures of
type {n⃗(x)}x∈I and weights {a⃗(x)}x∈I at smooth points {x}x∈I ⊂ Xt,
where ω = (k, {n⃗(x), a⃗(x)}x∈I) denote the parabolic data. In [9], the
factorization theorem as above (2) was proved for UX = UX(r, d, ω).
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Let UC = UC(r, d, ω) be the moduli space of semi-stable parabolic
bundles of rank r and degree d on C with parabolic structures of type
{n⃗(x)}x∈I and weights {a⃗(x)}x∈I at a finite set I ⊂ C of points, and

Dg(r, d, ω) = dimH0(UC ,ΘUC
).

If the invariance property that dimH0(UC ,ΘUC
) is independent of C

and choices of points x ∈ I holds (for example, if H1(UXt ,ΘUXt
) = 0),

we will have the following recurrence relation

Dg(r, d, ω) =
∑
µ

Dg−1(r, d, ω
µ)(1.1)

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 < k and

ωµ = (k, {n⃗(x), a⃗(x)}x∈I∪{x1,x2})
with n⃗(xi), a⃗(xi) (i = 1, 2) determined by µ. A vanishing theorem

H1(UXt ,ΘUXt
) = 0

was proved in [9] when (r − 1)(g − 1) + |I|
k

≥ 2, which implies the
invariance property for g ≥ 3.

The recurrence relation (1.1) decreases the genus g, but it increases
the number |I| of parabolic points. By degenerating C to an reducible
X = X1 ∪ X2, we can establish a recurrence relation for the number
of parabolic points if we can prove the invariance property (1) and a
factorization (2). In [10], we proved the factorization theorem

H0(UX1∪X2 ,ΘUX1∪X2
) ∼=

⊕
µ

H0(Uµ
X1
,ΘUµ

X1
)⊗H0(Uµ

X2
,ΘUµ

X2
)

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 < k. If

H1(UX ,ΘUX
) = 0

holds for X = X1 ∪X2, fix a partition I = I1 ∪ I2, we have

Dg(r, d.ω) =
∑
µ

Dg1(r, d
µ
1 , ω

µ
1 ) ·Dg2(r, d

µ
2 , ω

µ
2 ), g1 + g2 = g(1.2)

where dµ1 + dµ2 = d, ωµj = (k, {n⃗(x), a⃗(x)}x∈Ij∪{xj}) (j = 1, 2).

For a projective variety M̂ with an ample line bundle L̂, if a reductive
group G acts on M̂ with respect to the polarization L̂ and assume that
L̂ descends to a line bundle L on GIT quotient M = M̂ ss(L̂)//G, then

H i(M,L) = H i(M̂ ss(L̂), L̂)inv..

If there is another G-variety Ŷ with an G-morphism p : Ŷ → M̂ such
that H i(M̂, L̂)inv. = H i(Ŷ , p∗L̂)inv., we would be able to show the van-
ishing theorem H i(M,L) = 0 by assuming the following statements:
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(i) There are line bundles L̂1, L̂2 on Ŷ such that p∗L̂ = ωŶ⊗L̂1⊗L̂2

(where ωŶ is the canonical line bundle of Ŷ) and L̂1, L̂2 descend

to ample line bundles L1, L2 on GIT quotient Y = Ŷss(L̂1)//G;

(ii) If ψ : Ŷss(L̂1) → Y is quotient map, ωY = (ψ∗ωŶss(L̂1)
)G;

(iii) H i(M̂, L̂)inv. = H i(M̂ ss(L̂), L̂)inv. and

H i(Ŷ , p∗L̂)inv. = H i(Ŷss(L̂1), p
∗L̂)inv..

The above statements imply H i(M,L) = H i(Y , ωY ⊗ L1 ⊗ L2), then
Kodaira-type vanishing theorem for Y do the job. To establish (i), (ii)
and (iii), one has to compute canonical bundle and singularities of the
moduli spaces, to estimate codimensions of

Ŷss(L̂1) \ Ŷs(L̂1), M̂ \ M̂ss(L̂), Ŷ \ Ŷss(L̂1),

which were done in [9] for moduli spaces of parabolic bundles and
generalized parabolic sheaves on an irreducible smooth curve, so that
H1(UX ,ΘUX

) = 0 was only proved for the irreducible nodal curve X of
genus g ≥ 3 in [9]. If H1(UX ,ΘUX

) = 0 holds for both irreducible X
and reducible X of arbitrary genus, the numbers Dg(r, d, ω) will satisfy
the recurrence relation (1.1) and (1.2) which will imply a formula of
Dg(r, d, ω). However, the vanishing theorem for reducible curve X
remains open.

In this survey article, we provide a detail construction of various
moduli spaces in Section 2. The theta line bundles ΘUX

and the two
factorization theorems are reviewed in Section 3. We review firstly
the proof of vanishing theorem for smooth curves of g ≥ 2, then we
show, without using the vanishing of H1(UC ,ΘUC

), that the invariance
property of dimH0(UC ,ΘUC

) holds for any smooth curve of genus g ≥
0 in Section 4 (see Corollary 4.8). Section 5 contains the review of
vanishing theorem for irreducible node curves. Section 6 is an attempt
to prove, using the same method of Section 5, the vanishing theorem
H1(UX ,ΘUX

) = 0 for reducible curve X = X1 ∪X2.

2. Construction of moduli spaces

Let X be an irreducible projective curve of genus g over an alge-
braically closed field of characteristic zero, which has at most one node
x0. Let I be a finite set of smooth points of X, and E be a coherent
sheaf of rank r and degree d on X (the rank r(E) is defined to be
dimension of Eξ at generic point ξ ∈ X, and d = χ(E)− r(1− g)).
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Definition 2.1. By a quasi-parabolic structure on E at a smooth point
x ∈ X, we mean a choice of flag of quotients

Ex = Qlx+1(E)x � Qlx(E)x � · · · · · · � Q1(E)x � Q0(E)x = 0

of the fibre Ex of E at x (each quotient Qi(E)x � Qi−1(E)x in the flag
is not an isomorphism). If, in addition, a sequence of integers called
the parabolic weights 0 ≤ a1(x) < a2(x) < · · · < alx+1(x) ≤ k are
given, we call that E has a parabolic structure at x.

Notice that, let Fi(E)x := ker{Ex � Qi(E)x}, it is equivalent to
give a flag of subspaces of Ex:

Ex = F0(E)x ⊃ F1(E)x ⊃ · · · ⊃ Flx(E)x ⊃ Flx+1(E)x = 0.

Let ri(x) = dim(Qi(E)x), ni(x) = dim(ker{Qi(E)x � Qi−1(E)x})
(or simply defining ni(x) = ri(x)− ri−1(x)) and

a⃗(x) : = (a1(x), a2(x), · · · , alx+1(x))

n⃗(x) : = (n1(x), n2(x), · · · , nlx+1(x)).

a⃗ (resp., n⃗) denotes the map x 7→ a⃗(x) (resp., x 7→ n⃗(x)).

Definition 2.2. The parabolic Euler characteristic of E is

parχ(E) := χ(E)− 1

k

∑
x∈I

(
alx+1(x)dim(Eτ

x)−
lx+1∑
i=1

ai(x)ni(x)

)
where Eτ ⊂ E is the subsheaf of torsion and Eτ

x = Eτ |{x}.

Definition 2.3. For any subsheaf F ⊂ E, let Qi(E)
F
x ⊂ Qi(E)x be the

image of F , nFi = dim(ker{Qi(E)
F
x � Qi−1(E)

F
x }) and

parχ(F ) := χ(F )− 1

k

∑
x∈I

(
alx+1(x)dim(F τ

x )−
lx+1∑
i=1

ai(x)n
F
i (x)

)
.

Then E is called semistable (resp., stable) for (k, a⃗) if for any nontrivial
subsheaf E ′ ⊂ E such that E/E ′ is torsion free, one has

parχ(E ′) ≤ parχ(E)

r
· r(E ′) (resp., <).

Remark 2.4. Stable parabolic sheaf must be torsion free. If E is
semistable, then E is torsion free outside x ∈ I, the quotient homo-
morphisms in Definition (2.1) injection Eτ

x to Qi(E)x (1 ≤ i ≤ lx)
for any x ∈ I. Moreover, if Eτ

x ̸= 0, we must have a1(x) = 0 and
alx+1(x) = k.
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Fix a line bundle O(1) on X of deg(O(1)) = c, let χ = d+ r(1− g),
P denote the polynomial P (m) = crm + χ, W = O(−N) = O(1)−N

and V = CP (N). Consider the Quot scheme

Quot(V ⊗W , P )(T ) =

{
T -flat quotients V ⊗W → E → 0 over

X × T with χ(Et(m)) = P (m) (∀ t ∈ T )

}
,

and let Q ⊂ Quot(V ⊗W , P ) be the open set

Q(T ) =

{
V ⊗W → E → 0, with R1pT∗(E(N)) = 0 and

V ⊗OT → pT∗E(N) induces an isomorphism

}
.

Choose N large enough so that every semistable parabolic sheaf with
Hilbert polynomial P and parabolic structures of type {n⃗(x)}x∈I with
weights {a⃗(x)}x∈I at points {x}x∈I appears as a quotient corresponding
to a point of Q. Let Q̃ be the closure of Q in the Quot scheme,

V ⊗ W → F → 0 be the universal quotient over X × Q̃ and Fx be

the restrication of F on {x} × Q̃ ∼= Q̃. Let Flagn⃗(x)(Fx) → Q̃ be the
relative flag scheme of locally free quotients of type n⃗(x), and

R = ×Q̃
x∈I

Flagn⃗(x)(Fx) → Q̃

be the product over Q̃. A (closed) point (p, {pr1(x), ..., prlx (x)}x∈I) of R
by definition is given by a point V ⊗W p−→ E → 0 of the Quot scheme,
together with the flags of quotients

{Ex � Qrlx (x)
� Qrlx−1(x) � · · · � Qr2(x) � Qr1(x) � 0}x∈I

where pri(x) : V ⊗W p−→ E → Ex � Qrlx (x)
� · · · � Qri(x).

For large enough m, we have a SL(V )-equivariant embedding

R ↪→ G = GrassP (m)(V ⊗Wm)× Flag,

where Wm = H0(W(m)), and Flag is defined to be

Flag =
∏
x∈I

{Grassr1(x)(V ⊗Wm)× · · · ×Grassrlx (x)(V ⊗Wm)},

which maps a point (p, {pr1(x), ..., prlx (x)}x∈I) =

(V ⊗W p−→ E, {V ⊗W
pr1(x)−−−→ Qr1(x), · · · , V ⊗W

prlx (x)

−−−−→ Qrlx(x)
}x∈I)

of R to the point (g, {gr1(x), ..., grlx (x)}x∈I) =

(V ⊗Wm
g−→ U, {V ⊗Wm

gr1(x)−−−→ Ur1(x), · · · , V ⊗Wm

grlx (x)

−−−−→ Urlx (x)}x∈I)
of G, where g := H0(p(m)), U := H0(E(m)), gri(x) := H0(pri(x)(m)),
Uri(x) := H0(Qri(x)) (i = 1, ..., lx) and ri(x) = dim(Qri(x)).
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Notation 2.5. Given the polarisation (N large enough) on G:

ℓ+ kcN

c(m−N)
×
∏
x∈I

{d1(x), · · · , dlx(x)}

where di(x) = ai+1(x)− ai(x) and ℓ is the rational number satisfying

∑
x∈I

lx∑
i=1

di(x)ri(x) + rℓ = kχ(2.1)

By the general criteria of GIT stability, we have

Proposition 2.6. A point (g, {gr1(x), ..., grlx (x)}x∈I) ∈ G is stable (re-
spectively, semistable) for the action of SL(V ), with respect to the above
polarisation (we refer to this from now on as GIT-stability), iff for all
nontrivial subspaces H ⊂ V we have (with h = dimH)

e(H) :=
ℓ+ kcN

c(m−N)
(hP (m)− P (N)dimg(H ⊗Wm))+

∑
x∈I

lx∑
i=1

di(x)(ri(x)h− P (N)dimgri(x)(H ⊗Wm)) < (≤) 0.

Notation 2.7. Given a point (p, pr1(x), ..., prlx (x)}x∈I) ∈ R, and a sub-

sheaf F of E we denote the image of F in Qri(x) by Q
F
ri(x)

. Similarly,

given a quotient E
T−→ G → 0, set QG

ri(x)
:= Qri(x)/Im(ker(T )).

Lemma 2.8. There existsM1(N) such that for m ≥M1(N) the follow-
ing holds. Suppose (p, {pr(x), pr1(x), ..., prlx (x)}x∈I) ∈ R is a point which

is GIT-semistable then for all quotients E
T−→ G → 0 we have

h0(G(N)) ≥ 1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)
.(2.2)

In particular, V → H0(E(N)) is an isomorphism and E satisfies the
requirements in Remark 2.4.

Proof. The injectivity of V
H0(p(N))−−−−−→ H0(E(N)) is easy to see. Let

H = ker{V H0(p(N))−−−−−→ H0(E(N))
H0(T (N))−−−−−→ H0(G(N))}

and F ⊂ E be the subsheaf generated by H. Since all these F are
in a bounded family, dimg(H ⊗ Wm) = h0(F (m)) = χ(F (m)) and
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gri(x)(H ⊗ Wm) = h0(QF
ri(x)

) (∀ x ∈ I) for m ≥ M ′
1(N). Then, by

Proposition 2.6 (with h = dim(H)), we have

e(H) =(ℓ+ kcN)(rh− r(F )P (N)) + (ℓ+ kcN)P (N)
h− χ(F (N))

c(m−N)

+
∑
x∈I

lx∑
i=1

di(x)
(
ri(x)h− P (N)h0(QF

ri(x)
)
)
.

By using h ≥ P (N)−h0(G(N)), r−r(F ) ≥ r(G) and ri(x)−h0(QF
ri(x)

) ≥
h0(QG

ri(x)
), we get the inequality

h0(G(N)) ≥(ℓ+ kcN)
h− χ(F (N))

k(m−N)c
− e(H)

kP (N)
+

1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)
.

For given N , the set {h− χ(F (N))} is finite since all these F are in a
bounded family. Let χ(N) = min{h− χ(F (N))}. If χ(N) ≥ 0, then

h0(G(N)) ≥ 1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)
− e(H)

kP (N)
.

When χ(N) < 0, let M1(N) > max{M ′
1(N),−χ(N)(ℓ + kcN) + cN}

and m ≥M1(N). Then, since e(H) ≤ 0, we have

h0(G(N)) ≥ 1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)
.

Now we show that V → H0(E(N)) is an isomorphism. To see it
being surjective, it is enough to show that one can choose N such that
H1(E(N)) = 0 for all such E. If H1(E(N)) is nontrivial, then there is
a nontrivial quotient E(N) → L ⊂ ωX by Serre duality, and thus

h0(ωX) ≥ h0(L) ≥ N +B,

where B is a constant independent of E, we choose N such that
H1(E(N)) = 0 for all GIT-semistable points.

Let τ = Tor(E), G = E/τ , note h0(G(N)) = P (N)− h0(τ) and

h0(QG
ri(x)

) = ri(x)− h0(Qτ
ri(x)

),

then the inequality (2.2) becomes

kh0(τ) ≤
∑
x∈I

lx∑
i=1

di(x)h
0(Qτ

ri(x)
) ≤

∑
x∈I

(alx+1(x)− a1(x))h
0(τx)
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which implies the requirements in Remark 2.4. �

Proposition 2.9. Suppose (p, {pr1(x), ..., prlx (x)}x∈I) ∈ R is a point
corresponding to a parabolic sheaf E. Then E is semistable iff for any
nontrivial subsheaf F ⊂ E we have

s(F ) :=
ℓ+ kcN

c(m−N)
(χ(F (N))P (m)− P (N)χ(F (m)))+

∑
x∈I

lx∑
i=1

di(x)(ri(x)χ(F (N))− P (N)h0(QF
ri(x)

)) ≤ 0.

If s(F ) < 0 for any nontrivial F ⊂ E, then E is stable. Conversely,
if E is stable, then s(F ) < 0 for any nontrivial subsheaf F ⊂ E except
that r(F ) = r, τ := E/F = 0 outside x ∈ I, alx+1(x) − a1(x) = k if
τx ̸= 0, and nF1 (x) = n1(x)−h0(τx), n

F
i (x) = ni(x) (2 ≤ i ≤ lx+1) for

any x ∈ I.

Proof. The point corresonding to a quotient V ⊗W p−→ E → 0 and

{Ex � Qrlx (x)
� Qrlx−1(x) � · · · � Qr2(x) � Qr1(x) � 0}x∈I

pri(x) : V ⊗W p−→ E → Ex � Qrlx (x)
� · · · � Qri(x). For F ⊂ E such

that E/F is torsion free, we have the flags of quotient sheaves

{F � Fx � QF
rlx(x)

� QF
rlx−1(x)

� · · · � QF
r2(x)

� QF
r1(x)

� 0}x∈I

Let nFi (x) = h0(QF
ri(x)

)− h0(QF
ri−1(x)

), notice that

∑
x∈I

lx∑
i=1

di(x)ri(x) = r
∑
x∈I

alx+1(x) +
∑
x∈I

alx+1(x)h
0(Eτ

x)

−
∑
x∈I

lx+1∑
i=1

ai(x)ni(x)

∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
) = r(F )

∑
x∈I

alx+1(x) +
∑
x∈I

alx+1(x)h
0(F τ

x )

−
∑
x∈I

lx+1∑
i=1

ai(x)n
F
i (x),
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χ(F (N))P (m)−P (N)χ(F (m)) = c(m−N)(rχ(F )− r(F )χ(E)), then

s(F ) =

(
rℓ+ rkcN +

∑
x∈I

lx∑
i=1

di(x)ri(x)

)(
χ(F )− r(F )

r
χ(E)

)
+

P (N)

(
r(F )

r

∑
x∈I

lx∑
i=1

di(x)ri(x) −
∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
)

)

=kP (N)

(
parχ((F )− r(F )

r
parχ(E)

)
.

For any nontrivial subsheaf F ⊂ E, let τ be the torsion of E/F
and F ′ ⊂ E such that τ = F ′/F and E/F ′ torsion free. If we write
τ = τ̃ +

∑
x∈I τx, note h

0(τx) + h0(QF
ri(x)

)− h0(QF ′

ri(x)
) ≥ 0, then

s(F )− s(F ′) = −kP (N)h0(τ̃)− P (N)
∑
x∈I

(k − alx+1(x) + a1(x))h
0(τx)

−P (N)
∑
x∈I

lx∑
i=1

di(x)(h
0(τx) + h0(QF

ri(x)
)− h0(QF ′

ri(x)
)) ≤ 0.

If E is stable and s(F ) = 0, it is easy to see that the last requirements
in the proposition are satisfied. �

Proposition 2.10. There exists an integer M1(N) > 0 such that for
m ≥M1(N) the following is true. If a point

(p, {pr1(x), ..., prlx (x)}x∈I) ∈ R

is GIT-stable (respectively, GIT-semistable), then the quotient E is a
stable (respectively, semistable) parabolic sheaf and V → H0(E(N)) is
an isomorphism.

Proof. If (p, {pr1(x), ..., prlx(x)}x∈I) ∈ R is GIT-stable (GIT-semistable),
by Lemma 2.8, V → H0(E(N)) is an isomorphism. For any nontrivial
subsheaf F ⊂ E with E/F torsion free, let H ⊂ V be the inverse image
of H0(F (N)) and h = dim(H), we have (for m > N)

χ(F (N))P (m)− P (N)χ(F (m)) ≤ hP (m)− P (N)h0(F (m))

for m > N (note h1(F (N)) ≥ h1(F (m))). Thus s(F ) ≤ e(H) since

g(H ⊗Wm) ≤ h0(F (m)), gri(x)(H ⊗Wm) ≤ h0(QF
ri(x)

)

(the inequalities are strict when h = 0). By Proposition 2.6 and Propo-
sition 2.9, E is stable (respectively, semistable) if the point is GIT
stable (respectively, GIT semistable). �
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For a semistable parabolic sheaf E of rank r on X, we have, for any

subsheaf F ⊂ E, χ(F ) ≤ χ(E)
r
r(F ) + 2r|I|. The following elementary

lemma should be well-known.

Lemma 2.11. Let E be a coherent sheaf of rank r on X. If

χ(F ) ≤ χ(E)

r
r(F ) + C, ∀ F ⊂ E.

Then, for any F ⊂ E with H1(F ) ̸= 0, we have

h0(F ) ≤ χ(E)

r
(r(F )− 1) + C + r(F )g.

Proof. H1(F ) ̸= 0 means that we have a nontrivial morphism F → ωX .
Let F ′ be the kernel of F → ωX , then h

0(F ) ≤ h0(F ′)+g. If H1(F ′) =

0, we have h0(F ) ≤ χ(F ′)+ g ≤ χ(E)
r

(r(F )−1)+C+ g. If H1(F ′) ̸= 0,
by repeating the arguments to F ′, we get the required inequality. �

Proposition 2.12. There exist integers N > 0 and M2(N) > 0 such
that for m ≥M2(N) the following is true. If a point

(p, {pr1(x), ..., prlx(x)}x∈I) ∈ R

corresponds to a semistable parabolic sheaf E, then the point is GIT-
semistable. Moreover, if E is a stable parabolic sheaf, then the point is
GIT stable except the case alx+1(x)− a1(x) = k.

Proof. There is N1 > 0 such that for any N ≥ N1 the following is

true. For any V ⊗W p−→ E → 0 with semistable parabolic sheaf E, the
induced map V → H0(E(N)) is an isomorphism.

Let H ⊂ V be a nontrivial subspace of dim(H) = h and F ⊂ E be
the sheaf such that F (N) ⊂ E(N) is generated by H. Since all these F
are in a bounded family (for fixed N), dimg(H ⊗Wm) = h0(F (m)) =
χ(F (m)), gri(x)(H ⊗Wm) = h0(QF

ri(x)
) (∀ x ∈ I) for m ≥M ′

1(N) and

e(H) = s(F ) +
ℓ+ kcm

c(m−N)
P (N) (h− χ(F (N))) .

If H1(F (N)) = 0, we have e(H) ≤ s(F ) since h ≤ h0(F (N)). Then
e(H) ≤ s(F ) ≤ 0 by Proposition 2.9 since E is a semistable parabolic
sheaf. If H1(F (N)) ̸= 0, by Lemma 2.11, we have

h0(F (N)) ≤ rcN + χ

r
(r(F )− 1) + r(g + 2|I|).
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Putting h ≤ h0(F (N)) and above inequality in the equality

e(H) =P (N)

(
kh− (ℓ+ kcN)r(F ) + (ℓ+ kcN)

h− χ(F (N))

c(m−N)

)
− P (N)

∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
),

then, let C = k|χ|+ r(g + 2|I|)k + |ℓ|r, we have

e(H) ≤ P (N)

(
−kcN + C + (ℓ+ kcN)

h− χ(F (N))

c(m−N)

)
.

Choose an integer N2 ≥ N1 such that −kcN2+C < −1. Then, for any
fixed N ≥ N2, there is an integer M2(N) such that for m ≥M2(N)

(ℓ+ kcN)
h− χ(F (N))

c(m−N)
< 1

for any H ⊂ V , which implies e(H) < 0 and we are done.
�

Theorem 2.13. There exists a seminormal projective variety

UX := UX(r, d, {k, n⃗(x), a⃗(x)}x∈I),

which is the coarse moduli space of s-equivalence classes of semistable
parabolic sheaves E of rank r and χ(E) = χ = d+r(1−g) with parabolic
structures of type {n⃗(x)}x∈I and weights {a⃗(x)}x∈I at points {x}x∈I . If
X is smooth, then it is normal, with only rational singularities.

Proof. Let Rss ⊂ R be the open set consisting of semistable parabolic
sheaves. UX := UX(r, χ, I, k, a⃗, n⃗) is defined to be the GIT quotient
Rss//SL(V ). The statements about singularities of UX are proved
in [9]. The case alx+1(x) − a1(x) = k can be covered by the same
arguments in [9] where we proved that H is normal with only rational
singularities. �

When X is a reduced projective curve with two smooth irreducible
components X1 and X2 of genus g1 and g2 meeting at only one point
x0 (which is the only node of X), we fix an ample line bundle O(1)
of degree c on X such that deg(O(1)|Xi

) = ci > 0 (i = 1, 2). For any
coherent sheaf E, P (E, n) := χ(E(n)) denotes its Hilbert polynomial,
which has degree 1. We define the rank of E to be

r(E) :=
1

deg(O(1))
· lim
n→∞

P (E, n)

n
.
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Let ri denote the rank of the restriction of E to Xi (i = 1, 2), then

P (E, n) = (c1r1 + c2r2)n+ χ(E), r(E) =
c1

c1 + c2
r1 +

c2
c1 + c2

r2.

We say that E is of rank r on X if r1 = r2 = r, otherwise it will be
said of rank (r1, r2).

Fix a finite set I = I1 ∪ I2 of smooth points on X, where Ii = {x ∈
I |x ∈ Xi} (i = 1, 2), and parabolic data ω = {k, n⃗(x), a⃗(x)}x∈I with

ℓ :=
kχ−

∑
x∈I
∑lx

i=1 di(x)ri(x)

r
(recall di(x) = ai+1(x)−ai(x), ri(x) = n1(x)+· · ·+ni(x)). Then we will
indicate how the same construction gives moduli space of semistable
parabolic sheaves on X (see [10] for details). For simplicity, we only
state the case that alx+1(x)− a1(x) < k (∀x ∈ I).

Definition 2.14. For any coherent sheaf F of rank (r1, r2), let

m(F ) :=
r(F )− r1

k

∑
x∈I1

alx+1(x) +
r(F )− r2

k

∑
x∈I2

alx+1(x),

the modified parabolic Euler characteristic and slop of F are

parχm(F ) := parχ(F ) +m(F ), parµm(F ) :=
parχm(F )

r(F )
.

A parabolic sheaf E is called semistable (resp. stable) if, for any sub-
sheaf F ⊂ E such E/F is torsion free, one has, with the induced
parabolic structure,

parχm(F ) ≤
parχm(E)

r(E)
r(F ) (resp. <).

There is a similar R and a SL(V )-equivariant embedding R ↪→ G.
As the same as Notation 2.5, give the polarization on G:

ℓ+ kcN

c(m−N)
×
∏
x∈I

{d1(x), · · · , dlx(x)}.

Then we have the same Proposition 2.6, Lemma 2.8, Proposition 2.9
and Lemma 2.11. The modification in the proof of Proposition 2.9 is:
for F ⊂ E of rank (r1, r2) such that E/F is torsion free, we have∑

x∈I

lx∑
i=1

di(x)ri(x) = r
∑
x∈I

alx+1(x)−
∑
x∈I

lx+1∑
i=1

ai(x)ni(x),

∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
) = r1

∑
x∈I1

alx+1(x)+r2
∑
x∈I2

alx+1(x)−
∑
x∈I

lx+1∑
i=1

ai(x)n
F
i (x),
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s(F ) = kP (N)

(
parχm((F )−

r(F )

r
parχm(E)

)
.

In particular, we have

Proposition 2.15. There exist integers N > 0 and M2(N) > 0 such
that for m ≥M2(N) the following is true. If a point

(p, {pr1(x), ..., prlx(x)}x∈I) ∈ R
corresponds to a quasi-parabolic sheaf E, then the point is GIT-semistable
(resp. GIT-stable) under the above polarization if and only if E is a
semistable (resp. stable) parabolic sheaf for the weights 0 ≤ a1(x) <
a2(x) < · · · < alx+1(x) < k (∀ x ∈ I).

Theorem 2.16. There exists a reduced, seminormal projective scheme

UX := UX(r, d,O(1), {k, n⃗(x), a⃗(x)}x∈I1∪I2)
which is the coarse moduli space of s-equivalence classes of semistable
parabolic sheaves E of rank r and χ(E) = χ = d + r(1 − g) with
parabolic structures of type {n⃗(x)}x∈I and weights {a⃗(x)}x∈I at points
{x}x∈I . The moduli space UX has at most r+1 irreducible components.

Proof. Let Rss ⊂ R be the open set of semi-stable parabolic sheaves.
UX := UX(r, d,O(1), {k, n⃗(x), a⃗(x)}x∈I1∪I2) is defined to be the GIT
quotient Rss//SL(V ). Let U0

X ⊂ UX be the dense open set of locally
free sheaves. For any E ∈ U0

X , let E1 and E2 be the restrictions of E
to X1 and X2. By the exact sequence

0 → E1(−x0) → E → E2 → 0

and semi-stability of E, we have
c1

c1 + c2
parχm(E) ≤ parχm(E1) ≤

c1
c1 + c2

parχm(E) + r,

c2
c1 + c2

parχm(E) ≤ parχm(E2) ≤
c2

c1 + c2
parχm(E) + r.

For j = 1, 2 and ω = {k, n⃗(x), a⃗(x)}x∈I1∪I2 , let χj = χ(Ej) and

nωj =
1

k

r cj
c1 + c2

ℓ+
∑
x∈Ij

lx∑
i=1

di(x)ri(x)

 .(2.3)

Then the above inequalities can be rewritten as

nω1 ≤ χ1 ≤ nω1 + r, nω2 ≤ χ2 ≤ nω2 + r.(2.4)

There are at most r + 1 possible choices of (χ1, χ2) satisfying (2.4)
and χ1 + χ2 = χ + r, each of the choices corresponds an irreducible
component of UX . �



FACTORIZATION OF GENERALIZED THETA FUNCTIONS REVISITED 15

Remarks 2.17. (1) If nωj (j = 1, 2) are not integers, then there are at
most r irreducible components Uχ1, χ2

X ⊂ UX of UX with

nω1 < χ1 < nω1 + r, nω2 < χ2 < nω2 + r(2.5)

such that the (dense) open set of parabolic bundles E ∈ Uχ1, χ2

X satisfy

χ(E|X1) = χ1, χ(E|X2) = χ2.

For any χ1, χ2 satisfying (2.5), let UX1 (resp. UX2) be the moduli
space of semistable parabolic bundles of rank r and Euler characteris-
tic χ1 (resp. χ2), with parabolic structures of type {n⃗(x)}x∈I1 (resp.
{n⃗(x)}x∈I2) and weights {a⃗(x)}x∈I1 (resp. {a⃗(x)}x∈I2) at points {x}x∈I1
(resp. {x}x∈I2), then Uχ1, χ2

X is not empty if UXj
(j = 1, 2) are not empty

(See Proposition 1.4 of [10]). In fact, Uχ1, χ2

X contains a stable parabolic
bundle if one of UXj

(j = 1, 2) contains a stable parabolic bundle.
(2) Let E ∈ UX , for any nontrivial F ⊂ E of rank (r1, r2) such that

E/F torsion free, we have

kr(F )(parµm(F )− parµm(E))

= kχ(F )−
∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
)− r(F )ℓ,

(2.6)

which implies the following facts: (i) When ℓ = 0, the moduli spaces UX
is independent of the choices of O(1). (ii) When ℓ ̸= 0, we can choose
O(1) such that all the numbers nω1 , n

ω
2 and r(F )ℓ (for all possible

r1 ̸= r2) are not integers (we call such O(1) a generic polarization,
its existence is an easy excise). Then, for any E ∈ UX \ U s

X (i.e. non-
stable sheaf), the sub-sheaf F ⊂ E of rank (r1, r2) with parµm(F ) =
parµm(E) must have r1 = r2.

When X is a connected nodal curve (irreducible or reducible) of

genus g, with only one node x0, let π : X̃ → X be the normalization
and π−1(x0) = {x1, x2}. Then the normalization ϕ : P → UX of UX is

given by moduli space of generalized parabolic sheaves (GPS) on X̃.

Recall that a GPS (E,Q) of rank r on X̃ consists of a sheaf E on X̃,
torsion free of rank r outside {x1, x2} with parabolic structures at the
points of I (we identify I with π−1(I)) and an r-dimensional quotient

Ex1 ⊕ Ex2
q−→ Q→ 0.

The moduli space P consists of semistable (E,Q) with additional
parabolic structures at the points of I (we identify I with π−1(I))
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given by the data ω = (r, χ, {n⃗(x), a⃗(x)}x∈I ,O(1), k) satisfying∑
x∈I

lx∑
i=1

di(x)ri(x) + rℓ̃ = kχ̃

where di(x) = ai+1(x) − ai(x), χ̃ = χ + r, ℓ̃ = k + ℓ and the pullback

π∗O(1) is denoted by Õ(1) (See [9] and [10] for details).

Definition 2.18. A GPS (E,Q) is called semistable (resp., stable), if
for every nontrivial subsheaf E ′ ⊂ E such that E/E ′ is torsion free
outside {x1, x2}, we have, with the induced parabolic structures at
points {x}x∈I ,

parχm(E
′)− dim(QE′

) ≤ r(E ′) · parχm(E)− dim(Q)

r(E)
(resp., <),

where QE′
= q(E ′

x1
⊕ E ′

x2
) ⊂ Q.

WhenX is irreducible, let P̃ denote the polynomial P̃ (m) = crm+χ̃,

W̃ = Õ(−N) = Õ(1)−N and Ṽ = CP̃ (N). Consider the Quot scheme

Quot(Ṽ ⊗ W̃ , P )(T ) =

{
T -flat quotients Ṽ ⊗ W̃ → E → 0 over

X̃ × T with χ(Et(m)) = P̃ (m) (∀ t ∈ T )

}
,

and let Q ⊂ Quot(Ṽ ⊗ W̃ , P ) be the open set

Q(T ) =

{
Ṽ ⊗ W̃ → E → 0, with R1pT∗(E(N)) = 0 and

Ṽ ⊗OT → pT∗E(N) induces an isomorphism

}
.

Let Q̃ be the closure of Q in the Quot scheme, Ṽ ⊗ W̃ → F̃ → 0 be

the universal quotient over X̃ × Q̃ and F̃x be the restriction of F̃ on

{x} × Q̃ ∼= Q̃. Let Flagn⃗(x)(F̃x) → Q̃ be the relative flag scheme of
locally free quotients of type n⃗(x), and

R̃ = ×Q̃
x∈I

Flagn⃗(x)(F̃x) → Q̃, R̃′ = R̃ ×Q̃ Grassr(F̃x1 ⊕ F̃x2).

A (closed) point (p, {pr1(x), ..., prlx (x)}x∈I , qs) of R̃′ by definition is given

by a point Ṽ ⊗ W̃ p−→ E → 0 of the Quot scheme, together with the
flags of quotients

{Ex � Qrlx (x)
� Qrlx−1(x) � · · · � Qr2(x) � Qr1(x) � 0}x∈I

and a r-dimensional quotient Ex1 ⊕ Ex2
q−→ Q → 0, where pri(x) :

Ṽ ⊗ W̃ p−→ E → Ex � Qrlx (x)
� · · · � Qri(x) and qs : Ṽ ⊗ W̃ p−→

E → Ex1 ⊕Ex2
q−→ Q. Choose N large enough so that every semistable
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GPS (E,Q) with χ(E(m)) = P̃ (m) and parabolic structures of type
{n⃗(x)}x∈I with weights {a⃗(x)}x∈I at points {x}x∈I appears as a point

of R̃′. For large enough m, we have a SL(Ṽ )-equivariant embedding

R̃′ ↪→ G′ = GrassP̃ (m)(Ṽ ⊗Wm)× Flag ×Grassr(Ṽ ⊗Wm),

where Wm = H0(W̃(m)), and Flag is defined to be

Flag =
∏
x∈I

{Grassr1(x)(Ṽ ⊗Wm)× · · · ×Grassrlx (x)(Ṽ ⊗Wm)},

which maps a point (p, {pr1(x), ..., prlx (x)}x∈I , qs) = (Ṽ ⊗ W̃ p−→ E,

{Ṽ ⊗ W̃
pr1(x)−−−→ Qr1(x), · · · , Ṽ ⊗ W̃

prlx (x)

−−−−→ Qrlx (x)
}x∈I , Ṽ ⊗ W̃ qs−→ Q)

of R̃′ to the point (g, {gr1(x), ..., grlx (x)}x∈I , gG) = (Ṽ ⊗Wm
g−→ U,

{Ṽ ⊗Wm

gr1(x)−−−→ Ur1(x), · · · , Ṽ ⊗Wm

grlx (x)

−−−−→ Urlx (x)}x∈I , Ṽ ⊗Wm
gG−→ Ur)

of G′, where g := H0(p(m)), U := H0(E(m)), gri(x) := H0(pri(x)(m)),
Uri(x) := H0(Qri(x)) (i = 1, ..., lx), gG := H0(qs(m)), Ur := H0(Q) and
ri(x) = dim(Qri(x)). Given G′ the polarisation

(ℓ+ kcN)

c(m−N)
×
∏
x∈I

{d1(x), · · · , dlx(x)} × k.

Then, by the general criteria of GIT stability, we have

Proposition 2.19. A point (g, {gr1(x), ..., grlx(x)}x∈I , gG) ∈ G′ is stable

(respectively, semistable) for the action of SL(Ṽ ), with respect to the
above polarisation (we refer to this from now on as GIT-stability), iff

for all nontrivial subspaces H ⊂ Ṽ we have (with h = dimH)

e(H) :=
ℓ+ kcN

c(m−N)
(hP̃ (m)− P̃ (N)dimg(H ⊗Wm))+

∑
x∈I

lx∑
i=1

di(x)(ri(x)h− P̃ (N)dimgri(x)(H ⊗Wm))

+ k(rh− P̃ (N)dimgG(H ⊗Wm)) < (≤) 0.

Lemma 2.20. There exists M1(N) such that for m ≥ M1(N) the

following holds. Suppose (p, {pr(x), pr1(x), ..., prlx (x)}x∈I , qs) ∈ R̃′ is GIT-

semistable, then for all quotients E
T−→ G → 0 we have

h0(G(N)) ≥ 1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)
+ h0(QG).
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In particular, Ṽ → H0(E(N)) is an isomorphism and E satisfies
the following conditions: (1) the torsion TorE of E is supported on
{x1, x2} and q : (TorE)x1 ⊕ (TorE)x2 ↪→ Q, (2) if N is large enough,

then H1(E(N)(−x− x1 − x2)) = 0 for all E and x ∈ X̃.

Proof. Let H = ker{Ṽ H0(p(N))−−−−−→ H0(E(N))
H0(T (N))−−−−−→ H0(G(N))} and

F ⊂ E be the subsheaf generated by H. Since all these F are in a
bounded family, there exists an integer M ′

1(N) such that dimg(H ⊗
Wm) = h0(F (m)) = χ(F (m)), gri(x)(H ⊗Wm) = h0(QF

ri(x)
) (∀ x ∈ I)

and dimgG(H⊗Wm) = h0(QF ) for m ≥M ′
1(N). Then, by Proposition

2.19 (with h = dim(H)), we have

e(H) = (ℓ+ kcN)(rh− r(F )P̃ (N)) + (ℓ+ kcN)P̃ (N)
h− χ(F (N))

c(m−N)

+
∑
x∈I

lx∑
i=1

di(x)
(
ri(x)h− P̃ (N)h0(QF

ri(x)
)
)
+ k(rh− P̃ (N)h0(QF )).

By using h ≥ P̃ (N)− h0(G(N)), r− r(F ) ≥ r(G), ri(x)− h0(QF
ri(x)

) ≥
h0(QG

ri(x)
) and r − h0(QF ) ≥ h0(QG), we get the inequality

h0(G(N)) ≥(ℓ+ kcN)
h− χ(F (N))

k(m−N)c
− e(H)

kP̃ (N)
+ h0(QG)+

1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)
.

For given N , the set {h− χ(F (N))} is finite since all these F are in a
bounded family. Let χ(N) = min{h− χ(F (N))}. If χ(N) ≥ 0, then

h0(G(N)) ≥1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)

+ h0(QG)− e(H)

kP̃ (N)
.

When χ(N) < 0, let M1(N) > max{M ′
1(N),−χ(N)(ℓ + kcN) + cN}

and m ≥M1(N). Then, since e(H) ≤ 0, we have

h0(G(N)) ≥ 1

k

(
r(G)(ℓ+ kcN) +

∑
x∈I

lx∑
i=1

di(x)h
0(QG

ri(x)
)

)
+ h0(QG).

Now we show that Ṽ → H0(E(N)) is an isomorphism. The injectiv-

ity of Ṽ
H0(p(N))−−−−−→ H0(E(N)) is easy to see. To see it being surjective,
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it is enough to show that one can choose N such that H1(E(N)) = 0

for all such E. We prove H1(E(N)(−x1 − x2 − x)) = 0 for any x ∈ X̃.
Otherwise, there is a nontrivial quotient E(N) → L ⊂ ωX̃(x1+x2+x)
by Serre duality, and thus

h0(ωX̃(x1 + x2 + x)) ≥ h0(L) ≥ N +B,

where B is a constant independent of E, we choose N such that
H1(E(N)(−x1 − x2 − x)) = 0 for all GIT-semistable points.

Let τ = Tor(E), G = E/τ , note h0(G(N)) = P̃ (N)− h0(τ) and

h0(QG
ri(x)

) = ri(x)− h0(Qτ
ri(x)

), h0(QG) = r − h0(Qτ )

then the inequality in Lemma 2.20 becomes

kh0(τ) ≤ kh0(Qτ ) +
∑
x∈I

lx∑
i=1

di(x)h
0(Qτ

ri(x)
)

≤ kh0(Qτ ) +
∑
x∈I

(alx+1(x)− a1(x))h
0(τx).

Thus τ = Tor(E) is supported on {x1, x2} (since alx+1(x)− a1(x) < k)

and Ex1 ⊕ Ex2
q−→ Q induces injection τx1 ⊕ τx2 ↪→ Q. �

Notation 2.21. Let H ⊂ R̃′ be the subscheme parametrising the

generalised parabolic sheaves E = (E,Ex1 ⊕ Ex2
q−→ Q) satisfying the

conditions (1) and (2) at the end of Lemma 2.20. Then, if R̃′ss (resp.

R̃′s) denotes the open set of R̃′ consisting of the semistable (resp.
stable) GPS, then it is clear that we have open embedding

R̃′ss ↪→ H ↪→ R̃′.

Proposition 2.22. Suppose (p, {pr1(x), ..., prlx (x)}x∈I , qs) ∈ H is a point
corresponding to a GPS (E,Q). Then (E,Q) is stable (resp. semistable)
iff for any nontrivial subsheaf F ⊂ E we have

s(F ) :=
ℓ+ kcN

c(m−N)
(χ(F (N))P̃ (m)− P̃ (N)χ(F (m)))+

∑
x∈I

lx∑
i=1

di(x)(ri(x)χ(F (N))− P̃ (N)h0(QF
ri(x)

))

+ k(rχ(F (N))− P̃ (N)h0(QF )) < (resp. ≤) 0.

Proof. The point corresonding to a quotient Ṽ ⊗ W̃ p−→ E → 0 with

{Ex � Qrlx (x)
� Qrlx−1(x) � · · · � Qr2(x) � Qr1(x) � 0}x∈I
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and Ex1 ⊕Ex2
q−→ Q→ 0, where qs : Ṽ ⊗W̃ → Ex1 ⊕Ex2

q−→ Q→ 0 and

pri(x) : V ⊗W p−→ E → Ex � Qrlx (x)
� · · · � Qri(x). For F ⊂ E such

that E/F is torsion free outside {x1, x2}, we have the flags of quotient
sheaves

{F � Fx � QF
rlx(x)

� QF
rlx−1(x)

� · · · � QF
r2(x)

� QF
r1(x)

� 0}x∈I
Let nFi (x) = h0(QF

ri(x)
)− h0(QF

ri−1(x)
) and F have rank (r1, r2). Then∑

x∈I

lx∑
i=1

di(x)ri(x) = r
∑
x∈I

alx+1(x)−
∑
x∈I

lx+1∑
i=1

ai(x)ni(x)

∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
) = r1

∑
x∈I1

alx+1(x) + r2
∑
x∈I2

alx+1(x)

−
∑
x∈I

lx+1∑
i=1

ai(x)n
F
i (x).

Thus we have

s(F ) = kP̃ (N)


χ(F )− 1

k

∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
)− h0(QF )

− r(F )

r

(
χ(E)− r − 1

k

∑
x∈I

lx∑
i=1

di(x)ri(x)

)


= kP̃ (N)

(
parχm(F )− dim(QF )− r(F )

parχm(E)− dim(Q)

r(E)

)
.

(E,Q) is semi-stable (resp. stable) iff s(F ) ≤ 0 (resp. s(F ) < 0) for
nontrivial F ⊂ E such that E/F torsion free outside {x1, x2}.

For any nontrivial subsheaf F ⊂ E, let τ be the torsion of E/F
and F ′ ⊂ E such that τ = F ′/F and E/F ′ torsion free. If we write
τ = τ̃ + τx1 + τx2 +

∑
x∈I τx, then

s(F )− s(F ′) =− kP̃ (N)h0(τ̃)− P̃ (N)
∑
x∈I

(k − alx+1(x) + a1(x))h
0(τx)

− P̃ (N)
∑
x∈I

lx∑
i=1

di(x)(h
0(τx) + h0(QF

ri(x)
)− h0(QF ′

ri(x)
))

− kP̃ (N)(h0(τx1) + h0(τx2) + h0(QF )− h0(QF ′
)).

Since h0(τx) + h0(QF
ri(x)

)− h0(QF ′

ri(x)
) ≥ 0 and h0(τx1 ⊕ τx2) + h0(QF )−

h0(QF ′
) ≥ 0, we have s(F ) ≤ s(F ′) and s(F ) < s(F ′) if τ̃+

∑
x∈I τx ̸= 0.

Thus stability of (E,Q) implies s(F ) < 0 for any nontrivial F ⊂ E. �
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Proposition 2.23. There exist integers N and M(N) > 0 such that
for m ≥M(N) the following is true. A point

(E,Q) = (p, {pr1(x), ..., prlx (x), qs}x∈I) ∈ R̃′

is GIT-stable (respectively, GIT-semistable) if and only if (E,Q) is a

stable (respectively, semistable) GPS such that Ṽ → H0(E(N)) is an
isomorphism and (p, {pr1(x), ..., prlx (x), qs}x∈I) ∈ H.

Proof. If (p, {pr1(x), ..., prlx (x)}x∈I , qs) ∈ R̃′ is GIT-stable (GIT-semistable),

by Lemma 2.20, Ṽ → H0(E(N)) is an isomorphism and

(p, {pr1(x), ..., prlx (x), qs}x∈I) ∈ H.

For any nontrivial subsheaf F ⊂ E such that E/F is torsion free

outside {x1, x2}, let H ⊂ Ṽ be the inverse image of H0(F (N)) and
h = dim(H), note h1(F (N)) ≥ h1(F (m)) when m > N , we have

χ(F (N))P̃ (m)− P̃ (N)χ(F (m)) ≤ hP̃ (m)− P̃ (N)h0(F (m)).

Thus s(F ) ≤ e(H) since dim g(H ⊗Wm) ≤ h0(F (m)) and

dim gri(x)(H ⊗Wm) ≤ h0(QF
ri(x)

), dim gG(H ⊗Wm) ≤ h0(QF )

(the inequalities are strict when h = 0). By Proposition 2.19 and
Proposition 2.22, (E,Q) is stable (respectively, semistable) if the point
is GIT stable (respectively, GIT semistable).

There is N1 > 0 such that for any N ≥ N1 the following is true. For

any Ṽ ⊗ W̃ p−→ E → 0 with semistable GPS (E,Q), the induced map

Ṽ → H0(E(N)) is an isomorphism and (E,Q) ∈ H.

Let H ⊂ Ṽ be a nontrivial subspace of dim(H) = h and F ⊂ E be
the sheaf such that F (N) ⊂ E(N) is generated by H. Since all these
F are in a bounded family (for fixed N), there is a M1(N) such that

dim g(H⊗Wm) = h0(F (m)) = χ(F (m)), dim gG(H⊗Wm) = h0(QF )

and gri(x)(H ⊗ Wm) = h0(QF
ri(x)

) (∀ x ∈ I) whenever m ≥ M1(N),
which imply that

e(H) = s(F ) +
ℓ+ kcm

c(m−N)
P̃ (N) (h− χ(F (N))) .

If H1(F (N)) = 0, we have e(H) ≤ s(F ) since h ≤ h0(F (N)). Then
e(H) ≤ s(F ) < (resp. ≤) 0 by Proposition 2.22 when (E,Q) is stable
(resp. semistable). If H1(F (N)) ̸= 0, by Lemma 2.11, we have

h0(F (N)) ≤ rcN + χ̃

r
(r(F )− 1) + A
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where A is a constant. Putting h ≤ h0(F (N)) and above inequality in

e(H) =P̃ (N)

(
kh− (ℓ+ kcN)r(F ) + (ℓ+ kcN)

h− χ(F (N))

c(m−N)

)
− P̃ (N)

∑
x∈I

lx∑
i=1

di(x)h
0(QF

ri(x)
)− kP̃ (N)h0(QF ),

then, let C = k|χ|+ (|A|+ |ℓ|)r, we have

e(H) ≤ P̃ (N)

(
−kcN + C + (ℓ+ kcN)

h− χ(F (N))

c(m−N)

)
.

Choose an integer N2 ≥ N1 such that −kcN2+C < −1. Then, for any
fixed N ≥ N2, there is an integer M2(N) such that for m ≥M2(N)

(ℓ+ kcN)
h− χ(F (N))

c(m−N)
< 1

for any H ⊂ V , which implies e(H) < 0 and we are done. �

Theorem 2.24. When X̃ is irreducible, there exists a (coarse) moduli

space Ps of stable GPS on X̃, which is a smooth variety. There is an
open immersion Ps ↪→ P, where P is the moduli space of s-equivalence

classes of semi-stable GPS on X̃, which is reduced, irreducible and
normal projective variety with at most rational singularities.

Proof. Let Ps := R̃′s//SL(Ṽ ) and P := R̃′ss//SL(Ṽ ) be the GIT
quotient. When (E,Q) is a stable GPS, E must be torsion free. Thus

R̃′s is a smooth variety, so is Ps. By Proposition 3.2 of [9],H is reduced,

normal with at most rational singularities, so are R̃′ss ⊂ H and P . �

The above construction also works for the case when X̃ = X1 ⊔X2

is a disjoint union of two irreducible smooth curves. However, for later

applications, we need to use a different quotient space R̃. Let χ1 and
χ2 be integers such that χ1 + χ2 − r = χ, and fix, for i = 1, 2, the
polynomials Pi(m) = cirm + χi and Wi = OXi

(−N) where OXi
(1) =

O(1)|Xi
has degree ci. Write Vi = CPi(N) and consider the Quot schemes

Quot(Vi ⊗Wi, Pi), let Q̃i be the closure of the open set

Qi =

{
Vi ⊗Wi → Ei → 0, with H1(Ei(N)) = 0 and

Vi → H0(Ei(N)) induces an isomorphism

}
,
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we have the universal quotient Vi ⊗Wi → F i → 0 on Xi × Q̃i and the
relative flag scheme

Ri = ×Q̃i
x∈Ii

Flagn⃗(x)(F i
x) → Q̃i.

Let F = F1 ⊕F2 denote direct sum of pullbacks of F1, F2 on

X̃ × (Q̃1 × Q̃2) = (X1 × Q̃1) ⊔ (X2 × Q̃2).

Let E be the pullback of F to X̃ × (R1 ×R2), Ṽ = V1 ⊕ V2 and

ρ : R̃′ := Grassr(Ex1 ⊕ Ex2) → R̃ := R1 ×R2 → Q̃ := Q̃1 × Q̃2.

Note that V1 ⊗ W1 ⊕ V2 ⊗ W2 → F → 0 is a Q̃1 × Q̃2-flat quotient

with Hilbert polynomial P̃ (m) = P1(m) + P2(m) on X̃ × (Q̃1 × Q̃2),
we have for m large enough a G-equivariant embedding

Q̃1 × Q̃2 ↪→ GrassP̃ (m)(V1 ⊗Wm
1 ⊕ V2 ⊗Wm

2 ),

where Wm
i = H0(Wi(m)) and G = (GL(V1)×GL(V2))∩SL(Ṽ ). More-

over, for large enough m, we have a G-equivariant embedding

R̃′ ↪→ G′ = GrassP̃ (m)(Ṽ ⊗Wm)× Flag ×Grassr(Ṽ ⊗Wm)

(Warning : Ṽ ⊗Wm := V1 ⊗Wm
1 ⊕ V2 ⊗Wm

2 ), which maps a point

(p = p1 ⊕ p2, {pr1(x), ..., prlx (x)}x∈I , qs) ∈ R̃′,

where Vi⊗Wi
pi−→ Ei → 0, (V1⊗W1)⊕(V2⊗W2)

p=p1⊕p2−−−−−→ E := E1⊕E2

denotes the quotient on X̃ = X1 ⊔X2 and

{ (V1 ⊗W1)⊕ (V2 ⊗W2)
pri(x)−−−→ Qri(x) → 0, 1 ≤ i ≤ lx }x∈I ,

(V1 ⊗W1)⊕ (V2 ⊗W2)
qs−→ Q denotes the surjection of sheaves

qs : (V1 ⊗W1)⊕ (V2 ⊗W2) → Ex1 ⊕ Ex2
q−→ Q→ 0,

to the point (g, {gr1(x), ..., grlx (x)}x∈I , gG) = (Ṽ ⊗Wm
g−→ U,

{Ṽ ⊗Wm

gr1(x)−−−→ Ur1(x), · · · , Ṽ ⊗Wm

grlx (x)

−−−−→ Urlx (x)}x∈I , Ṽ ⊗Wm
gG−→ Ur)

of G′, where g := H0(p(m)), U := H0(E(m)), gri(x) := H0(pri(x)(m)),
Uri(x) := H0(Qri(x)) (i = 1, ..., lx), gG := H0(qs(m)), Ur := H0(Q) and
ri(x) = dim(Qri(x)). Given G′ the polarisation

ℓ+ kcN

c(m−N)
×
∏
x∈I

{d1(x), · · · , dlx(x)} × k.

Then we have criterion (see Proposition 1.14 and 2.4 of [2])
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Proposition 2.25. A point (g, {gr1(x), ..., grlx(x)}x∈I , gG) ∈ G′ is stable
(semistable) for the action of G, with respect to the above polarisation,

iff for all nontrivial subspaces H ⊂ Ṽ , where H = H1 ⊕ H2, Hi ⊂ Vi
(i = 1, 2), we have (with h = dimH, H̃ := H1 ⊗Wm

1 ⊕H2 ⊗Wm
2 )

e(H) :=
ℓ+ kcN

c(m−N)

(
P̃ (m)h− P̃ (N)dimg(H̃)

)
+
∑
x∈I

lx∑
i=1

di(x)
(
ri(x)h− P̃ (N)dimgri(x)(H̃)

)
+ k

(
rh− P̃ (N)dimgG(H̃)

)
< (≤) 0.

The Lemma 2.20 and Proposition 2.22 (thus Proposition 2.23) are

also true for the case X̃ = X1 ⊔X2. Thus we have

Theorem 2.26. When X̃ = X1 ⊔ X2, there exists a (coarse) moduli

space Ps of stable GPS on X̃, which is a smooth scheme. There is an
open immersion Ps ↪→ P, where P is the moduli space of s-equivalence

classes of semi-stable GPS on X̃, which is a disjoint union of at most
r+ 1 irreducible, normal projective varieties with at most rational sin-
gularities.

Proof. For any χ1 and χ2 satisfying χ1 + χ2 = χ+ r and

nω1 ≤ χ1 ≤ nω1 + r, nω2 ≤ χ2 ≤ nω2 + r,

let Ps
χ1, χ2

:= R̃′s//G , Pχ1, χ2 := R̃′ss//G and

Ps :=
⊔

χ1+χ2=χ+r

Ps
χ1, χ2

, P :=
⊔

χ1+χ2=χ+r

Pχ1, χ2 .

Then Ps
χ1, χ2

are smooth varieties and Pχ1, χ2 are reduced, irreducible
and normal projective varieties with at most rational singularities. �

3. Factorization of generalized theta functions

The moduli spaces UX := UX(r, d,O(1), {k, n⃗(x), a⃗(x)}x∈I) is inde-
pendent of the choice of O(1) when X is irreducible. However, when
X = X1∪X2, the moduli spaces UX := UX(r, d,O(1), {k, n⃗(x), a⃗(x)}x∈I)
depends on the choice of O(1) (more precisely, it only depends on the
degree ci of O(1)|Xi

). We will require in this section that

ℓ :=
kχ−

∑
x∈I
∑lx

i=1 di(x)ri(x)

r
is an integer.(3.1)
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When X is irreducible, for any divisor L =
∑

q ℓqzq of degree ℓ on X

(supported on smooth points), there is an ample line bundle

ΘUX , L = Θ(r, d, {k, n⃗(x), a⃗(x)}x∈I , L)

on UX , which is called a theta line bundle on UX . We are going to
define it as follows.

By a family of parabolic sheaves of rank r and Euler characteristic
χ with parabolic structures of type {n⃗(x)}x∈I and weights {a⃗(x)}x∈I
at points {x}x∈I parametrized by T , we mean a sheaf F on X × T ,
flat over T , and torsion free with rank r and Euler characteristic χ on
X × {t} for every t ∈ T , together with, for each x ∈ I, a flag

F{x}×T = Q{x}×T,lx+1 � Q{x}×T,lx � Q{x}×T,lx−1 � · · · � Q{x}×T,1 � 0

of quotients of type n⃗(x) and weights a⃗(x). We define ΘF , L to be

(detRπTF)−k ⊗
⊗
x∈I

{
lx⊗
i=1

det(Q{x}×T,i)
di(x)} ⊗

⊗
q

det(F{zq}×T )
ℓq

where πT is the projectionX×T → T and detRπTF is the determinant
of cohomology: {detRπTF}t := detH0(X,Ft)⊗ detH1(X,Ft)

−1. We
have the following theorem (see [6] for r = 2 and [7] for r > 2):

Theorem 3.1. Let X be irreducible and L =
∑

q ℓqzq a divisor of degree
ℓ supported on smooth points of X. Then there is an unique ample line
bundle ΘUX , L = Θ(r, d, {k, n⃗(x), a⃗(x)}x∈I , L) on UX such that

(1) for any family of parabolic sheaf F of rank r and degree d
parametrised by T , with parabolic structures of type {n⃗(x)}x∈I at
points {x}x∈I , semistable with respect to the weights {a⃗(x)}x∈I ,
we have ϕ∗

TΘUX , L = ΘF , L, where ϕT : T → UX is the morphism
induced by F .

(2) for any two choices L and L′, ΘUX , L and ΘUX , L′ are algebraical-
ly equivalent.

Proof. (1) Let E be the universal family on X × Rss, then the line
bundle ΘE, L on Rss, which was defined as

(detRπRssE)−k ⊗
⊗
x∈I

{
lx⊗
i=1

det(Q{x}×Rss,i)
di(x)} ⊗

⊗
q

det(E{zq}×Rss)ℓq ,

descends to the line bundle ΘUX , L on UX (see [7] for the detail).
(2) Let X0 ⊂ X be the open set of smooth points and L0 = L − z,

where z is a point in the support of L. It is enough to show that ΘUX , L
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is algebraically equivalent to ΘUX , L0+y for any y ∈ X0. To prove it,
note that X0 ×Rss → X0 ×UX is a good quotient and the line bundle

π∗
Rss(ΘE, L ⊗ det(Ez)−1)⊗ det(E)

descends to a line bundle L on X0 × UX such that

L|{z}×UX
= ΘUX , L , L|{y}×UX

= ΘUX , L0+y

i.e. ΘUX , L and ΘUX , L0+y are algebraically equivalent.
The ampleness of ΘUX , L follows the ampleness of ΘUX , ℓ·y, which is

the descendant of restriction (on Rss) of the polarization (Notation
2.5) if we choose O(1) = O(cy). �

When X = X1 ∪X2, we choose O(1) = OX(c1y1 + c2y2) such that

ℓi =
ciℓ

c1 + c2
(i = 1, 2) are integers.(3.2)

Then the following theorem can be proven similarly (see [10] for the
detail).

Theorem 3.2. Let X = X1 ∪X2 and Li =
∑

q∈Xi
ℓqzq be a divisor of

degree ℓi supported on Xi \ {x0}. Then there is an unique ample line
bundle ΘUX , L1+L2 = Θ(r, d, {k, n⃗(x), a⃗(x)}x∈I1∪I2 , L1 + L2) on UX such
that

(1) for any family of parabolic sheaf F of rank r and degree d
parametrised by T , with parabolic structures of type {n⃗(x)}x∈I at
points {x}x∈I , semistable with respect to the weights {a⃗(x)}x∈I ,
we have ϕ∗

TΘUX , L1+L2 = ΘF , L1+L2, where ϕT : T → UX is the
morphism induced by F .

(2) for any two choices L1+L2, L
′
1+L

′
2, ΘUX , L1+L2 and ΘUX , L

′
1+L

′
2

are algebraically equivalent.

Remarks 3.3. (1) When X is irreducible, the map E 7→ E⊗OX(±y)
induces an isomorphism (ℓ 7→ ℓ± k)

f : UX(r, d, {k, n⃗(x), a⃗(x)}x∈I) → UX(r, d± r, {k, n⃗(x), a⃗(x)}x∈I)
such that ΘUX , L±ky = f ∗ΘUX , L for the divisor L =

∑
q ℓqzq of degree ℓ.

(2) If ℓ ̸= 0, for any L =
∑

q∈X0 ℓqzq of degree ℓ, then ΘUX , L is the

descendant of restriction (on Rss) of the polarization (Notation 2.5) if

we choose O(1) = O(
∑

q
|ℓ|ℓq
ℓ
zq) where c = |ℓ|.

In the rest of this paper, we will fix a smooth point y ∈ X (and
yi ∈ Xi when X is reducible), and choose

L = ℓyy +
∑
x∈I

αxx, Li = ℓyiyi +
∑
x∈Ii

αxx (i = 1, 2).
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This choice determines, when X is irreducible, the theta line bundle

ΘUX
= Θ(r, d, {k, n⃗(x), a⃗(x), αx}x∈I , ℓy)

where ℓy +
∑

x∈I αx = ℓ, and it determines, when X is reducible,

ΘUX
= Θ(r, d, {k, n⃗(x), a⃗(x), αx}x∈I1∪I2 , ℓy1 , ℓy2)

where ℓyi +
∑

x∈Ii αx = ℓi (i = 1, 2).
Now we are going to state the factorizations proved in [9] and [10].

Firstly, let X be an irreducible projective curve of genus g, smooth

but for one node x0. Let π : X̃ → X be the normalization of X, and
π−1(x0) = {x1, x2}. Let I be a finite set of smooth points on X and
y ∈ X be a fixed smooth point. Given integers d, k, r, {αx}x∈I , ℓy,

a⃗(x) = (a1(x), a2(x), · · · , alx+1(x))

n⃗(x) = (n1(x), n2(x), · · · , nlx+1(x))

satisfying ℓy +
∑

x∈I αx = ℓ and

0 ≤ a1(x) < a2(x) < · · · < alx+1(x) < k (x ∈ I).

Recall that ℓ is defined by∑
x∈I

lx∑
i=1

di(x)ri(x) + rℓ = k(d+ r(1− g)) = kχ(3.3)

where di(x) = ai+1(x)− ai(x) and ri(x) = n1(x) + · · ·+ ni(x).
Let UX be the moduli space of (s-equivalence classes of) parabolic

torsion free sheaves of rank r and degree d on X, with parabolic struc-
tures of type {n⃗(x)}x∈I at points {x}x∈I , semistable with respect to
the weights {a⃗(x)}x∈I .

For µ = (µ1, · · · , µr) with 0 ≤ µr ≤ · · · ≤ µ1 ≤ k − 1, let

{di = µri − µri+1}1≤i≤l
be the subset of nonzero integers in {µi − µi+1}i=1,··· ,r−1. We define

ri(x1) = ri, di(x1) = di, lx1 = l, αx1 = µr

ri(x2) = r − rl−i+1, di(x2) = dl−i+1, lx2 = l, αx2 = k − µ1

and for j = 1, 2, we set

a⃗(xj) =

µr, µr + d1(xj), · · · , µr +
lxj−1∑
i=1

di(xj), µr +

lxj∑
i=1

di(xj)


n⃗(xj) = (r1(xj), r2(xj)− r1(xj), · · · , rlxj (xj)− rlxj−1(xj), r − rlxj (xj)).
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Let Uµ

X̃
be the moduli space of semistable parabolic bundles on X̃

with parabolic structures of type {n⃗(x)}x∈I∪{x1,x2} at points {x}x∈I∪{x1,x2}
and weights {a⃗(x)}x∈I∪{x1,x2}, and let

ΘUµ

X̃
= Θ(r, d, {k, n⃗(x), a⃗(x), αx}x∈I∪{x1,x2}, ℓy).

Then the following is the so called Factorization Theorem I

Theorem 3.4. There exists a (noncanonical) isomorphism

H0(UX ,ΘUX
) ∼=

⊕
µ

H0(Uµ

X̃
,ΘUµ

X̃
)

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 ≤ k − 1.

When X = X1 ∪X2, I = I1 ∪ I2, X̃ = X1 ⊔X2 is the disjoint union
of smooth projective curves X1 and X2. Recall that

ΘUX
= Θ(r, d, {k, n⃗(x), a⃗(x), αx}x∈I1∪I2 , ℓy1 , ℓy2),

where ℓyi +
∑

x∈Ii αx = ℓi (i = 1, 2), are the theta line bundles on

UX = UX(r, d,O(1), ω).

For µ = (µ1, · · · , µr) with 0 ≤ µr ≤ · · · ≤ µ1 ≤ k − 1, we define

χµ1 =
1

k

(
rℓ1 +

∑
x∈I1

lx∑
i=1

di(x)ri(x)

)
+

1

k

r∑
i=1

µi = nω1 +
1

k

r∑
i=1

µi

χµ2 =
1

k

(
rℓ2 +

∑
x∈I2

lx∑
i=1

di(x)ri(x)

)
+ r − 1

k

r∑
i=1

µi = nω2 + r − 1

k

r∑
i=1

µi.

One can check that the numbers satisfy (j = 1, 2)∑
x∈Ij∪{xj}

lx∑
i=1

di(x)ri(x) + r
∑

x∈Ij∪{xj}

αx + rℓyj = kχµj .(3.4)

Let ωµj = {k, n⃗(x), a⃗(x)}x∈Ij∪{xj} (j = 1, 2), dµj = χµj + r(gj − 1) and

Uµ
Xj

:= UXj
(r, dµj , ω

µ
j )

be the moduli space of s-equivalence classes of semistable parabolic
bundles E of rank r on Xj and χ(E) = χµj , together with parabolic
structures of type {n⃗(x)}x∈I∪{xj} and weights {a⃗(x)}x∈I∪{xj} at points
{x}x∈I∪{xj}. We define Uµ

Xj
to be empty if χµj is not an integer. Let

ΘUµ
Xj

= Θ(r, dµj , {k, n⃗(x), a⃗(x), αx}x∈Ij∪{xj}, ℓyj)

then we have Factorization Theorem II
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Theorem 3.5. There exists a (noncanonical) isomorphism

H0(UX1∪X2 ,ΘUX1∪X2
) ∼=

⊕
µ

H0(Uµ
X1
,ΘUµ

X1
)⊗H0(Uµ

X2
,ΘUµ

X2
)

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 ≤ k − 1.

4. Invariance of spaces of generalized theta functions

For a smooth projective curve C of genus g ≥ 0 and a finite set
I1 ⊂ C of points, to compute the dimension of H0(UC ,ΘUC

), we take
a family {(Xt, It)}t∈T of curves with parabolic data such that

(X1, I1) = (C, I1)

is the curve C with given parabolic data and (X0, I0) = (X, I) is an
curve X with one node and parabolic data. If dimension of the spaces
H0(UXt ,ΘUXt

) is invariant, we can reduce, by using Factorization
Theorem I, the computation of dimension for a genus g curve to the
computation of dimension for a genus g − 1 curve. Then, by the same
procedure and using Factorization Theorem II, we can decrease the
number of parabolic points.

In order to prove the invariance, we proved in [9] that

H1(UX ,ΘUX
) = 0

when X is an irreducible curve of g ≥ 3 with at most one node (which
implies the invariance for g ≥ 3). We recall in this section the proof of
vanishing theorem for smooth curves and remark that our arguments

in [9] in fact imply the invariance for any smooth curves Xt := X̃.

Let X̃ be a smooth projective curve of genus g̃. Fix a line bundle

O(1) on X̃ of deg(O(1)) = c, let χ̃ = d + r(1 − g̃), P̃ denote the

polynomial P̃ (m) = crm+ χ̃, OX̃(−N) = O(1)−N and V = CP̃ (N). Let

Q̃ be the Quot scheme of quotients

V ⊗OX̃(−N) → F → 0

(of rank r and degree d) on X̃. Thus there is on X̃ × Q̃ a universal
quotient V ⊗ OX̃×Q̃(−N) → F → 0. Let Fx be the sheaf given by

restricting F to {x}×Q̃, Flagn⃗(x)(Fx) → Q̃ be the relative flag scheme
of type n⃗(x) and

R̃ = ×Q̃
x∈I

Flagn⃗(x)(Fx) → Q̃.

Let R̃F denote open set of locally free quotients and

V ⊗OX̃×R̃(−N) → F̃ → 0
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denote pullback of the universal quotient V ⊗ OX̃×Q̃(−N) → F → 0.

The reductive group SL(V ) acts on R̃.
For large enough m, we have a SL(V )-equivariant embedding

R̃ ↪→ G = GrassP̃ (m)(V ⊗Wm)× Flag,

where Wm = H0(OX̃(m)), and Flag is defined to be

Flag =
∏
x∈I

{Grassr1(x)(V ⊗Wm)× · · · ×Grassrlx (x)(V ⊗Wm)}.

For any given data ω = {k, n⃗(x), a⃗(x)}x∈I , ℓ̃ is defined by∑
x∈I

lx∑
i=1

di(x)ri(x) + rℓ̃ = k(d+ r(1− g̃) = kχ̃,(4.1)

ω determines a polarisation (for fixed O(1)) on G:

ℓ̃+ kcN

c(m−N)
×
∏
x∈I

{d1(x), · · · , dlx(x)}.

The set R̃ss
ω ⊂ R̃F of GIT semistable (resp. stable) points for the

SL(V ) action under this polarisation is precisely the set of semistable

(resp. stable) parabolic bundles on X̃ of the type determined by the
given data. Its good quotient UX̃, ω is our moduli space and

ΘR̃ss
ω
= (detRπR̃ss

ω
F̃)−k⊗

⊗
x∈I

{(det F̃x)
αx⊗

lx⊗
i=1

(detQx,i)
di(x)}⊗(det F̃y)

ℓ̃y

where ℓ̃y +
∑

x∈I αx = ℓ̃, descends to an ample line bundle ΘU
X̃, ω

on

UX̃, ω. To prove H1(UX̃, ω,ΘU
X̃, ω

) = 0, we need essentially the following

codimension estimates:

Proposition 4.1 (Proposition 5.1 of [9]). Let |I| be the number of
parabolic points. Then

(1) codim(R̃ss \ R̃s) ≥ (r − 1)(g̃ − 1) + 1
k
|I|,

(2) codim(R̃F \ R̃ss) > (r − 1)(g̃ − 1) + 1
k
|I|.

Proposition 4.2 (Proposition 2.2 of [9]). Let ωX̃ = OX̃(
∑
q) and ωR̃F

be the canonical sheaf of X̃ and R̃F respectively. Then

ω−1

R̃F
=(detRπR̃F

F̃)−2r ⊗
⊗
x∈I

{
(det F̃x)

nlx+1−r ⊗
lx⊗
i=1

(detQx,i)
ni(x)+ni+1(x)

}
⊗
⊗
q

(det F̃q)
1−r ⊗ (det F̃y)

2χ̃+(r−1)(2g̃−2) ⊗Det∗(Θ−2
y )
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where Det : R̃F → Jd
X̃
is the determinant morphism and Θy is the theta

line bundle on Jd
X̃
.

The following result due to F. Knop is essential in our arguments,
whose global form was formulated in [6].

Lemma 4.3 (Lemma 4.17 of [6]). Let X be a normal, Cohen-Macaulay
varirty on which a reductive group G acts, such that a good quotient
π : X → Y exists. Suppose that the action is generically free and
dimG = dimX − dimY . Suppose further that

(1) the subset where the action is not free has codimension ≥ 2,
(2) for every prime divisor D in X, π(D) has codimension ≤ 1,

where D need not be invariant.

Then ωY = (π∗ωX)
G where ωX , ωY are the respective dualizing sheaves.

Theorem 4.4 (Theorem 5.1 of [9]). Assume (r− 1)(g̃− 1) + 1
k
|I| ≥ 2.

Then, for any data ω such that ℓ̃ ∈ Z, we have

H1(UX̃, ω,ΘU
X̃, ω

) = 0.

Proof. Note that, on good quotient UX̃, ω, we always have for any i ≥ 0

H i(UX̃, ω,ΘU
X̃, ω

) = H i(R̃ss
ω ,ΘR̃ss

ω
)inv.

By the assumption and Proposition 4.1, we have codim(R̃F \ R̃ss
ω ) > 2.

Thus H1(R̃ss
ω ,ΘR̃ss

ω
)inv = H1(R̃F ,ΘR̃F

)inv, where

ΘR̃F
= (detRπR̃F

F̃)−k⊗
⊗
x∈I

{(det F̃x)
αx⊗

lx⊗
i=1

(detQx,i)
di(x)}⊗(det F̃y)

ℓ̃y

with ℓ̃y +
∑

x∈I αx = ℓ̃. Let J = Jd
X̃

be the Jacobian of line bundles of

degree d on X̃, L the universal line bundle on X̃ × J and

Θy = det(RπJL)−1 ⊗ Ld+1−g̃
y .

The line bundle det(F̃) on X̃ × R̃F induces (for any data ω̄)

Det : R̃F → J , Det : UX̃ ,ω̄ → J

such that detRπR̃F
detF̃ = Det∗(det(RπJL)). Then we can write

ΘR̃F
⊗ ω−1

R̃F
= Θ̂ω̄ ⊗Det∗(Θy)

−2
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Θ̂ω̄ =(detRπR̃F
F̃)−k̄ ⊗

⊗
x∈I

{
(det F̃x)

ᾱx ⊗
lx⊗
i=1

(detQx,i)
d̄i(x)

}
⊗ (detF̃y)

ℓ̄y ⊗
⊗
q

(det F̃q)
1−r ⊗ (detF̃y)

(r−1)(2g̃−2)

where k̄ = k + 2r, ᾱx = αx + nlx+1(x)− r, ℓ̄y = 2χ̃+ ℓ̃y and

d̄i(x) = di(x) + ni(x) + ni+1(x).

Let ω̄ = {k̄, n⃗(x), ⃗̄a(x)}x∈I with ⃗̄a(x) = (ā1(x), ā2(x), · · · , ālx+1(x))
such that d̄i(x) = āi+1(x)− āi(x) (i = 1, 2, · · · , lx). Let

ψω̄ : R̃ss
ω̄ → R̃ss

ω̄ //SL(V ) := UX̃(r, d, ω̄) = UX̃, ω̄,

there is an ample line bundle Θω̄ on UX̃, ω̄ such that Θ̂ω̄ = ψ∗
ω̄Θω̄ since

ℓ̄ :=
k̄χ̃−

∑
x∈I
∑lx

i=1 d̄i(x)ri(x)

r
= ℓ̃+ 2χ̃− r|I|+

∑
x∈I

nlx+1(x)

is an integer. Then we have ΘR̃ss
ω̄
= ψ∗

ω̄(Θω̄ ⊗Det∗(Θy)
−2)⊗ ωR̃ss

ω̄
and

(ψω̄∗ΘR̃ss
ω̄
)inv = (Θω̄ ⊗Det∗(Θy)

−2)⊗ (ψω̄∗ωR̃ss
ω̄
)inv.

Since codim(R̃ss
ω̄ \ R̃s

ω̄) ≥ 2, conditions in Lemma 4.3 are satisfied and

(ψω̄∗ωR̃ss
ω̄
)inv = ωU

X̃, ω̄
.

Then, since Θω̄ ⊗Det∗(Θy)
−2 is ample by Lemma 5.3 of [9], we have

H1(UX̃, ω,ΘU
X̃, ω

) = H1(UX̃, ω̄,Θω̄ ⊗Det∗(Θy)
−2 ⊗ ωU

X̃, ω̄
) = 0.

�
The idea of the proof is to express H1(UX̃, ω,ΘU

X̃, ω
) by

H1(M,L ⊗ ωM)

such that L is an ample line bundle, whereM is another GIT quotient.
In this process, we need essentially the equality

H1(R̃ss
ω ,ΘR̃F

)inv = H1(R̃F ,ΘR̃F
)inv

which perhaps holds unconditional. In fact, we have the following

Conjecture 4.5. For any data ω satisfying (4.1) and any i ≥ 0

H i(R̃ss
ω ,ΘR̃F

)inv = H i(R̃F ,ΘR̃F
)inv,(4.2)

where ΘR̃F
is the polarization determined by ω.

Then the proof of Theorem 4.4 implies the following
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Corollary 4.6. Assume the Conjecture 4.5 is true. Then, for any data
ω , we have, for any i > 0,

H i(UX̃, ω,ΘU
X̃, ω

) = 0.

Proof. For any data ω = {k, n⃗(x), a⃗(x)}x∈I , we choose

ω(I ′) = {k, n⃗(x), a⃗(x)}x∈I∪I′

such that (r − 1)(g̃ − 1) + |I∪I′|
k+2r

≥ i+ 2. Note that the projection

pI : R̃(I ′) = ×Q̃F

x∈I∪I′
Flagn⃗(x)(Fx) → R̃F = ×Q̃F

x∈I
Flagn⃗(x)(Fx)

is a Flag bundle and SL(V )-invariant. By Conjecture 4.5, we have

Hi(UX̃, ω,ΘU
X̃, ω

) = Hi(R̃ss
ω ,ΘR̃F

)inv

= Hi(R̃F ,ΘR̃F
)inv = Hi(R̃(I ′), p∗I(ΘR̃F

))inv.

Write p∗I(ΘR̃F
)⊗ ω−1

R̃(I′)
:= Θ̂ω̄ ⊗Det∗(Θy)

−2, then we have

Θ̂ω̄ =(detRπR̃F
F̃)−k̄ ⊗

⊗
x∈I∪I′

{
(det F̃x)

ᾱx ⊗
lx⊗
i=1

(detQx,i)
d̄i(x)

}
⊗ (detF̃y)

ℓ̄y ⊗
⊗
q

(det F̃q)
1−r ⊗ (detF̃y)

(r−1)(2g̃−2)

where k̄ = k + 2r, ᾱx = αx + nlx+1(x)− r, ℓ̄y = 2χ̃+ ℓ̃y and

d̄i(x) = di(x) + ni(x) + ni+1(x)

(we define αx = 0, di(x) = 0 when x ∈ I ′). Let ω̄ = {k̄, n⃗(x), ⃗̄a(x)}x∈I∪I′
with ⃗̄a(x) = (ā1(x), ā2(x), · · · , ālx+1(x)) such that

d̄i(x) = āi+1(x)− āi(x), (i = 1, 2, · · · , lx).

Let R̃(I ′)ssω̄ ⊂ R̃(I ′) be the open set of GIT semi-stable points (respect
to the polarization defined by ω̄), then

Hi(UX̃, ω,ΘU
X̃, ω

) = Hi(R̃ss
ω ,ΘR̃F

)inv = Hi(R̃F ,ΘR̃F
)inv

= Hi(R̃(I ′), p∗I(ΘR̃F
))inv = Hi(R̃(I ′)ss, p∗I(ΘR̃F

))inv

the last equality holds since, by (2) of Proposition 4.1, we have

codim(R̃(I ′) \ R̃(I)ssω̄ ) > (r − 1)(g̃ − 1) +
|I ∪ J |
k + 2r

≥ i+ 2.
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Let ψ : R̃(I ′)ssω̄ → UX̃, ω̄ be the good quotient. Then Θ̂ω̄ descends to an

ample line bundle Θω̄ on UX̃, ω̄ and (ψ∗ωR̃(I′)ssω̄
)inv = ωU

X̃, ω̄
since

codim(R̃(I ′)ssω̄ \ R̃(I)sω̄) ≥ (r − 1)(g̃ − 1) +
|I ∪ J |
k + 2r

≥ i+ 2

by (1) of Proposition 4.1. Thus we have

Hi(UX̃, ω,ΘU
X̃, ω

) = Hi(UX̃, ω̄,Θω̄ ⊗Det∗(Θy)
−2 ⊗ ωU

X̃, ω̄
)(4.3)

for any i ≥ 0. In particular, Hi(UX̃, ω,ΘU
X̃, ω

) = 0 for i > 0. �

For i = 0, Conjecture 4.5 is true according to a general fact

Lemma 4.7 (Lemma 4.15 of [6]). Let V be a projective scheme on

which a reductive group G acts, L̃ an ample line bundle linearizing the
G-action, and V ss ⊂ V the open set of semi-stable points. Then, for
any open G-invariant (irreducible) normal subscheme V ss ⊂ W ⊂ V ,

H0(V ss, L̃)inv = H0(W, L̃)inv.

Corollary 4.8. For any data ω = {k, n⃗(x), a⃗(x)}x∈I) such that ℓ ∈ Z,
the dimension of

H0(UX̃, ω,ΘU
X̃, ω

)

is independent of the choices of curve X̃ and the points x ∈ X̃.

Proof. By the above Lemma 4.7 and (4.3), we have

H0(UX̃, ω,ΘU
X̃, ω

) = H0(UX̃, ω̄,Θω̄ ⊗Det∗(Θy)
−2 ⊗ ωU

X̃, ω̄
).

The dimension of H0(UX̃, ω̄,Θω̄ ⊗ Det∗(Θy)
−2 ⊗ ωU

X̃, ω̄
) is independent

of the choices of curve X̃ and the points x ∈ X̃ since

Hi(UX̃, ω̄,Θω̄ ⊗Det∗(Θy)
−2 ⊗ ωU

X̃, ω̄
) = 0

for all i > 0.
�

5. Vanishing theorem for irreducible nodal curves

When curves degenerate to a nodal curve X, the invariance of spaces
of generalized theta functions for smooth curves has proved in last
section (See Corollary 4.8). To complete the program, we need the
vanishing theorem H1(UX ,ΘUX

) = 0. Its proof was reduced to prove a
vanishing theorem on the normalization P of UX .

LetX be a connected nodal curve of genus g, with only one node x0 ∈
X, let π : X̃ → X be the normalization of X and π−1(x0) = {x1 , x2}.
The normalization ϕ : P → UX of UX is given by moduli space of
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semi-stable GPS (E,Q) on X̃ with additional parabolic structures at
the points of I (we identify I with π−1(I)) given by the data

ω = {k, n⃗(x), a⃗(x)}x∈I
satisfying ∑

x∈I

lx∑
i=1

di(x)ri(x) + rℓ̃ = kχ̃

where di(x) = ai+1(x)− ai(x), χ̃ = χ+ r, ℓ̃ = k + ℓ. Recall that

R̃′ = Grassr(Fx1 ⊕Fx2)×Q̃ R̃

with the SL(V )-equivariant embedding

R̃′ ↪→ G′ = GrassP̃ (m)(V ⊗Wm)× Flag ×Grassr(V ⊗Wm),

where Wm = H0(W̃(m)), and Flag is defined to be

Flag =
∏
x∈I

{Grassr1(x)(V ⊗Wm)× · · · ×Grassrlx (x)(V ⊗Wm)}.

On G′, take the polarisation (determined by ω)

k × (ℓ+ kcN)

c(m−N)
×
∏
x∈I

{d1(x), · · · , dlx(x)}.(5.1)

Then, when X is irreducible, P := Pω is the GIT (good) quotient

ψ : R̃′ss
ω → Pω := R̃′ss

ω //SL(V ).

There is a open subscheme H ⊂ R̃′ such that R̃′ss
ω ⊂ H for any data

ω (See Notation 2.21), one of the main results proved in [9] and [10]
is that H is reduced, normal and Cohen-Macaulay with only rational
singularities (so is P). Thus the Kodaira-type vanishing theorem and
Hartogs-type extension theorem for cohomology are applicable.

Let ρ : R̃′ → R̃ be the projection, V ⊗OX̃×H(−N) → E → 0,

{ E{x}×H = Q{x}×H, lx+1 � Q{x}×H, lx � · · · � Q{x}×H,1 � 0 }x∈I

denote pullbacks of universal quotients V ⊗OX̃×R̃(−N) → F̃ → 0,

{ F̃{x}×R̃ = Q̃{x}×R̃, lx+1 � Q̃{x}×R̃, lx � · · · � Q̃{x}×R̃, 1 � 0 }x∈I .

Then the restriction of polarisation (5.1) to H is

Θ̂′
H := det(Q)k ⊗ (detRπHE(m))

ℓ+kcN
c(m−N) ⊗

⊗
x∈I

{
lx⊗
i=1

det(Q{x}×H, i)
di(x)

}
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where Ex1 ⊕Ex2 → Q → 0 is the universal quotient on H. If we choose
O(1) = OX̃(cy), note that OH = detRπHE(N), we have

(detRπHE)−1 = (detEy)cN , detRπHE(m) = (detEy)c(m−N),

Θ̂′
H = det(Q)k⊗(detRπHE)−k⊗

⊗
x∈I

{
lx⊗
i=1

det(Q{x}×H, i)
di(x)

}
⊗(detEy)ℓ.

We will write Θ̂′
H = ηky ⊗ ρ∗Θ̂R̃, where ηy = det(Q)⊗ det(Ey)−1 and

Θ̂R̃ = (detRπR̃F̃)−k ⊗
⊗
x∈I

{
lx⊗
i=1

det(Q̃{x}×R̃, i)
di(x)

}
⊗ (detF̃y)

ℓ̃.

The universal quotient Ex1 ⊕ Ex2 → Q → 0 induces an exact sequence

0 → FH → (π × idH)∗E → x0Q → 0(5.2)

on X ×H, where X̃ ×H π×idH−−−−→ X ×H. The sheaf FR̃′ss
ω

defines

ϕ̂ : R̃′ss
ω → UX := UX,ω,

which induces a morphism ϕ : P = R̃′ss
ω //SL(V ) → UX such that

R̃′ss
ω

ϕ̂ !!C
CC

CC
CC

C

ψ // P

ϕ

��
UX

is commutative and ϕ̂∗ΘUX
= Θ̂′

R̃′ss
ω
. Thus Θ̂′

R̃′ss
ω

descends to an ample

line bundle ΘP = ϕ∗ΘUX
. In fact, there are more general ample line

bundles ΘP, ω on P , which are the descendants of

Θ̂′
ω = (detRπR̃′E)−k ⊗

⊗
x∈I

{(det Ex)αx ⊗
lx⊗
i=1

(detQx,i)
di(x)} ⊗ (det Ey)ℓ̃y ⊗ ηky

= ρ∗ΘR̃, ω ⊗ (detQ⊗ det E−1
y )k

such that ΘP, ω = ϕ∗ΘUX , ω where ℓ̃y+
∑

x∈I αx = ℓ̃, and ΘUX , ω = ΘUX ,L

is determined (cf. Theorem 3.1) by the data ω = {k, n⃗(x), a⃗(x)}x∈I and

L = ℓyy +
∑
x∈I

αxx.

By Lemma 5.5 of [9], we have injection ϕ∗ : H1(UX ,ΘUX , ω) ↪→ H1(P ,ΘP, ω).
Thus it is enough to show H1(P ,ΘP, ω) = 0. Let K be the kernel of

V ⊗OX̃×R̃′(−N) → E → 0,
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and consider 0 → K → V ⊗ OX̃×H(−N) → E → 0. The line bundle

det(K)−1⊗OX̃×H(−dim(V )N) on X̃×H defines DetH : H → Jd
X̃
which

induces the determinant morphism (cf. Lemma 5.7 of [9])

Det : P → Jd
X̃
.(5.3)

Proposition 5.1 (Proposition 3.4 of [9]). Let ωX̃ = O(
∑

q q) and

ΘJd
X̃
= (detRπJd

X̃
L)−2 ⊗ Lrx1 ⊗ Lrx2 ⊗ L2χ̃−2r

y ⊗
⊗
q

Lr−1
q

where L is the universal line bundle on X̃ × Jd
X̃
. Then we have

ω−1
H = (detRπHE)−2r⊗⊗
x∈I

{
(det Ex)nlx+1−r ⊗

lx⊗
i=1

(detQx,i)
ni(x)+ni+1(x)

}
⊗ (detQ)2r

⊗ (det Ey)2χ̃−2r ⊗Det∗H(Θ
−1
Jd
X̃

).

We will prove R1Det∗(ΘP, ω) = 0 and H1(Jd
X̃
,Det∗ΘP, ω) = 0, which

imply H1(P,ΘP, ω) = 0. To recall the proof of H1(Jd
X̃
,Det∗ΘP, ω) = 0.

Let R̃′
F ⊂ R̃′, R̃F ⊂ R̃ denote open set of locally free quotients, for

µ = (µ1, · · · , µr) with 0 ≤ µr ≤ · · · ≤ µ1 ≤ k, let

{di = µri − µri+1}1≤i≤l

be the subset of nonzero integers in {µi − µi+1}i=1,··· ,r−1. We define

ri(x1) = ri, ri(x2) = r − rl−i+1, lx1 = lx2 = l

n⃗(xj) = (r1(xj), r2(xj)− r1(xj), · · · , rlxj (xj)− rlxj−1(xj)),

R̃µ
F = ×Q̃F

x∈I∪{x1, x2}
Flagn⃗(x)(Fx)

pµ−→ R̃F = ×Q̃F

x∈I
Flagn⃗(x)(Fx).

Then, by Remark 4.2 of [9], we have decomposition (on R̃F )

ρ∗(Θ̂
′
ω) =

⊕
µ

pµ∗(Θ̂µ)(5.4)

µ = (µ1, · · · , µr) runs through integers 0 ≤ µ1 ≤ · · ·µr ≤ k and

Θ̂µ = (detRπR̃µ
F
F̃)−k⊗

⊗
x∈I∪{x1, x2}

{(det F̃x)
αx⊗

lx⊗
i=1

(detQx,i)
di(x)}⊗(det F̃y)

ℓy
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where ri(x1) = ri, di(x1) = di, lx1 = l, αx1 = µr, ri(x2) = r − rl−i+1,
di(x2) = dl−i+1, lx2 = l, αx2 = k − µ1 and for j = 1, 2, we set

a⃗(xj) =

µr, µr + d1(xj), · · · , µr +
lxj−1∑
i=1

di(xj), µr +

lxj∑
i=1

di(xj)

 .

It is easy to check that∑
x∈I∪{x1, x2}

lx∑
i=1

di(x)ri(x) + r
∑

x∈I∪{x1, x2}

αx + rℓy = kχ̃.

For the data ωµ = {k, n⃗(x), a⃗i(x)}x∈I∪{x1, x2}, we choose

ωµ(I ′) = {k, n⃗(x), a⃗i(x)}x∈I∪{x1, x2}∪I′

such that (r − 1)(g̃ − 1) + 2+|I∪I′|
k+2r

≥ 2. Note that the projection

pI : R̃µ(I ′) = R̃µ
F ×Q̃F

(
×Q̃F

x∈I′
Flagn⃗(x)(F̃x)

)
→ R̃µ

F

is a SL(V )-invariant Flag bundle, consider the commutative diagram

R̃µ(I ′)

D̂et
I′
µ ""E

EE
EE

EE
EE

pI // R̃µ
F

D̂etµ
��
Jd
X̃

(5.5)

and write p∗I(Θ̂µ)⊗ ω−1

R̃µ(I′)
= Θ̂ω̄µ ⊗ (D̂et

I′

µ )
∗(Θy)

−2. Then

Θ̂ω̄µ =(detRπF̃)−k̄ ⊗
⊗

x∈I∪{x1, x2}∪I′
{(det F̃x)

ᾱx ⊗
lx⊗
i=1

(detQx,i)
d̄i(x)}

⊗ (det F̃y)
ℓ̄y+(r−1)(2g̃−2) ⊗

⊗
q

(detF̃q)
1−r

where k̄ = k + 2r, ᾱx = αx + nlx+1(x)− r, ℓ̄y = 2χ̃+ ℓ̃y and

d̄i(x) = di(x) + ni(x) + ni+1(x),

ω̄µ = {k̄, n⃗(x), ⃗̄a(x)}I∪{x1, x2}∪I′ with ⃗̄a(x) = (ā1(x), ā2(x), · · · , ālx+1(x))

(note: ālx+1(x)− ā1(x) =
∑lx

i=1 d̄i(x) = alx+1(x)− a1(x) + 2r−n1(x)−
nlx+1(x) ≤ k + 2r − n1(x)− nlx+1(x) < k̄).
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Let R̃µ(I ′)ssω̄µ
⊂ R̃µ(I ′) be the open set of GIT semi-stable points

(respect to the polarization defined by ω̄µ), then

codim(R̃µ(I ′)ssω̄µ
\ R̃µ(I ′)sω̄µ

) ≥ (r − 1)(g̃ − 1) +
2 + |I ∪ I ′|
k + 2r

≥ 2.

Let ψ : R̃µ(I ′)ssω̄µ
→ UX̃, ω̄µ

be the good quotient. Then Θ̂ω̄µ descends

to an ample line bundle Θω̄µ on UX̃, ω̄µ
and (ψ∗ωR̃µ(I)ssω̄µ

)inv = ωU
X̃, ω̄µ

.

Lemma 5.2. Let DetI
′

µ : UX̃, ω̄µ
→ Jd

X̃
be the morphism induced by

D̂et
I′

µ : R̃µ(I ′)ssω̄µ
→ Jd

X̃

and Det : P → Jd
X̃

be the determinant morphism. Then

Det∗(ΘP, ω) =
⊕
µ

(DetI
′

µ )∗(Θω̄µ ⊗ (DetI
′

µ )
∗(Θy)

−2 ⊗ ωU
X̃, ω̄µ

)(5.6)

where µ = (µ1, · · · , µr) runs through integers 0 ≤ µ1 ≤ · · ·µr ≤ k. In
particular, we have

H i(Jd
X̃
,Det∗ΘP, ω) = 0 ∀ i > 0.

Proof. Note Det∗(ΘP, ω) = {(DetR̃′ ss)∗Θ̂
′
ω}inv = {(DetR̃′

F
)∗Θ̂

′
ω}inv and

(DetR̃′
F
)∗Θ̂

′
ω = (DetR̃F

)∗ρ∗Θ̂
′
ω, by the decomposition (5.4), we have

(DetR̃′
F
)∗Θ̂

′
ω =

⊕
µ

(D̂etµ)∗Θ̂µ

where D̂etµ : R̃µ
F → Jd

X̃
satisfies the commutative diagram

R̃µ
F

D̂etµ   @
@@

@@
@@

@

pµ // R̃F

DetR̃F
��
Jd
X̃

By diagram (5.5) and p∗I(Θ̂µ) = Θ̂ω̄µ⊗(D̂et
I′

µ )
∗(Θy)

−2⊗ωR̃µ(I′), we have

(D̂etµ)∗Θ̂µ = (D̂et
I′

µ )∗(Θ̂ω̄µ ⊗ (D̂et
I′

µ )
∗(Θy)

−2 ⊗ ωR̃µ(I′)).(5.7)

Recall ψ : R̃µ(I ′)ssω̄µ
→ UX̃, ω̄µ

, Θ̂ω̄µ = ψ∗Θω̄µ , (ψ∗ωR̃µ(I′)ssω̄µ
)inv = ωU

X̃, ω̄µ
,

then we have the decomposition (5.6). The vanishing result follows the

decomposition clearly since Θω̄µ ⊗ (DetI
′

µ )
∗(Θy)

−2 is ample. �



40 XIAOTAO SUN

To prove R1Det∗(ΘP, ω) = 0, the idea is same with Section 4. Let

R̃(I ′) = ×Q̃
x∈I∪I′

Flagn⃗(x)(Fx)
pI−→ R̃ = ×Q̃

x∈I
Flagn⃗(x)(Fx),

R̃′(I ′) = Grassr(Fx1⊕Fx2)×Q̃R̃(I ′)
pI−→ R̃′ = Grassr(Fx1⊕Fx2)×Q̃R̃

be the projection, H(I ′) ⊂ R̃′(I ′), H ⊂ R̃′ be the open set defined in
Notation 2.21. By Proposition 5.1, we have

p∗I(Θ̂
′
ω)⊗ ω−1

H(I′) = Θ̂′
ω̄ ⊗Det∗H(I′)(Θ

−1
Jd
X̃

)(5.8)

with ω̄ = (d, r, k̄, ℓ̄y, {ᾱx, d̄i(x)}x∈I∪J,1≤i≤lx) and

Θ̂′
ω̄ =(detRπH(I′)E)−k̄ ⊗

⊗
x∈I∪I′

{(det Ex)ᾱx ⊗
lx⊗
i=1

(detQx,i)
d̄i(x)}

⊗ (det Ey)ℓ̄y ⊗ (detQ)k̄ ⊗ (det Ey)−k̄

where k̄ = k + 2r, ᾱx = αx + nlx+1(x)− r, ℓ̄y = ℓ̃y + 2χ̃, and

d̄i(x) = di(x) + ni(x) + ni+1(x).

Let R̃′(I ′)ssω̄ ⊂ H(I ′) be the open set of GIT semi-stable points (re-

spect to ω̄), ψ : R̃′(I ′)ssω̄ → Pω̄ := R̃′(I)ssω̄ //SL(V ) be the quotient map.

There is an ample line bundle ΘP, ω̄ on Pω̄ such that Θ̂′
ω̄ = ψ∗(ΘP, ω̄),

and ωPω̄ = (ψ∗ωR̃′(I′)ssω̄
)inv if

(r − 1)(g̃ − 1) +
|I|+ |I ′|
k + 2r

≥ 2(5.9)

where we need essentially the estimate of codimension from [9].

Proposition 5.3 (Proposition 5.2 of [9]). Let Df
1 = D̂1 ∪ D̂t

1 and

Df
2 = D̂2 ∪ D̂t

2, where D̂i ⊂ R̃′ is the Zariski closure of D̂F, 1 ⊂ R̃′
F

consisting of (E,Q) ∈ R̃′
F that Exi → Q is not an isomorphism, and

D̂t
1 ⊂ R̃′ (rep. D̂t

2 ⊂ R̃′) consists of (E,Q) ∈ R̃′ such that E is not
locally free at x2 (resp. at x1). Then

(1) codim(H \ R̃′ss
ω ) > (r − 1)g̃ + |I|

k
.

(2) the complement in R̃′ss
ω \{Df

1∪D
f
2} of the set R̃′s

ω of stable points

has codimension ≥ (r − 1)g̃ + |I|
k
.

Lemma 5.4. When (r− 1)g̃ + |I|
k
≥ 2 and I ′ ⊂ X̃ \ I satisfying (5.9),

H1(Pω,ΘP, ω) = H1(Pω̄,ΘP, ω̄ ⊗Det∗J(Θ
−1
Jd
X̃

)⊗ ωPω̄)(5.10)

where DetJ : Pω̄ → Jd
X̃

is induced by DetH(I′) : H(I ′) → Jd
X̃
.
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Proof. By using Proposition 4.1 (1) and Proposition 5.3 (2), we have

(ψ∗ωR̃′(I′)ssω̄
)inv = ωPω̄

(cf. Lemma 5.6 of [9]). By Proposition 5.3 (1), we have

codim(H \ R̃′ss
ω ) ≥ 3, codim(H(I ′) \ R̃′(I ′)ssω̄ ) ≥ 3

for any data ω. Thus, by theory of local cohomology, we have

H1(Pω,ΘP, ω) = H1(R̃′ss
ω , Θ̂

′
ω)
inv = H1(H, Θ̂′

ω)
inv = H1(H(I ′), p∗I(Θ̂

′
ω))

inv

= H1(H(I ′), Θ̂′
ω̄ ⊗Det∗H(I′)(Θ

−1
Jd
X̃

)⊗ ωH(I))
inv

= H1(R̃′(I ′)ssω̄ , Θ̂
′
ω̄ ⊗Det∗R̃′(I′)ssω̄

(Θ−1
Jd
X̃

)⊗ ωR̃′(I′)ssω̄
)inv

= H1(R̃′(I ′)ssω̄ , ψ
∗(ΘP, ω̄ ⊗Det∗J(Θ

−1
Jd
X̃

))⊗ ωR̃′(I′)ssω̄
)inv

= H1(Pω̄,ΘP, ω̄ ⊗Det∗J(Θ
−1
Jd
X̃

)⊗ (ψ∗ωR̃′(I′)ssω̄
)inv)

= H1(Pω̄,ΘP, ω̄ ⊗Det∗J(Θ
−1
Jd
X̃

)⊗ ωPω̄).

�

When X is irreducible, ΘP, ω̄⊗Det∗J(Θ
−1
Jd
X̃

) may not be an ample line

bundle on Pω̄. But, for any L ∈ Jd
X̃
, on the fiber PL

ω = Det−1(L) of

Det : Pω → Jd
X̃

and the fiber PL
ω̄ = Det−1

J (L) of DetJ : Pω̄ → Jd
X̃

we have

H1(PL
ω ,Θ

L
P, ω) = H1(PL

ω̄ ,Θ
L
P, ω̄ ⊗ ωPL

ω̄
) = 0

when (r − 1)(g − 1) + |I|
k
≥ 2, which means R1Det∗(ΘP, ω) = 0.

Theorem 5.5 (Theorem 5.3 of [9]). If X is an irreducible curve of

genus g with one node and (r − 1)(g − 1) + |I|
k
≥ 2, then

H1(UX ,ΘUX , ω)
∼= H1(Pω,ΘP, ω) = 0.

Remark 5.6. The condition (r − 1)(g − 1) + |I|
k

≥ 2 is used only for

the proof of H1(R̃′ss
ω , Θ̂

′
ω)
inv = H1(H, Θ̂′

ω)
inv in Lemma 5.4, which may

hold unconditional. In fact, we conjecture that for any i ≥ 0 and ω,

H i(R̃′ss
ω , Θ̂

′
ω)
inv = H i(H, Θ̂′

ω)
inv.

If the conjecture is true, H i(PL
ω ,Θ

L
P, ω) = 0 holds unconditional for

i > 0, which implies that H i(Pω,ΘP, ω) = 0 for i > 0.
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6. generalized parabolic sheaves on reducible nodal
curves

A natural idea to prove a vanishing theorem H1(UX ,ΘUX , ω) = 0
for X = X1 ∪ X2 is to extend above method to reducible curves. In
this section, we give estimates of various codimension and compute
canonical line bundle of moduli space of generalized parabolic sheaves
on a reducible curve. However, the estimate is not good enough to
prove a vanishing theorem via the method in last section.

Let χ1 and χ2 be integers such that χ1 + χ2 − r = χ, and fix, for
i = 1, 2, the polynomials Pi(m) = cirm+χi and Wi = OXi

(−N) where
OXi

(1) = O(1)|Xi
has degree ci. Write Vi = CPi(N) and consider the

Quot schemes Quot(Vi ⊗Wi, Pi), let Q̃i be the closure of the open set

Qi =

{
Vi ⊗Wi → Ei → 0, with H1(Ei(N)) = 0 and

Vi → H0(Ei(N)) induces an isomorphism

}
,

we have the universal quotient Vi ⊗Wi → F i → 0 on Xi × Q̃i and the
relative flag scheme

Ri = ×Q̃i
x∈Ii

Flagn⃗(x)(F i
x) → Q̃i.

Let F = F1 ⊕F2 denote direct sum of pullbacks of F1, F2 on

X̃ × (Q̃1 × Q̃2) = (X1 × Q̃1) ⊔ (X2 × Q̃2).

Let E be the pullback of F to X̃ × (R1 ×R2), and

ρ : R̃′ := Grassr(Ex1 ⊕ Ex2) → R̃ := R1 ×R2 → Q̃ := Q̃1 × Q̃2.

When m is large enough, we have a G-equivariant embedding

R̃′ ↪→ G′ = GrassP̃ (m)(Ṽ ⊗Wm)× Flag ×Grassr(Ṽ ⊗Wm).

For ω = (r, χ1, χ2, {n⃗(x), a⃗(x)}x∈I ,O(1), k), give G′ polarization

ℓ+ kcN

c(m−N)
×
∏
x∈I

{d1(x), · · · , dlx(x)} × k.(6.1)

where I = I1 ∪ I2, di(x) = ai+1(x)− ai(x), ri(x) = n1(x) + · · ·+ ni(x),

ℓ =
kχ−

∑
x∈I
∑lx

i=1 di(x)ri(x)

r
.

Let H ⊂ R̃′ be the open set defined in Notation 2.21, R̃′ss
ω ⊂ H be the

open set of GIT semi-stable points (respect to the polarization). Let

ψ : R̃′ss
ω → Pω := R̃′ss

ω //G.
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If O(1)|Xj
= OXj

(cjyj), the restriction of polarization (6.1) to H is

Θ̂′
H = ρ∗(Θ̂R1 � Θ̂R2)⊗ det(Q)k

where (for j = 1, 2, πRj
: Xj ×Rj → Rj is projection) we have

Θ̂Rj
= (detRπRj

E j)−k ⊗
⊗
x∈Ij

{
lx⊗
i=1

det(Q{x}×Rj , i)
di(x)

}
⊗ (detE jyj)

cjℓ

c1+c2

where we assume that ℓ and ℓj :=
cjℓ

c1+c2
are integers. The sequence

0 → F → (π × id)∗E → x0Q → 0

on X × R̃′ss
ω defines a morphism ϕ̂ : R̃′ss

ω → UX such that

ϕ̂∗(ΘUX
) =detRπR̃′ss

ω
(F)−k ⊗

⊗
x∈I

{
lx⊗
i=1

det(Q{x}×R̃′ss
ω , i)

di(x)

}
⊗ (detFy1)

ℓ1 ⊗ (detFy2)
ℓ2 = Θ̂′

R̃′ss
ω
.

Clearly, ϕ̂ induces a morphism ϕ : Pω → UX such that ϕ̂ = ϕ · ψ.
Thus Θ̂′

R̃′ss
ω

descends to an ample line bundle ΘPω = ϕ∗(ΘUX
) on Pω.

Similarly, ϕ∗ : H1(UX ,ΘUX
) ↪→ H1(Pω,ΘPω) is injective. To prove

H1(Pω,ΘPω) = 0,

we need as before to compute canonical bundle ωPω and to estimate
the codimension of non-semistable points. However, the situation is

slightly different with the case when X̃ is connected. We firstly figure

out some necessary conditions when (E,Q) ∈ R̃′ss
ω .

For (E,Ex1 ⊕ Ex2
q−→ Q→ 0) ∈ H, F = (F1, F2) ⊂ E = (E1, E2), let

Dm(F ) := r(F )
parχm(E)− r

r
− (parχm(F )− t)

D(F ) :=

(
r1
parχ(E1)

r
− parχ(F1)

)
+

(
r2
parχ(E2)

r
− parχ(F2)

)
where t = dim(QF ), QF = q(Fx1 ⊕ Fx2) ⊂ Q, ri = rk(Fi). Then

Dm(F ) = D(F ) +
(r1 − r2)

r

(
Dm(E1)− dim(QE1)

)
+ t− r2

= D(F ) +
(r2 − r1)

r

(
Dm(E2)− dim(QE2)

)
+ t− r1.

(6.2)



44 XIAOTAO SUN

Lemma 6.1. For (E,Q) ∈ R̃′ss
ω , let Ej = E ′

j ⊕ xjCsj and

nωj =
1

k

rℓj +∑
x∈Ij

lx∑
i=1

di(x)ri(x)

 (j = 1, 2).

Then, for the fixed χj := χ(Ej) (j = 1, 2), we have

(1) nωj ≤ χj ≤ nωj + r (j = 1, 2),
(2) s1 ≤ nω2 + r − χ2, s2 ≤ nω1 + r − χ1,

(3) let (E,Q) ∈ H \ {Df
1 ∪ Df

2} with nωj ≤ χ(Ej) ≤ nωj + r, then

E1 ∈ Rss
1 , E2 ∈ Rss

2 ⇒ (E,Q) ∈ R̃′ ss
ω .

Moreover, when nω1 < χ1 < nω1 + r, we have (E,Q) ∈ R̃′s
ω if one

of E1, E2 is a stable parabolic bundle,
(4) let (E,Q) ∈ H \ {Df

1 ∪ Df
2}, if χ1 = nω1 + r or χ1 = nω1 , then

(E,Q) ∈ R̃′ ss
ω ⇒ E1 ∈ Rss

1 , E2 ∈ Rss
2 .

Proof. Note that χ1 + χ2 = χ + r and nω1 + nω2 = χ, (1) and (2) are
clear by the following formulas (j = 1, 2)

χ(Ej) = nωj + dim(QEj)−Dm(Ej)

χ(E1) + s2 = nω1 + dim(QEs
1)−Dm(E

s
1)

χ(E2) + s1 = nω2 + dim(QEs
2)−Dm(E

s
2)

where Es
1 = (E1, x2Cs2), Es

2 = ( x1Cs1 , E2). The formula (6.2) becomes

Dm(F ) = D(F ) +
r2 − r1
r

(χ1 − nω1 ) + dim(QF )− r2

= D(F ) +
r1 − r2
r

(χ2 − nω2 ) + dim(QF )− r1.
(6.3)

To prove (3), by (6.3) and dim(QF ) − rj ≥ 0 (j = 1, 2), we have
Dm(F ) ≥ 0 whenever D(F ) ≥ 0. Thus

E1 ∈ Rss
1 , E2 ∈ Rss

2 ⇒ (E,Q) ∈ R̃′ ss
ω .

When nω1 < χ1 < nω1 + r (which implies nω2 < χ2 < nω2 + r), we have

Dm(F ) > D(F ) ≥ 0 if r1 ̸= r2. Thus (E,Q) ∈ R̃′s
ω if one of E1, E2 is a

stable parabolic bundle.
To prove (4), if χ1 = nω1 + r or χ1 = nω1 , the formula (6.3) becomes

Dm(F ) = D(F ) + dim(QF )− r1.(6.4)

For F1 ⊂ E1 of rank r1, take F = (F1, 0) ⊂ E in (6.4), we have

Dm(F ) = D(F ) = r1
parχ(E1)

r
− parχ(F1)
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which implies that E1 ∈ Rss
1 if (E,Q) ∈ R̃′ ss

ω . For F2 ⊂ E2 of rank r2,
take F = (E1, F2) ⊂ E in (6.4), we have

Dm(F ) = D(F ) = r2
parχ(E2)

r
− parχ(F2)

which implies that E2 ∈ Rss
2 if (E,Q) ∈ R̃′ ss

ω . �

Notation 6.2. For ω = (r, χ1, χ2, {n⃗(x), a⃗(x)}x∈I ,O(1), k), let

Hω =

{
(E,Q) ∈ H, with nωj ≤ χ(Ej) = χj ≤ nωj + r (j = 1, 2), and

dim(Tor(E1)) ≤ nω2 + r − χ2, dim(Tor(E2)) ≤ nω1 + r − χ1

}
.

Proposition 6.3. Let Df
1 = D̂1 ∪ D̂t

1 and Df
2 = D̂2 ∪ D̂t

2. Then

(1) codim(Hω \ R̃′ss
ω ) > min

1≤i≤2

{
(r − 1)(gi − r+3

4
) + |Ii|

k

}
.

(2) codim(R̃′ss
ω \ {Df

1 ∪ Df
2} \ R̃′s

ω ) > min
1≤i≤2

{
(r − 1)(gi − 1) + |Ii|

k

}
when nω1 < χ1 < nω1 + r.

(3) codim(R̃′ss
ω \ {Df

1 ∪Df
2} \ R̃′−s

ω ) ≥ min
1≤i≤2

{
(r − 1)(gi − 1) + |Ii|

k

}
when χ1 = nω1 or nω1 + r, where

R̃′−s
ω :=

{
(E,Q) ∈ R̃′ss

ω satisfies parµ(F ) < parµ(E) for any

nontrivial F ⊂ E of rank (r1, r2) ̸= (0, r) or (r, 0)

}
.

Proof. To prove (1), let (E,Q) ∈ Hω \ R̃′ss
ω with E = (E1, E2), then

there exists a F = (F1, F2) ⊂ E such that E/F is torsion free and

parχm(F )− dim(QF ) > r(F )
parχm(E)− r

r
.(6.5)

Let t = dim(QF ), ri = rk(Fi), mi(x) = dimFx∩Fi−1(E)x
Fx∩Fi(E)x

, χi = χ(Ei)

m(F ) =
r(F )− r1

k

∑
x∈I1

alx+1(x) +
r(F )− r2

k

∑
x∈I2

alx+1(x)

where r(F ) = c1r1+c2r2
c1+c2

. Then we can rewrite (6.5) as

rχ(F )− r(F )χ >rt− rm(F ) +
r(F )

k

∑
x∈I

lx+1∑
i=1

ai(x)ni(x)

− r

k

∑
x∈I

lx+1∑
i=1

ai(x)mi(x)

(6.6)

0 → F → E → E/F := F̃ = (F̃1, F̃2) → 0
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Write E = E ′ ⊕ x1Cs1 ⊕ x2Cs2 , F = F ′ ⊕ x1Cs1 ⊕ x2Cs2 and F1 =
F ′
1⊕ x1Cs1 , F2 = F ′

2⊕ x2Cs2 where E ′, F ′ (thus F ′
1, F

′
2) are torsion free

sheaves satisfying the exact sequences

0 → F ′
1 → E ′

1 → F̃1 → 0, 0 → F ′
2 → E ′

2 → F̃2 → 0.

Let di = deg(F ′
i ), ri = rk(F ′

i ), deg(F̃i) = χi − r(1− gi)− di − si and

Pi(m) = cirim+ di + ri(1− gi), P̃i(m) = cirm+ χi − si − Pi(m).

For Wi = OXi
(−N), Vi = CPi(N) (resp. Ṽi = CP̃i(N)), let

Qi ⊂ Quot(Vi ⊗Wi, Pi)

(resp. Q̃i ⊂ Quot(Ṽi⊗Wi, P̃i)) be the open set of locally free quotients

F ′
i (resp. F̃i) with vanishing H1(F ′

i (N)) (resp. H1(F̃i(N))) and F ′
i (N)

(resp. F̃i(N)) generated by global sections. Let F ′
i (resp. F̃i) be the

universal quotient on Xi×Qi (resp. on Xi× Q̃i), let Vi = Qi× Q̃i and

Gi = F̃
√

i ⊗F ′
i on Xi × Vi. Then we have

Vi =
∪
hi≥0

Vhii

such that R1fi∗(Gi) is locally free of rank hi on Vhii where fi : Xi×Vi →
Vi is the projection. Let Phi = P(R1fi∗(Gi)

√
) → Vhii be the projective

bundle on Vi and 0 → F ′
i ⊗ OPhi

(−1) → E ′
i(hi) → F̃i → 0 be the

universal extension on Xi×Phi (we set Phi = Vi and E ′
i(hi) = F ′

i⊕F̃i if
hi = 0). For v′i = (di, ri, {m1(x), · · · ,mlx+1(x)}x∈Ii , hi), we can define
a variety X(v′i) → Phi . It parametrises a family of parabolic bundles

E ′
i, which occur as extensions 0 → F ′

i → E ′
i → F̃i → 0 (the extension

being split if hi = 0), with parabolic structures at x ∈ Ii of type
n⃗(x) = n1(x), · · · , nlx+1(x)), whose induced parabolic structures on F ′

i

are of type (m1(x), · · · ,mlx+1(x)) (we will forget mj(x) if it is zero).

Let 0 → F ′
i(−1) → E ′(v′i) → F̃i → 0 be the pull back of universal

extension to Xi × X(v′i), E(v′i) = E ′(v′i) ⊕ xiOsi and let F (v′i) be the
frame bundle of the direct image of E(v′i)(N) (under the projection
Xi ×X(v′i) → X(v′i)). Write E(v′) := E(v′1)⊕ E(v′2), we consider

Gv′ := Grassr(E(v′)x1 ⊕ E(v′)x2) → F (v′1)× F (v′2)

and define a subvariety of Gv′ by

X(v) :=

{
(Ex1 ⊕ Ex2

q−→ Q→ 0) ∈ Gv′), ker(q) ∩ (Cs1 ⊕ Cs2) = 0,

dim(ker(q) ∩ (F ′
x1

⊕ Cs1 ⊕ F ′
x2

⊕ Cs2)) = r1 + r2 + s− t

}
.

Then X(v) parametrises a family of GPS (E = E ′⊕ x1Cs1 ⊕ x2Cs2 , Q),

where E ′ = (E ′
1, E

′
2) occurs as extensions 0 → F ′

i → E ′
i → F̃i → 0 (it is
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split if hi = 0) with parabolic structures at x ∈ I of type n⃗(x), whose
induced parabolic structures on F ′

i are of type (m1(x), · · · ,mlx+1(x))
(we will forget mi(x) if it is zero), such that x1Cs1 ⊕ x2Cs2 → Q is in-
jective and rank(F ′

x1
⊕ Cs1 ⊕ F ′

x2
⊕ Cs2 → Q) = t. There is a morphism

X(v) → Hω \ R̃ss
ω whose image contains (E,Q). Therefore we have a

(countable) number of quasi-projective varieties X(v) and morphisms

φv : X(v) → Hω\R̃ss
ω such that the union of the images coversHω\R̃ss

ω .
One computes dimF (v′i) = dimX(v′i) + (cirN + χi)

2,

dimX(v′i) =

{ ∑
x∈Ii dimXvi(x) + hi − 1 + dimQi + dim Q̃i, if hi ̸= 0∑
x∈Ii dimXvi(x) + dimQi + dim Q̃i if hi = 0

dimQi + dim Q̃i = (gi − 1)(r2i + (r − ri)
2) + Pi(N)2 + P̃i(N)2 and the

dimension of H, X(v) are (let s = s1 + s2):

r2(g − 2) + r2 +
2∑
i=1

(cirN + χi)
2 +

∑
x∈I

dimFlagn⃗(x)(Fx),

r(r + s)− (r − t)(r1 + r2 + s− t) +
2∑
i=1

(cirN + χi)
2 +

2∑
i=1

dimX(v′i).

To estimate the minimum e of fiber dimension of φv, note that

dimAut(E) ≥ dimAut(E ′
1) + dimAut(E ′

2) + rs+ s21 + s22

and 0 → F ′
i → E ′

i → F̃i → 0, we have

dimAut(E ′
i) ≥

{
1 + h0(F̃

√

i ⊗ F ′
i ), if hi ̸= 0

2 + h0(F̃
√

i ⊗ F ′
i ) if hi = 0

Define e(hi) = 1 when hi ̸= 0 and e(hi) = 2 when hi = 0, then

e ≥rs+ s21 + s22 + h0(F̃
√

1 ⊗ F ′
1) + h0(F̃

√

2 ⊗ F ′
2) + e(h1)

+ e(h2)− 4 + P1(N)2 + P̃1(N)2 + P2(N)2 + P̃2(N)2.

Then the codimension of Hω \ R̃ss
ω is bounded below by

2∑
i=1

ri(r − ri)(gi − 1) +
2∑
i=1

(ri + si − t)si + (r − t)(r1 + r2 − t)+

rχ(F )− (r1χ1 + r2χ2) +
∑
x∈I1

lx+1∑
j=1

(r1 −
j∑
i=1

mi(x))(nj(x)−mj(x))

+
∑
x∈I2

lx+1∑
j=1

(r2 −
j∑
i=1

mi(x))(nj(x)−mj(x)).
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If r1 ≥ r2, use χ1 + s2 ≤ nω1 + r and χ2 = χ+ r − χ1 to get

rχ(F )−(r1χ1 + r2χ2) ≥ rχ(F )− r(F )χ+ rm(F )−

r1r + (r1 − r2)s2 +
r1 − r(F )

k

∑
x∈I1

lx+1∑
i=1

ai(x)ni(x)

+
r2 − r(F )

k

∑
x∈I2

lx+1∑
i=1

ai(x)ni(x).

(6.7)

Similarly, if r2 ≥ r1, we have

rχ(F )−(r1χ1 + r2χ2) ≥ rχ(F )− r(F )χ+ rm(F )−

r2r + (r2 − r1)s1 +
r1 − r(F )

k

∑
x∈I1

lx+1∑
i=1

ai(x)ni(x)

+
r2 − r(F )

k

∑
x∈I2

lx+1∑
i=1

ai(x)ni(x).

(6.8)

By using of the inequalities (6.6), (6.7) and (6.8), we have

codim(Hω \ R̃′ss
ω ) >

2∑
i=1

ri(r − ri)(gi − 1) + (max{r1, r2} − t)s

+ s21 + s22 + r ·min{r1, r2} − t(r1 + r2 − t)

+
∑
x∈I1



lx+1∑
j=1

(r1 −
j∑
i=1

mi(x))(nj(x)−mj(x))

+
lx+1∑
j=1

(r1nj(x)− rmj(x))
aj(x)

k



+
∑
x∈I2



lx+1∑
j=1

(r2 −
j∑
i=1

mi(x))(nj(x)−mj(x))

+
lx+1∑
j=1

(r1nj(x)− rmj(x))
aj(x)

k


,
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where s = s1 + s2. Let f(r1, r2, s1, s2, t) denote

(max{r1, r2} − t)s+ s21 + s22 + r ·min{r1, r2} − t(r1 + r2 − t) =

(t− r1 + r2 + s

2
)2 +

2(s21 + s22) + (s1 − s2)
2

4
+

max{r1, r2} −min{r1, r2}
2

s

+min{r1, r2}(r −max{r1, r2})−
(r1 − r2)

2

4
.

When r1 = r2, it is clear that f(r1, r2, s1, s2, t) ≥ r1(r−r1) and we have

codim(Hω \ R̃′ss
ω ) > r1(r − r1)(g − 1) +

|I|
k
.

In general, we have only f(r1, r2, s1, s2, t) ≥ − (r−1)2

4
and

codim(Hω \ R̃′ss
ω ) > min

1≤i≤2

{
(r − 1)(gi −

r + 3

4
) +

|Ii|
k

}
.

To prove (2), note s1 = s2 = 0, max{r1, r2} ≤ t for (E,Q) ∈ R̃′ss
ω \

{Df
1∪D

f
2}, we have f(r1, r2, s1, s2, t) = r·min{r1, r2}+t(t−r1−r2) ≥ 0.

Then, when nω1 < χ1 < nω1 + r, which implies (r1, r2) ̸= (r, 0), (0, r),

codim(R̃′ss
ω \ {Df

1 ∪ Df
2} \ R̃′s

ω ) > min
1≤i≤2

{
(r − 1)(gi − 1) +

|Ii|
k

}
.

The assertion (3) follows the same arguments of (2) and the definition

of R̃′−s
ω . In fact, R̃′−s

ω = ρ−1(Rs
1 ×Rs

2) by Lemma 6.1 (4), where

ρ : R̃′ss
ω \ {Df

1 ∪ Df
2} → Rss

1 ×Rss
2 .

�

The schemesH and P are Gorenstein, so they have canonical sheaves.
To compute the canonical sheaves ωH and ωP , let

0 → Kj → Vj ⊗OXj×Rj
(−N) → E j → 0 (j = 1, 2)(6.9)

be the universal quotient on Xj ×Rj (Kj are in fact locally free), and

ω−1
Rj

=(detRπRj
E j)−2r ⊗

⊗
x∈Ij

{
(det E jx)nlx+1(x)−r ⊗

lx⊗
i=1

(detQx,i)
ni(x)+ni+1(x)

}
⊗
⊗
q∈Xj

(det E jq )1−r ⊗ (detRπRj
detE j)2

where ωXj
= OXj

(
∑

q∈Xj
q). Let D̂etj : Rj → J

dj
Xj
, where dj = χj +

r(gj − 1), be defined by detE j := (detKj)−1 ⊗OXj×Rj
(−Pj(N)N), let
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Lj be a universal line bundle on Xj × J
dj
Xj

and

Θ
J
dj
Xj

= (detRπ
J
dj
Xj

Lj)−2 ⊗ (Lj)rxj ⊗
⊗
q∈Xj

(Lj)r−1
q ⊗ (Lj)2χj−r

yj
(6.10)

(which are independent of the choices of Lj). Let

D̂etR̃ := (D̂et1, D̂et2) : R̃ = R1 ×R2 → Jd
X̃
:= Jd1X1

× Jd2X2
,

which induces D̂etH : H → Jd
X̃

and Det : Pω → Jd
X̃

such that

H
ρ
��

D̂etH

��?
??

??
??

?

R̃
D̂etR̃

// Jd
X̃

R̃′ss
ω

ψ

��

D̂etR̃′ss
ω

  A
AA

AA
AA

A

Pω
Det

// Jd
X̃

are commutative. Let ΘJd
X̃

= p∗1ΘJ
d1
X1

⊗ p∗2ΘJ
d2
X2

(where pj : Jd
X̃

:=

Jd1X1
× Jd2X2

→ J
dj
Xj

are projections). Then similar arguments of [9] give

Proposition 6.4. Let ρ : H → R̃ := R1 ×R2 and E1
x1
⊕E2

x2
→ Q → 0

be the universal quotient on H. Then

ω−1
H = ρ∗(ω−1

R1
⊗ ω−1

R2
)⊗ (detQ)2r ⊗ (detK1

x1
)r ⊗ (detK2

x2
)r =

(detRπHE)−2r ⊗
⊗
x∈I

{
(det Ex)−rlx (x) ⊗

lx⊗
i=1

(detQx,i)
ni(x)+ni+1(x)

}

⊗ (detQ)2r ⊗
2⊗
j=1

(detEyj)2χj−r ⊗ D̂et
∗
H(Θ

−1
Jd
X̃

) = Θ̂′
ωc ⊗ D̂et

∗
H(Θ

−1
Jd
X̃

)

where

Θ̂′
ωc =(detRπHE)−2r ⊗

⊗
x∈I

{
lx⊗
i=1

(detQx,i)
ni(x)+ni+1(x)

}
⊗ det(Q)2r

⊗ (detEy1)2χ1−r ⊗ (detEy2)2χ2−r ⊗
⊗
x∈I

(det Ex)−rlx(x).

Let Ji ⊂ Xi \ (Ii ∪ {xi}) be a subset, J = J1 ∪ J2 and

R(J)i = ×Q̃i
x∈Ii∪Ji

Flagn⃗(x)(F i
x) → Q̃i,
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R̃(J) = R(J)1 ×R(J)2
pJ−→ R̃ = R1 ×R2 be the projection. Consider

R̃(J)′
pJ−−−→ R̃′

ρ

y ρ

y
R̃(J)

pJ−−−→ R̃

and H(J) := p−1
J (H)

pJ−→ H. Then, by Proposition 6.4, we have

ω−1
H(J) = Θ̂′

ωc(J) ⊗ D̂et
∗
H(J)(Θ

−1
Jd
X̃

),(6.11)

where

Θ̂′
ωc(J) =(detRπH(J)E)−2r ⊗

⊗
x∈I∪J

{
lx⊗
i=1

(detQx,i)
ni(x)+ni+1(x)

}
⊗ det(Q)2r

⊗ (detEy1)2χ1−r ⊗ (detEy2)2χ2−r ⊗
⊗
x∈I∪J

(det Ex)−rlx (x).

Let ωc(J) = (r, χ1, χ2, {{ni(x)}1≤i≤lx+1, {dci(x)}1≤i≤lx}x∈I∪J ,O(1), kc)
where kc = 2r, dci(x) = ni(x)+ni+1(x), let ℓ

c
j = 2χj−r−

∑
x∈Ij∪Jj rlx(x)

and ℓc = ℓc1 + ℓc2 = 2χ−
∑

x∈I∪J rlx(x). Then∑
x∈I∪J

lx∑
i=1

dci(x)ri(x) + rℓc = kcχ.

The type {n⃗(x)}x∈J of flags at x ∈ J will be chosen to satisfy

ℓc1 =
c1

c1 + c2
ℓc(6.12)

which is equivalent to the following condition

c1
∑
x∈J2

rlx(x)− c2
∑
x∈J1

rlx(x) =

c1

(
2χ2 − r −

∑
x∈I2

rlx(x)

)
− c2

(
2χ1 − r −

∑
x∈I1

rlx(x)

)
.

(6.13)

The choices of {n⃗(x)}x∈J satisfying (6.12) for arbitrary large |J1| and
|J2| are possible since the equation (6.13) has arbitrary large integer so-

lutions. In this case, the line bundle Θ̂′
ωc(J) is (algebraically) equivalent

to the restriction (on H(J)) of the following polarization

ℓc + kccN

c(m−N)
×
∏
x∈I∩J

{dc1(x), · · · , dclx(x)} × kc.
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On the other hand, it is easy to compute that n
ωc(J)
j = χj − r

2
, thus

n
ωc(J)
j < χj < n

ωc(J)
j + r (j = 1, 2).

Moreover, for any polarization (6.1) (determined by ω), let Θ̂′
H be its

restriction to H. Then we can write

p∗J(Θ̂
′
H) = ωH(J) ⊗ Θ̂′

ω̄ ⊗ D̂et
∗
H(J)(Θ

−1
Jd
X̃

),

where ω̄ = (r, χ1, χ2, {{ni(x)}1≤i≤lx+1, {d̄i(x)}1≤i≤lx}x∈I∪J ,O(1), k̄),

Θ̂′
ω̄ =(detRπH(J)E)−k̄ ⊗

⊗
x∈I∪J

{
lx⊗
i=1

(detQx,i)
d̄i(x)

}
⊗ det(Q)k̄

⊗ (detEy1)ℓ1+2χ1−r ⊗ (detEy2)ℓ2+2χ2−r ⊗
⊗
x∈I∪J

(det Ex)−rlx (x),

k̄ = k + 2r, d̄i(x) = di(x) + ni(x) + ni+1(x) (di(x) = 0 for x ∈ J). Let

ℓ̄j = ℓj + 2χj − r −
∑

x∈Ij∪Jj

rlx(x) = ℓj + ℓcj,

ℓ̄ := ℓ̄1 + ℓ̄2 = ℓ+ 2χ−
∑
x∈I∪J

rlx(x) = ℓ+ ℓc.

Then it is easy to see that ℓ̄j =
cj

c1+c2
ℓ̄ (by (6.12)),

∑
x∈I∪J

lx∑
i=1

d̄i(x)ri(x) + rℓ̄ = k̄χ,

and Θ̂′
ω̄ is (algebraically) equivalent to the restriction of polarization

determined by ω̄. The condition (6.12) implies the following identities

2r(χj − nω̄j ) = r2 + k(nω̄j − nωj ) (j = 1, 2).(6.14)

Lemma 6.5. For any (E,Q) ∈ H(J), we have nω̄j ≤ χj ≤ nω̄j + r

(which is the necessary condition that R̃(J)′ssω̄ ̸= ∅).

Proof. If nω̄1 ≥ nω1 , by (6.14), we have nω̄1 < χ1 ≤ nω1 +r ≤ nω̄1 +r, which
implies nω̄2 ≤ χ2 < nω̄2 + r. If nω̄1 < nω1 , by n

ω̄
1 + nω̄2 = χ = nω1 + nω2 , we

have nω̄2 > nω2 which implies nω̄2 < χ2 ≤ nω2 + r < nω̄2 + r by (6.14) again
(thus nω̄1 < χ1 < nω̄1 + r). �
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To prove H1(Pω,ΘPω) = 0 via the same method of Section 5, even

if we assume that min
1≤i≤2

{
(r − 1)(gi − r+3

4
) + |Ii|

k

}
≥ 3, we only have

H1(Pω,ΘPω) : = H1(R̃′ss
ω , Θ̂

′
R̃′ss

ω
)inv. = H1(Hω, Θ̂′

H)
inv.

= H1(p−1
J (Hω), p∗J(Θ̂

′
H))

inv.

= H1(p−1
J (Hω), ωH(J) ⊗ Θ̂′

ω̄ ⊗ D̂et
∗
H(J)(Θ

−1
Jd
X̃

))inv..

If p−1
J (Hω) = H(J)ω̄, we would have (choosing |J1|, |J2| large enough)

H1(p−1
J (Hω), ωH(J) ⊗ Θ̂′

ω̄ ⊗ D̂et
∗
H(J)(Θ

−1
Jd
X̃

))inv.

= H1(Pω̄, ωPω̄ ⊗ΘPω̄ ⊗Det∗Pω̄
(Θ−1

Jd
X̃

))

which vanishes by Kodaira-type theorem and the following lemma.

Lemma 6.6. When X = X1 ∪X2 with node x0, the line bundle

ΘPω̄ ⊗Det∗Pω̄
(Θ−1

Jd
X̃

)

on Pω̄ is ample if k̄ > 2r.

Proof. When X = X1 ∪X2, the moduli space Pω̄ is a disjoint union of

{Pd1,d2}d1+d2=d.
It is enough to consider Pω̄ = Pd1,d2 , thus we the flat morphism

Det : Pω̄ → Jd
X̃
= Jd1X1

× Jd2X2
= JdX

and J0
X̃
= J0

X1
× J0

X2
= J0

X acts on Pω̄ by

((E,Q),N ) 7→ (E ⊗ π∗N , Q⊗Nx0).

Let PL
ω̄ = Det−1

Pω̄
(L) (which is unirational), consider the morphism

f : PL
ω̄ × J0

X → Pω̄.
Then it is enough to check the ampleness of

f ∗(ΘPω̄ ⊗Det∗Pω̄
(Θ−1

Jd
X̃

))|{(E,Q)}×J0
X
, f ∗(ΘPω̄ ⊗Det∗Pω̄

(Θ−1
Jd
X̃

))|PL
ω̄×{N}.

It is clearly that f ∗(ΘPω̄ ⊗Det∗Pω̄
(Θ−1

Jd
X̃

))|PL
ω̄×{N} is ample, and

f ∗(ΘPω̄ ⊗Det∗Pω̄
(Θ−1

Jd
X̃

))|{(E,Q)}×J0
X
=M1 ⊗M2

where M1 = f ∗
1 (ΘPω̄), M2 = f ∗

2 (Θ
−1
Jd
X̃

), f1 : J
0
X → Pω̄, f2 : J0

X → JdX ,

f1(N ) = (E ⊗ π∗N , Q⊗Nx0), f2(L0) = Lr0 ⊗ L.
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Then M1 (resp. M2) is algebraically equivalent to Θrk̄
y (resp. Θ−2r2

y )
(see Lemma 5.3 of [9] for details). Thus M1 ⊗ M2 is algebraically

equivalent to Θrk̄−2r2

y , which is ample when k̄ > 2r. �

Remarks 6.7. (1) The equality p−1
J (Hω) = H(J)ω̄ is equivalent to the

statement that for any (E,Q) ∈ H(J) with torsion τi at xi we have

τi ≤ nωj + r − χj (j ̸= i) ⇔ τi ≤ nω̄j + r − χj (j ̸= i)(6.15)

which may not be true unfortunately. (2) The proof of Proposition 6.3
in fact implies the following estimate

codim(H \ R̃′−ss
ω ) > min

1≤i≤2

{
(r − 1)(gi −

r + 3

4
) +

|Ii|
k

}
(6.16)

where the open set R̃′−ss
ω ⊂ H satisfying R̃′−ss

ω ⊃ R̃′ss
ω is defined to be

R̃′−ss
ω :=

{
(E,Q) ∈ H satisfies parµ(F ) ≤ parµ(E) for any

nontrivial F ⊂ E of rank (r1, r2) ̸= (0, r) or (r, 0)

}
.

We end up by some comments about quantization conjecture of
Guillemin-Sternberg. Let M be a projective variety with an action
of a reductive group G and an ample L linearizing the action of G. If
M ss

L ⊂ M is the open set of GIT semistable points, then the so called
quantization conjecture of Guillemin-Sternberg predict that

H i(M,L)inv. = H i(M ss
L , L)

inv.(6.17)

which was proved when M is projective and has at most rational sin-
gularities (see [12], [13] and [14]). There is an example in [12] showing
the failure of (6.17) when M has worse singularities. However, for
the applications of studying moduli spaces in algebraic geometry, M
is in general a locally closed subvariety of Quotient schemes or Hilbert

schemes (for example, M = R̃F , H in this article, which are quasi-
projective and have at most rational singularities). Thus the following
question seems natural and important for application.

Question 6.8. Let M be a normal, projective variety with action by
a reductive group G. If M0 ⊂ M is an G-invariant open set such that
M ss

L ⊂M0 for any ample linearization L. Does the equality

H i(M0, L)
inv. = H i(M ss

L , L)
inv.

holds for any i ≥ 0 ?

If the question has an affirmative answer, conjecture in Remark
5.6 and Conjecture 4.5 will hold, which imply H1(UX ,ΘUX , ω) = 0
for any irreducible X with one node and any data ω (see Remark
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5.6). However, the affirmative answer of Question 6.8 seems not imply
H1(UX ,ΘUX , ω) = 0 for reducible X = X1 ∪X2.

Let qL : M ss
L → ML := M ss

L //G be the GIT quotient and assume
that L descends to a line bundle L (i.e. L is the pullback of L). One
of the general strategy of proving H i(ML,L) = 0 is to use equalities

H i(ML,L) = H i(M ss
L , L)

inv. = H i(M0, L)
inv.

where the first equality holds by definition and the second holds by the
affirmative answer of Question 6.8. Then one can write (on M0)

L = ωM0 ⊗ L′, L′ = ω−1
M0

⊗ L

where ωM0 is the canonical bundle of M0. Let qL′ :M ss
L′ → ML′ be the

GIT quotient and L′ descend to L′. Assume that

H i(M0, L)
inv. = H i(M ss

L′ , L)inv., ωM0 = q∗L′(ωML′ ).(6.18)

Then H i(ML,L) = H i(ML′ , ωML′ ⊗ L′) = 0 (∀ i > 0). Assumption
(6.18) does not hold in general, which need a good estimate of codi-
mension of M0 \M ss

L′ and M ss
L′ \M s

L′ . It is the reason that this strategy
does not work for reducible X = X1 ∪ X2 since we do not have a
good estimate of codimension of H \ R̃′ss

ω (we have only an estimate

of codim(Hω \ R̃′ss
ω )). However, we will prove vanishing theorems in a

forthcoming article [11] for all of these moduli spaces by a method of
modulo p reduction, which essentially needs the estimates of codimen-
sion and computation of canonical bundles.
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