

FACTORIZATION OF GENERALIZED THETA FUNCTIONS REVISITED

XIAOTAO SUN

ABSTRACT. This survey is based on my lectures given in last a few years. As a reference, constructions of moduli spaces of parabolic sheaves and generalized parabolic sheaves are provided. By a refinement of the proof of vanishing theorem, we show, without using vanishing theorem, a new observation that $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$ is independent of all of the choices for any smooth curves. The estimate of various codimension and computation of canonical line bundle of moduli space of generalized parabolic sheaves on a reducible curve are provided in Section 6, which is completely new.

1. INTRODUCTION

Let C be a smooth projective curve of genus g , \mathbf{Q} be the quotient scheme of quotients $V \otimes \mathcal{O}_C(-N) \rightarrow E \rightarrow 0$ with

$$\chi(E) = \chi = d + r(1 - g)$$

and let $V \otimes \mathcal{O}_{C \times \mathbf{Q}}(-N) \rightarrow \mathcal{F} \rightarrow 0$ (where $V = \mathbb{C}^{P(N)}$) be the universal quotient on $C \times \mathbf{Q}$. There is an $\mathrm{SL}(V)$ -equivariant embedding

$$\mathbf{Q} \rightarrow \mathbf{G} = \mathrm{Grass}_{P(m)}(V \otimes H^0(\mathcal{O}_C(m - N))),$$

and the GIT quotient $\mathcal{U}_C = \mathbf{Q}^{ss} // \mathrm{SL}(V)$ respecting to the polarization

$$\Theta_{\mathbf{Q}^{ss}} := \det R\pi_{\mathbf{Q}^{ss}}(\mathcal{F})^{-k} \otimes \det(\mathcal{F}_y)^{\frac{k\chi}{r}}$$

(where $\mathcal{F}_y = \mathcal{F}|_{\{y\} \times \mathbf{Q}}$) is the so called moduli space of semi-stable rank r vector bundles of degree d on C . When $r|k\chi$, $\Theta_{\mathbf{Q}^{ss}}$ descends to an ample line bundle $\Theta_{\mathcal{U}_C}$ on \mathcal{U}_C . When $r = 1$, the sections $s \in H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$ are nothing but the classical **theta functions of order k** and $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = k^g$.

Date: October 2, 2016.

1991 *Mathematics Subject Classification.* Algebraic Geometry, 14H60, 14D20.

Key words and phrases. Moduli spaces, Parabolic sheaves, Degeneration.

Supported in part by the National Natural Science Foundation of China No.11321101.

When $r > 1$, the sections $s \in H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$ are so called **generalized theta functions of order k** on \mathcal{U}_C . It is clearly a very interesting question for mathematicians to find a formula of $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$, which however was only predicted by **Conformal Field Theory**, the so called Verlinde formula. For example, when $r = 2$,

$$\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = \left(\frac{k}{2}\right)^g \left(\frac{k+2}{2}\right)^{g-1} \sum_{i=0}^k \frac{(-1)^{id}}{(\sin \frac{(i+1)\pi}{k+2})^{2g-2}}.$$

According to [1], there are two kinds of approaches for the proof of Verlinde formula: Infinite-dimensional approaches and finite-dimensional approaches (see [1] for an account). Infinite-dimensional approach is close to physics, which works for any group G , but the geometry behind it is unclear (at least to me). Finite-dimensional approach depends on well understand of geometry of moduli spaces, but it works only for $r = 2$ (as far as I know).

One of the finite-dimensional approaches is to consider a flat family of projective curves $\mathcal{X} \rightarrow T$ such that a fiber $\mathcal{X}_{t_0} := X$ ($t_0 \in T$) is a connected curve with only one node $x_0 \in X$ and \mathcal{X}_t ($t \in T \setminus \{t_0\}$) are smooth curves with a fiber $\mathcal{X}_{t_1} = C$ ($t_1 \neq t_0$). Then one can associate a family of moduli spaces $\mathcal{M} \rightarrow T$ and a line bundle Θ on \mathcal{M} such that each fiber $\mathcal{M}_t = \mathcal{U}_{\mathcal{X}_t}$ is the moduli space of semi-stable torsion free sheaves on \mathcal{X}_t and $\Theta|_{\mathcal{M}_t} = \Theta_{\mathcal{U}_{\mathcal{X}_t}}$. By degenerating C to an irreducible X , there are two steps to establish a recurrence relation of $D_g(r, d, k) = \dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$ in term of g (the genus of C):

- (1) (Invariance) $\dim H^0(\mathcal{U}_{\mathcal{X}_t}, \Theta_{\mathcal{U}_{\mathcal{X}_t}})$ are independent of $t \in T$;
- (2) (Factorization) Let $\pi : \tilde{X} \rightarrow X$ be the normalization of X , then

$$H^0(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) \cong \bigoplus_{\mu} H^0(\mathcal{U}_{\tilde{X}}^{\mu}, \Theta_{\mathcal{U}_{\tilde{X}}^{\mu}}),$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \leq \mu_r \leq \dots \leq \mu_1 \leq k-1$, $\mathcal{U}_{\tilde{X}}^{\mu}$ are moduli spaces of semi-stable parabolic bundles on \tilde{X} with parabolic structure at $x_i \in \pi^{-1}(x_0) = \{x_1, x_2\}$ determined by μ and \tilde{X} has genus $g(\tilde{X}) = g-1$.

In order to carry through the induction on g , one has to start with moduli spaces $\mathcal{U}_{\mathcal{X}_t} = \mathcal{U}_{\mathcal{X}_t}(r, d, \omega)$ of semistable parabolic torsion free sheaves E on \mathcal{X}_t of rank r and $\deg(E) = d$ with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ and weights $\{\vec{a}(x)\}_{x \in I}$ at smooth points $\{x\}_{x \in I} \subset \mathcal{X}_t$, where $\omega = (k, \{\vec{n}(x), \vec{a}(x)\}_{x \in I})$ denote the parabolic data. In [9], the factorization theorem as above (2) was proved for $\mathcal{U}_X = \mathcal{U}_X(r, d, \omega)$.

Let $\mathcal{U}_C = \mathcal{U}_C(r, d, \omega)$ be the moduli space of semi-stable parabolic bundles of rank r and degree d on C with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ and weights $\{\vec{a}(x)\}_{x \in I}$ at a finite set $I \subset C$ of points, and

$$D_g(r, d, \omega) = \dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}).$$

If the invariance property that $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$ is independent of C and choices of points $x \in I$ holds (for example, if $H^1(\mathcal{U}_{X_t}, \Theta_{\mathcal{U}_{X_t}}) = 0$), we will have the following recurrence relation

$$(1.1) \quad D_g(r, d, \omega) = \sum_{\mu} D_{g-1}(r, d, \omega^{\mu})$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \leq \mu_r \leq \dots \leq \mu_1 < k$ and

$$\omega^{\mu} = (k, \{\vec{n}(x), \vec{a}(x)\}_{x \in I \cup \{x_1, x_2\}})$$

with $\vec{n}(x_i), \vec{a}(x_i)$ ($i = 1, 2$) determined by μ . A vanishing theorem

$$H^1(\mathcal{U}_{X_t}, \Theta_{\mathcal{U}_{X_t}}) = 0$$

was proved in [9] when $(r-1)(g-1) + \frac{|I|}{k} \geq 2$, which implies the invariance property for $g \geq 3$.

The recurrence relation (1.1) decreases the genus g , but it increases the number $|I|$ of parabolic points. By degenerating C to an irreducible $X = X_1 \cup X_2$, we can establish a recurrence relation for the number of parabolic points if we can prove the invariance property (1) and a factorization (2). In [10], we proved the factorization theorem

$$H^0(\mathcal{U}_{X_1 \cup X_2}, \Theta_{\mathcal{U}_{X_1 \cup X_2}}) \cong \bigoplus_{\mu} H^0(\mathcal{U}_{X_1}^{\mu}, \Theta_{\mathcal{U}_{X_1}^{\mu}}) \otimes H^0(\mathcal{U}_{X_2}^{\mu}, \Theta_{\mathcal{U}_{X_2}^{\mu}})$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \leq \mu_r \leq \dots \leq \mu_1 < k$. If

$$H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) = 0$$

holds for $X = X_1 \cup X_2$, fix a partition $I = I_1 \cup I_2$, we have

$$(1.2) \quad D_g(r, d, \omega) = \sum_{\mu} D_{g_1}(r, d_1^{\mu}, \omega_1^{\mu}) \cdot D_{g_2}(r, d_2^{\mu}, \omega_2^{\mu}), \quad g_1 + g_2 = g$$

where $d_1^{\mu} + d_2^{\mu} = d$, $\omega_j^{\mu} = (k, \{\vec{n}(x), \vec{a}(x)\}_{x \in I_j \cup \{x_j\}})$ ($j = 1, 2$).

For a projective variety \hat{M} with an ample line bundle $\hat{\mathcal{L}}$, if a reductive group G acts on \hat{M} with respect to the polarization $\hat{\mathcal{L}}$ and assume that $\hat{\mathcal{L}}$ descends to a line bundle \mathcal{L} on GIT quotient $M = \hat{M}^{ss}(\hat{\mathcal{L}}) // G$, then

$$H^i(M, \mathcal{L}) = H^i(\hat{M}^{ss}(\hat{\mathcal{L}}), \hat{\mathcal{L}})^{inv.}$$

If there is another G -variety $\hat{\mathcal{Y}}$ with an G -morphism $p : \hat{\mathcal{Y}} \rightarrow \hat{M}$ such that $H^i(\hat{M}, \hat{\mathcal{L}})^{inv.} = H^i(\hat{\mathcal{Y}}, p^* \hat{\mathcal{L}})^{inv.}$, we would be able to show the vanishing theorem $H^i(M, \mathcal{L}) = 0$ by assuming the following statements:

- (i) There are line bundles $\hat{\mathcal{L}}_1, \hat{\mathcal{L}}_2$ on $\hat{\mathcal{Y}}$ such that $p^*\hat{\mathcal{L}} = \omega_{\hat{\mathcal{Y}}} \otimes \hat{\mathcal{L}}_1 \otimes \hat{\mathcal{L}}_2$ (where $\omega_{\hat{\mathcal{Y}}}$ is the canonical line bundle of $\hat{\mathcal{Y}}$) and $\hat{\mathcal{L}}_1, \hat{\mathcal{L}}_2$ descend to ample line bundles $\mathcal{L}_1, \mathcal{L}_2$ on GIT quotient $\mathcal{Y} = \hat{\mathcal{Y}}^{ss}(\hat{\mathcal{L}}_1) // G$;
- (ii) If $\psi : \hat{\mathcal{Y}}^{ss}(\hat{\mathcal{L}}_1) \rightarrow \mathcal{Y}$ is quotient map, $\omega_{\mathcal{Y}} = (\psi_* \omega_{\hat{\mathcal{Y}}^{ss}(\hat{\mathcal{L}}_1)})^G$;
- (iii) $H^i(\hat{M}, \hat{\mathcal{L}})^{inv.} = H^i(\hat{M}^{ss}(\hat{\mathcal{L}}), \hat{\mathcal{L}})^{inv.}$ and

$$H^i(\hat{\mathcal{Y}}, p^*\hat{\mathcal{L}})^{inv.} = H^i(\hat{\mathcal{Y}}^{ss}(\hat{\mathcal{L}}_1), p^*\hat{\mathcal{L}})^{inv.}.$$

The above statements imply $H^i(M, \mathcal{L}) = H^i(\mathcal{Y}, \omega_{\mathcal{Y}} \otimes \mathcal{L}_1 \otimes \mathcal{L}_2)$, then Kodaira-type vanishing theorem for \mathcal{Y} do the job. To establish (i), (ii) and (iii), one has to compute canonical bundle and singularities of the moduli spaces, to estimate codimensions of

$$\hat{\mathcal{Y}}^{ss}(\hat{\mathcal{L}}_1) \setminus \hat{\mathcal{Y}}^s(\hat{\mathcal{L}}_1), \quad \hat{\mathcal{M}} \setminus \hat{\mathcal{M}}^{ss}(\hat{\mathcal{L}}), \quad \hat{\mathcal{Y}} \setminus \hat{\mathcal{Y}}^{ss}(\hat{\mathcal{L}}_1),$$

which were done in [9] for moduli spaces of parabolic bundles and generalized parabolic sheaves on an irreducible smooth curve, so that $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) = 0$ was only proved for the irreducible nodal curve X of genus $g \geq 3$ in [9]. If $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) = 0$ holds for both irreducible X and reducible X of arbitrary genus, the numbers $D_g(r, d, \omega)$ will satisfy the recurrence relation (1.1) and (1.2) which will imply a formula of $D_g(r, d, \omega)$. However, the vanishing theorem for reducible curve X remains open.

In this survey article, we provide a detail construction of various moduli spaces in Section 2. The theta line bundles $\Theta_{\mathcal{U}_X}$ and the two factorization theorems are reviewed in Section 3. We review firstly the proof of vanishing theorem for smooth curves of $g \geq 2$, then we show, without using the vanishing of $H^1(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$, that the invariance property of $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$ holds for any smooth curve of genus $g \geq 0$ in Section 4 (see Corollary 4.8). Section 5 contains the review of vanishing theorem for irreducible node curves. Section 6 is an attempt to prove, using the same method of Section 5, the vanishing theorem $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) = 0$ for reducible curve $X = X_1 \cup X_2$.

2. CONSTRUCTION OF MODULI SPACES

Let X be an irreducible projective curve of genus g over an algebraically closed field of characteristic zero, which has at most one node x_0 . Let I be a finite set of smooth points of X , and E be a coherent sheaf of rank r and degree d on X (the rank $r(E)$ is defined to be dimension of E_{ξ} at generic point $\xi \in X$, and $d = \chi(E) - r(1 - g)$).

Definition 2.1. By a quasi-parabolic structure on E at a smooth point $x \in X$, we mean a choice of flag of quotients

$$E_x = Q_{l_x+1}(E)_x \twoheadrightarrow Q_{l_x}(E)_x \twoheadrightarrow \cdots \cdots \twoheadrightarrow Q_1(E)_x \twoheadrightarrow Q_0(E)_x = 0$$

of the fibre E_x of E at x (each quotient $Q_i(E)_x \twoheadrightarrow Q_{i-1}(E)_x$ in the flag is not an isomorphism). If, in addition, a sequence of integers called the parabolic weights $0 \leq a_1(x) < a_2(x) < \cdots < a_{l_x+1}(x) \leq k$ are given, we call that E has a parabolic structure at x .

Notice that, let $F_i(E)_x := \ker\{E_x \twoheadrightarrow Q_i(E)_x\}$, it is equivalent to give a flag of subspaces of E_x :

$$E_x = F_0(E)_x \supset F_1(E)_x \supset \cdots \supset F_{l_x}(E)_x \supset F_{l_x+1}(E)_x = 0.$$

Let $r_i(x) = \dim(Q_i(E)_x)$, $n_i(x) = \dim(\ker\{Q_i(E)_x \twoheadrightarrow Q_{i-1}(E)_x\})$ (or simply defining $n_i(x) = r_i(x) - r_{i-1}(x)$) and

$$\begin{aligned} \vec{a}(x) &:= (a_1(x), a_2(x), \dots, a_{l_x+1}(x)) \\ \vec{n}(x) &:= (n_1(x), n_2(x), \dots, n_{l_x+1}(x)). \end{aligned}$$

\vec{a} (resp., \vec{n}) denotes the map $x \mapsto \vec{a}(x)$ (resp., $x \mapsto \vec{n}(x)$).

Definition 2.2. The parabolic Euler characteristic of E is

$$\text{par}\chi(E) := \chi(E) - \frac{1}{k} \sum_{x \in I} \left(a_{l_x+1}(x) \dim(E_x^\tau) - \sum_{i=1}^{l_x+1} a_i(x) n_i(x) \right)$$

where $E^\tau \subset E$ is the subsheaf of torsion and $E_x^\tau = E^\tau|_{\{x\}}$.

Definition 2.3. For any subsheaf $F \subset E$, let $Q_i(E)_x^F \subset Q_i(E)_x$ be the image of F , $n_i^F = \dim(\ker\{Q_i(E)_x^F \twoheadrightarrow Q_{i-1}(E)_x^F\})$ and

$$\text{par}\chi(F) := \chi(F) - \frac{1}{k} \sum_{x \in I} \left(a_{l_x+1}(x) \dim(F_x^\tau) - \sum_{i=1}^{l_x+1} a_i(x) n_i^F(x) \right).$$

Then E is called semistable (resp., stable) for (k, \vec{a}) if for any nontrivial subsheaf $E' \subset E$ such that E/E' is torsion free, one has

$$\text{par}\chi(E') \leq \frac{\text{par}\chi(E)}{r} \cdot r(E') \text{ (resp., <).}$$

Remark 2.4. Stable parabolic sheaf must be torsion free. If E is semistable, then E is torsion free outside $x \in I$, the quotient homomorphisms in Definition (2.1) injection E_x^τ to $Q_i(E)_x$ ($1 \leq i \leq l_x$) for any $x \in I$. Moreover, if $E_x^\tau \neq 0$, we must have $a_1(x) = 0$ and $a_{l_x+1}(x) = k$.

Fix a line bundle $\mathcal{O}(1)$ on X of $\deg(\mathcal{O}(1)) = c$, let $\chi = d + r(1 - g)$, P denote the polynomial $P(m) = crm + \chi$, $\mathcal{W} = \mathcal{O}(-N) = \mathcal{O}(1)^{-N}$ and $V = \mathbb{C}^{P(N)}$. Consider the Quot scheme

$$\text{Quot}(V \otimes \mathcal{W}, P)(T) = \left\{ \begin{array}{l} T\text{-flat quotients } V \otimes \mathcal{W} \rightarrow E \rightarrow 0 \text{ over } \\ X \times T \text{ with } \chi(E_t(m)) = P(m) \text{ } (\forall t \in T) \end{array} \right\},$$

and let $\mathbf{Q} \subset \text{Quot}(V \otimes \mathcal{W}, P)$ be the open set

$$\mathbf{Q}(T) = \left\{ \begin{array}{l} V \otimes \mathcal{W} \rightarrow E \rightarrow 0, \text{ with } R^1 p_{T*}(E(N)) = 0 \text{ and} \\ V \otimes \mathcal{O}_T \rightarrow p_{T*} E(N) \text{ induces an isomorphism} \end{array} \right\}.$$

Choose N large enough so that every semistable parabolic sheaf with Hilbert polynomial P and parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ with weights $\{\vec{d}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$ appears as a quotient corresponding to a point of \mathbf{Q} . Let $\tilde{\mathbf{Q}}$ be the closure of \mathbf{Q} in the Quot scheme, $V \otimes \mathcal{W} \rightarrow \mathcal{F} \rightarrow 0$ be the universal quotient over $X \times \tilde{\mathbf{Q}}$ and \mathcal{F}_x be the restriction of \mathcal{F} on $\{x\} \times \tilde{\mathbf{Q}} \cong \tilde{\mathbf{Q}}$. Let $\text{Flag}_{\vec{n}(x)}(\mathcal{F}_x) \rightarrow \tilde{\mathbf{Q}}$ be the relative flag scheme of locally free quotients of type $\vec{n}(x)$, and

$$\mathcal{R} = \times_{x \in I} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x) \rightarrow \tilde{\mathbf{Q}}$$

be the product over $\tilde{\mathbf{Q}}$. A (closed) point $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I})$ of \mathcal{R} by definition is given by a point $V \otimes \mathcal{W} \xrightarrow{p} E \rightarrow 0$ of the Quot scheme, together with the flags of quotients

$$\{E_x \twoheadrightarrow Q_{r_{l_x}(x)} \twoheadrightarrow Q_{r_{l_x-1}(x)} \twoheadrightarrow \dots \twoheadrightarrow Q_{r_2(x)} \twoheadrightarrow Q_{r_1(x)} \twoheadrightarrow 0\}_{x \in I}$$

where $p_{r_i(x)} : V \otimes \mathcal{W} \xrightarrow{p} E \rightarrow E_x \twoheadrightarrow Q_{r_{l_x}(x)} \twoheadrightarrow \dots \twoheadrightarrow Q_{r_i(x)}$.

For large enough m , we have a $SL(V)$ -equivariant embedding

$$\mathcal{R} \hookrightarrow \mathbf{G} = \text{Grass}_{P(m)}(V \otimes W_m) \times \mathbf{Flag},$$

where $W_m = H^0(\mathcal{W}(m))$, and \mathbf{Flag} is defined to be

$$\mathbf{Flag} = \prod_{x \in I} \{\text{Grass}_{r_1(x)}(V \otimes W_m) \times \dots \times \text{Grass}_{r_{l_x}(x)}(V \otimes W_m)\},$$

which maps a point $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I})$ =

$$(V \otimes \mathcal{W} \xrightarrow{p} E, \{V \otimes \mathcal{W} \xrightarrow{p_{r_1(x)}} Q_{r_1(x)}, \dots, V \otimes \mathcal{W} \xrightarrow{p_{r_{l_x}(x)}} Q_{r_{l_x}(x)}\}_{x \in I})$$

of \mathcal{R} to the point $(g, \{g_{r_1(x)}, \dots, g_{r_{l_x}(x)}\}_{x \in I})$ =

$$(V \otimes W_m \xrightarrow{g} U, \{V \otimes W_m \xrightarrow{g_{r_1(x)}} U_{r_1(x)}, \dots, V \otimes W_m \xrightarrow{g_{r_{l_x}(x)}} U_{r_{l_x}(x)}\}_{x \in I})$$

of \mathbf{G} , where $g := H^0(p(m))$, $U := H^0(E(m))$, $g_{r_i(x)} := H^0(p_{r_i(x)}(m))$, $U_{r_i(x)} := H^0(Q_{r_i(x)})$ ($i = 1, \dots, l_x$) and $r_i(x) = \dim(Q_{r_i(x)})$.

Notation 2.5. Given the polarisation (N large enough) on \mathbf{G} :

$$\frac{\ell + kcN}{c(m - N)} \times \prod_{x \in I} \{d_1(x), \dots, d_{l_x}(x)\}$$

where $d_i(x) = a_{i+1}(x) - a_i(x)$ and ℓ is the rational number satisfying

$$(2.1) \quad \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r\ell = k\chi$$

By the general criteria of GIT stability, we have

Proposition 2.6. *A point $(g, \{g_{r_1(x)}, \dots, g_{r_{l_x}(x)}\}_{x \in I}) \in \mathbf{G}$ is stable (respectively, semistable) for the action of $SL(V)$, with respect to the above polarisation (we refer to this from now on as GIT-stability), iff for all nontrivial subspaces $H \subset V$ we have (with $h = \dim H$)*

$$e(H) := \frac{\ell + kcN}{c(m - N)} (hP(m) - P(N)\dim g(H \otimes W_m)) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) (r_i(x)h - P(N)\dim g_{r_i(x)}(H \otimes W_m)) < (\leq) 0.$$

Notation 2.7. Given a point $(p, p_{r_1(x)}, \dots, p_{r_{l_x}(x)})_{x \in I} \in \mathcal{R}$, and a subsheaf F of E we denote the image of F in $Q_{r_i(x)}$ by $Q_{r_i(x)}^F$. Similarly, given a quotient $E \xrightarrow{T} \mathcal{G} \rightarrow 0$, set $Q_{r_i(x)}^{\mathcal{G}} := Q_{r_i(x)}/\text{Im}(\ker(T))$.

Lemma 2.8. *There exists $M_1(N)$ such that for $m \geq M_1(N)$ the following holds. Suppose $(p, \{p_{r(x)}, p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}) \in \mathcal{R}$ is a point which is GIT-semistable then for all quotients $E \xrightarrow{T} \mathcal{G} \rightarrow 0$ we have*

$$(2.2) \quad h^0(\mathcal{G}(N)) \geq \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^{\mathcal{G}}) \right).$$

In particular, $V \rightarrow H^0(E(N))$ is an isomorphism and E satisfies the requirements in Remark 2.4.

Proof. The injectivity of $V \xrightarrow{H^0(p(N))} H^0(E(N))$ is easy to see. Let

$$H = \ker\{V \xrightarrow{H^0(p(N))} H^0(E(N)) \xrightarrow{H^0(T(N))} H^0(\mathcal{G}(N))\}$$

and $F \subset E$ be the subsheaf generated by H . Since all these F are in a bounded family, $\dim g(H \otimes W_m) = h^0(F(m)) = \chi(F(m))$ and

$g_{r_i(x)}(H \otimes W_m) = h^0(Q_{r_i(x)}^F)$ ($\forall x \in I$) for $m \geq M'_1(N)$. Then, by Proposition 2.6 (with $h = \dim(H)$), we have

$$\begin{aligned} e(H) = & (\ell + kcN)(rh - r(F)P(N)) + (\ell + kcN)P(N) \frac{h - \chi(F(N))}{c(m - N)} \\ & + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) (r_i(x)h - P(N)h^0(Q_{r_i(x)}^F)). \end{aligned}$$

By using $h \geq P(N) - h^0(\mathcal{G}(N))$, $r - r(F) \geq r(\mathcal{G})$ and $r_i(x) - h^0(Q_{r_i(x)}^F) \geq h^0(Q_{r_i(x)}^{\mathcal{G}})$, we get the inequality

$$\begin{aligned} h^0(\mathcal{G}(N)) \geq & (\ell + kcN) \frac{h - \chi(F(N))}{k(m - N)c} - \frac{e(H)}{kP(N)} + \\ & \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^{\mathcal{G}}) \right). \end{aligned}$$

For given N , the set $\{h - \chi(F(N))\}$ is finite since all these F are in a bounded family. Let $\chi(N) = \min\{h - \chi(F(N))\}$. If $\chi(N) \geq 0$, then

$$h^0(\mathcal{G}(N)) \geq \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^{\mathcal{G}}) \right) - \frac{e(H)}{kP(N)}.$$

When $\chi(N) < 0$, let $M_1(N) > \max\{M'_1(N), -\chi(N)(\ell + kcN) + cN\}$ and $m \geq M_1(N)$. Then, since $e(H) \leq 0$, we have

$$h^0(\mathcal{G}(N)) \geq \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^{\mathcal{G}}) \right).$$

Now we show that $V \rightarrow H^0(E(N))$ is an isomorphism. To see it being surjective, it is enough to show that one can choose N such that $H^1(E(N)) = 0$ for all such E . If $H^1(E(N))$ is nontrivial, then there is a nontrivial quotient $E(N) \rightarrow L \subset \omega_X$ by Serre duality, and thus

$$h^0(\omega_X) \geq h^0(L) \geq N + B,$$

where B is a constant independent of E , we choose N such that $H^1(E(N)) = 0$ for all GIT-semistable points.

Let $\tau = \text{Tor}(E)$, $\mathcal{G} = E/\tau$, note $h^0(\mathcal{G}(N)) = P(N) - h^0(\tau)$ and

$$h^0(Q_{r_i(x)}^{\mathcal{G}}) = r_i(x) - h^0(Q_{r_i(x)}^{\tau}),$$

then the inequality (2.2) becomes

$$kh^0(\tau) \leq \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^{\tau}) \leq \sum_{x \in I} (a_{l_x+1}(x) - a_1(x))h^0(\tau_x)$$

which implies the requirements in Remark 2.4. \square

Proposition 2.9. *Suppose $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}) \in \mathcal{R}$ is a point corresponding to a parabolic sheaf E . Then E is semistable iff for any nontrivial subsheaf $F \subset E$ we have*

$$s(F) := \frac{\ell + kcN}{c(m - N)} (\chi(F(N))P(m) - P(N)\chi(F(m))) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)(r_i(x)\chi(F(N)) - P(N)h^0(Q_{r_i(x)}^F)) \leq 0.$$

If $s(F) < 0$ for any nontrivial $F \subset E$, then E is stable. Conversely, if E is stable, then $s(F) < 0$ for any nontrivial subsheaf $F \subset E$ except that $r(F) = r$, $\tau := E/F = 0$ outside $x \in I$, $a_{l_x+1}(x) - a_1(x) = k$ if $\tau_x \neq 0$, and $n_1^F(x) = n_1(x) - h^0(\tau_x)$, $n_i^F(x) = n_i(x)$ ($2 \leq i \leq l_x + 1$) for any $x \in I$.

Proof. The point corresponding to a quotient $V \otimes \mathcal{W} \xrightarrow{p} E \rightarrow 0$ and

$$\{E_x \twoheadrightarrow Q_{r_{l_x}(x)} \twoheadrightarrow Q_{r_{l_x-1}(x)} \twoheadrightarrow \dots \twoheadrightarrow Q_{r_2(x)} \twoheadrightarrow Q_{r_1(x)} \twoheadrightarrow 0\}_{x \in I}$$

$p_{r_i(x)} : V \otimes \mathcal{W} \xrightarrow{p} E \rightarrow E_x \twoheadrightarrow Q_{r_{l_x}(x)} \twoheadrightarrow \dots \twoheadrightarrow Q_{r_i(x)}$. For $F \subset E$ such that E/F is torsion free, we have the flags of quotient sheaves

$$\{F \twoheadrightarrow F_x \twoheadrightarrow Q_{r_{l_x}(x)}^F \twoheadrightarrow Q_{r_{l_x-1}(x)}^F \twoheadrightarrow \dots \twoheadrightarrow Q_{r_2(x)}^F \twoheadrightarrow Q_{r_1(x)}^F \twoheadrightarrow 0\}_{x \in I}$$

Let $n_i^F(x) = h^0(Q_{r_i(x)}^F) - h^0(Q_{r_{i-1}(x)}^F)$, notice that

$$\begin{aligned} \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x) &= r \sum_{x \in I} a_{l_x+1}(x) + \sum_{x \in I} a_{l_x+1}(x)h^0(E_x^\tau) \\ &\quad - \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x)n_i(x) \end{aligned}$$

$$\begin{aligned} \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^F) &= r(F) \sum_{x \in I} a_{l_x+1}(x) + \sum_{x \in I} a_{l_x+1}(x)h^0(F_x^\tau) \\ &\quad - \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x)n_i^F(x), \end{aligned}$$

$\chi(F(N))P(m) - P(N)\chi(F(m)) = c(m - N)(r\chi(F) - r(F)\chi(E))$, then

$$\begin{aligned} s(F) &= \left(r\ell + rkcn + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x) \right) \left(\chi(F) - \frac{r(F)}{r}\chi(E) \right) + \\ &\quad P(N) \left(\frac{r(F)}{r} \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x) - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^F) \right) \\ &= kP(N) \left(\text{par}\chi((F) - \frac{r(F)}{r}\text{par}\chi(E) \right). \end{aligned}$$

For any nontrivial subsheaf $F \subset E$, let τ be the torsion of E/F and $F' \subset E$ such that $\tau = F'/F$ and E/F' torsion free. If we write $\tau = \tilde{\tau} + \sum_{x \in I} \tau_x$, note $h^0(\tau_x) + h^0(Q_{r_i(x)}^F) - h^0(Q_{r_i(x)}^{F'}) \geq 0$, then

$$\begin{aligned} s(F) - s(F') &= -kP(N)h^0(\tilde{\tau}) - P(N) \sum_{x \in I} (k - a_{l_x+1}(x) + a_1(x))h^0(\tau_x) \\ &\quad - P(N) \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)(h^0(\tau_x) + h^0(Q_{r_i(x)}^F) - h^0(Q_{r_i(x)}^{F'})) \leq 0. \end{aligned}$$

If E is stable and $s(F) = 0$, it is easy to see that the last requirements in the proposition are satisfied. \square

Proposition 2.10. *There exists an integer $M_1(N) > 0$ such that for $m \geq M_1(N)$ the following is true. If a point*

$$(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}) \in \mathcal{R}$$

is GIT-stable (respectively, GIT-semistable), then the quotient E is a stable (respectively, semistable) parabolic sheaf and $V \rightarrow H^0(E(N))$ is an isomorphism.

Proof. If $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}) \in \mathcal{R}$ is GIT-stable (GIT-semistable), by Lemma 2.8, $V \rightarrow H^0(E(N))$ is an isomorphism. For any nontrivial subsheaf $F \subset E$ with E/F torsion free, let $H \subset V$ be the inverse image of $H^0(F(N))$ and $h = \dim(H)$, we have (for $m > N$)

$$\chi(F(N))P(m) - P(N)\chi(F(m)) \leq hP(m) - P(N)h^0(F(m))$$

for $m > N$ (note $h^1(F(N)) \geq h^1(F(m))$). Thus $s(F) \leq e(H)$ since

$$g(H \otimes W_m) \leq h^0(F(m)), \quad g_{r_i(x)}(H \otimes W_m) \leq h^0(Q_{r_i(x)}^F)$$

(the inequalities are strict when $h = 0$). By Proposition 2.6 and Proposition 2.9, E is stable (respectively, semistable) if the point is GIT stable (respectively, GIT semistable). \square

For a semistable parabolic sheaf E of rank r on X , we have, for any subsheaf $F \subset E$, $\chi(F) \leq \frac{\chi(E)}{r}r(F) + 2r|I|$. The following elementary lemma should be well-known.

Lemma 2.11. *Let E be a coherent sheaf of rank r on X . If*

$$\chi(F) \leq \frac{\chi(E)}{r}r(F) + C, \quad \forall F \subset E.$$

Then, for any $F \subset E$ with $H^1(F) \neq 0$, we have

$$h^0(F) \leq \frac{\chi(E)}{r}(r(F) - 1) + C + r(F)g.$$

Proof. $H^1(F) \neq 0$ means that we have a nontrivial morphism $F \rightarrow \omega_X$. Let F' be the kernel of $F \rightarrow \omega_X$, then $h^0(F) \leq h^0(F') + g$. If $H^1(F') = 0$, we have $h^0(F) \leq \chi(F') + g \leq \frac{\chi(E)}{r}(r(F) - 1) + C + g$. If $H^1(F') \neq 0$, by repeating the arguments to F' , we get the required inequality. \square

Proposition 2.12. *There exist integers $N > 0$ and $M_2(N) > 0$ such that for $m \geq M_2(N)$ the following is true. If a point*

$$(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}) \in \mathcal{R}$$

corresponds to a semistable parabolic sheaf E , then the point is GIT-semistable. Moreover, if E is a stable parabolic sheaf, then the point is GIT stable except the case $a_{l_x+1}(x) - a_1(x) = k$.

Proof. There is $N_1 > 0$ such that for any $N \geq N_1$ the following is true. For any $V \otimes \mathcal{W} \xrightarrow{p} E \rightarrow 0$ with semistable parabolic sheaf E , the induced map $V \rightarrow H^0(E(N))$ is an isomorphism.

Let $H \subset V$ be a nontrivial subspace of $\dim(H) = h$ and $F \subset E$ be the sheaf such that $F(N) \subset E(N)$ is generated by H . Since all these F are in a bounded family (for fixed N), $\dim g(H \otimes W_m) = h^0(F(m)) = \chi(F(m))$, $g_{r_i(x)}(H \otimes W_m) = h^0(Q_{r_i(x)}^F)$ ($\forall x \in I$) for $m \geq M'_1(N)$ and

$$e(H) = s(F) + \frac{\ell + kcm}{c(m - N)}P(N)(h - \chi(F(N))).$$

If $H^1(F(N)) = 0$, we have $e(H) \leq s(F)$ since $h \leq h^0(F(N))$. Then $e(H) \leq s(F) \leq 0$ by Proposition 2.9 since E is a semistable parabolic sheaf. If $H^1(F(N)) \neq 0$, by Lemma 2.11, we have

$$h^0(F(N)) \leq \frac{rcN + \chi}{r}(r(F) - 1) + r(g + 2|I|).$$

Putting $h \leq h^0(F(N))$ and above inequality in the equality

$$\begin{aligned} e(H) = & P(N) \left(kh - (\ell + kcN)r(F) + (\ell + kcN) \frac{h - \chi(F(N))}{c(m - N)} \right) \\ & - P(N) \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^F), \end{aligned}$$

then, let $C = k|\chi| + r(g + 2|I|)k + |\ell|r$, we have

$$e(H) \leq P(N) \left(-kcN + C + (\ell + kcN) \frac{h - \chi(F(N))}{c(m - N)} \right).$$

Choose an integer $N_2 \geq N_1$ such that $-kcN_2 + C < -1$. Then, for any fixed $N \geq N_2$, there is an integer $M_2(N)$ such that for $m \geq M_2(N)$

$$(\ell + kcN) \frac{h - \chi(F(N))}{c(m - N)} < 1$$

for any $H \subset V$, which implies $e(H) < 0$ and we are done. \square

Theorem 2.13. *There exists a seminormal projective variety*

$$\mathcal{U}_X := \mathcal{U}_X(r, d, \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}),$$

which is the coarse moduli space of s -equivalence classes of semistable parabolic sheaves E of rank r and $\chi(E) = \chi = d + r(1 - g)$ with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ and weights $\{\vec{a}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$. If X is smooth, then it is normal, with only rational singularities.

Proof. Let $\mathcal{R}^{ss} \subset \mathcal{R}$ be the open set consisting of semistable parabolic sheaves. $\mathcal{U}_X := \mathcal{U}_X(r, \chi, I, k, \vec{a}, \vec{n})$ is defined to be the GIT quotient $\mathcal{R}^{ss} // SL(V)$. The statements about singularities of \mathcal{U}_X are proved in [9]. The case $a_{l_x+1}(x) - a_1(x) = k$ can be covered by the same arguments in [9] where we proved that \mathcal{H} is normal with only rational singularities. \square

When X is a reduced projective curve with two smooth irreducible components X_1 and X_2 of genus g_1 and g_2 meeting at only one point x_0 (which is the only node of X), we fix an ample line bundle $\mathcal{O}(1)$ of degree c on X such that $\deg(\mathcal{O}(1)|_{X_i}) = c_i > 0$ ($i = 1, 2$). For any coherent sheaf E , $P(E, n) := \chi(E(n))$ denotes its Hilbert polynomial, which has degree 1. We define the rank of E to be

$$r(E) := \frac{1}{\deg(\mathcal{O}(1))} \cdot \lim_{n \rightarrow \infty} \frac{P(E, n)}{n}.$$

Let r_i denote the rank of the restriction of E to X_i ($i = 1, 2$), then

$$P(E, n) = (c_1 r_1 + c_2 r_2)n + \chi(E), \quad r(E) = \frac{c_1}{c_1 + c_2}r_1 + \frac{c_2}{c_1 + c_2}r_2.$$

We say that E is of rank r on X if $r_1 = r_2 = r$, otherwise it will be said of rank (r_1, r_2) .

Fix a finite set $I = I_1 \cup I_2$ of smooth points on X , where $I_i = \{x \in I \mid x \in X_i\}$ ($i = 1, 2$), and parabolic data $\omega = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}$ with

$$\ell := \frac{k\chi - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x)}{r}$$

(recall $d_i(x) = a_{i+1}(x) - a_i(x)$, $r_i(x) = n_1(x) + \dots + n_i(x)$). Then we will indicate how the same construction gives moduli space of semistable parabolic sheaves on X (see [10] for details). For simplicity, we only state the case that $a_{l_x+1}(x) - a_1(x) < k$ ($\forall x \in I$).

Definition 2.14. For any coherent sheaf F of rank (r_1, r_2) , let

$$m(F) := \frac{r(F) - r_1}{k} \sum_{x \in I_1} a_{l_x+1}(x) + \frac{r(F) - r_2}{k} \sum_{x \in I_2} a_{l_x+1}(x),$$

the modified parabolic Euler characteristic and slop of F are

$$\text{par}\chi_m(F) := \text{par}\chi(F) + m(F), \quad \text{par}\mu_m(F) := \frac{\text{par}\chi_m(F)}{r(F)}.$$

A parabolic sheaf E is called semistable (resp. stable) if, for any subsheaf $F \subset E$ such E/F is torsion free, one has, with the induced parabolic structure,

$$\text{par}\chi_m(F) \leq \frac{\text{par}\chi_m(E)}{r(E)}r(F) \quad (\text{resp. } <).$$

There is a similar \mathcal{R} and a $SL(V)$ -equivariant embedding $\mathcal{R} \hookrightarrow \mathbf{G}$. As the same as Notation 2.5, give the polarization on \mathbf{G} :

$$\frac{\ell + kcN}{c(m - N)} \times \prod_{x \in I} \{d_1(x), \dots, d_{l_x}(x)\}.$$

Then we have the same Proposition 2.6, Lemma 2.8, Proposition 2.9 and Lemma 2.11. The modification in the proof of Proposition 2.9 is: for $F \subset E$ of rank (r_1, r_2) such that E/F is torsion free, we have

$$\begin{aligned} \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x) &= r \sum_{x \in I} a_{l_x+1}(x) - \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x)n_i(x), \\ \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^F) &= r_1 \sum_{x \in I_1} a_{l_x+1}(x) + r_2 \sum_{x \in I_2} a_{l_x+1}(x) - \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x)n_i^F(x), \end{aligned}$$

$$s(F) = kP(N) \left(\text{par}\chi_m((F)) - \frac{r(F)}{r} \text{par}\chi_m(E) \right).$$

In particular, we have

Proposition 2.15. *There exist integers $N > 0$ and $M_2(N) > 0$ such that for $m \geq M_2(N)$ the following is true. If a point*

$$(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}) \in \mathcal{R}$$

corresponds to a quasi-parabolic sheaf E , then the point is GIT-semistable (resp. GIT-stable) under the above polarization if and only if E is a semistable (resp. stable) parabolic sheaf for the weights $0 \leq a_1(x) < a_2(x) < \dots < a_{l_x+1}(x) < k$ ($\forall x \in I$).

Theorem 2.16. *There exists a reduced, seminormal projective scheme*

$$\mathcal{U}_X := \mathcal{U}_X(r, d, \mathcal{O}(1), \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I_1 \cup I_2})$$

which is the coarse moduli space of s -equivalence classes of semistable parabolic sheaves E of rank r and $\chi(E) = \chi = d + r(1 - g)$ with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ and weights $\{\vec{a}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$. The moduli space \mathcal{U}_X has at most $r + 1$ irreducible components.

Proof. Let $\mathcal{R}^{ss} \subset \mathcal{R}$ be the open set of semi-stable parabolic sheaves. $\mathcal{U}_X := \mathcal{U}_X(r, d, \mathcal{O}(1), \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I_1 \cup I_2})$ is defined to be the GIT quotient $\mathcal{R}^{ss}/\text{SL}(V)$. Let $\mathcal{U}_X^0 \subset \mathcal{U}_X$ be the dense open set of locally free sheaves. For any $E \in \mathcal{U}_X^0$, let E_1 and E_2 be the restrictions of E to X_1 and X_2 . By the exact sequence

$$0 \rightarrow E_1(-x_0) \rightarrow E \rightarrow E_2 \rightarrow 0$$

and semi-stability of E , we have

$$\begin{aligned} \frac{c_1}{c_1 + c_2} \text{par}\chi_m(E) &\leq \text{par}\chi_m(E_1) \leq \frac{c_1}{c_1 + c_2} \text{par}\chi_m(E) + r, \\ \frac{c_2}{c_1 + c_2} \text{par}\chi_m(E) &\leq \text{par}\chi_m(E_2) \leq \frac{c_2}{c_1 + c_2} \text{par}\chi_m(E) + r. \end{aligned}$$

For $j = 1, 2$ and $\omega = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I_1 \cup I_2}$, let $\chi_j = \chi(E_j)$ and

$$(2.3) \quad n_j^\omega = \frac{1}{k} \left(r \frac{c_j}{c_1 + c_2} \ell + \sum_{x \in I_j} \sum_{i=1}^{l_x} d_i(x) r_i(x) \right).$$

Then the above inequalities can be rewritten as

$$(2.4) \quad n_1^\omega \leq \chi_1 \leq n_1^\omega + r, \quad n_2^\omega \leq \chi_2 \leq n_2^\omega + r.$$

There are at most $r + 1$ possible choices of (χ_1, χ_2) satisfying (2.4) and $\chi_1 + \chi_2 = \chi + r$, each of the choices corresponds an irreducible component of \mathcal{U}_X . \square

Remarks 2.17. (1) If n_j^ω ($j = 1, 2$) are not integers, then there are at most r irreducible components $\mathcal{U}_X^{\chi_1, \chi_2} \subset \mathcal{U}_X$ of \mathcal{U}_X with

$$(2.5) \quad n_1^\omega < \chi_1 < n_1^\omega + r, \quad n_2^\omega < \chi_2 < n_2^\omega + r$$

such that the (dense) open set of parabolic bundles $E \in \mathcal{U}_X^{\chi_1, \chi_2}$ satisfy

$$\chi(E|_{X_1}) = \chi_1, \quad \chi(E|_{X_2}) = \chi_2.$$

For any χ_1, χ_2 satisfying (2.5), let \mathcal{U}_{X_1} (resp. \mathcal{U}_{X_2}) be the moduli space of semistable parabolic bundles of rank r and Euler characteristic χ_1 (resp. χ_2), with parabolic structures of type $\{\vec{n}(x)\}_{x \in I_1}$ (resp. $\{\vec{n}(x)\}_{x \in I_2}$) and weights $\{\vec{a}(x)\}_{x \in I_1}$ (resp. $\{\vec{a}(x)\}_{x \in I_2}$) at points $\{x\}_{x \in I_1}$ (resp. $\{x\}_{x \in I_2}$), then $\mathcal{U}_X^{\chi_1, \chi_2}$ is not empty if \mathcal{U}_{X_j} ($j = 1, 2$) are not empty (See Proposition 1.4 of [10]). In fact, $\mathcal{U}_X^{\chi_1, \chi_2}$ contains a stable parabolic bundle if one of \mathcal{U}_{X_j} ($j = 1, 2$) contains a stable parabolic bundle.

(2) Let $E \in \mathcal{U}_X$, for any nontrivial $F \subset E$ of rank (r_1, r_2) such that E/F torsion free, we have

$$(2.6) \quad \begin{aligned} & kr(F)(\text{par}\mu_m(F) - \text{par}\mu_m(E)) \\ &= k\chi(F) - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^F) - r(F)\ell, \end{aligned}$$

which implies the following facts: (i) When $\ell = 0$, the moduli spaces \mathcal{U}_X is independent of the choices of $\mathcal{O}(1)$. (ii) When $\ell \neq 0$, we can choose $\mathcal{O}(1)$ such that all the numbers n_1^ω, n_2^ω and $r(F)\ell$ (for all possible $r_1 \neq r_2$) are not integers (we call such $\mathcal{O}(1)$ a **generic polarization**, its existence is an easy excise). Then, for any $E \in \mathcal{U}_X \setminus \mathcal{U}_X^s$ (i.e. non-stable sheaf), the sub-sheaf $F \subset E$ of rank (r_1, r_2) with $\text{par}\mu_m(F) = \text{par}\mu_m(E)$ must have $r_1 = r_2$.

When X is a connected nodal curve (irreducible or reducible) of genus g , with only one node x_0 , let $\pi : \tilde{X} \rightarrow X$ be the normalization and $\pi^{-1}(x_0) = \{x_1, x_2\}$. Then the normalization $\phi : \mathcal{P} \rightarrow \mathcal{U}_X$ of \mathcal{U}_X is given by moduli space of generalized parabolic sheaves (GPS) on \tilde{X} .

Recall that a GPS (E, Q) of rank r on \tilde{X} consists of a sheaf E on \tilde{X} , torsion free of rank r outside $\{x_1, x_2\}$ with parabolic structures at the points of I (we identify I with $\pi^{-1}(I)$) and an r -dimensional quotient

$$E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \rightarrow 0.$$

The moduli space \mathcal{P} consists of semistable (E, Q) with additional parabolic structures at the points of I (we identify I with $\pi^{-1}(I)$)

given by the data $\omega = (r, \chi, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, \mathcal{O}(1), k)$ satisfying

$$\sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r\tilde{\ell} = k\tilde{\chi}$$

where $d_i(x) = a_{i+1}(x) - a_i(x)$, $\tilde{\chi} = \chi + r$, $\tilde{\ell} = k + \ell$ and the pullback $\pi^* \mathcal{O}(1)$ is denoted by $\tilde{\mathcal{O}}(1)$ (See [9] and [10] for details).

Definition 2.18. A GPS (E, Q) is called semistable (resp., stable), if for every nontrivial subsheaf $E' \subset E$ such that E/E' is torsion free outside $\{x_1, x_2\}$, we have, with the induced parabolic structures at points $\{x\}_{x \in I}$,

$$\text{par}\chi_m(E') - \dim(Q^{E'}) \leq r(E') \cdot \frac{\text{par}\chi_m(E) - \dim(Q)}{r(E)} \quad (\text{resp., } <),$$

where $Q^{E'} = q(E'_{x_1} \oplus E'_{x_2}) \subset Q$.

When X is irreducible, let \tilde{P} denote the polynomial $\tilde{P}(m) = \text{crm} + \tilde{\chi}$, $\tilde{\mathcal{W}} = \tilde{\mathcal{O}}(-N) = \tilde{\mathcal{O}}(1)^{-N}$ and $\tilde{V} = \mathbb{C}^{\tilde{P}(N)}$. Consider the Quot scheme

$$\text{Quot}(\tilde{V} \otimes \tilde{\mathcal{W}}, P)(T) = \left\{ \begin{array}{l} \text{T-flat quotients $\tilde{V} \otimes \tilde{\mathcal{W}} \rightarrow E \rightarrow 0$ over} \\ \text{$\tilde{X} \times T$ with $\chi(E_t(m)) = \tilde{P}(m)$ ($\forall t \in T$)} \end{array} \right\},$$

and let $\mathbf{Q} \subset \text{Quot}(\tilde{V} \otimes \tilde{\mathcal{W}}, P)$ be the open set

$$\mathbf{Q}(T) = \left\{ \begin{array}{l} \tilde{V} \otimes \tilde{\mathcal{W}} \rightarrow E \rightarrow 0, \text{ with } R^1 p_{T*}(E(N)) = 0 \text{ and} \\ \tilde{V} \otimes \mathcal{O}_T \rightarrow p_{T*} E(N) \text{ induces an isomorphism} \end{array} \right\}.$$

Let $\tilde{\mathbf{Q}}$ be the closure of \mathbf{Q} in the Quot scheme, $\tilde{V} \otimes \tilde{\mathcal{W}} \rightarrow \tilde{\mathcal{F}} \rightarrow 0$ be the universal quotient over $\tilde{X} \times \tilde{\mathbf{Q}}$ and $\tilde{\mathcal{F}}_x$ be the restriction of $\tilde{\mathcal{F}}$ on $\{x\} \times \tilde{\mathbf{Q}} \cong \tilde{\mathbf{Q}}$. Let $\text{Flag}_{\vec{n}(x)}(\tilde{\mathcal{F}}_x) \rightarrow \tilde{\mathbf{Q}}$ be the relative flag scheme of locally free quotients of type $\vec{n}(x)$, and

$$\tilde{\mathcal{R}} = \times_{\substack{x \in I}} \text{Flag}_{\vec{n}(x)}(\tilde{\mathcal{F}}_x) \rightarrow \tilde{\mathbf{Q}}, \quad \tilde{\mathcal{R}}' = \tilde{\mathcal{R}} \times_{\tilde{\mathbf{Q}}} \text{Grass}_r(\tilde{\mathcal{F}}_{x_1} \oplus \tilde{\mathcal{F}}_{x_2}).$$

A (closed) point $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}, q_s)$ of $\tilde{\mathcal{R}}'$ by definition is given by a point $\tilde{V} \otimes \tilde{\mathcal{W}} \xrightarrow{p} E \rightarrow 0$ of the Quot scheme, together with the flags of quotients

$$\{E_x \twoheadrightarrow Q_{r_{l_x}(x)} \twoheadrightarrow Q_{r_{l_x-1}(x)} \twoheadrightarrow \dots \twoheadrightarrow Q_{r_2(x)} \twoheadrightarrow Q_{r_1(x)} \twoheadrightarrow 0\}_{x \in I}$$

and a r -dimensional quotient $E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \rightarrow 0$, where $p_{r_i(x)} : \tilde{V} \otimes \tilde{\mathcal{W}} \xrightarrow{p} E \rightarrow E_x \twoheadrightarrow Q_{r_{l_x}(x)} \twoheadrightarrow \dots \twoheadrightarrow Q_{r_i(x)}$ and $q_s : \tilde{V} \otimes \tilde{\mathcal{W}} \xrightarrow{p} E \rightarrow E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q$. Choose N large enough so that every semistable

GPS (E, Q) with $\chi(E(m)) = \tilde{P}(m)$ and parabolic structures of type $\{\tilde{n}(x)\}_{x \in I}$ with weights $\{\tilde{a}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$ appears as a point of $\tilde{\mathcal{R}'}$. For large enough m , we have a $SL(\tilde{V})$ -equivariant embedding

$$\tilde{\mathcal{R}'} \hookrightarrow \mathbf{G}' = Grass_{\tilde{P}(m)}(\tilde{V} \otimes W_m) \times \mathbf{Flag} \times Grass_r(\tilde{V} \otimes W_m),$$

where $W_m = H^0(\tilde{\mathcal{W}}(m))$, and \mathbf{Flag} is defined to be

$$\mathbf{Flag} = \prod_{x \in I} \{Grass_{r_1(x)}(\tilde{V} \otimes W_m) \times \cdots \times Grass_{r_{l_x}(x)}(\tilde{V} \otimes W_m)\},$$

which maps a point $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}, q_s) = (\tilde{V} \otimes \tilde{\mathcal{W}} \xrightarrow{p} E,$

$$\{\tilde{V} \otimes \tilde{\mathcal{W}} \xrightarrow{p_{r_1(x)}} Q_{r_1(x)}, \dots, \tilde{V} \otimes \tilde{\mathcal{W}} \xrightarrow{p_{r_{l_x}(x)}} Q_{r_{l_x}(x)}\}_{x \in I}, \tilde{V} \otimes \tilde{\mathcal{W}} \xrightarrow{q_s} Q)$$

of $\tilde{\mathcal{R}'}$ to the point $(g, \{g_{r_1(x)}, \dots, g_{r_{l_x}(x)}\}_{x \in I}, g_G) = (\tilde{V} \otimes W_m \xrightarrow{g} U,$

$$\{\tilde{V} \otimes W_m \xrightarrow{g_{r_1(x)}} U_{r_1(x)}, \dots, \tilde{V} \otimes W_m \xrightarrow{g_{r_{l_x}(x)}} U_{r_{l_x}(x)}\}_{x \in I}, \tilde{V} \otimes W_m \xrightarrow{g_G} U_r)$$

of \mathbf{G}' , where $g := H^0(p(m))$, $U := H^0(E(m))$, $g_{r_i(x)} := H^0(p_{r_i(x)}(m))$, $U_{r_i(x)} := H^0(Q_{r_i(x)})$ ($i = 1, \dots, l_x$), $g_G := H^0(q_s(m))$, $U_r := H^0(Q)$ and $r_i(x) = \dim(Q_{r_i(x)})$. Given \mathbf{G}' the polarisation

$$\frac{(\ell + kcN)}{c(m - N)} \times \prod_{x \in I} \{d_1(x), \dots, d_{l_x}(x)\} \times k.$$

Then, by the general criteria of GIT stability, we have

Proposition 2.19. *A point $(g, \{g_{r_1(x)}, \dots, g_{r_{l_x}(x)}\}_{x \in I}, g_G) \in \mathbf{G}'$ is stable (respectively, semistable) for the action of $SL(\tilde{V})$, with respect to the above polarisation (we refer to this from now on as GIT-stability), iff for all nontrivial subspaces $H \subset \tilde{V}$ we have (with $h = \dim H$)*

$$\begin{aligned} e(H) := & \frac{\ell + kcN}{c(m - N)} (h\tilde{P}(m) - \tilde{P}(N)\dim g(H \otimes W_m)) + \\ & \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) (r_i(x)h - \tilde{P}(N)\dim g_{r_i(x)}(H \otimes W_m)) \\ & + k(rh - \tilde{P}(N)\dim g_G(H \otimes W_m)) < (\leq) 0. \end{aligned}$$

Lemma 2.20. *There exists $M_1(N)$ such that for $m \geq M_1(N)$ the following holds. Suppose $(p, \{p_{r(x)}, p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}, q_s) \in \tilde{\mathcal{R}'}$ is GIT-semistable, then for all quotients $E \xrightarrow{T} \mathcal{G} \rightarrow 0$ we have*

$$h^0(\mathcal{G}(N)) \geq \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^{\mathcal{G}}) \right) + h^0(Q^{\mathcal{G}}).$$

In particular, $\tilde{V} \rightarrow H^0(E(N))$ is an isomorphism and E satisfies the following conditions: (1) the torsion $\text{Tor } E$ of E is supported on $\{x_1, x_2\}$ and $q : (\text{Tor } E)_{x_1} \oplus (\text{Tor } E)_{x_2} \hookrightarrow Q$, (2) if N is large enough, then $H^1(E(N)(-x - x_1 - x_2)) = 0$ for all E and $x \in \tilde{X}$.

Proof. Let $H = \ker\{\tilde{V} \xrightarrow{H^0(p(N))} H^0(E(N)) \xrightarrow{H^0(T(N))} H^0(\mathcal{G}(N))\}$ and $F \subset E$ be the subsheaf generated by H . Since all these F are in a bounded family, there exists an integer $M'_1(N)$ such that $\dim g(H \otimes W_m) = h^0(F(m)) = \chi(F(m))$, $g_{r_i(x)}(H \otimes W_m) = h^0(Q_{r_i(x)}^F)$ ($\forall x \in I$) and $\dim g_G(H \otimes W_m) = h^0(Q^F)$ for $m \geq M'_1(N)$. Then, by Proposition 2.19 (with $h = \dim(H)$), we have

$$\begin{aligned} e(H) &= (\ell + kcN)(rh - r(F)\tilde{P}(N)) + (\ell + kcN)\tilde{P}(N)\frac{h - \chi(F(N))}{c(m - N)} \\ &\quad + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) \left(r_i(x)h - \tilde{P}(N)h^0(Q_{r_i(x)}^F) \right) + k(rh - \tilde{P}(N)h^0(Q^F)). \end{aligned}$$

By using $h \geq \tilde{P}(N) - h^0(\mathcal{G}(N))$, $r - r(F) \geq r(\mathcal{G})$, $r_i(x) - h^0(Q_{r_i(x)}^F) \geq h^0(Q_{r_i(x)}^G)$ and $r - h^0(Q^F) \geq h^0(Q^G)$, we get the inequality

$$\begin{aligned} h^0(\mathcal{G}(N)) &\geq (\ell + kcN)\frac{h - \chi(F(N))}{k(m - N)c} - \frac{e(H)}{k\tilde{P}(N)} + h^0(Q^G) + \\ &\quad \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^G) \right). \end{aligned}$$

For given N , the set $\{h - \chi(F(N))\}$ is finite since all these F are in a bounded family. Let $\chi(N) = \min\{h - \chi(F(N))\}$. If $\chi(N) \geq 0$, then

$$\begin{aligned} h^0(\mathcal{G}(N)) &\geq \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^G) \right) \\ &\quad + h^0(Q^G) - \frac{e(H)}{k\tilde{P}(N)}. \end{aligned}$$

When $\chi(N) < 0$, let $M_1(N) > \max\{M'_1(N), -\chi(N)(\ell + kcN) + cN\}$ and $m \geq M_1(N)$. Then, since $e(H) \leq 0$, we have

$$h^0(\mathcal{G}(N)) \geq \frac{1}{k} \left(r(\mathcal{G})(\ell + kcN) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)h^0(Q_{r_i(x)}^G) \right) + h^0(Q^G).$$

Now we show that $\tilde{V} \rightarrow H^0(E(N))$ is an isomorphism. The injectivity of $\tilde{V} \xrightarrow{H^0(p(N))} H^0(E(N))$ is easy to see. To see it being surjective,

it is enough to show that one can choose N such that $H^1(E(N)) = 0$ for all such E . We prove $H^1(E(N)(-x_1 - x_2 - x)) = 0$ for any $x \in \tilde{X}$. Otherwise, there is a nontrivial quotient $E(N) \rightarrow L \subset \omega_{\tilde{X}}(x_1 + x_2 + x)$ by Serre duality, and thus

$$h^0(\omega_{\tilde{X}}(x_1 + x_2 + x)) \geq h^0(L) \geq N + B,$$

where B is a constant independent of E , we choose N such that $H^1(E(N)(-x_1 - x_2 - x)) = 0$ for all GIT-semistable points.

Let $\tau = \text{Tor}(E)$, $\mathcal{G} = E/\tau$, note $h^0(\mathcal{G}(N)) = \tilde{P}(N) - h^0(\tau)$ and

$$h^0(Q_{r_i(x)}^{\mathcal{G}}) = r_i(x) - h^0(Q_{r_i(x)}^{\tau}), \quad h^0(Q^{\mathcal{G}}) = r - h^0(Q^{\tau})$$

then the inequality in Lemma 2.20 becomes

$$\begin{aligned} kh^0(\tau) &\leq kh^0(Q^{\tau}) + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^{\tau}) \\ &\leq kh^0(Q^{\tau}) + \sum_{x \in I} (a_{l_x+1}(x) - a_1(x)) h^0(\tau_x). \end{aligned}$$

Thus $\tau = \text{Tor}(E)$ is supported on $\{x_1, x_2\}$ (since $a_{l_x+1}(x) - a_1(x) < k$) and $E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q$ induces injection $\tau_{x_1} \oplus \tau_{x_2} \hookrightarrow Q$. \square

Notation 2.21. Let $\mathcal{H} \subset \widetilde{\mathcal{R}'}$ be the subscheme parametrising the generalised parabolic sheaves $E = (E, E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q)$ satisfying the conditions (1) and (2) at the end of Lemma 2.20. Then, if $\widetilde{\mathcal{R}'}^{ss}$ (resp. $\widetilde{\mathcal{R}'}^s$) denotes the open set of $\widetilde{\mathcal{R}'}$ consisting of the semistable (resp. stable) GPS, then it is clear that we have open embedding

$$\widetilde{\mathcal{R}'}^{ss} \hookrightarrow \mathcal{H} \hookrightarrow \widetilde{\mathcal{R}'}.$$

Proposition 2.22. Suppose $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}, q_s) \in \mathcal{H}$ is a point corresponding to a GPS (E, Q) . Then (E, Q) is stable (resp. semistable) iff for any nontrivial subsheaf $F \subset E$ we have

$$\begin{aligned} s(F) &:= \frac{\ell + kcN}{c(m - N)} (\chi(F(N)) \tilde{P}(m) - \tilde{P}(N) \chi(F(m))) + \\ &\quad \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) (r_i(x) \chi(F(N)) - \tilde{P}(N) h^0(Q_{r_i(x)}^F)) \\ &\quad + k(r\chi(F(N)) - \tilde{P}(N) h^0(Q^F)) < (\text{resp. } \leq) 0. \end{aligned}$$

Proof. The point corresponding to a quotient $\tilde{V} \otimes \widetilde{\mathcal{W}} \xrightarrow{p} E \rightarrow 0$ with

$$\{E_x \twoheadrightarrow Q_{r_{l_x}(x)} \twoheadrightarrow Q_{r_{l_x-1}(x)} \twoheadrightarrow \dots \twoheadrightarrow Q_{r_2(x)} \twoheadrightarrow Q_{r_1(x)} \twoheadrightarrow 0\}_{x \in I}$$

and $E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \rightarrow 0$, where $q_s : \widetilde{V} \otimes \widetilde{\mathcal{W}} \rightarrow E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \rightarrow 0$ and $p_{r_i(x)} : V \otimes \mathcal{W} \xrightarrow{p} E \rightarrow E_x \rightarrow Q_{r_{l_x}(x)} \rightarrow \cdots \rightarrow Q_{r_i(x)}$. For $F \subset E$ such that E/F is torsion free outside $\{x_1, x_2\}$, we have the flags of quotient sheaves

$$\{F \rightarrow F_x \rightarrow Q_{r_{l_x}(x)}^F \rightarrow Q_{r_{l_x-1}(x)}^F \rightarrow \cdots \rightarrow Q_{r_2(x)}^F \rightarrow Q_{r_1(x)}^F \rightarrow 0\}_{x \in I}$$

Let $n_i^F(x) = h^0(Q_{r_i(x)}^F) - h^0(Q_{r_{i-1}(x)}^F)$ and F have rank (r_1, r_2) . Then

$$\begin{aligned} \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) &= r \sum_{x \in I} a_{l_x+1}(x) - \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x) n_i(x) \\ \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^F) &= r_1 \sum_{x \in I_1} a_{l_x+1}(x) + r_2 \sum_{x \in I_2} a_{l_x+1}(x) \\ &\quad - \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x) n_i^F(x). \end{aligned}$$

Thus we have

$$\begin{aligned} s(F) &= k \widetilde{P}(N) \left(\begin{array}{l} \chi(F) - \frac{1}{k} \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^F) - h^0(Q^F) \\ - \frac{r(F)}{r} \left(\chi(E) - r - \frac{1}{k} \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) \right) \end{array} \right) \\ &= k \widetilde{P}(N) \left(\text{par} \chi_m(F) - \dim(Q^F) - r(F) \frac{\text{par} \chi_m(E) - \dim(Q)}{r(E)} \right). \end{aligned}$$

(E, Q) is semi-stable (resp. stable) iff $s(F) \leq 0$ (resp. $s(F) < 0$) for nontrivial $F \subset E$ such that E/F torsion free outside $\{x_1, x_2\}$.

For any nontrivial subsheaf $F \subset E$, let τ be the torsion of E/F and $F' \subset E$ such that $\tau = F'/F$ and E/F' torsion free. If we write $\tau = \tilde{\tau} + \tau_{x_1} + \tau_{x_2} + \sum_{x \in I} \tau_x$, then

$$\begin{aligned} s(F) - s(F') &= -k \widetilde{P}(N) h^0(\tilde{\tau}) - \widetilde{P}(N) \sum_{x \in I} (k - a_{l_x+1}(x) + a_1(x)) h^0(\tau_x) \\ &\quad - \widetilde{P}(N) \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) (h^0(\tau_x) + h^0(Q_{r_i(x)}^F) - h^0(Q_{r_i(x)}^{F'})) \\ &\quad - k \widetilde{P}(N) (h^0(\tau_{x_1}) + h^0(\tau_{x_2}) + h^0(Q^F) - h^0(Q^{F'})). \end{aligned}$$

Since $h^0(\tau_x) + h^0(Q_{r_i(x)}^F) - h^0(Q_{r_i(x)}^{F'}) \geq 0$ and $h^0(\tau_{x_1} \oplus \tau_{x_2}) + h^0(Q^F) - h^0(Q^{F'}) \geq 0$, we have $s(F) \leq s(F')$ and $s(F) < s(F')$ if $\tilde{\tau} + \sum_{x \in I} \tau_x \neq 0$. Thus stability of (E, Q) implies $s(F) < 0$ for any nontrivial $F \subset E$. \square

Proposition 2.23. *There exist integers N and $M(N) > 0$ such that for $m \geq M(N)$ the following is true. A point*

$$(E, Q) = (p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}, q_s\}_{x \in I}) \in \widetilde{\mathcal{R}'}$$

is GIT-stable (respectively, GIT-semistable) if and only if (E, Q) is a stable (respectively, semistable) GPS such that $\widetilde{V} \rightarrow H^0(E(N))$ is an isomorphism and $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}, q_s\}_{x \in I}) \in \mathcal{H}$.

Proof. If $(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}, q_s) \in \widetilde{\mathcal{R}'}$ is GIT-stable (GIT-semistable), by Lemma 2.20, $\widetilde{V} \rightarrow H^0(E(N))$ is an isomorphism and

$$(p, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}, q_s\}_{x \in I}) \in \mathcal{H}.$$

For any nontrivial subsheaf $F \subset E$ such that E/F is torsion free outside $\{x_1, x_2\}$, let $H \subset \widetilde{V}$ be the inverse image of $H^0(F(N))$ and $h = \dim(H)$, note $h^1(F(N)) \geq h^1(F(m))$ when $m > N$, we have

$$\chi(F(N))\widetilde{P}(m) - \widetilde{P}(N)\chi(F(m)) \leq h\widetilde{P}(m) - \widetilde{P}(N)h^0(F(m)).$$

Thus $s(F) \leq e(H)$ since $\dim g(H \otimes W_m) \leq h^0(F(m))$ and

$$\dim g_{r_i(x)}(H \otimes W_m) \leq h^0(Q_{r_i(x)}^F), \quad \dim g_G(H \otimes W_m) \leq h^0(Q^F)$$

(the inequalities are strict when $h = 0$). By Proposition 2.19 and Proposition 2.22, (E, Q) is stable (respectively, semistable) if the point is GIT stable (respectively, GIT semistable).

There is $N_1 > 0$ such that for any $N \geq N_1$ the following is true. For any $\widetilde{V} \otimes \widetilde{W} \xrightarrow{p} E \rightarrow 0$ with semistable GPS (E, Q) , the induced map $\widetilde{V} \rightarrow H^0(E(N))$ is an isomorphism and $(E, Q) \in \mathcal{H}$.

Let $H \subset \widetilde{V}$ be a nontrivial subspace of $\dim(H) = h$ and $F \subset E$ be the sheaf such that $F(N) \subset E(N)$ is generated by H . Since all these F are in a bounded family (for fixed N), there is a $M_1(N)$ such that

$$\dim g(H \otimes W_m) = h^0(F(m)) = \chi(F(m)), \quad \dim g_G(H \otimes W_m) = h^0(Q^F)$$

and $g_{r_i(x)}(H \otimes W_m) = h^0(Q_{r_i(x)}^F)$ ($\forall x \in I$) whenever $m \geq M_1(N)$, which imply that

$$e(H) = s(F) + \frac{\ell + kcm}{c(m - N)} \widetilde{P}(N) (h - \chi(F(N))).$$

If $H^1(F(N)) = 0$, we have $e(H) \leq s(F)$ since $h \leq h^0(F(N))$. Then $e(H) \leq s(F) < (\text{resp. } \leq) 0$ by Proposition 2.22 when (E, Q) is stable (resp. semistable). If $H^1(F(N)) \neq 0$, by Lemma 2.11, we have

$$h^0(F(N)) \leq \frac{rcN + \widetilde{\chi}}{r} (r(F) - 1) + A$$

where A is a constant. Putting $h \leq h^0(F(N))$ and above inequality in

$$\begin{aligned} e(H) &= \tilde{P}(N) \left(kh - (\ell + kcN)r(F) + (\ell + kcN) \frac{h - \chi(F(N))}{c(m - N)} \right) \\ &\quad - \tilde{P}(N) \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) h^0(Q_{r_i(x)}^F) - k \tilde{P}(N) h^0(Q^F), \end{aligned}$$

then, let $C = k|\chi| + (|A| + |\ell|)r$, we have

$$e(H) \leq \tilde{P}(N) \left(-kcN + C + (\ell + kcN) \frac{h - \chi(F(N))}{c(m - N)} \right).$$

Choose an integer $N_2 \geq N_1$ such that $-kcN_2 + C < -1$. Then, for any fixed $N \geq N_2$, there is an integer $M_2(N)$ such that for $m \geq M_2(N)$

$$(\ell + kcN) \frac{h - \chi(F(N))}{c(m - N)} < 1$$

for any $H \subset V$, which implies $e(H) < 0$ and we are done. \square

Theorem 2.24. *When \tilde{X} is irreducible, there exists a (coarse) moduli space \mathcal{P}^s of stable GPS on \tilde{X} , which is a smooth variety. There is an open immersion $\mathcal{P}^s \hookrightarrow \mathcal{P}$, where \mathcal{P} is the moduli space of s -equivalence classes of semi-stable GPS on \tilde{X} , which is reduced, irreducible and normal projective variety with at most rational singularities.*

Proof. Let $\mathcal{P}^s := \widetilde{\mathcal{R}'}^s // SL(\tilde{V})$ and $\mathcal{P} := \widetilde{\mathcal{R}'}^{ss} // SL(\tilde{V})$ be the GIT quotient. When (E, Q) is a stable GPS, E must be torsion free. Thus $\widetilde{\mathcal{R}'}^s$ is a smooth variety, so is \mathcal{P}^s . By Proposition 3.2 of [9], \mathcal{H} is reduced, normal with at most rational singularities, so are $\widetilde{\mathcal{R}'}^{ss} \subset \mathcal{H}$ and \mathcal{P} . \square

The above construction also works for the case when $\tilde{X} = X_1 \sqcup X_2$ is a disjoint union of two irreducible smooth curves. However, for later applications, we need to use a different quotient space $\widetilde{\mathcal{R}}$. Let χ_1 and χ_2 be integers such that $\chi_1 + \chi_2 - r = \chi$, and fix, for $i = 1, 2$, the polynomials $P_i(m) = c_i rm + \chi_i$ and $\mathcal{W}_i = \mathcal{O}_{X_i}(-N)$ where $\mathcal{O}_{X_i}(1) = \mathcal{O}(1)|_{X_i}$ has degree c_i . Write $V_i = \mathbb{C}^{P_i(N)}$ and consider the Quot schemes $Quot(V_i \otimes \mathcal{W}_i, P_i)$, let $\widetilde{\mathbf{Q}}_i$ be the closure of the open set

$$\mathbf{Q}_i = \left\{ \begin{array}{l} V_i \otimes \mathcal{W}_i \rightarrow E_i \rightarrow 0, \text{ with } H^1(E_i(N)) = 0 \text{ and} \\ V_i \rightarrow H^0(E_i(N)) \text{ induces an isomorphism} \end{array} \right\},$$

we have the universal quotient $V_i \otimes \mathcal{W}_i \rightarrow \mathcal{F}^i \rightarrow 0$ on $X_i \times \tilde{\mathbf{Q}}_i$ and the relative flag scheme

$$\mathcal{R}_i = \times_{\substack{\tilde{\mathbf{Q}}_i \\ x \in I_i}} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x^i) \rightarrow \tilde{\mathbf{Q}}_i.$$

Let $\mathcal{F} = \mathcal{F}^1 \oplus \mathcal{F}^2$ denote direct sum of pullbacks of $\mathcal{F}^1, \mathcal{F}^2$ on

$$\tilde{X} \times (\tilde{\mathbf{Q}}_1 \times \tilde{\mathbf{Q}}_2) = (X_1 \times \tilde{\mathbf{Q}}_1) \sqcup (X_2 \times \tilde{\mathbf{Q}}_2).$$

Let \mathcal{E} be the pullback of \mathcal{F} to $\tilde{X} \times (\mathcal{R}_1 \times \mathcal{R}_2)$, $\tilde{V} = V_1 \oplus V_2$ and

$$\rho : \tilde{\mathcal{R}}' := \text{Grass}_r(\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2}) \rightarrow \tilde{\mathcal{R}} := \mathcal{R}_1 \times \mathcal{R}_2 \rightarrow \tilde{\mathbf{Q}} := \tilde{\mathbf{Q}}_1 \times \tilde{\mathbf{Q}}_2.$$

Note that $V_1 \otimes \mathcal{W}_1 \oplus V_2 \otimes \mathcal{W}_2 \rightarrow \mathcal{F} \rightarrow 0$ is a $\tilde{\mathbf{Q}}_1 \times \tilde{\mathbf{Q}}_2$ -flat quotient with Hilbert polynomial $\tilde{P}(m) = P_1(m) + P_2(m)$ on $\tilde{X} \times (\tilde{\mathbf{Q}}_1 \times \tilde{\mathbf{Q}}_2)$, we have for m large enough a G -equivariant embedding

$$\tilde{\mathbf{Q}}_1 \times \tilde{\mathbf{Q}}_2 \hookrightarrow \text{Grass}_{\tilde{P}(m)}(V_1 \otimes W_1^m \oplus V_2 \otimes W_2^m),$$

where $W_i^m = H^0(\mathcal{W}_i(m))$ and $G = (GL(V_1) \times GL(V_2)) \cap SL(\tilde{V})$. Moreover, for large enough m , we have a G -equivariant embedding

$$\tilde{\mathcal{R}}' \hookrightarrow \mathbf{G}' = \text{Grass}_{\tilde{P}(m)}(\tilde{V} \otimes W_m) \times \text{Flag} \times \text{Grass}_r(\tilde{V} \otimes W_m)$$

(Warning) : $\tilde{V} \otimes W_m := V_1 \otimes W_1^m \oplus V_2 \otimes W_2^m$, which maps a point

$$(p = p_1 \oplus p_2, \{p_{r_1(x)}, \dots, p_{r_{l_x}(x)}\}_{x \in I}, q_s) \in \tilde{\mathcal{R}}',$$

where $V_i \otimes \mathcal{W}_i \xrightarrow{p_i} E_i \rightarrow 0$, $(V_1 \otimes \mathcal{W}_1) \oplus (V_2 \otimes \mathcal{W}_2) \xrightarrow{p=p_1 \oplus p_2} E := E_1 \oplus E_2$ denotes the quotient on $\tilde{X} = X_1 \sqcup X_2$ and

$$\{ (V_1 \otimes \mathcal{W}_1) \oplus (V_2 \otimes \mathcal{W}_2) \xrightarrow{p_{r_i(x)}} Q_{r_i(x)} \rightarrow 0, \ 1 \leq i \leq l_x \}_{x \in I},$$

$(V_1 \otimes \mathcal{W}_1) \oplus (V_2 \otimes \mathcal{W}_2) \xrightarrow{q_s} Q$ denotes the surjection of sheaves

$$q_s : (V_1 \otimes \mathcal{W}_1) \oplus (V_2 \otimes \mathcal{W}_2) \rightarrow E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \rightarrow 0,$$

to the point $(g, \{g_{r_1(x)}, \dots, g_{r_{l_x}(x)}\}_{x \in I}, g_G) = (\tilde{V} \otimes W_m \xrightarrow{g} U,$

$$\{\tilde{V} \otimes W_m \xrightarrow{g_{r_1(x)}} U_{r_1(x)}, \dots, \tilde{V} \otimes W_m \xrightarrow{g_{r_{l_x}(x)}} U_{r_{l_x}(x)}\}_{x \in I}, \tilde{V} \otimes W_m \xrightarrow{g_G} U_r)$$

of \mathbf{G}' , where $g := H^0(p(m))$, $U := H^0(E(m))$, $g_{r_i(x)} := H^0(p_{r_i(x)}(m))$, $U_{r_i(x)} := H^0(Q_{r_i(x)})$ ($i = 1, \dots, l_x$), $g_G := H^0(q_s(m))$, $U_r := H^0(Q)$ and $r_i(x) = \dim(Q_{r_i(x)})$. Given \mathbf{G}' the polarisation

$$\frac{\ell + kcN}{c(m - N)} \times \prod_{x \in I} \{d_1(x), \dots, d_{l_x}(x)\} \times k.$$

Then we have criterion (see Proposition 1.14 and 2.4 of [2])

Proposition 2.25. *A point $(g, \{g_{r_1(x)}, \dots, g_{r_{l_x}(x)}\}_{x \in I}, g_G) \in \mathbf{G}'$ is stable (semistable) for the action of G , with respect to the above polarisation, iff for all nontrivial subspaces $H \subset \tilde{V}$, where $H = H_1 \oplus H_2$, $H_i \subset V_i$ ($i = 1, 2$), we have (with $h = \dim H$, $\tilde{H} := H_1 \otimes W_1^m \oplus H_2 \otimes W_2^m$)*

$$\begin{aligned} e(H) := & \frac{\ell + kcN}{c(m - N)} \left(\tilde{P}(m)h - \tilde{P}(N)\dim g(\tilde{H}) \right) \\ & + \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) \left(r_i(x)h - \tilde{P}(N)\dim g_{r_i(x)}(\tilde{H}) \right) \\ & + k \left(rh - \tilde{P}(N)\dim g_G(\tilde{H}) \right) < (\leq) 0. \end{aligned}$$

The Lemma 2.20 and Proposition 2.22 (thus Proposition 2.23) are also true for the case $\tilde{X} = X_1 \sqcup X_2$. Thus we have

Theorem 2.26. *When $\tilde{X} = X_1 \sqcup X_2$, there exists a (coarse) moduli space \mathcal{P}^s of stable GPS on \tilde{X} , which is a smooth scheme. There is an open immersion $\mathcal{P}^s \hookrightarrow \mathcal{P}$, where \mathcal{P} is the moduli space of s -equivalence classes of semi-stable GPS on \tilde{X} , which is a disjoint union of at most $r + 1$ irreducible, normal projective varieties with at most rational singularities.*

Proof. For any χ_1 and χ_2 satisfying $\chi_1 + \chi_2 = \chi + r$ and

$$n_1^\omega \leq \chi_1 \leq n_1^\omega + r, \quad n_2^\omega \leq \chi_2 \leq n_2^\omega + r,$$

let $\mathcal{P}_{\chi_1, \chi_2}^s := \widetilde{\mathcal{R}'}^s // G$, $\mathcal{P}_{\chi_1, \chi_2} := \widetilde{\mathcal{R}'}^{ss} // G$ and

$$\mathcal{P}^s := \bigsqcup_{\chi_1 + \chi_2 = \chi + r} \mathcal{P}_{\chi_1, \chi_2}^s, \quad \mathcal{P} := \bigsqcup_{\chi_1 + \chi_2 = \chi + r} \mathcal{P}_{\chi_1, \chi_2}.$$

Then $\mathcal{P}_{\chi_1, \chi_2}^s$ are smooth varieties and $\mathcal{P}_{\chi_1, \chi_2}$ are reduced, irreducible and normal projective varieties with at most rational singularities. \square

3. FACTORIZATION OF GENERALIZED THETA FUNCTIONS

The moduli spaces $\mathcal{U}_X := \mathcal{U}_X(r, d, \mathcal{O}(1), \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I})$ is independent of the choice of $\mathcal{O}(1)$ when X is irreducible. However, when $X = X_1 \cup X_2$, the moduli spaces $\mathcal{U}_X := \mathcal{U}_X(r, d, \mathcal{O}(1), \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I})$ depends on the choice of $\mathcal{O}(1)$ (more precisely, it only depends on the degree c_i of $\mathcal{O}(1)|_{X_i}$). We will require in this section that

$$(3.1) \quad \ell := \frac{k\chi - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x)}{r} \text{ is an integer.}$$

When X is irreducible, for any divisor $L = \sum_q \ell_q z_q$ of degree ℓ on X (supported on smooth points), there is an ample line bundle

$$\Theta_{\mathcal{U}_X, L} = \Theta(r, d, \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}, L)$$

on \mathcal{U}_X , which is called a theta line bundle on \mathcal{U}_X . We are going to define it as follows.

By a family of parabolic sheaves of rank r and Euler characteristic χ with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ and weights $\{\vec{a}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$ parametrized by T , we mean a sheaf \mathcal{F} on $X \times T$, flat over T , and torsion free with rank r and Euler characteristic χ on $X \times \{t\}$ for every $t \in T$, together with, for each $x \in I$, a flag

$$\mathcal{F}_{\{x\} \times T} = \mathcal{Q}_{\{x\} \times T, l_x+1} \rightarrow \mathcal{Q}_{\{x\} \times T, l_x} \rightarrow \mathcal{Q}_{\{x\} \times T, l_x-1} \rightarrow \cdots \rightarrow \mathcal{Q}_{\{x\} \times T, 1} \rightarrow 0$$

of quotients of type $\vec{n}(x)$ and weights $\vec{a}(x)$. We define $\Theta_{\mathcal{F}, L}$ to be

$$(\det R\pi_T \mathcal{F})^{-k} \otimes \bigotimes_{x \in I} \left\{ \bigotimes_{i=1}^{l_x} \det(\mathcal{Q}_{\{x\} \times T, i})^{d_i(x)} \right\} \otimes \bigotimes_q \det(\mathcal{F}_{\{z_q\} \times T})^{\ell_q}$$

where π_T is the projection $X \times T \rightarrow T$ and $\det R\pi_T \mathcal{F}$ is the determinant of cohomology: $\{\det R\pi_T \mathcal{F}\}_t := \det H^0(X, \mathcal{F}_t) \otimes \det H^1(X, \mathcal{F}_t)^{-1}$. We have the following theorem (see [6] for $r = 2$ and [7] for $r > 2$):

Theorem 3.1. *Let X be irreducible and $L = \sum_q \ell_q z_q$ a divisor of degree ℓ supported on smooth points of X . Then there is an unique ample line bundle $\Theta_{\mathcal{U}_X, L} = \Theta(r, d, \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}, L)$ on \mathcal{U}_X such that*

- (1) *for any family of parabolic sheaf \mathcal{F} of rank r and degree d parametrised by T , with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$, semistable with respect to the weights $\{\vec{a}(x)\}_{x \in I}$, we have $\phi_T^* \Theta_{\mathcal{U}_X, L} = \Theta_{\mathcal{F}, L}$, where $\phi_T : T \rightarrow \mathcal{U}_X$ is the morphism induced by \mathcal{F} .*
- (2) *for any two choices L and L' , $\Theta_{\mathcal{U}_X, L}$ and $\Theta_{\mathcal{U}_X, L'}$ are algebraically equivalent.*

Proof. (1) Let \mathcal{E} be the universal family on $X \times \mathcal{R}^{ss}$, then the line bundle $\Theta_{\mathcal{E}, L}$ on \mathcal{R}^{ss} , which was defined as

$$(\det R\pi_{\mathcal{R}^{ss}} \mathcal{E})^{-k} \otimes \bigotimes_{x \in I} \left\{ \bigotimes_{i=1}^{l_x} \det(\mathcal{Q}_{\{x\} \times \mathcal{R}^{ss}, i})^{d_i(x)} \right\} \otimes \bigotimes_q \det(\mathcal{E}_{\{z_q\} \times \mathcal{R}^{ss}})^{\ell_q},$$

descends to the line bundle $\Theta_{\mathcal{U}_X, L}$ on \mathcal{U}_X (see [7] for the detail).

(2) Let $X^0 \subset X$ be the open set of smooth points and $L_0 = L - z$, where z is a point in the support of L . It is enough to show that $\Theta_{\mathcal{U}_X, L}$

is algebraically equivalent to $\Theta_{\mathcal{U}_X, L_0+y}$ for any $y \in X^0$. To prove it, note that $X^0 \times \mathcal{R}^{ss} \rightarrow X^0 \times \mathcal{U}_X$ is a good quotient and the line bundle

$$\pi_{\mathcal{R}^{ss}}^*(\Theta_{\mathcal{E}, L} \otimes \det(\mathcal{E}_z)^{-1}) \otimes \det(\mathcal{E})$$

descends to a line bundle \mathcal{L} on $X^0 \times \mathcal{U}_X$ such that

$$\mathcal{L}|_{\{z\} \times \mathcal{U}_X} = \Theta_{\mathcal{U}_X, L}, \quad \mathcal{L}|_{\{y\} \times \mathcal{U}_X} = \Theta_{\mathcal{U}_X, L_0+y}$$

i.e. $\Theta_{\mathcal{U}_X, L}$ and $\Theta_{\mathcal{U}_X, L_0+y}$ are algebraically equivalent.

The ampleness of $\Theta_{\mathcal{U}_X, L}$ follows the ampleness of $\Theta_{\mathcal{U}_X, \ell \cdot y}$, which is the descendant of restriction (on \mathcal{R}^{ss}) of the polarization (Notation 2.5) if we choose $\mathcal{O}(1) = \mathcal{O}(cy)$. \square

When $X = X_1 \cup X_2$, we choose $\mathcal{O}(1) = \mathcal{O}_X(c_1 y_1 + c_2 y_2)$ such that

$$(3.2) \quad \ell_i = \frac{c_i \ell}{c_1 + c_2} \quad (i = 1, 2) \text{ are integers.}$$

Then the following theorem can be proven similarly (see [10] for the detail).

Theorem 3.2. *Let $X = X_1 \cup X_2$ and $L_i = \sum_{q \in X_i} \ell_q z_q$ be a divisor of degree ℓ_i supported on $X_i \setminus \{x_0\}$. Then there is an unique ample line bundle $\Theta_{\mathcal{U}_X, L_1+L_2} = \Theta(r, d, \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I_1 \cup I_2}, L_1 + L_2)$ on \mathcal{U}_X such that*

- (1) *for any family of parabolic sheaf \mathcal{F} of rank r and degree d parametrised by T , with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$, semistable with respect to the weights $\{\vec{a}(x)\}_{x \in I}$, we have $\phi_T^* \Theta_{\mathcal{U}_X, L_1+L_2} = \Theta_{\mathcal{F}, L_1+L_2}$, where $\phi_T : T \rightarrow \mathcal{U}_X$ is the morphism induced by \mathcal{F} .*
- (2) *for any two choices L_1+L_2 , $L'_1+L'_2$, $\Theta_{\mathcal{U}_X, L_1+L_2}$ and $\Theta_{\mathcal{U}_X, L'_1+L'_2}$ are algebraically equivalent.*

Remarks 3.3. (1) When X is irreducible, the map $E \mapsto E \otimes \mathcal{O}_X(\pm y)$ induces an isomorphism ($\ell \mapsto \ell \pm k$)

$$f : \mathcal{U}_X(r, d, \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}) \rightarrow \mathcal{U}_X(r, d \pm r, \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I})$$

such that $\Theta_{\mathcal{U}_X, L \pm ky} = f^* \Theta_{\mathcal{U}_X, L}$ for the divisor $L = \sum_q \ell_q z_q$ of degree ℓ .

(2) If $\ell \neq 0$, for any $L = \sum_{q \in X^0} \ell_q z_q$ of degree ℓ , then $\Theta_{\mathcal{U}_X, L}$ is the descendant of restriction (on \mathcal{R}^{ss}) of the polarization (Notation 2.5) if we choose $\mathcal{O}(1) = \mathcal{O}(\sum_q \frac{|\ell| \ell_q}{\ell} z_q)$ where $c = |\ell|$.

In the rest of this paper, we will fix a smooth point $y \in X$ (and $y_i \in X_i$ when X is reducible), and choose

$$L = \ell_y y + \sum_{x \in I} \alpha_x x, \quad L_i = \ell_{y_i} y_i + \sum_{x \in I_i} \alpha_x x \quad (i = 1, 2).$$

This choice determines, when X is irreducible, the theta line bundle

$$\Theta_{\mathcal{U}_X} = \Theta(r, d, \{k, \vec{n}(x), \vec{a}(x), \alpha_x\}_{x \in I}, \ell_y)$$

where $\ell_y + \sum_{x \in I} \alpha_x = \ell$, and it determines, when X is reducible,

$$\Theta_{\mathcal{U}_X} = \Theta(r, d, \{k, \vec{n}(x), \vec{a}(x), \alpha_x\}_{x \in I_1 \cup I_2}, \ell_{y_1}, \ell_{y_2})$$

where $\ell_{y_i} + \sum_{x \in I_i} \alpha_x = \ell_i$ ($i = 1, 2$).

Now we are going to state the factorizations proved in [9] and [10]. Firstly, let X be an irreducible projective curve of genus g , smooth but for one node x_0 . Let $\pi: \tilde{X} \rightarrow X$ be the normalization of X , and $\pi^{-1}(x_0) = \{x_1, x_2\}$. Let I be a finite set of smooth points on X and $y \in X$ be a fixed smooth point. Given integers $d, k, r, \{\alpha_x\}_{x \in I}, \ell_y$,

$$\begin{aligned} \vec{a}(x) &= (a_1(x), a_2(x), \dots, a_{l_x+1}(x)) \\ \vec{n}(x) &= (n_1(x), n_2(x), \dots, n_{l_x+1}(x)) \end{aligned}$$

satisfying $\ell_y + \sum_{x \in I} \alpha_x = \ell$ and

$$0 \leq a_1(x) < a_2(x) < \dots < a_{l_x+1}(x) < k \quad (x \in I).$$

Recall that ℓ is defined by

$$(3.3) \quad \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r\ell = k(d + r(1-g)) = k\chi$$

where $d_i(x) = a_{i+1}(x) - a_i(x)$ and $r_i(x) = n_1(x) + \dots + n_i(x)$.

Let \mathcal{U}_X be the moduli space of (s -equivalence classes of) parabolic torsion free sheaves of rank r and degree d on X , with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$, semistable with respect to the weights $\{\vec{a}(x)\}_{x \in I}$.

For $\mu = (\mu_1, \dots, \mu_r)$ with $0 \leq \mu_r \leq \dots \leq \mu_1 \leq k-1$, let

$$\{d_i = \mu_{r_i} - \mu_{r_i+1}\}_{1 \leq i \leq l}$$

be the subset of nonzero integers in $\{\mu_i - \mu_{i+1}\}_{i=1, \dots, r-1}$. We define

$$r_i(x_1) = r_i, \quad d_i(x_1) = d_i, \quad l_{x_1} = l, \quad \alpha_{x_1} = \mu_r$$

$$r_i(x_2) = r - r_{l-i+1}, \quad d_i(x_2) = d_{l-i+1}, \quad l_{x_2} = l, \quad \alpha_{x_2} = k - \mu_1$$

and for $j = 1, 2$, we set

$$\begin{aligned} \vec{a}(x_j) &= \left(\mu_r, \mu_r + d_1(x_j), \dots, \mu_r + \sum_{i=1}^{l_{x_j}-1} d_i(x_j), \mu_r + \sum_{i=1}^{l_{x_j}} d_i(x_j) \right) \\ \vec{n}(x_j) &= (r_1(x_j), r_2(x_j) - r_1(x_j), \dots, r_{l_{x_j}}(x_j) - r_{l_{x_j}-1}(x_j), r - r_{l_{x_j}}(x_j)). \end{aligned}$$

Let $\mathcal{U}_{\tilde{X}}^\mu$ be the moduli space of semistable parabolic bundles on \tilde{X} with parabolic structures of type $\{\vec{n}(x)\}_{x \in I \cup \{x_1, x_2\}}$ at points $\{x\}_{x \in I \cup \{x_1, x_2\}}$ and weights $\{\vec{a}(x)\}_{x \in I \cup \{x_1, x_2\}}$, and let

$$\Theta_{\mathcal{U}_{\tilde{X}}^\mu} = \Theta(r, d, \{k, \vec{n}(x), \vec{a}(x), \alpha_x\}_{x \in I \cup \{x_1, x_2\}}, \ell_y).$$

Then the following is the so called **Factorization Theorem I**

Theorem 3.4. *There exists a (noncanonical) isomorphism*

$$H^0(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) \cong \bigoplus_{\mu} H^0(\mathcal{U}_{\tilde{X}}^\mu, \Theta_{\mathcal{U}_{\tilde{X}}^\mu})$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \leq \mu_r \leq \dots \leq \mu_1 \leq k-1$.

When $X = X_1 \cup X_2$, $I = I_1 \cup I_2$, $\tilde{X} = X_1 \sqcup X_2$ is the disjoint union of smooth projective curves X_1 and X_2 . Recall that

$$\Theta_{\mathcal{U}_X} = \Theta(r, d, \{k, \vec{n}(x), \vec{a}(x), \alpha_x\}_{x \in I_1 \cup I_2}, \ell_{y_1}, \ell_{y_2}),$$

where $\ell_{y_i} + \sum_{x \in I_i} \alpha_x = \ell_i$ ($i = 1, 2$), are the theta line bundles on

$$\mathcal{U}_X = \mathcal{U}_X(r, d, \mathcal{O}(1), \omega).$$

For $\mu = (\mu_1, \dots, \mu_r)$ with $0 \leq \mu_r \leq \dots \leq \mu_1 \leq k-1$, we define

$$\begin{aligned} \chi_1^\mu &= \frac{1}{k} \left(r\ell_1 + \sum_{x \in I_1} \sum_{i=1}^{l_x} d_i(x) r_i(x) \right) + \frac{1}{k} \sum_{i=1}^r \mu_i = n_1^\omega + \frac{1}{k} \sum_{i=1}^r \mu_i \\ \chi_2^\mu &= \frac{1}{k} \left(r\ell_2 + \sum_{x \in I_2} \sum_{i=1}^{l_x} d_i(x) r_i(x) \right) + r - \frac{1}{k} \sum_{i=1}^r \mu_i = n_2^\omega + r - \frac{1}{k} \sum_{i=1}^r \mu_i. \end{aligned}$$

One can check that the numbers satisfy ($j = 1, 2$)

$$(3.4) \quad \sum_{x \in I_j \cup \{x_j\}} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r \sum_{x \in I_j \cup \{x_j\}} \alpha_x + r\ell_{y_j} = k\chi_j^\mu.$$

Let $\omega_j^\mu = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I_j \cup \{x_j\}}$ ($j = 1, 2$), $d_j^\mu = \chi_j^\mu + r(g_j - 1)$ and

$$\mathcal{U}_{X_j}^\mu := \mathcal{U}_{X_j}(r, d_j^\mu, \omega_j^\mu)$$

be the moduli space of s -equivalence classes of semistable parabolic bundles E of rank r on X_j and $\chi(E) = \chi_j^\mu$, together with parabolic structures of type $\{\vec{n}(x)\}_{x \in I \cup \{x_j\}}$ and weights $\{\vec{a}(x)\}_{x \in I \cup \{x_j\}}$ at points $\{x\}_{x \in I \cup \{x_j\}}$. We define $\mathcal{U}_{X_j}^\mu$ to be empty if χ_j^μ is not an integer. Let

$$\Theta_{\mathcal{U}_{X_j}^\mu} = \Theta(r, d_j^\mu, \{k, \vec{n}(x), \vec{a}(x), \alpha_x\}_{x \in I_j \cup \{x_j\}}, \ell_{y_j})$$

then we have **Factorization Theorem II**

Theorem 3.5. *There exists a (noncanonical) isomorphism*

$$H^0(\mathcal{U}_{X_1 \cup X_2}, \Theta_{\mathcal{U}_{X_1 \cup X_2}}) \cong \bigoplus_{\mu} H^0(\mathcal{U}_{X_1}^{\mu}, \Theta_{\mathcal{U}_{X_1}^{\mu}}) \otimes H^0(\mathcal{U}_{X_2}^{\mu}, \Theta_{\mathcal{U}_{X_2}^{\mu}})$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \leq \mu_r \leq \dots \leq \mu_1 \leq k-1$.

4. INVARIANCE OF SPACES OF GENERALIZED THETA FUNCTIONS

For a smooth projective curve C of genus $g \geq 0$ and a finite set $I_1 \subset C$ of points, to compute the dimension of $H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$, we take a family $\{(X_t, I_t)\}_{t \in T}$ of curves with parabolic data such that

$$(X_1, I_1) = (C, I_1)$$

is the curve C with given parabolic data and $(X_0, I_0) = (X, I)$ is an curve X with one node and parabolic data. If dimension of the spaces $H^0(\mathcal{U}_{X_t}, \Theta_{\mathcal{U}_{X_t}})$ is invariant, we can reduce, by using **Factorization Theorem I**, the computation of dimension for a genus g curve to the computation of dimension for a genus $g-1$ curve. Then, by the same procedure and using **Factorization Theorem II**, we can decrease the number of parabolic points.

In order to prove the invariance, we proved in [9] that

$$H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) = 0$$

when X is an irreducible curve of $g \geq 3$ with at most one node (which implies the invariance for $g \geq 3$). We recall in this section the proof of vanishing theorem for smooth curves and remark that our arguments in [9] in fact imply the invariance for any smooth curves $X_t := \tilde{X}$.

Let \tilde{X} be a smooth projective curve of genus \tilde{g} . Fix a line bundle $\mathcal{O}(1)$ on \tilde{X} of $\deg(\mathcal{O}(1)) = c$, let $\tilde{\chi} = d + r(1 - \tilde{g})$, \tilde{P} denote the polynomial $\tilde{P}(m) = c m + \tilde{\chi}$, $\mathcal{O}_{\tilde{X}}(-N) = \mathcal{O}(1)^{-N}$ and $V = \mathbb{C}^{\tilde{P}(N)}$. Let $\tilde{\mathbf{Q}}$ be the Quot scheme of quotients

$$V \otimes \mathcal{O}_{\tilde{X}}(-N) \rightarrow F \rightarrow 0$$

(of rank r and degree d) on \tilde{X} . Thus there is on $\tilde{X} \times \tilde{\mathbf{Q}}$ a universal quotient $V \otimes \mathcal{O}_{\tilde{X} \times \tilde{\mathbf{Q}}}(-N) \rightarrow \mathcal{F} \rightarrow 0$. Let \mathcal{F}_x be the sheaf given by restricting \mathcal{F} to $\{x\} \times \tilde{\mathbf{Q}}$, $\text{Flag}_{\vec{n}(x)}(\mathcal{F}_x) \rightarrow \tilde{\mathbf{Q}}$ be the relative flag scheme of type $\vec{n}(x)$ and

$$\tilde{\mathcal{R}} = \times_{\substack{\tilde{\mathbf{Q}} \\ x \in I}} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x) \rightarrow \tilde{\mathbf{Q}}.$$

Let $\tilde{\mathcal{R}}_F$ denote open set of locally free quotients and

$$V \otimes \mathcal{O}_{\tilde{X} \times \tilde{\mathcal{R}}}(-N) \rightarrow \tilde{\mathcal{F}} \rightarrow 0$$

denote pullback of the universal quotient $V \otimes \mathcal{O}_{\tilde{X} \times \tilde{\mathbf{Q}}}(-N) \rightarrow \mathcal{F} \rightarrow 0$. The reductive group $\mathrm{SL}(V)$ acts on $\tilde{\mathcal{R}}$.

For large enough m , we have a $\mathrm{SL}(V)$ -equivariant embedding

$$\tilde{\mathcal{R}} \hookrightarrow \mathbf{G} = \mathrm{Grass}_{\tilde{P}(m)}(V \otimes W_m) \times \mathbf{Flag},$$

where $W_m = \mathrm{H}^0(\mathcal{O}_{\tilde{X}}(m))$, and \mathbf{Flag} is defined to be

$$\mathbf{Flag} = \prod_{x \in I} \{\mathrm{Grass}_{r_1(x)}(V \otimes W_m) \times \cdots \times \mathrm{Grass}_{r_{l_x}(x)}(V \otimes W_m)\}.$$

For any given data $\omega = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}$, $\tilde{\ell}$ is defined by

$$(4.1) \quad \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r\tilde{\ell} = k(d + r(1 - \tilde{g}) = k\tilde{\chi},$$

ω determines a polarisation (for fixed $\mathcal{O}(1)$) on \mathbf{G} :

$$\frac{\tilde{\ell} + kcN}{c(m - N)} \times \prod_{x \in I} \{d_1(x), \dots, d_{l_x}(x)\}.$$

The set $\tilde{\mathcal{R}}_{\omega}^{ss} \subset \tilde{\mathcal{R}}_F$ of GIT semistable (resp. stable) points for the $\mathrm{SL}(V)$ action under this polarisation is precisely the set of semistable (resp. stable) parabolic bundles on \tilde{X} of the type determined by the given data. Its good quotient $\mathcal{U}_{\tilde{X}, \omega}$ is our moduli space and

$$\Theta_{\tilde{\mathcal{R}}_{\omega}^{ss}} = (\det R\pi_{\tilde{\mathcal{R}}_{\omega}^{ss}} \tilde{\mathcal{F}})^{-k} \otimes \bigotimes_{x \in I} \{(\det \tilde{\mathcal{F}}_x)^{\alpha_x} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{d_i(x)}\} \otimes (\det \tilde{\mathcal{F}}_y)^{\tilde{\ell}_y}$$

where $\tilde{\ell}_y + \sum_{x \in I} \alpha_x = \tilde{\ell}$, descends to an ample line bundle $\Theta_{\mathcal{U}_{\tilde{X}, \omega}}$ on $\mathcal{U}_{\tilde{X}, \omega}$. To prove $H^1(\mathcal{U}_{\tilde{X}, \omega}, \Theta_{\mathcal{U}_{\tilde{X}, \omega}}) = 0$, we need essentially the following codimension estimates:

Proposition 4.1 (Proposition 5.1 of [9]). *Let $|\mathbf{I}|$ be the number of parabolic points. Then*

- (1) $\mathrm{codim}(\tilde{\mathcal{R}}^{ss} \setminus \tilde{\mathcal{R}}^s) \geq (r-1)(\tilde{g}-1) + \frac{1}{k}|\mathbf{I}|$,
- (2) $\mathrm{codim}(\tilde{\mathcal{R}}_F \setminus \tilde{\mathcal{R}}^{ss}) > (r-1)(\tilde{g}-1) + \frac{1}{k}|\mathbf{I}|$.

Proposition 4.2 (Proposition 2.2 of [9]). *Let $\omega_{\tilde{X}} = \mathcal{O}_{\tilde{X}}(\sum q)$ and $\omega_{\tilde{\mathcal{R}}_F}$ be the canonical sheaf of \tilde{X} and $\tilde{\mathcal{R}}_F$ respectively. Then*

$$\begin{aligned} \omega_{\tilde{\mathcal{R}}_F}^{-1} = & (\det R\pi_{\tilde{\mathcal{R}}_F} \tilde{\mathcal{F}})^{-2r} \otimes \bigotimes_{x \in I} \left\{ (\det \tilde{\mathcal{F}}_x)^{n_{l_x+1}-r} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{n_i(x)+n_{i+1}(x)} \right\} \\ & \otimes \bigotimes_q (\det \tilde{\mathcal{F}}_q)^{1-r} \otimes (\det \tilde{\mathcal{F}}_y)^{2\tilde{\chi}+(r-1)(2\tilde{g}-2)} \otimes \mathrm{Det}^*(\Theta_y^{-2}) \end{aligned}$$

where $\text{Det} : \tilde{\mathcal{R}}_F \rightarrow J_{\tilde{X}}^d$ is the determinant morphism and Θ_y is the theta line bundle on $J_{\tilde{X}}^d$.

The following result due to F. Knop is essential in our arguments, whose global form was formulated in [6].

Lemma 4.3 (Lemma 4.17 of [6]). *Let X be a normal, Cohen-Macaulay variety on which a reductive group G acts, such that a good quotient $\pi : X \rightarrow Y$ exists. Suppose that the action is generically free and $\dim G = \dim X - \dim Y$. Suppose further that*

- (1) *the subset where the action is not free has codimension ≥ 2 ,*
- (2) *for every prime divisor D in X , $\pi(D)$ has codimension ≤ 1 , where D need not be invariant.*

Then $\omega_Y = (\pi_ \omega_X)^G$ where ω_X, ω_Y are the respective dualizing sheaves.*

Theorem 4.4 (Theorem 5.1 of [9]). *Assume $(r-1)(\tilde{g}-1) + \frac{1}{k}|\mathcal{I}| \geq 2$. Then, for any data ω such that $\tilde{\ell} \in \mathbb{Z}$, we have*

$$H^1(\mathcal{U}_{\tilde{X}, \omega}, \Theta_{\mathcal{U}_{\tilde{X}, \omega}}) = 0.$$

Proof. Note that, on good quotient $\mathcal{U}_{\tilde{X}, \omega}$, we always have for any $i \geq 0$

$$H^i(\mathcal{U}_{\tilde{X}, \omega}, \Theta_{\mathcal{U}_{\tilde{X}, \omega}}) = H^i(\tilde{\mathcal{R}}_{\omega}^{ss}, \Theta_{\tilde{\mathcal{R}}_{\omega}^{ss}})^{inv}.$$

By the assumption and Proposition 4.1, we have $\text{codim}(\tilde{\mathcal{R}}_F \setminus \tilde{\mathcal{R}}_{\omega}^{ss}) > 2$. Thus $H^1(\tilde{\mathcal{R}}_{\omega}^{ss}, \Theta_{\tilde{\mathcal{R}}_{\omega}^{ss}})^{inv} = H^1(\tilde{\mathcal{R}}_F, \Theta_{\tilde{\mathcal{R}}_F})^{inv}$, where

$$\Theta_{\tilde{\mathcal{R}}_F} = (\det R\pi_{\tilde{\mathcal{R}}_F} \tilde{\mathcal{F}})^{-k} \otimes \bigotimes_{x \in I} \{(\det \tilde{\mathcal{F}}_x)^{\alpha_x} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{d_i(x)}\} \otimes (\det \tilde{\mathcal{F}}_y)^{\tilde{\ell}_y}$$

with $\tilde{\ell}_y + \sum_{x \in I} \alpha_x = \tilde{\ell}$. Let $J = J_{\tilde{X}}^d$ be the Jacobian of line bundles of degree d on \tilde{X} , \mathcal{L} the universal line bundle on $\tilde{X} \times J$ and

$$\Theta_y = \det(R\pi_J \mathcal{L})^{-1} \otimes \mathcal{L}_y^{d+1-\tilde{g}}.$$

The line bundle $\det(\tilde{\mathcal{F}})$ on $\tilde{X} \times \tilde{\mathcal{R}}_F$ induces (for any data $\bar{\omega}$)

$$\text{Det} : \tilde{\mathcal{R}}_F \rightarrow J, \quad \text{Det} : \mathcal{U}_{\tilde{X}, \bar{\omega}} \rightarrow J$$

such that $\det R\pi_{\tilde{\mathcal{R}}_F} \det \tilde{\mathcal{F}} = \text{Det}^*(\det(R\pi_J \mathcal{L}))$. Then we can write

$$\Theta_{\tilde{\mathcal{R}}_F} \otimes \omega_{\tilde{\mathcal{R}}_F}^{-1} = \hat{\Theta}_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2}$$

$$\begin{aligned} \hat{\Theta}_{\bar{\omega}} = & (det R\pi_{\tilde{\mathcal{R}}_F} \tilde{\mathcal{F}})^{-\bar{k}} \otimes \bigotimes_{x \in I} \left\{ (det \tilde{\mathcal{F}}_x)^{\bar{\alpha}_x} \otimes \bigotimes_{i=1}^{l_x} (det \mathcal{Q}_{x,i})^{\bar{d}_i(x)} \right\} \\ & \otimes (det \tilde{\mathcal{F}}_y)^{\bar{\ell}_y} \otimes \bigotimes_q (det \tilde{\mathcal{F}}_q)^{1-r} \otimes (det \tilde{\mathcal{F}}_y)^{(r-1)(2\tilde{g}-2)} \end{aligned}$$

where $\bar{k} = k + 2r$, $\bar{\alpha}_x = \alpha_x + n_{l_x+1}(x) - r$, $\bar{\ell}_y = 2\tilde{\chi} + \tilde{\ell}_y$ and

$$\bar{d}_i(x) = d_i(x) + n_i(x) + n_{i+1}(x).$$

Let $\bar{\omega} = \{\bar{k}, \bar{n}(x), \bar{a}(x)\}_{x \in I}$ with $\bar{a}(x) = (\bar{a}_1(x), \bar{a}_2(x), \dots, \bar{a}_{l_x+1}(x))$ such that $\bar{d}_i(x) = \bar{a}_{i+1}(x) - \bar{a}_i(x)$ ($i = 1, 2, \dots, l_x$). Let

$$\psi_{\bar{\omega}} : \tilde{\mathcal{R}}_{\bar{\omega}}^{ss} \rightarrow \tilde{\mathcal{R}}_{\bar{\omega}}^{ss} // \text{SL}(V) := \mathcal{U}_{\tilde{X}}(r, d, \bar{\omega}) = \mathcal{U}_{\tilde{X}, \bar{\omega}},$$

there is an ample line bundle $\Theta_{\bar{\omega}}$ on $\mathcal{U}_{\tilde{X}, \bar{\omega}}$ such that $\hat{\Theta}_{\bar{\omega}} = \psi_{\bar{\omega}}^* \Theta_{\bar{\omega}}$ since

$$\bar{\ell} := \frac{\bar{k}\tilde{\chi} - \sum_{x \in I} \sum_{i=1}^{l_x} \bar{d}_i(x)r_i(x)}{r} = \tilde{\ell} + 2\tilde{\chi} - r|I| + \sum_{x \in I} n_{l_x+1}(x)$$

is an integer. Then we have $\Theta_{\tilde{\mathcal{R}}_{\bar{\omega}}^{ss}} = \psi_{\bar{\omega}}^*(\Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2}) \otimes \omega_{\tilde{\mathcal{R}}_{\bar{\omega}}^{ss}}$ and

$$(\psi_{\bar{\omega}})_* \Theta_{\tilde{\mathcal{R}}_{\bar{\omega}}^{ss}}^{inv} = (\Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2}) \otimes (\psi_{\bar{\omega}})_* \omega_{\tilde{\mathcal{R}}_{\bar{\omega}}^{ss}}^{inv}.$$

Since $\text{codim}(\tilde{\mathcal{R}}_{\bar{\omega}}^{ss} \setminus \tilde{\mathcal{R}}_{\bar{\omega}}^s) \geq 2$, conditions in Lemma 4.3 are satisfied and

$$(\psi_{\bar{\omega}})_* \omega_{\tilde{\mathcal{R}}_{\bar{\omega}}^{ss}}^{inv} = \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}.$$

Then, since $\Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2}$ is ample by Lemma 5.3 of [9], we have

$$H^1(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}) = H^1(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2} \otimes \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}) = 0.$$

□

The idea of the proof is to express $H^1(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\mathcal{U}_{\tilde{X}, \bar{\omega}}})$ by

$$H^1(M, \mathcal{L} \otimes \omega_M)$$

such that \mathcal{L} is an ample line bundle, where M is another GIT quotient. In this process, we need essentially the equality

$$H^1(\tilde{\mathcal{R}}_{\bar{\omega}}^{ss}, \Theta_{\tilde{\mathcal{R}}_F})^{inv} = H^1(\tilde{\mathcal{R}}_F, \Theta_{\tilde{\mathcal{R}}_F})^{inv}$$

which perhaps holds unconditional. In fact, we have the following

Conjecture 4.5. *For any data ω satisfying (4.1) and any $i \geq 0$*

$$(4.2) \quad H^i(\tilde{\mathcal{R}}_{\bar{\omega}}^{ss}, \Theta_{\tilde{\mathcal{R}}_F})^{inv} = H^i(\tilde{\mathcal{R}}_F, \Theta_{\tilde{\mathcal{R}}_F})^{inv},$$

where $\Theta_{\tilde{\mathcal{R}}_F}$ is the polarization determined by ω .

Then the proof of Theorem 4.4 implies the following

Corollary 4.6. *Assume the Conjecture 4.5 is true. Then, for any data ω , we have, for any $i > 0$,*

$$H^i(\mathcal{U}_{\tilde{X}, \omega}, \Theta_{\mathcal{U}_{\tilde{X}, \omega}}) = 0.$$

Proof. For any data $\omega = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}$, we choose

$$\omega(I') = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I \cup I'}$$

such that $(r-1)(\tilde{g}-1) + \frac{|I \cup I'|}{k+2r} \geq i+2$. Note that the projection

$$p_I : \tilde{\mathcal{R}}(I') = \times_{\tilde{Q}_F} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x) \rightarrow \tilde{\mathcal{R}}_F = \times_{\tilde{Q}_F} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x)$$

is a Flag bundle and $\text{SL}(V)$ -invariant. By Conjecture 4.5, we have

$$\begin{aligned} H^i(\mathcal{U}_{\tilde{X}, \omega}, \Theta_{\mathcal{U}_{\tilde{X}, \omega}}) &= H^i(\tilde{\mathcal{R}}_{\omega}^{ss}, \Theta_{\tilde{\mathcal{R}}_F})^{inv} \\ &= H^i(\tilde{\mathcal{R}}_F, \Theta_{\tilde{\mathcal{R}}_F})^{inv} = H^i(\tilde{\mathcal{R}}(I'), p_I^*(\Theta_{\tilde{\mathcal{R}}_F}))^{inv}. \end{aligned}$$

Write $p_I^*(\Theta_{\tilde{\mathcal{R}}_F}) \otimes \omega_{\tilde{\mathcal{R}}(I')}^{-1} := \hat{\Theta}_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2}$, then we have

$$\begin{aligned} \hat{\Theta}_{\bar{\omega}} &= (\det R\pi_{\tilde{\mathcal{R}}_F} \tilde{\mathcal{F}})^{-\bar{k}} \otimes \bigotimes_{x \in I \cup I'} \left\{ (\det \tilde{\mathcal{F}}_x)^{\bar{\alpha}_x} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{\bar{d}_i(x)} \right\} \\ &\otimes (\det \tilde{\mathcal{F}}_y)^{\bar{\ell}_y} \otimes \bigotimes_q (\det \tilde{\mathcal{F}}_q)^{1-r} \otimes (\det \tilde{\mathcal{F}}_y)^{(r-1)(2\tilde{g}-2)} \end{aligned}$$

where $\bar{k} = k + 2r$, $\bar{\alpha}_x = \alpha_x + n_{l_x+1}(x) - r$, $\bar{\ell}_y = 2\tilde{\chi} + \tilde{\ell}_y$ and

$$\bar{d}_i(x) = d_i(x) + n_i(x) + n_{i+1}(x)$$

(we define $\alpha_x = 0$, $d_i(x) = 0$ when $x \in I'$). Let $\bar{\omega} = \{\bar{k}, \vec{n}(x), \vec{a}(x)\}_{x \in I \cup I'}$ with $\vec{a}(x) = (\bar{a}_1(x), \bar{a}_2(x), \dots, \bar{a}_{l_x+1}(x))$ such that

$$\bar{d}_i(x) = \bar{a}_{i+1}(x) - \bar{a}_i(x), \quad (i = 1, 2, \dots, l_x).$$

Let $\tilde{\mathcal{R}}(I')_{\bar{\omega}}^{ss} \subset \tilde{\mathcal{R}}(I')$ be the open set of GIT semi-stable points (respect to the polarization defined by $\bar{\omega}$), then

$$\begin{aligned} H^i(\mathcal{U}_{\tilde{X}, \omega}, \Theta_{\mathcal{U}_{\tilde{X}, \omega}}) &= H^i(\tilde{\mathcal{R}}_{\omega}^{ss}, \Theta_{\tilde{\mathcal{R}}_F})^{inv} = H^i(\tilde{\mathcal{R}}_F, \Theta_{\tilde{\mathcal{R}}_F})^{inv} \\ &= H^i(\tilde{\mathcal{R}}(I'), p_I^*(\Theta_{\tilde{\mathcal{R}}_F}))^{inv} = H^i(\tilde{\mathcal{R}}(I')^{ss}, p_I^*(\Theta_{\tilde{\mathcal{R}}_F}))^{inv} \end{aligned}$$

the last equality holds since, by (2) of Proposition 4.1, we have

$$\text{codim}(\tilde{\mathcal{R}}(I') \setminus \tilde{\mathcal{R}}(I')_{\bar{\omega}}^{ss}) > (r-1)(\tilde{g}-1) + \frac{|I \cup J|}{k+2r} \geq i+2.$$

Let $\psi : \widetilde{\mathcal{R}}(I')_{\bar{\omega}}^{ss} \rightarrow \mathcal{U}_{\tilde{X}, \bar{\omega}}$ be the good quotient. Then $\hat{\Theta}_{\bar{\omega}}$ descends to an ample line bundle $\Theta_{\bar{\omega}}$ on $\mathcal{U}_{\tilde{X}, \bar{\omega}}$ and $(\psi_* \omega_{\widetilde{\mathcal{R}}(I')_{\bar{\omega}}^{ss}})^{inv} = \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}$ since

$$\text{codim}(\widetilde{\mathcal{R}}(I')_{\bar{\omega}}^{ss} \setminus \widetilde{\mathcal{R}}(I)_{\bar{\omega}}^s) \geq (r-1)(\tilde{g}-1) + \frac{|I \cup J|}{k+2r} \geq i+2$$

by (1) of Proposition 4.1. Thus we have

$$(4.3) \quad H^i(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}) = H^i(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2} \otimes \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}}})$$

for any $i \geq 0$. In particular, $H^i(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}) = 0$ for $i > 0$. \square

For $i = 0$, Conjecture 4.5 is true according to a general fact

Lemma 4.7 (Lemma 4.15 of [6]). *Let V be a projective scheme on which a reductive group G acts, \mathcal{L} an ample line bundle linearizing the G -action, and $V^{ss} \subset V$ the open set of semi-stable points. Then, for any open G -invariant (irreducible) normal subscheme $V^{ss} \subset W \subset V$,*

$$H^0(V^{ss}, \widetilde{\mathcal{L}})^{inv} = H^0(W, \widetilde{L})^{inv}.$$

Corollary 4.8. *For any data $\omega = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}$ such that $\ell \in \mathbb{Z}$, the dimension of*

$$H^0(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\mathcal{U}_{\tilde{X}, \bar{\omega}}})$$

is independent of the choices of curve \tilde{X} and the points $x \in \tilde{X}$.

Proof. By the above Lemma 4.7 and (4.3), we have

$$H^0(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}) = H^0(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2} \otimes \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}).$$

The dimension of $H^0(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2} \otimes \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}}})$ is independent of the choices of curve \tilde{X} and the points $x \in \tilde{X}$ since

$$H^i(\mathcal{U}_{\tilde{X}, \bar{\omega}}, \Theta_{\bar{\omega}} \otimes \text{Det}^*(\Theta_y)^{-2} \otimes \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}}}) = 0$$

for all $i > 0$. \square

5. VANISHING THEOREM FOR IRREDUCIBLE NODAL CURVES

When curves degenerate to a nodal curve X , the invariance of spaces of generalized theta functions for smooth curves has proved in last section (See Corollary 4.8). To complete the program, we need the vanishing theorem $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) = 0$. Its proof was reduced to prove a vanishing theorem on the normalization \mathcal{P} of \mathcal{U}_X .

Let X be a connected nodal curve of genus g , with only one node $x_0 \in X$, let $\pi : \tilde{X} \rightarrow X$ be the normalization of X and $\pi^{-1}(x_0) = \{x_1, x_2\}$. The normalization $\phi : \mathcal{P} \rightarrow \mathcal{U}_X$ of \mathcal{U}_X is given by moduli space of

semi-stable GPS (E, Q) on \tilde{X} with additional parabolic structures at the points of I (we identify I with $\pi^{-1}(I)$) given by the data

$$\omega = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}$$

satisfying

$$\sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r\tilde{\ell} = k\tilde{\chi}$$

where $d_i(x) = a_{i+1}(x) - a_i(x)$, $\tilde{\chi} = \chi + r$, $\tilde{\ell} = k + \ell$. Recall that

$$\tilde{\mathcal{R}}' = \text{Grass}_r(\mathcal{F}_{x_1} \oplus \mathcal{F}_{x_2}) \times_{\tilde{\mathbf{Q}}} \tilde{\mathcal{R}}$$

with the $\text{SL}(V)$ -equivariant embedding

$$\tilde{\mathcal{R}}' \hookrightarrow \mathbf{G}' = \text{Grass}_{\tilde{P}(m)}(V \otimes W_m) \times \mathbf{Flag} \times \text{Grass}_r(V \otimes W_m),$$

where $W_m = H^0(\widetilde{\mathcal{W}}(m))$, and **Flag** is defined to be

$$\mathbf{Flag} = \prod_{x \in I} \{\text{Grass}_{r_1(x)}(V \otimes W_m) \times \cdots \times \text{Grass}_{r_{l_x}(x)}(V \otimes W_m)\}.$$

On \mathbf{G}' , take the polarisation (determined by ω)

$$(5.1) \quad k \times \frac{(\ell + kcN)}{c(m - N)} \times \prod_{x \in I} \{d_1(x), \dots, d_{l_x}(x)\}.$$

Then, when X is irreducible, $\mathcal{P} := \mathcal{P}_\omega$ is the GIT (good) quotient

$$\psi : \tilde{\mathcal{R}}'^{ss} \rightarrow \mathcal{P}_\omega := \tilde{\mathcal{R}}'^{ss} // \text{SL}(V).$$

There is a open subscheme $\mathcal{H} \subset \tilde{\mathcal{R}}'$ such that $\tilde{\mathcal{R}}'^{ss} \subset \mathcal{H}$ for any data ω (See Notation 2.21), one of the main results proved in [9] and [10] is that \mathcal{H} is reduced, normal and Cohen-Macaulay with only rational singularities (so is \mathcal{P}). Thus the Kodaira-type vanishing theorem and Hartogs-type extension theorem for cohomology are applicable.

Let $\rho : \tilde{\mathcal{R}}' \rightarrow \tilde{\mathcal{R}}$ be the projection, $V \otimes \mathcal{O}_{\tilde{X} \times \mathcal{H}}(-N) \rightarrow \mathcal{E} \rightarrow 0$,

$$\{ \mathcal{E}_{\{x\} \times \mathcal{H}} = \mathcal{Q}_{\{x\} \times \mathcal{H}, l_x+1} \rightarrow \mathcal{Q}_{\{x\} \times \mathcal{H}, l_x} \rightarrow \cdots \rightarrow \mathcal{Q}_{\{x\} \times \mathcal{H}, 1} \rightarrow 0 \}_{x \in I}$$

denote pullbacks of universal quotients $V \otimes \mathcal{O}_{\tilde{X} \times \tilde{\mathcal{R}}}(-N) \rightarrow \tilde{\mathcal{F}} \rightarrow 0$,

$$\{ \tilde{\mathcal{F}}_{\{x\} \times \tilde{\mathcal{R}}} = \tilde{\mathcal{Q}}_{\{x\} \times \tilde{\mathcal{R}}, l_x+1} \rightarrow \tilde{\mathcal{Q}}_{\{x\} \times \tilde{\mathcal{R}}, l_x} \rightarrow \cdots \rightarrow \tilde{\mathcal{Q}}_{\{x\} \times \tilde{\mathcal{R}}, 1} \rightarrow 0 \}_{x \in I}.$$

Then the restriction of polarisation (5.1) to \mathcal{H} is

$$\hat{\Theta}'_{\mathcal{H}} := \det(\mathcal{Q})^k \otimes (\det R\pi_{\mathcal{H}}\mathcal{E}(m))^{\frac{\ell+kcN}{c(m-N)}} \otimes \bigotimes_{x \in I} \left\{ \bigotimes_{i=1}^{l_x} \det(\mathcal{Q}_{\{x\} \times \mathcal{H}, i})^{d_i(x)} \right\}$$

where $\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2} \rightarrow \mathcal{Q} \rightarrow 0$ is the universal quotient on \mathcal{H} . If we choose $\mathcal{O}(1) = \mathcal{O}_{\tilde{X}}(cy)$, note that $\mathcal{O}_{\mathcal{H}} = \det R\pi_{\mathcal{H}}\mathcal{E}(N)$, we have

$$(\det R\pi_{\mathcal{H}}\mathcal{E})^{-1} = (\det \mathcal{E}_y)^{cN}, \quad \det R\pi_{\mathcal{H}}\mathcal{E}(m) = (\det \mathcal{E}_y)^{c(m-N)},$$

$$\hat{\Theta}'_{\mathcal{H}} = \det(\mathcal{Q})^k \otimes (\det R\pi_{\mathcal{H}}\mathcal{E})^{-k} \otimes \bigotimes_{x \in I} \left\{ \bigotimes_{i=1}^{l_x} \det(\mathcal{Q}_{\{x\} \times \mathcal{H}, i})^{d_i(x)} \right\} \otimes (\det \mathcal{E}_y)^{\ell}.$$

We will write $\hat{\Theta}'_{\mathcal{H}} = \eta_y^k \otimes \rho^* \hat{\Theta}_{\tilde{\mathcal{R}}}$, where $\eta_y = \det(\mathcal{Q}) \otimes \det(\mathcal{E}_y)^{-1}$ and

$$\hat{\Theta}_{\tilde{\mathcal{R}}} = (\det R\pi_{\tilde{\mathcal{R}}}\tilde{\mathcal{F}})^{-k} \otimes \bigotimes_{x \in I} \left\{ \bigotimes_{i=1}^{l_x} \det(\tilde{\mathcal{Q}}_{\{x\} \times \tilde{\mathcal{R}}, i})^{d_i(x)} \right\} \otimes (\det \tilde{\mathcal{F}}_y)^{\tilde{\ell}}.$$

The universal quotient $\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2} \rightarrow \mathcal{Q} \rightarrow 0$ induces an exact sequence

$$(5.2) \quad 0 \rightarrow \mathcal{F}_{\mathcal{H}} \rightarrow (\pi \times id_{\mathcal{H}})_* \mathcal{E} \rightarrow {}_{x_0} \mathcal{Q} \rightarrow 0$$

on $X \times \mathcal{H}$, where $\tilde{X} \times \mathcal{H} \xrightarrow{\pi \times id_{\mathcal{H}}} X \times \mathcal{H}$. The sheaf $\mathcal{F}_{\tilde{\mathcal{R}}_{\omega}^{iss}}$ defines

$$\hat{\phi} : \tilde{\mathcal{R}}_{\omega}^{iss} \rightarrow \mathcal{U}_X := \mathcal{U}_{X, \omega},$$

which induces a morphism $\phi : \mathcal{P} = \tilde{\mathcal{R}}_{\omega}^{iss} // \text{SL}(V) \rightarrow \mathcal{U}_X$ such that

$$\begin{array}{ccc} \tilde{\mathcal{R}}_{\omega}^{iss} & \xrightarrow{\psi} & \mathcal{P} \\ & \searrow \hat{\phi} & \downarrow \\ & & \mathcal{U}_X \end{array}$$

is commutative and $\hat{\phi}^* \Theta_{\mathcal{U}_X} = \hat{\Theta}'_{\tilde{\mathcal{R}}_{\omega}^{iss}}$. Thus $\hat{\Theta}'_{\tilde{\mathcal{R}}_{\omega}^{iss}}$ descends to an ample line bundle $\Theta_{\mathcal{P}} = \phi^* \Theta_{\mathcal{U}_X}$. In fact, there are more general ample line bundles $\Theta_{\mathcal{P}, \omega}$ on \mathcal{P} , which are the descendants of

$$\begin{aligned} \hat{\Theta}'_{\omega} &= (\det R\pi_{\tilde{\mathcal{R}}'}\mathcal{E})^{-k} \otimes \bigotimes_{x \in I} \left\{ (\det \mathcal{E}_x)^{\alpha_x} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x, i})^{d_i(x)} \right\} \otimes (\det \mathcal{E}_y)^{\tilde{\ell}_y} \otimes \eta_y^k \\ &= \rho^* \Theta_{\tilde{\mathcal{R}}, \omega} \otimes (\det \mathcal{Q} \otimes \det \mathcal{E}_y^{-1})^k \end{aligned}$$

such that $\Theta_{\mathcal{P}, \omega} = \phi^* \Theta_{\mathcal{U}_X, \omega}$ where $\tilde{\ell}_y + \sum_{x \in I} \alpha_x = \tilde{\ell}$, and $\Theta_{\mathcal{U}_X, \omega} = \Theta_{\mathcal{U}_X, L}$ is determined (cf. Theorem 3.1) by the data $\omega = \{k, \vec{n}(x), \vec{a}(x)\}_{x \in I}$ and

$$L = \ell_y y + \sum_{x \in I} \alpha_x x.$$

By Lemma 5.5 of [9], we have injection $\phi^* : H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) \hookrightarrow H^1(\mathcal{P}, \Theta_{\mathcal{P}, \omega})$. Thus it is enough to show $H^1(\mathcal{P}, \Theta_{\mathcal{P}, \omega}) = 0$. Let \mathcal{K} be the kernel of

$$V \otimes \mathcal{O}_{\tilde{X} \times \tilde{\mathcal{R}}'}(-N) \rightarrow \mathcal{E} \rightarrow 0,$$

and consider $0 \rightarrow \mathcal{K} \rightarrow V \otimes \mathcal{O}_{\tilde{X} \times \mathcal{H}}(-N) \rightarrow \mathcal{E} \rightarrow 0$. The line bundle $\det(\mathcal{K})^{-1} \otimes \mathcal{O}_{\tilde{X} \times \mathcal{H}}(-\dim(V)N)$ on $\tilde{X} \times \mathcal{H}$ defines $\text{Det}_{\mathcal{H}} : \mathcal{H} \rightarrow J_{\tilde{X}}^d$ which induces the determinant morphism (cf. Lemma 5.7 of [9])

$$(5.3) \quad \text{Det} : \mathcal{P} \rightarrow J_{\tilde{X}}^d.$$

Proposition 5.1 (Proposition 3.4 of [9]). *Let $\omega_{\tilde{X}} = \mathcal{O}(\sum_q q)$ and*

$$\Theta_{J_{\tilde{X}}^d} = (\det R\pi_{J_{\tilde{X}}^d} \mathcal{L})^{-2} \otimes \mathcal{L}_{x_1}^r \otimes \mathcal{L}_{x_2}^r \otimes \mathcal{L}_y^{2\tilde{\chi}-2r} \otimes \bigotimes_q \mathcal{L}_q^{r-1}$$

where \mathcal{L} is the universal line bundle on $\tilde{X} \times J_{\tilde{X}}^d$. Then we have

$$\begin{aligned} \omega_{\mathcal{H}}^{-1} &= (\det R\pi_{\mathcal{H}} \mathcal{E})^{-2r} \otimes \\ &\bigotimes_{x \in I} \left\{ (\det \mathcal{E}_x)^{n_{l_x+1}-r} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{n_i(x)+n_{i+1}(x)} \right\} \otimes (\det \mathcal{Q})^{2r} \\ &\otimes (\det \mathcal{E}_y)^{2\tilde{\chi}-2r} \otimes \text{Det}_{\mathcal{H}}^*(\Theta_{J_{\tilde{X}}^d}^{-1}). \end{aligned}$$

We will prove $R^1 \text{Det}_*(\Theta_{\mathcal{P}, \omega}) = 0$ and $H^1(J_{\tilde{X}}^d, \text{Det}_* \Theta_{\mathcal{P}, \omega}) = 0$, which imply $H^1(\mathcal{P}, \Theta_{\mathcal{P}, \omega}) = 0$. To recall the proof of $H^1(J_{\tilde{X}}^d, \text{Det}_* \Theta_{\mathcal{P}, \omega}) = 0$. Let $\tilde{\mathcal{R}}'_F \subset \tilde{\mathcal{R}}'$, $\tilde{\mathcal{R}}_F \subset \tilde{\mathcal{R}}$ denote open set of locally free quotients, for $\mu = (\mu_1, \dots, \mu_r)$ with $0 \leq \mu_r \leq \dots \leq \mu_1 \leq k$, let

$$\{d_i = \mu_{r_i} - \mu_{r_i+1}\}_{1 \leq i \leq l}$$

be the subset of nonzero integers in $\{\mu_i - \mu_{i+1}\}_{i=1, \dots, r-1}$. We define

$$r_i(x_1) = r_i, \quad r_i(x_2) = r - r_{l-i+1}, \quad l_{x_1} = l_{x_2} = l$$

$$\vec{n}(x_j) = (r_1(x_j), r_2(x_j) - r_1(x_j), \dots, r_{l_{x_j}}(x_j) - r_{l_{x_j}-1}(x_j)),$$

$$\tilde{\mathcal{R}}_F^\mu = \bigtimes_{x \in I \cup \{x_1, x_2\}} \tilde{\mathcal{R}}_F^x = \bigtimes_{x \in I} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x) \xrightarrow{p^\mu} \tilde{\mathcal{R}}_F = \bigtimes_{x \in I} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x).$$

Then, by Remark 4.2 of [9], we have decomposition (on $\tilde{\mathcal{R}}_F$)

$$(5.4) \quad \rho_*(\hat{\Theta}'_{\omega}) = \bigoplus_{\mu} p_*^{\mu}(\hat{\Theta}_{\mu})$$

$\mu = (\mu_1, \dots, \mu_r)$ runs through integers $0 \leq \mu_1 \leq \dots \leq \mu_r \leq k$ and

$$\hat{\Theta}_{\mu} = (\det R\pi_{\tilde{\mathcal{R}}_F^\mu} \tilde{\mathcal{F}})^{-k} \otimes \bigotimes_{x \in I \cup \{x_1, x_2\}} \{(\det \tilde{\mathcal{F}}_x)^{\alpha_x} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{d_i(x)}\} \otimes (\det \tilde{\mathcal{F}}_y)^{\ell_y}$$

where $r_i(x_1) = r_i$, $d_i(x_1) = d_i$, $l_{x_1} = l$, $\alpha_{x_1} = \mu_r$, $r_i(x_2) = r - r_{l-i+1}$, $d_i(x_2) = d_{l-i+1}$, $l_{x_2} = l$, $\alpha_{x_2} = k - \mu_1$ and for $j = 1, 2$, we set

$$\vec{a}(x_j) = \left(\mu_r, \mu_r + d_1(x_j), \dots, \mu_r + \sum_{i=1}^{l_{x_j}-1} d_i(x_j), \mu_r + \sum_{i=1}^{l_{x_j}} d_i(x_j) \right).$$

It is easy to check that

$$\sum_{x \in I \cup \{x_1, x_2\}} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r \sum_{x \in I \cup \{x_1, x_2\}} \alpha_x + r \ell_y = k \tilde{\chi}.$$

For the data $\omega^\mu = \{k, \vec{n}(x), \vec{a}_i(x)\}_{x \in I \cup \{x_1, x_2\}}$, we choose

$$\omega^\mu(I') = \{k, \vec{n}(x), \vec{a}_i(x)\}_{x \in I \cup \{x_1, x_2\} \cup I'}$$

such that $(r-1)(\tilde{g}-1) + \frac{2+|I \cup I'|}{k+2r} \geq 2$. Note that the projection

$$p_I : \tilde{\mathcal{R}}^\mu(I') = \tilde{\mathcal{R}}_F^\mu \times_{\tilde{\mathbf{Q}}_F} \left(\times_{x \in I'} \text{Flag}_{\vec{n}(x)}(\tilde{\mathcal{F}}_x) \right) \rightarrow \tilde{\mathcal{R}}_F^\mu$$

is a $\text{SL}(V)$ -invariant Flag bundle, consider the commutative diagram

$$(5.5) \quad \begin{array}{ccc} \tilde{\mathcal{R}}^\mu(I') & \xrightarrow{p_I} & \tilde{\mathcal{R}}_F^\mu \\ & \searrow \hat{\text{Det}}_\mu^{I'} & \downarrow \hat{\text{Det}}_\mu \\ & & J_X^d \end{array}$$

and write $p_I^*(\hat{\Theta}_\mu) \otimes \omega_{\tilde{\mathcal{R}}^\mu(I')}^{-1} = \hat{\Theta}_{\bar{\omega}_\mu} \otimes (\hat{\text{Det}}_\mu^{I'})^*(\Theta_y)^{-2}$. Then

$$\begin{aligned} \hat{\Theta}_{\bar{\omega}_\mu} = & (det R\pi\tilde{\mathcal{F}})^{-\bar{k}} \otimes \bigotimes_{x \in I \cup \{x_1, x_2\} \cup I'} \{ (det \tilde{\mathcal{F}}_x)^{\bar{\alpha}_x} \otimes \bigotimes_{i=1}^{l_x} (det \mathcal{Q}_{x,i})^{\bar{d}_i(x)} \} \\ & \otimes (det \tilde{\mathcal{F}}_y)^{\bar{\ell}_y + (r-1)(2\tilde{g}-2)} \otimes \bigotimes_q (det \tilde{\mathcal{F}}_q)^{1-r} \end{aligned}$$

where $\bar{k} = k + 2r$, $\bar{\alpha}_x = \alpha_x + n_{l_x+1}(x) - r$, $\bar{\ell}_y = 2\tilde{\chi} + \tilde{\ell}_y$ and

$$\bar{d}_i(x) = d_i(x) + n_i(x) + n_{i+1}(x),$$

$\bar{\omega}_\mu = \{\bar{k}, \vec{n}(x), \vec{a}(x)\}_{I \cup \{x_1, x_2\} \cup I'}$ with $\vec{a}(x) = (\bar{a}_1(x), \bar{a}_2(x), \dots, \bar{a}_{l_x+1}(x))$
(note: $\bar{a}_{l_x+1}(x) - \bar{a}_1(x) = \sum_{i=1}^{l_x} \bar{d}_i(x) = a_{l_x+1}(x) - a_1(x) + 2r - n_1(x) - n_{l_x+1}(x) \leq k + 2r - n_1(x) - n_{l_x+1}(x) < \bar{k}$).

Let $\tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^{ss} \subset \tilde{\mathcal{R}}^\mu(I')$ be the open set of GIT semi-stable points (respect to the polarization defined by $\bar{\omega}_\mu$), then

$$\text{codim}(\tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^{ss} \setminus \tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^s) \geq (r-1)(\tilde{g}-1) + \frac{2+|I \cup I'|}{k+2r} \geq 2.$$

Let $\psi : \tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^{ss} \rightarrow \mathcal{U}_{\tilde{X}, \bar{\omega}_\mu}$ be the good quotient. Then $\hat{\Theta}_{\bar{\omega}_\mu}$ descends to an ample line bundle $\Theta_{\bar{\omega}_\mu}$ on $\mathcal{U}_{\tilde{X}, \bar{\omega}_\mu}$ and $(\psi_* \omega_{\tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^{ss}})^{inv} = \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}_\mu}}$.

Lemma 5.2. *Let $\text{Det}_\mu^{I'} : \mathcal{U}_{\tilde{X}, \bar{\omega}_\mu} \rightarrow J_{\tilde{X}}^d$ be the morphism induced by*

$$\hat{\text{Det}}_\mu^{I'} : \tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^{ss} \rightarrow J_{\tilde{X}}^d$$

and $\text{Det} : \mathcal{P} \rightarrow J_{\tilde{X}}^d$ be the determinant morphism. Then

$$(5.6) \quad \text{Det}_*(\Theta_{\mathcal{P}, \omega}) = \bigoplus_{\mu} (\text{Det}_\mu^{I'})_*(\Theta_{\bar{\omega}_\mu} \otimes (\text{Det}_\mu^{I'})^*(\Theta_y)^{-2} \otimes \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}_\mu}})$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through integers $0 \leq \mu_1 \leq \dots \leq \mu_r \leq k$. In particular, we have

$$H^i(J_{\tilde{X}}^d, \text{Det}_* \Theta_{\mathcal{P}, \omega}) = 0 \quad \forall i > 0.$$

Proof. Note $\text{Det}_*(\Theta_{\mathcal{P}, \omega}) = \{(\text{Det}_{\tilde{\mathcal{R}}'_{ss}})_* \hat{\Theta}'_\omega\}^{inv} = \{(\text{Det}_{\tilde{\mathcal{R}}'_F})_* \hat{\Theta}'_\omega\}^{inv}$ and $(\text{Det}_{\tilde{\mathcal{R}}'_F})_* \hat{\Theta}'_\omega = (\text{Det}_{\tilde{\mathcal{R}}_F})_* \rho_* \hat{\Theta}'_\omega$, by the decomposition (5.4), we have

$$(\text{Det}_{\tilde{\mathcal{R}}'_F})_* \hat{\Theta}'_\omega = \bigoplus_{\mu} (\hat{\text{Det}}_\mu)_* \hat{\Theta}_\mu$$

where $\hat{\text{Det}}_\mu : \tilde{\mathcal{R}}_F^\mu \rightarrow J_{\tilde{X}}^d$ satisfies the commutative diagram

$$\begin{array}{ccc} \tilde{\mathcal{R}}_F^\mu & \xrightarrow{p^\mu} & \tilde{\mathcal{R}}_F \\ & \searrow \hat{\text{Det}}_\mu & \downarrow \text{Det}_{\tilde{\mathcal{R}}_F} \\ & & J_{\tilde{X}}^d \end{array}$$

By diagram (5.5) and $p_I^*(\hat{\Theta}_\mu) = \hat{\Theta}_{\bar{\omega}_\mu} \otimes (\hat{\text{Det}}_\mu^{I'})^*(\Theta_y)^{-2} \otimes \omega_{\tilde{\mathcal{R}}^\mu(I')}$, we have

$$(5.7) \quad (\hat{\text{Det}}_\mu)_* \hat{\Theta}_\mu = (\hat{\text{Det}}_\mu^{I'})_*(\hat{\Theta}_{\bar{\omega}_\mu} \otimes (\hat{\text{Det}}_\mu^{I'})^*(\Theta_y)^{-2} \otimes \omega_{\tilde{\mathcal{R}}^\mu(I')}).$$

Recall $\psi : \tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^{ss} \rightarrow \mathcal{U}_{\tilde{X}, \bar{\omega}_\mu}$, $\hat{\Theta}_{\bar{\omega}_\mu} = \psi^* \Theta_{\bar{\omega}_\mu}$, $(\psi_* \omega_{\tilde{\mathcal{R}}^\mu(I')_{\bar{\omega}_\mu}^{ss}})^{inv} = \omega_{\mathcal{U}_{\tilde{X}, \bar{\omega}_\mu}}$, then we have the decomposition (5.6). The vanishing result follows the decomposition clearly since $\Theta_{\bar{\omega}_\mu} \otimes (\hat{\text{Det}}_\mu^{I'})^*(\Theta_y)^{-2}$ is ample. \square

To prove $R^1\text{Det}_*(\Theta_{\mathcal{P}, \omega}) = 0$, the idea is same with Section 4. Let

$$\tilde{\mathcal{R}}(I') = \bigtimes_{x \in I \cup I'} \tilde{\mathcal{R}}(x) \xrightarrow{p_I} \tilde{\mathcal{R}} = \bigtimes_{x \in I} \tilde{\mathcal{R}}(x),$$

$$\tilde{\mathcal{R}}'(I') = \text{Grass}_r(\mathcal{F}_{x_1} \oplus \mathcal{F}_{x_2}) \times_{\tilde{\mathcal{Q}}} \tilde{\mathcal{R}}(I') \xrightarrow{p_I} \tilde{\mathcal{R}}' = \text{Grass}_r(\mathcal{F}_{x_1} \oplus \mathcal{F}_{x_2}) \times_{\tilde{\mathcal{Q}}} \tilde{\mathcal{R}}$$

be the projection, $\mathcal{H}(I') \subset \tilde{\mathcal{R}}'(I')$, $\mathcal{H} \subset \tilde{\mathcal{R}}'$ be the open set defined in Notation 2.21. By Proposition 5.1, we have

$$(5.8) \quad p_I^*(\hat{\Theta}'_\omega) \otimes \omega_{\mathcal{H}(I')}^{-1} = \hat{\Theta}'_{\bar{\omega}} \otimes \text{Det}_{\mathcal{H}(I')}^*(\Theta_{J_{\tilde{X}}^d}^{-1})$$

with $\bar{\omega} = (d, r, \bar{k}, \bar{\ell}_y, \{\bar{\alpha}_x, \bar{d}_i(x)\}_{x \in I \cup J, 1 \leq i \leq l_x})$ and

$$\begin{aligned} \hat{\Theta}'_{\bar{\omega}} = & (\det R\pi_{\mathcal{H}(I')} \mathcal{E})^{-\bar{k}} \otimes \bigotimes_{x \in I \cup I'} \{(\det \mathcal{E}_x)^{\bar{\alpha}_x} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{\bar{d}_i(x)}\} \\ & \otimes (\det \mathcal{E}_y)^{\bar{\ell}_y} \otimes (\det \mathcal{Q})^{\bar{k}} \otimes (\det \mathcal{E}_y)^{-\bar{k}} \end{aligned}$$

where $\bar{k} = k + 2r$, $\bar{\alpha}_x = \alpha_x + n_{l_x+1}(x) - r$, $\bar{\ell}_y = \ell_y + 2\tilde{\chi}$, and

$$\bar{d}_i(x) = d_i(x) + n_i(x) + n_{i+1}(x).$$

Let $\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss} \subset \mathcal{H}(I')$ be the open set of GIT semi-stable points (respect to $\bar{\omega}$), $\psi : \tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss} \rightarrow \mathcal{P}_{\bar{\omega}} := \tilde{\mathcal{R}}'(I)_{\bar{\omega}}^{ss} // \text{SL}(V)$ be the quotient map. There is an ample line bundle $\Theta_{\mathcal{P}, \bar{\omega}}$ on $\mathcal{P}_{\bar{\omega}}$ such that $\hat{\Theta}'_{\bar{\omega}} = \psi^*(\Theta_{\mathcal{P}, \bar{\omega}})$, and $\omega_{\mathcal{P}_{\bar{\omega}}} = (\psi_* \omega_{\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}})^{inv}$ if

$$(5.9) \quad (r-1)(\tilde{g}-1) + \frac{|I| + |I'|}{k+2r} \geq 2$$

where we need essentially the estimate of codimension from [9].

Proposition 5.3 (Proposition 5.2 of [9]). *Let $\mathcal{D}_1^f = \hat{\mathcal{D}}_1 \cup \hat{\mathcal{D}}_1^t$ and $\mathcal{D}_2^f = \hat{\mathcal{D}}_2 \cup \hat{\mathcal{D}}_2^t$, where $\hat{\mathcal{D}}_i \subset \tilde{\mathcal{R}}'$ is the Zariski closure of $\hat{\mathcal{D}}_{F,1} \subset \tilde{\mathcal{R}}_F'$ consisting of $(E, Q) \in \tilde{\mathcal{R}}_F'$ that $E_{x_i} \rightarrow Q$ is not an isomorphism, and $\hat{\mathcal{D}}_1^t \subset \tilde{\mathcal{R}}'$ (rep. $\hat{\mathcal{D}}_2^t \subset \tilde{\mathcal{R}}'$) consists of $(E, Q) \in \tilde{\mathcal{R}}'$ such that E is not locally free at x_2 (resp. at x_1). Then*

- (1) $\text{codim}(\mathcal{H} \setminus \tilde{\mathcal{R}}_{\bar{\omega}}'^{ss}) > (r-1)\tilde{g} + \frac{|I|}{k}$.
- (2) *the complement in $\tilde{\mathcal{R}}_{\bar{\omega}}'^{ss} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\}$ of the set $\tilde{\mathcal{R}}_{\bar{\omega}}'^{ss}$ of stable points has codimension $\geq (r-1)\tilde{g} + \frac{|I|}{k}$.*

Lemma 5.4. *When $(r-1)\tilde{g} + \frac{|I|}{k} \geq 2$ and $I' \subset \tilde{X} \setminus I$ satisfying (5.9),*

$$(5.10) \quad H^1(\mathcal{P}_{\bar{\omega}}, \Theta_{\mathcal{P}, \bar{\omega}}) = H^1(\mathcal{P}_{\bar{\omega}}, \Theta_{\mathcal{P}, \bar{\omega}} \otimes \text{Det}_J^*(\Theta_{J_{\tilde{X}}^d}^{-1}) \otimes \omega_{\mathcal{P}_{\bar{\omega}}})$$

where $\text{Det}_J : \mathcal{P}_{\bar{\omega}} \rightarrow J_{\tilde{X}}^d$ is induced by $\text{Det}_{\mathcal{H}(I')} : \mathcal{H}(I') \rightarrow J_{\tilde{X}}^d$.

Proof. By using Proposition 4.1 (1) and Proposition 5.3 (2), we have

$$(\psi_*\omega_{\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}})^{inv} = \omega_{\mathcal{P}_{\bar{\omega}}}$$

(cf. Lemma 5.6 of [9]). By Proposition 5.3 (1), we have

$$\text{codim}(\mathcal{H} \setminus \tilde{\mathcal{R}}_{\omega}^{ss}) \geq 3, \quad \text{codim}(\mathcal{H}(I') \setminus \tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}) \geq 3$$

for any data ω . Thus, by theory of local cohomology, we have

$$\begin{aligned} H^1(\mathcal{P}_{\omega}, \Theta_{\mathcal{P}, \omega}) &= H^1(\tilde{\mathcal{R}}_{\omega}^{ss}, \hat{\Theta}'_{\omega})^{inv} = H^1(\mathcal{H}, \hat{\Theta}'_{\omega})^{inv} = H^1(\mathcal{H}(I'), p_I^*(\hat{\Theta}'_{\omega}))^{inv} \\ &= H^1(\mathcal{H}(I'), \hat{\Theta}'_{\bar{\omega}} \otimes \text{Det}_{\mathcal{H}(I')}^*(\Theta_{J_{\bar{X}}^d}^{-1}) \otimes \omega_{\mathcal{H}(I')})^{inv} \\ &= H^1(\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}, \hat{\Theta}'_{\bar{\omega}} \otimes \text{Det}_{\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}}^*(\Theta_{J_{\bar{X}}^d}^{-1}) \otimes \omega_{\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}})^{inv} \\ &= H^1(\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}, \psi^*(\Theta_{\mathcal{P}, \bar{\omega}} \otimes \text{Det}_J^*(\Theta_{J_{\bar{X}}^d}^{-1})) \otimes \omega_{\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}})^{inv} \\ &= H^1(\mathcal{P}_{\bar{\omega}}, \Theta_{\mathcal{P}, \bar{\omega}} \otimes \text{Det}_J^*(\Theta_{J_{\bar{X}}^d}^{-1}) \otimes (\psi_*\omega_{\tilde{\mathcal{R}}'(I')_{\bar{\omega}}^{ss}})^{inv}) \\ &= H^1(\mathcal{P}_{\bar{\omega}}, \Theta_{\mathcal{P}, \bar{\omega}} \otimes \text{Det}_J^*(\Theta_{J_{\bar{X}}^d}^{-1}) \otimes \omega_{\mathcal{P}_{\bar{\omega}}}). \end{aligned}$$

□

When X is irreducible, $\Theta_{\mathcal{P}, \bar{\omega}} \otimes \text{Det}_J^*(\Theta_{J_{\bar{X}}^d}^{-1})$ may not be an ample line bundle on $\mathcal{P}_{\bar{\omega}}$. But, for any $L \in J_{\bar{X}}^d$, on the fiber $\mathcal{P}_{\omega}^L = \text{Det}^{-1}(L)$ of

$$\text{Det} : \mathcal{P}_{\omega} \rightarrow J_{\bar{X}}^d$$

and the fiber $\mathcal{P}_{\bar{\omega}}^L = \text{Det}_J^{-1}(L)$ of $\text{Det}_J : \mathcal{P}_{\bar{\omega}} \rightarrow J_{\bar{X}}^d$ we have

$$H^1(\mathcal{P}_{\omega}^L, \Theta_{\mathcal{P}, \omega}^L) = H^1(\mathcal{P}_{\bar{\omega}}^L, \Theta_{\mathcal{P}, \bar{\omega}}^L \otimes \omega_{\mathcal{P}_{\bar{\omega}}^L}) = 0$$

when $(r-1)(g-1) + \frac{|I|}{k} \geq 2$, which means $R^1\text{Det}_*(\Theta_{\mathcal{P}, \omega}) = 0$.

Theorem 5.5 (Theorem 5.3 of [9]). *If X is an irreducible curve of genus g with one node and $(r-1)(g-1) + \frac{|I|}{k} \geq 2$, then*

$$H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) \cong H^1(\mathcal{P}_{\omega}, \Theta_{\mathcal{P}, \omega}) = 0.$$

Remark 5.6. The condition $(r-1)(g-1) + \frac{|I|}{k} \geq 2$ is used only for the proof of $H^1(\tilde{\mathcal{R}}_{\omega}^{ss}, \hat{\Theta}'_{\omega})^{inv} = H^1(\mathcal{H}, \hat{\Theta}'_{\omega})^{inv}$ in Lemma 5.4, which may hold unconditional. In fact, we conjecture that for any $i \geq 0$ and ω ,

$$H^i(\tilde{\mathcal{R}}_{\omega}^{ss}, \hat{\Theta}'_{\omega})^{inv} = H^i(\mathcal{H}, \hat{\Theta}'_{\omega})^{inv}.$$

If the conjecture is true, $H^i(\mathcal{P}_{\omega}^L, \Theta_{\mathcal{P}, \omega}^L) = 0$ holds unconditional for $i > 0$, which implies that $H^i(\mathcal{P}_{\omega}, \Theta_{\mathcal{P}, \omega}) = 0$ for $i > 0$.

6. GENERALIZED PARABOLIC SHEAVES ON REDUCIBLE NODAL CURVES

A natural idea to prove a vanishing theorem $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) = 0$ for $X = X_1 \cup X_2$ is to extend above method to reducible curves. In this section, we give estimates of various codimension and compute canonical line bundle of moduli space of generalized parabolic sheaves on a reducible curve. However, the estimate is not good enough to prove a vanishing theorem via the method in last section.

Let χ_1 and χ_2 be integers such that $\chi_1 + \chi_2 - r = \chi$, and fix, for $i = 1, 2$, the polynomials $P_i(m) = c_i rm + \chi_i$ and $\mathcal{W}_i = \mathcal{O}_{X_i}(-N)$ where $\mathcal{O}_{X_i}(1) = \mathcal{O}(1)|_{X_i}$ has degree c_i . Write $V_i = \mathbb{C}^{P_i(N)}$ and consider the Quot schemes $Quot(V_i \otimes \mathcal{W}_i, P_i)$, let $\tilde{\mathbf{Q}}_i$ be the closure of the open set

$$\mathbf{Q}_i = \left\{ \begin{array}{l} V_i \otimes \mathcal{W}_i \rightarrow E_i \rightarrow 0, \text{ with } H^1(E_i(N)) = 0 \text{ and} \\ V_i \rightarrow H^0(E_i(N)) \text{ induces an isomorphism} \end{array} \right\},$$

we have the universal quotient $V_i \otimes \mathcal{W}_i \rightarrow \mathcal{F}^i \rightarrow 0$ on $X_i \times \tilde{\mathbf{Q}}_i$ and the relative flag scheme

$$\mathcal{R}_i = \times_{\substack{\tilde{\mathbf{Q}}_i \\ x \in I_i}} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x^i) \rightarrow \tilde{\mathbf{Q}}_i.$$

Let $\mathcal{F} = \mathcal{F}^1 \oplus \mathcal{F}^2$ denote direct sum of pullbacks of $\mathcal{F}^1, \mathcal{F}^2$ on

$$\tilde{X} \times (\tilde{\mathbf{Q}}_1 \times \tilde{\mathbf{Q}}_2) = (X_1 \times \tilde{\mathbf{Q}}_1) \sqcup (X_2 \times \tilde{\mathbf{Q}}_2).$$

Let \mathcal{E} be the pullback of \mathcal{F} to $\tilde{X} \times (\mathcal{R}_1 \times \mathcal{R}_2)$, and

$$\rho : \tilde{\mathcal{R}}' := \text{Grass}_r(\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2}) \rightarrow \tilde{\mathcal{R}} := \mathcal{R}_1 \times \mathcal{R}_2 \rightarrow \tilde{\mathbf{Q}} := \tilde{\mathbf{Q}}_1 \times \tilde{\mathbf{Q}}_2.$$

When m is large enough, we have a G -equivariant embedding

$$\tilde{\mathcal{R}}' \hookrightarrow \mathbf{G}' = \text{Grass}_{\tilde{P}(m)}(\tilde{V} \otimes W_m) \times \mathbf{Flag} \times \text{Grass}_r(\tilde{V} \otimes W_m).$$

For $\omega = (r, \chi_1, \chi_2, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, \mathcal{O}(1), k)$, give \mathbf{G}' polarization

$$(6.1) \quad \frac{\ell + kcN}{c(m - N)} \times \prod_{x \in I} \{d_1(x), \dots, d_{l_x}(x)\} \times k.$$

where $I = I_1 \cup I_2$, $d_i(x) = a_{i+1}(x) - a_i(x)$, $r_i(x) = n_1(x) + \dots + n_i(x)$,

$$\ell = \frac{k\chi - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x)}{r}.$$

Let $\mathcal{H} \subset \tilde{\mathcal{R}}'$ be the open set defined in Notation 2.21, $\tilde{\mathcal{R}}'^{ss}_\omega \subset \mathcal{H}$ be the open set of GIT semi-stable points (respect to the polarization). Let

$$\psi : \tilde{\mathcal{R}}'^{ss}_\omega \rightarrow \mathcal{P}_\omega := \tilde{\mathcal{R}}'^{ss}_\omega // G.$$

If $\mathcal{O}(1)|_{X_j} = \mathcal{O}_{X_j}(c_j y_j)$, the restriction of polarization (6.1) to \mathcal{H} is

$$\hat{\Theta}'_{\mathcal{H}} = \rho^*(\hat{\Theta}_{\mathcal{R}_1} \boxtimes \hat{\Theta}_{\mathcal{R}_2}) \otimes \det(\mathcal{Q})^k$$

where (for $j = 1, 2$, $\pi_{\mathcal{R}_j} : X_j \times \mathcal{R}_j \rightarrow \mathcal{R}_j$ is projection) we have

$$\hat{\Theta}_{\mathcal{R}_j} = (\det R\pi_{\mathcal{R}_j}^* \mathcal{E}^j)^{-k} \otimes \bigotimes_{x \in I_j} \left\{ \bigotimes_{i=1}^{l_x} \det(\mathcal{Q}_{\{x\} \times \mathcal{R}_j, i})^{d_i(x)} \right\} \otimes (\det \mathcal{E}_{y_j}^j)^{\frac{c_j \ell}{c_1 + c_2}}$$

where we assume that ℓ and $\ell_j := \frac{c_j \ell}{c_1 + c_2}$ are integers. The sequence

$$0 \rightarrow \mathcal{F} \rightarrow (\pi \times id)_* \mathcal{E} \rightarrow {}_{x_0} \mathcal{Q} \rightarrow 0$$

on $X \times \tilde{\mathcal{R}}_{\omega}^{iss}$ defines a morphism $\hat{\phi} : \tilde{\mathcal{R}}_{\omega}^{iss} \rightarrow \mathcal{U}_X$ such that

$$\begin{aligned} \hat{\phi}^*(\Theta_{\mathcal{U}_X}) &= \det R\pi_{\tilde{\mathcal{R}}_{\omega}^{iss}}^* (\mathcal{F})^{-k} \otimes \bigotimes_{x \in I} \left\{ \bigotimes_{i=1}^{l_x} \det(\mathcal{Q}_{\{x\} \times \tilde{\mathcal{R}}_{\omega}^{iss}, i})^{d_i(x)} \right\} \\ &\otimes (\det \mathcal{F}_{y_1})^{\ell_1} \otimes (\det \mathcal{F}_{y_2})^{\ell_2} = \hat{\Theta}'_{\tilde{\mathcal{R}}_{\omega}^{iss}}. \end{aligned}$$

Clearly, $\hat{\phi}$ induces a morphism $\phi : \mathcal{P}_{\omega} \rightarrow \mathcal{U}_X$ such that $\hat{\phi} = \phi \cdot \psi$. Thus $\hat{\Theta}'_{\tilde{\mathcal{R}}_{\omega}^{iss}}$ descends to an ample line bundle $\Theta_{\mathcal{P}_{\omega}} = \phi^*(\Theta_{\mathcal{U}_X})$ on \mathcal{P}_{ω} . Similarly, $\phi^* : H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) \hookrightarrow H^1(\mathcal{P}_{\omega}, \Theta_{\mathcal{P}_{\omega}})$ is injective. To prove

$$H^1(\mathcal{P}_{\omega}, \Theta_{\mathcal{P}_{\omega}}) = 0,$$

we need as before to compute canonical bundle $\omega_{\mathcal{P}_{\omega}}$ and to estimate the codimension of non-semistable points. However, the situation is slightly different with the case when \tilde{X} is connected. We firstly figure out some necessary conditions when $(E, Q) \in \tilde{\mathcal{R}}_{\omega}^{iss}$.

For $(E, E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \rightarrow 0) \in \mathcal{H}$, $F = (F_1, F_2) \subset E = (E_1, E_2)$, let

$$\begin{aligned} D_m(F) &:= r(F) \frac{\text{par}\chi_m(E) - r}{r} - (\text{par}\chi_m(F) - t) \\ D(F) &:= \left(r_1 \frac{\text{par}\chi(E_1)}{r} - \text{par}\chi(F_1) \right) + \left(r_2 \frac{\text{par}\chi(E_2)}{r} - \text{par}\chi(F_2) \right) \end{aligned}$$

where $t = \dim(Q^F)$, $Q^F = q(F_{x_1} \oplus F_{x_2}) \subset Q$, $r_i = \text{rk}(F_i)$. Then

$$\begin{aligned} (6.2) \quad D_m(F) &= D(F) + \frac{(r_1 - r_2)}{r} (D_m(E_1) - \dim(Q^{E_1})) + t - r_2 \\ &= D(F) + \frac{(r_2 - r_1)}{r} (D_m(E_2) - \dim(Q^{E_2})) + t - r_1. \end{aligned}$$

Lemma 6.1. For $(E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss}$, let $E_j = E'_j \oplus {}_{x_j} \mathbb{C}^{s_j}$ and

$$n_j^\omega = \frac{1}{k} \left(r\ell_j + \sum_{x \in I_j} \sum_{i=1}^{l_x} d_i(x) r_i(x) \right) \quad (j = 1, 2).$$

Then, for the fixed $\chi_j := \chi(E_j)$ ($j = 1, 2$), we have

- (1) $n_j^\omega \leq \chi_j \leq n_j^\omega + r$ ($j = 1, 2$),
- (2) $s_1 \leq n_2^\omega + r - \chi_2$, $s_2 \leq n_1^\omega + r - \chi_1$,
- (3) let $(E, Q) \in \mathcal{H} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\}$ with $n_j^\omega \leq \chi(E_j) \leq n_j^\omega + r$, then

$$E_1 \in \mathcal{R}_1^{ss}, E_2 \in \mathcal{R}_2^{ss} \Rightarrow (E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss}.$$

Moreover, when $n_1^\omega < \chi_1 < n_1^\omega + r$, we have $(E, Q) \in \tilde{\mathcal{R}}_\omega'^s$ if one of E_1, E_2 is a stable parabolic bundle,

- (4) let $(E, Q) \in \mathcal{H} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\}$, if $\chi_1 = n_1^\omega + r$ or $\chi_1 = n_1^\omega$, then

$$(E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss} \Rightarrow E_1 \in \mathcal{R}_1^{ss}, E_2 \in \mathcal{R}_2^{ss}.$$

Proof. Note that $\chi_1 + \chi_2 = \chi + r$ and $n_1^\omega + n_2^\omega = \chi$, (1) and (2) are clear by the following formulas ($j = 1, 2$)

$$\begin{aligned} \chi(E_j) &= n_j^\omega + \dim(Q^{E_j}) - D_m(E_j) \\ \chi(E_1) + s_2 &= n_1^\omega + \dim(Q^{E_1^s}) - D_m(E_1^s) \\ \chi(E_2) + s_1 &= n_2^\omega + \dim(Q^{E_2^s}) - D_m(E_2^s) \end{aligned}$$

where $E_1^s = (E_1, {}_{x_2} \mathbb{C}^{s_2})$, $E_2^s = ({}_{x_1} \mathbb{C}^{s_1}, E_2)$. The formula (6.2) becomes

$$\begin{aligned} (6.3) \quad D_m(F) &= D(F) + \frac{r_2 - r_1}{r} (\chi_1 - n_1^\omega) + \dim(Q^F) - r_2 \\ &= D(F) + \frac{r_1 - r_2}{r} (\chi_2 - n_2^\omega) + \dim(Q^F) - r_1. \end{aligned}$$

To prove (3), by (6.3) and $\dim(Q^F) - r_j \geq 0$ ($j = 1, 2$), we have $D_m(F) \geq 0$ whenever $D(F) \geq 0$. Thus

$$E_1 \in \mathcal{R}_1^{ss}, E_2 \in \mathcal{R}_2^{ss} \Rightarrow (E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss}.$$

When $n_1^\omega < \chi_1 < n_1^\omega + r$ (which implies $n_2^\omega < \chi_2 < n_2^\omega + r$), we have $D_m(F) > D(F) \geq 0$ if $r_1 \neq r_2$. Thus $(E, Q) \in \tilde{\mathcal{R}}_\omega'^s$ if one of E_1, E_2 is a stable parabolic bundle.

To prove (4), if $\chi_1 = n_1^\omega + r$ or $\chi_1 = n_1^\omega$, the formula (6.3) becomes

$$(6.4) \quad D_m(F) = D(F) + \dim(Q^F) - r_1.$$

For $F_1 \subset E_1$ of rank r_1 , take $F = (F_1, 0) \subset E$ in (6.4), we have

$$D_m(F) = D(F) = r_1 \frac{\text{par}\chi(E_1)}{r} - \text{par}\chi(F_1)$$

which implies that $E_1 \in \mathcal{R}_1^{ss}$ if $(E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss}$. For $F_2 \subset E_2$ of rank r_2 , take $F = (E_1, F_2) \subset E$ in (6.4), we have

$$D_m(F) = D(F) = r_2 \frac{\text{par}\chi(E_2)}{r} - \text{par}\chi(F_2)$$

which implies that $E_2 \in \mathcal{R}_2^{ss}$ if $(E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss}$. \square

Notation 6.2. For $\omega = (r, \chi_1, \chi_2, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, \mathcal{O}(1), k)$, let

$$\mathcal{H}^\omega = \left\{ (E, Q) \in \mathcal{H}, \text{ with } n_j^\omega \leq \chi(E_j) = \chi_j \leq n_j^\omega + r \ (j = 1, 2), \text{ and} \right. \\ \left. \dim(\text{Tor}(E_1)) \leq n_2^\omega + r - \chi_2, \ \dim(\text{Tor}(E_2)) \leq n_1^\omega + r - \chi_1 \right\}.$$

Proposition 6.3. Let $\mathcal{D}_1^f = \hat{\mathcal{D}}_1 \cup \hat{\mathcal{D}}_1^t$ and $\mathcal{D}_2^f = \hat{\mathcal{D}}_2 \cup \hat{\mathcal{D}}_2^t$. Then

- (1) $\text{codim}(\mathcal{H}^\omega \setminus \tilde{\mathcal{R}}_\omega'^{ss}) > \min_{1 \leq i \leq 2} \left\{ (r-1)(g_i - \frac{r+3}{4}) + \frac{|I_i|}{k} \right\}$.
- (2) $\text{codim}(\tilde{\mathcal{R}}_\omega'^{ss} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\} \setminus \tilde{\mathcal{R}}_\omega'^s) > \min_{1 \leq i \leq 2} \left\{ (r-1)(g_i - 1) + \frac{|I_i|}{k} \right\}$
when $n_1^\omega < \chi_1 < n_1^\omega + r$.
- (3) $\text{codim}(\tilde{\mathcal{R}}_\omega'^{ss} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\} \setminus \tilde{\mathcal{R}}_\omega'^{-s}) \geq \min_{1 \leq i \leq 2} \left\{ (r-1)(g_i - 1) + \frac{|I_i|}{k} \right\}$
when $\chi_1 = n_1^\omega$ or $n_1^\omega + r$, where

$$\tilde{\mathcal{R}}_\omega'^{-s} := \left\{ (E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss} \text{ satisfies } \text{par}\mu(F) < \text{par}\mu(E) \text{ for any} \right. \\ \left. \text{nontrivial } F \subset E \text{ of rank } (r_1, r_2) \neq (0, r) \text{ or } (r, 0) \right\}.$$

Proof. To prove (1), let $(E, Q) \in \mathcal{H}^\omega \setminus \tilde{\mathcal{R}}_\omega'^{ss}$ with $E = (E_1, E_2)$, then there exists a $F = (F_1, F_2) \subset E$ such that E/F is torsion free and

$$(6.5) \quad \text{par}\chi_m(F) - \dim(Q^F) > r(F) \frac{\text{par}\chi_m(E) - r}{r}.$$

Let $t = \dim(Q^F)$, $r_i = \text{rk}(F_i)$, $m_i(x) = \dim \frac{F_x \cap F_{i-1}(E)_x}{F_x \cap F_i(E)_x}$, $\chi_i = \chi(E_i)$

$$m(F) = \frac{r(F) - r_1}{k} \sum_{x \in I_1} a_{l_x+1}(x) + \frac{r(F) - r_2}{k} \sum_{x \in I_2} a_{l_x+1}(x)$$

where $r(F) = \frac{c_1 r_1 + c_2 r_2}{c_1 + c_2}$. Then we can rewrite (6.5) as

$$(6.6) \quad \begin{aligned} r\chi(F) - r(F)\chi &> rt - rm(F) + \frac{r(F)}{k} \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x) n_i(x) \\ &\quad - \frac{r}{k} \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x) m_i(x) \end{aligned}$$

$$0 \rightarrow F \rightarrow E \rightarrow E/F := \tilde{F} = (\tilde{F}_1, \tilde{F}_2) \rightarrow 0$$

Write $E = E' \oplus {}_{x_1}\mathbb{C}^{s_1} \oplus {}_{x_2}\mathbb{C}^{s_2}$, $F = F' \oplus {}_{x_1}\mathbb{C}^{s_1} \oplus {}_{x_2}\mathbb{C}^{s_2}$ and $F_1 = F'_1 \oplus {}_{x_1}\mathbb{C}^{s_1}$, $F_2 = F'_2 \oplus {}_{x_2}\mathbb{C}^{s_2}$ where E' , F' (thus F'_1 , F'_2) are torsion free sheaves satisfying the exact sequences

$$0 \rightarrow F'_1 \rightarrow E'_1 \rightarrow \tilde{F}_1 \rightarrow 0, \quad 0 \rightarrow F'_2 \rightarrow E'_2 \rightarrow \tilde{F}_2 \rightarrow 0.$$

Let $d_i = \deg(F'_i)$, $r_i = \text{rk}(F'_i)$, $\deg(\tilde{F}_i) = \chi_i - r(1 - g_i) - d_i - s_i$ and

$$P_i(m) = c_i r_i m + d_i + r_i(1 - g_i), \quad \tilde{P}_i(m) = c_i r_i m + \chi_i - s_i - P_i(m).$$

For $\mathcal{W}_i = \mathcal{O}_{X_i}(-N)$, $V_i = \mathbb{C}^{P_i(N)}$ (resp. $\tilde{V}_i = \mathbb{C}^{\tilde{P}_i(N)}$), let

$$Q_i \subset \text{Quot}(V_i \otimes \mathcal{W}_i, P_i)$$

(resp. $\tilde{Q}_i \subset \text{Quot}(\tilde{V}_i \otimes \mathcal{W}_i, \tilde{P}_i)$) be the open set of locally free quotients F'_i (resp. \tilde{F}_i) with vanishing $H^1(F'_i(N))$ (resp. $H^1(\tilde{F}_i(N))$) and $F'_i(N)$ (resp. $\tilde{F}_i(N)$) generated by global sections. Let \mathcal{F}'_i (resp. \tilde{F}_i) be the universal quotient on $X_i \times Q_i$ (resp. on $X_i \times \tilde{Q}_i$), let $\mathcal{V}_i = Q_i \times \tilde{Q}_i$ and $\mathcal{G}_i = \tilde{F}_i^\vee \otimes \mathcal{F}'_i$ on $X_i \times \mathcal{V}_i$. Then we have

$$\mathcal{V}_i = \bigcup_{h_i \geq 0} \mathcal{V}_i^{h_i}$$

such that $R^1 f_{i*}(\mathcal{G}_i)$ is locally free of rank h_i on $\mathcal{V}_i^{h_i}$ where $f_i : X_i \times \mathcal{V}_i \rightarrow \mathcal{V}_i$ is the projection. Let $P_{h_i} = \mathbb{P}(R^1 f_{i*}(\mathcal{G}_i)^\vee) \rightarrow \mathcal{V}_i^{h_i}$ be the projective bundle on \mathcal{V}_i and $0 \rightarrow \mathcal{F}'_i \otimes \mathcal{O}_{P_{h_i}}(-1) \rightarrow \mathcal{E}'_i(h_i) \rightarrow \tilde{F}_i \rightarrow 0$ be the universal extension on $X_i \times P_{h_i}$ (we set $P_{h_i} = \mathcal{V}_i$ and $\mathcal{E}'_i(h_i) = \mathcal{F}'_i \oplus \tilde{F}_i$ if $h_i = 0$). For $v'_i = (d_i, r_i, \{m_1(x), \dots, m_{l_x+1}(x)\}_{x \in I_i}, h_i)$, we can define a variety $X(v'_i) \rightarrow P_{h_i}$. It parametrises a family of parabolic bundles E'_i , which occur as extensions $0 \rightarrow F'_i \rightarrow E'_i \rightarrow \tilde{F}_i \rightarrow 0$ (the extension being split if $h_i = 0$), with parabolic structures at $x \in I_i$ of type $\vec{n}(x) = (n_1(x), \dots, n_{l_x+1}(x))$, whose induced parabolic structures on F'_i are of type $(m_1(x), \dots, m_{l_x+1}(x))$ (we will forget $m_j(x)$ if it is zero). Let $0 \rightarrow \mathcal{F}'_i(-1) \rightarrow \mathcal{E}'(v'_i) \rightarrow \tilde{F}_i \rightarrow 0$ be the pull back of universal extension to $X_i \times X(v'_i)$, $\mathcal{E}(v'_i) = \mathcal{E}'(v'_i) \oplus {}_{x_i}\mathcal{O}^{s_i}$ and let $F(v'_i)$ be the frame bundle of the direct image of $\mathcal{E}(v'_i)(N)$ (under the projection $X_i \times X(v'_i) \rightarrow X(v'_i)$). Write $\mathcal{E}(v') := \mathcal{E}(v'_1) \oplus \mathcal{E}(v'_2)$, we consider

$$G_{v'} := \text{Grass}_r(\mathcal{E}(v')_{x_1} \oplus \mathcal{E}(v')_{x_2}) \rightarrow F(v'_1) \times F(v'_2)$$

and define a subvariety of $G_{v'}$ by

$$X(v) := \left\{ (E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \rightarrow 0) \in G_{v'}, \quad \text{ker}(q) \cap (\mathbb{C}^{s_1} \oplus \mathbb{C}^{s_2}) = 0, \right. \\ \left. \dim(\text{ker}(q) \cap (F'_{x_1} \oplus \mathbb{C}^{s_1} \oplus F'_{x_2} \oplus \mathbb{C}^{s_2})) = r_1 + r_2 + s - t \right\}.$$

Then $X(v)$ parametrises a family of GPS ($E = E' \oplus {}_{x_1}\mathbb{C}^{s_1} \oplus {}_{x_2}\mathbb{C}^{s_2}$, Q), where $E' = (E'_1, E'_2)$ occurs as extensions $0 \rightarrow F'_i \rightarrow E'_i \rightarrow \tilde{F}_i \rightarrow 0$ (it is

split if $h_i = 0$) with parabolic structures at $x \in I$ of type $\vec{n}(x)$, whose induced parabolic structures on F'_i are of type $(m_1(x), \dots, m_{l_x+1}(x))$ (we will forget $m_i(x)$ if it is zero), such that ${}_{x_1}\mathbb{C}^{s_1} \oplus {}_{x_2}\mathbb{C}^{s_2} \rightarrow Q$ is injective and $\text{rank}(F'_{x_1} \oplus \mathbb{C}^{s_1} \oplus F'_{x_2} \oplus \mathbb{C}^{s_2} \rightarrow Q) = t$. There is a morphism $X(v) \rightarrow \mathcal{H}^\omega \setminus \widetilde{\mathcal{R}}_\omega^{ss}$ whose image contains (E, Q) . Therefore we have a (countable) number of quasi-projective varieties $X(v)$ and morphisms $\varphi_v : X(v) \rightarrow \mathcal{H}^\omega \setminus \widetilde{\mathcal{R}}_\omega^{ss}$ such that the union of the images covers $\mathcal{H}^\omega \setminus \widetilde{\mathcal{R}}_\omega^{ss}$.

One computes $\dim F(v'_i) = \dim X(v'_i) + (c_i r N + \chi_i)^2$,

$$\dim X(v'_i) = \begin{cases} \sum_{x \in I_i} \dim X_{v_i(x)} + h_i - 1 + \dim Q_i + \dim \widetilde{Q}_i, & \text{if } h_i \neq 0 \\ \sum_{x \in I_i} \dim X_{v_i(x)} + \dim Q_i + \dim \widetilde{Q}_i & \text{if } h_i = 0 \end{cases}$$

$\dim Q_i + \dim \widetilde{Q}_i = (g_i - 1)(r_i^2 + (r - r_i)^2) + P_i(N)^2 + \widetilde{P}_i(N)^2$ and the dimension of \mathcal{H} , $X(v)$ are (let $s = s_1 + s_2$):

$$\begin{aligned} & r^2(g - 2) + r^2 + \sum_{i=1}^2 (c_i r N + \chi_i)^2 + \sum_{x \in I} \dim \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x), \\ & r(r + s) - (r - t)(r_1 + r_2 + s - t) + \sum_{i=1}^2 (c_i r N + \chi_i)^2 + \sum_{i=1}^2 \dim X(v'_i). \end{aligned}$$

To estimate the minimum e of fiber dimension of φ_v , note that

$$\dim \text{Aut}(E) \geq \dim \text{Aut}(E'_1) + \dim \text{Aut}(E'_2) + rs + s_1^2 + s_2^2$$

and $0 \rightarrow F'_i \rightarrow E'_i \rightarrow \widetilde{F}_i \rightarrow 0$, we have

$$\dim \text{Aut}(E'_i) \geq \begin{cases} 1 + h^0(\widetilde{F}_i^\vee \otimes F'_i), & \text{if } h_i \neq 0 \\ 2 + h^0(\widetilde{F}_i^\vee \otimes F'_i) & \text{if } h_i = 0 \end{cases}$$

Define $e(h_i) = 1$ when $h_i \neq 0$ and $e(h_i) = 2$ when $h_i = 0$, then

$$\begin{aligned} e & \geq rs + s_1^2 + s_2^2 + h^0(\widetilde{F}_1^\vee \otimes F'_1) + h^0(\widetilde{F}_2^\vee \otimes F'_2) + e(h_1) \\ & \quad + e(h_2) - 4 + P_1(N)^2 + \widetilde{P}_1(N)^2 + P_2(N)^2 + \widetilde{P}_2(N)^2. \end{aligned}$$

Then the codimension of $\mathcal{H}^\omega \setminus \widetilde{\mathcal{R}}_\omega^{ss}$ is bounded below by

$$\begin{aligned} & \sum_{i=1}^2 r_i(r - r_i)(g_i - 1) + \sum_{i=1}^2 (r_i + s_i - t)s_i + (r - t)(r_1 + r_2 - t) + \\ & r\chi(F) - (r_1\chi_1 + r_2\chi_2) + \sum_{x \in I_1} \sum_{j=1}^{l_x+1} (r_1 - \sum_{i=1}^j m_i(x))(n_j(x) - m_j(x)) \\ & + \sum_{x \in I_2} \sum_{j=1}^{l_x+1} (r_2 - \sum_{i=1}^j m_i(x))(n_j(x) - m_j(x)). \end{aligned}$$

If $r_1 \geq r_2$, use $\chi_1 + s_2 \leq n_1^\omega + r$ and $\chi_2 = \chi + r - \chi_1$ to get

$$\begin{aligned}
 r\chi(F) - (r_1\chi_1 + r_2\chi_2) &\geq r\chi(F) - r(F)\chi + rm(F) - \\
 (6.7) \quad r_1r + (r_1 - r_2)s_2 + \frac{r_1 - r(F)}{k} \sum_{x \in I_1} \sum_{i=1}^{l_x+1} a_i(x)n_i(x) \\
 &\quad + \frac{r_2 - r(F)}{k} \sum_{x \in I_2} \sum_{i=1}^{l_x+1} a_i(x)n_i(x).
 \end{aligned}$$

Similarly, if $r_2 \geq r_1$, we have

$$\begin{aligned}
 r\chi(F) - (r_1\chi_1 + r_2\chi_2) &\geq r\chi(F) - r(F)\chi + rm(F) - \\
 (6.8) \quad r_2r + (r_2 - r_1)s_1 + \frac{r_1 - r(F)}{k} \sum_{x \in I_1} \sum_{i=1}^{l_x+1} a_i(x)n_i(x) \\
 &\quad + \frac{r_2 - r(F)}{k} \sum_{x \in I_2} \sum_{i=1}^{l_x+1} a_i(x)n_i(x).
 \end{aligned}$$

By using of the inequalities (6.6), (6.7) and (6.8), we have

$$\begin{aligned}
 \text{codim}(\mathcal{H}^\omega \setminus \widetilde{\mathcal{R}}_\omega'^{ss}) &> \sum_{i=1}^2 r_i(r - r_i)(g_i - 1) + (\max\{r_1, r_2\} - t)s \\
 &\quad + s_1^2 + s_2^2 + r \cdot \min\{r_1, r_2\} - t(r_1 + r_2 - t) \\
 &\quad + \sum_{x \in I_1} \left\{ \begin{aligned} &\sum_{j=1}^{l_x+1} (r_1 - \sum_{i=1}^j m_i(x))(n_j(x) - m_j(x)) \\ &+ \sum_{j=1}^{l_x+1} (r_1 n_j(x) - rm_j(x)) \frac{a_j(x)}{k} \end{aligned} \right\} \\
 &\quad + \sum_{x \in I_2} \left\{ \begin{aligned} &\sum_{j=1}^{l_x+1} (r_2 - \sum_{i=1}^j m_i(x))(n_j(x) - m_j(x)) \\ &+ \sum_{j=1}^{l_x+1} (r_2 n_j(x) - rm_j(x)) \frac{a_j(x)}{k} \end{aligned} \right\},
 \end{aligned}$$

where $s = s_1 + s_2$. Let $f(r_1, r_2, s_1, s_2, t)$ denote

$$\begin{aligned} & (\max\{r_1, r_2\} - t)s + s_1^2 + s_2^2 + r \cdot \min\{r_1, r_2\} - t(r_1 + r_2 - t) = \\ & (t - \frac{r_1 + r_2 + s}{2})^2 + \frac{2(s_1^2 + s_2^2) + (s_1 - s_2)^2}{4} + \frac{\max\{r_1, r_2\} - \min\{r_1, r_2\}}{2}s \\ & + \min\{r_1, r_2\}(r - \max\{r_1, r_2\}) - \frac{(r_1 - r_2)^2}{4}. \end{aligned}$$

When $r_1 = r_2$, it is clear that $f(r_1, r_2, s_1, s_2, t) \geq r_1(r - r_1)$ and we have

$$\text{codim}(\mathcal{H}^\omega \setminus \tilde{\mathcal{R}}_\omega'^{ss}) > r_1(r - r_1)(g - 1) + \frac{|I|}{k}.$$

In general, we have only $f(r_1, r_2, s_1, s_2, t) \geq -\frac{(r-1)^2}{4}$ and

$$\text{codim}(\mathcal{H}^\omega \setminus \tilde{\mathcal{R}}_\omega'^{ss}) > \min_{1 \leq i \leq 2} \left\{ (r - 1)(g_i - \frac{r + 3}{4}) + \frac{|I_i|}{k} \right\}.$$

To prove (2), note $s_1 = s_2 = 0$, $\max\{r_1, r_2\} \leq t$ for $(E, Q) \in \tilde{\mathcal{R}}_\omega'^{ss} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\}$, we have $f(r_1, r_2, s_1, s_2, t) = r \cdot \min\{r_1, r_2\} + t(t - r_1 - r_2) \geq 0$. Then, when $n_1^\omega < \chi_1 < n_1^\omega + r$, which implies $(r_1, r_2) \neq (r, 0), (0, r)$,

$$\text{codim}(\tilde{\mathcal{R}}_\omega'^{ss} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\} \setminus \tilde{\mathcal{R}}_\omega'^s) > \min_{1 \leq i \leq 2} \left\{ (r - 1)(g_i - 1) + \frac{|I_i|}{k} \right\}.$$

The assertion (3) follows the same arguments of (2) and the definition of $\tilde{\mathcal{R}}_\omega'^{-s}$. In fact, $\tilde{\mathcal{R}}_\omega'^{-s} = \rho^{-1}(\mathcal{R}_1^s \times \mathcal{R}_2^s)$ by Lemma 6.1 (4), where

$$\rho : \tilde{\mathcal{R}}_\omega'^{ss} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\} \rightarrow \mathcal{R}_1^{ss} \times \mathcal{R}_2^{ss}.$$

□

The schemes \mathcal{H} and \mathcal{P} are Gorenstein, so they have canonical sheaves. To compute the canonical sheaves $\omega_{\mathcal{H}}$ and $\omega_{\mathcal{P}}$, let

$$(6.9) \quad 0 \rightarrow \mathcal{K}^j \rightarrow V_j \otimes \mathcal{O}_{X_j \times \mathcal{R}_j}(-N) \rightarrow \mathcal{E}^j \rightarrow 0 \quad (j = 1, 2)$$

be the universal quotient on $X_j \times \mathcal{R}_j$ (\mathcal{K}^j are in fact locally free), and

$$\begin{aligned} \omega_{\mathcal{R}_j}^{-1} = & (\det R\pi_{\mathcal{R}_j} \mathcal{E}^j)^{-2r} \otimes \bigotimes_{x \in I_j} \left\{ (\det \mathcal{E}_x^j)^{n_{l_x+1}(x)-r} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{n_i(x)+n_{i+1}(x)} \right\} \\ & \otimes \bigotimes_{q \in X_j} (\det \mathcal{E}_q^j)^{1-r} \otimes (\det R\pi_{\mathcal{R}_j} \det \mathcal{E}^j)^2 \end{aligned}$$

where $\omega_{X_j} = \mathcal{O}_{X_j}(\sum_{q \in X_j} q)$. Let $\hat{\text{Det}}_j : \mathcal{R}_j \rightarrow J_{X_j}^{d_j}$, where $d_j = \chi_j + r(g_j - 1)$, be defined by $\det \mathcal{E}^j := (\det \mathcal{K}^j)^{-1} \otimes \mathcal{O}_{X_j \times \mathcal{R}_j}(-P_j(N)N)$, let

\mathcal{L}_j be a universal line bundle on $X_j \times J_{X_j}^{d_j}$ and

$$(6.10) \quad \Theta_{J_{X_j}^{d_j}} = (\det R\pi_{J_{X_j}^{d_j}}^* \mathcal{L}_j)^{-2} \otimes (\mathcal{L}_j)_{x_j}^r \otimes \bigotimes_{q \in X_j} (\mathcal{L}_j)_q^{r-1} \otimes (\mathcal{L}_j)_{y_j}^{2\chi_j - r}$$

(which are independent of the choices of \mathcal{L}_j). Let

$$\hat{\text{Det}}_{\tilde{\mathcal{R}}} := (\hat{\text{Det}}_1, \hat{\text{Det}}_2) : \tilde{\mathcal{R}} = \mathcal{R}_1 \times \mathcal{R}_2 \rightarrow J_{\tilde{X}}^d := J_{X_1}^{d_1} \times J_{X_2}^{d_2},$$

which induces $\hat{\text{Det}}_{\mathcal{H}} : \mathcal{H} \rightarrow J_{\tilde{X}}^d$ and $\text{Det} : \mathcal{P}_{\omega} \rightarrow J_{\tilde{X}}^d$ such that

$$\begin{array}{ccc} \mathcal{H} & & \tilde{\mathcal{R}}_{\omega}^{iss} \\ \rho \downarrow & \searrow \hat{\text{Det}}_{\mathcal{H}} & \downarrow \psi \\ \tilde{\mathcal{R}} & \xrightarrow{\hat{\text{Det}}_{\tilde{\mathcal{R}}}} & J_{\tilde{X}}^d \\ & & \mathcal{P}_{\omega} \xrightarrow{\text{Det}} J_{\tilde{X}}^d \end{array}$$

are commutative. Let $\Theta_{J_{\tilde{X}}^d} = p_1^* \Theta_{J_{X_1}^{d_1}} \otimes p_2^* \Theta_{J_{X_2}^{d_2}}$ (where $p_j : J_{\tilde{X}}^d := J_{X_1}^{d_1} \times J_{X_2}^{d_2} \rightarrow J_{X_j}^{d_j}$ are projections). Then similar arguments of [9] give

Proposition 6.4. *Let $\rho : \mathcal{H} \rightarrow \tilde{\mathcal{R}} := \mathcal{R}_1 \times \mathcal{R}_2$ and $\mathcal{E}_{x_1}^1 \oplus \mathcal{E}_{x_2}^2 \rightarrow \mathcal{Q} \rightarrow 0$ be the universal quotient on \mathcal{H} . Then*

$$\begin{aligned} \omega_{\mathcal{H}}^{-1} &= \rho^*(\omega_{\mathcal{R}_1}^{-1} \otimes \omega_{\mathcal{R}_2}^{-1}) \otimes (\det \mathcal{Q})^{2r} \otimes (\det \mathcal{K}_{x_1}^1)^r \otimes (\det \mathcal{K}_{x_2}^2)^r = \\ &(\det R\pi_{\mathcal{H}} \mathcal{E})^{-2r} \otimes \bigotimes_{x \in I} \left\{ (\det \mathcal{E}_x)^{-r_{lx}(x)} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{n_i(x) + n_{i+1}(x)} \right\} \\ &\otimes (\det \mathcal{Q})^{2r} \otimes \bigotimes_{j=1}^2 (\det \mathcal{E}_{y_j})^{2\chi_j - r} \otimes \hat{\text{Det}}_{\mathcal{H}}^*(\Theta_{J_{\tilde{X}}^d}^{-1}) = \hat{\Theta}'_{\omega^c} \otimes \hat{\text{Det}}_{\mathcal{H}}^*(\Theta_{J_{\tilde{X}}^d}^{-1}) \end{aligned}$$

where

$$\begin{aligned} \hat{\Theta}'_{\omega^c} &= (\det R\pi_{\mathcal{H}} \mathcal{E})^{-2r} \otimes \bigotimes_{x \in I} \left\{ \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{n_i(x) + n_{i+1}(x)} \right\} \otimes \det(\mathcal{Q})^{2r} \\ &\otimes (\det \mathcal{E}_{y_1})^{2\chi_1 - r} \otimes (\det \mathcal{E}_{y_2})^{2\chi_2 - r} \otimes \bigotimes_{x \in I} (\det \mathcal{E}_x)^{-r_{lx}(x)}. \end{aligned}$$

Let $J_i \subset X_i \setminus (I_i \cup \{x_i\})$ be a subset, $J = J_1 \cup J_2$ and

$$\mathcal{R}(J)_i = \bigtimes_{x \in I_i \cup J_i} \text{Flag}_{\vec{n}(x)}(\mathcal{F}_x^i) \rightarrow \tilde{\mathbf{Q}}_i,$$

$\tilde{\mathcal{R}}(J) = \mathcal{R}(J)_1 \times \mathcal{R}(J)_2 \xrightarrow{p_J} \tilde{\mathcal{R}} = \mathcal{R}_1 \times \mathcal{R}_2$ be the projection. Consider

$$\begin{array}{ccc} \tilde{\mathcal{R}}(J)' & \xrightarrow{p_J} & \tilde{\mathcal{R}}' \\ \rho \downarrow & & \rho \downarrow \\ \tilde{\mathcal{R}}(J) & \xrightarrow{p_J} & \tilde{\mathcal{R}} \end{array}$$

and $\mathcal{H}(J) := p_J^{-1}(\mathcal{H}) \xrightarrow{p_J} \mathcal{H}$. Then, by Proposition 6.4, we have

$$(6.11) \quad \omega_{\mathcal{H}(J)}^{-1} = \hat{\Theta}'_{\omega^c(J)} \otimes \hat{\text{Det}}_{\mathcal{H}(J)}^*(\Theta_{J_X^d}^{-1}),$$

where

$$\begin{aligned} \hat{\Theta}'_{\omega^c(J)} = & (det R\pi_{\mathcal{H}(J)} \mathcal{E})^{-2r} \otimes \bigotimes_{x \in I \cup J} \left\{ \bigotimes_{i=1}^{l_x} (det \mathcal{Q}_{x,i})^{n_i(x) + n_{i+1}(x)} \right\} \otimes det(\mathcal{Q})^{2r} \\ & \otimes (det \mathcal{E}_{y_1})^{2\chi_1 - r} \otimes (det \mathcal{E}_{y_2})^{2\chi_2 - r} \otimes \bigotimes_{x \in I \cup J} (det \mathcal{E}_x)^{-r_{l_x}(x)}. \end{aligned}$$

Let $\omega^c(J) = (r, \chi_1, \chi_2, \{\{n_i(x)\}_{1 \leq i \leq l_x+1}, \{d_i^c(x)\}_{1 \leq i \leq l_x}\}_{x \in I \cup J}, \mathcal{O}(1), k^c)$ where $k^c = 2r$, $d_i^c(x) = n_i(x) + n_{i+1}(x)$, let $\ell_j^c = 2\chi_j - r - \sum_{x \in I_j \cup J_j} r_{l_x}(x)$ and $\ell^c = \ell_1^c + \ell_2^c = 2\chi - \sum_{x \in I \cup J} r_{l_x}(x)$. Then

$$\sum_{x \in I \cup J} \sum_{i=1}^{l_x} d_i^c(x) r_i(x) + r \ell^c = k^c \chi.$$

The type $\{\vec{n}(x)\}_{x \in J}$ of flags at $x \in J$ will be chosen to satisfy

$$(6.12) \quad \ell_1^c = \frac{c_1}{c_1 + c_2} \ell^c$$

which is equivalent to the following condition

$$(6.13) \quad \begin{aligned} c_1 \sum_{x \in J_2} r_{l_x}(x) - c_2 \sum_{x \in J_1} r_{l_x}(x) = \\ c_1 \left(2\chi_2 - r - \sum_{x \in I_2} r_{l_x}(x) \right) - c_2 \left(2\chi_1 - r - \sum_{x \in I_1} r_{l_x}(x) \right). \end{aligned}$$

The choices of $\{\vec{n}(x)\}_{x \in J}$ satisfying (6.12) for arbitrary large $|J_1|$ and $|J_2|$ are possible since the equation (6.13) has arbitrary large integer solutions. In this case, the line bundle $\hat{\Theta}'_{\omega^c(J)}$ is (algebraically) equivalent to the restriction (on $\mathcal{H}(J)$) of the following polarization

$$\frac{\ell^c + k^c c N}{c(m - N)} \times \prod_{x \in I \cap J} \{d_1^c(x), \dots, d_{l_x}^c(x)\} \times k^c.$$

On the other hand, it is easy to compute that $n_j^{\omega^c(J)} = \chi_j - \frac{r}{2}$, thus

$$n_j^{\omega^c(J)} < \chi_j < n_j^{\omega^c(J)} + r \quad (j = 1, 2).$$

Moreover, for any polarization (6.1) (determined by ω), let $\hat{\Theta}'_{\mathcal{H}}$ be its restriction to \mathcal{H} . Then we can write

$$p_J^*(\hat{\Theta}'_{\mathcal{H}}) = \omega_{\mathcal{H}(J)} \otimes \hat{\Theta}'_{\bar{\omega}} \otimes \hat{\text{Det}}_{\mathcal{H}(J)}^*(\Theta_{J_{\bar{X}}^d}^{-1}),$$

where $\bar{\omega} = (r, \chi_1, \chi_2, \{\{n_i(x)\}_{1 \leq i \leq l_x+1}, \{\bar{d}_i(x)\}_{1 \leq i \leq l_x}\}_{x \in I \cup J}, \mathcal{O}(1), \bar{k})$,

$$\begin{aligned} \hat{\Theta}'_{\bar{\omega}} = & (det R\pi_{\mathcal{H}(J)} \mathcal{E})^{-\bar{k}} \otimes \bigotimes_{x \in I \cup J} \left\{ \bigotimes_{i=1}^{l_x} (det \mathcal{Q}_{x,i})^{\bar{d}_i(x)} \right\} \otimes det(\mathcal{Q})^{\bar{k}} \\ & \otimes (\det \mathcal{E}_{y_1})^{\ell_1+2\chi_1-r} \otimes (\det \mathcal{E}_{y_2})^{\ell_2+2\chi_2-r} \otimes \bigotimes_{x \in I \cup J} (\det \mathcal{E}_x)^{-r_{l_x}(x)}, \end{aligned}$$

$\bar{k} = k + 2r$, $\bar{d}_i(x) = d_i(x) + n_i(x) + n_{i+1}(x)$ ($d_i(x) = 0$ for $x \in J$). Let

$$\bar{\ell}_j = \ell_j + 2\chi_j - r - \sum_{x \in I_j \cup J_j} r_{l_x}(x) = \ell_j + \ell_j^c,$$

$$\bar{\ell} := \bar{\ell}_1 + \bar{\ell}_2 = \ell + 2\chi - \sum_{x \in I \cup J} r_{l_x}(x) = \ell + \ell^c.$$

Then it is easy to see that $\bar{\ell}_j = \frac{c_j}{c_1+c_2} \bar{\ell}$ (by (6.12)),

$$\sum_{x \in I \cup J} \sum_{i=1}^{l_x} \bar{d}_i(x) r_i(x) + r \bar{\ell} = \bar{k} \chi,$$

and $\hat{\Theta}'_{\bar{\omega}}$ is (algebraically) equivalent to the restriction of polarization determined by $\bar{\omega}$. The condition (6.12) implies the following identities

$$(6.14) \quad 2r(\chi_j - n_j^{\bar{\omega}}) = r^2 + k(n_j^{\bar{\omega}} - n_j^{\omega}) \quad (j = 1, 2).$$

Lemma 6.5. *For any $(E, Q) \in \mathcal{H}(J)$, we have $n_j^{\bar{\omega}} \leq \chi_j \leq n_j^{\bar{\omega}} + r$ (which is the necessary condition that $\tilde{\mathcal{R}}(J)_{\bar{\omega}}^{lss} \neq \emptyset$).*

Proof. If $n_1^{\bar{\omega}} \geq n_1^{\omega}$, by (6.14), we have $n_1^{\bar{\omega}} < \chi_1 \leq n_1^{\omega} + r \leq n_1^{\bar{\omega}} + r$, which implies $n_2^{\bar{\omega}} \leq \chi_2 < n_2^{\bar{\omega}} + r$. If $n_1^{\bar{\omega}} < n_1^{\omega}$, by $n_1^{\bar{\omega}} + n_2^{\bar{\omega}} = \chi = n_1^{\omega} + n_2^{\omega}$, we have $n_2^{\bar{\omega}} > n_2^{\omega}$ which implies $n_2^{\bar{\omega}} < \chi_2 \leq n_2^{\omega} + r < n_2^{\bar{\omega}} + r$ by (6.14) again (thus $n_1^{\bar{\omega}} < \chi_1 < n_1^{\bar{\omega}} + r$). \square

To prove $H^1(\mathcal{P}_\omega, \Theta_{\mathcal{P}_\omega}) = 0$ via the same method of Section 5, even if we assume that $\min_{1 \leq i \leq 2} \left\{ (r-1)(g_i - \frac{r+3}{4}) + \frac{|I_i|}{k} \right\} \geq 3$, we only have

$$\begin{aligned} H^1(\mathcal{P}_\omega, \Theta_{\mathcal{P}_\omega}) &:= H^1(\tilde{\mathcal{R}}_\omega'^{ss}, \hat{\Theta}'_{\tilde{\mathcal{R}}_\omega'^{ss}})^{inv.} = H^1(\mathcal{H}^\omega, \hat{\Theta}'_{\mathcal{H}})^{inv.} \\ &= H^1(p_J^{-1}(\mathcal{H}^\omega), p_J^*(\hat{\Theta}'_{\mathcal{H}}))^{inv.} \\ &= H^1(p_J^{-1}(\mathcal{H}^\omega), \omega_{\mathcal{H}(J)} \otimes \hat{\Theta}'_{\bar{\omega}} \otimes \hat{\text{Det}}_{\mathcal{H}(J)}^*(\Theta_{J_{\bar{X}}^d}^{-1}))^{inv.}. \end{aligned}$$

If $p_J^{-1}(\mathcal{H}^\omega) = \mathcal{H}(J)^{\bar{\omega}}$, we would have (choosing $|J_1|, |J_2|$ large enough)

$$\begin{aligned} &H^1(p_J^{-1}(\mathcal{H}^\omega), \omega_{\mathcal{H}(J)} \otimes \hat{\Theta}'_{\bar{\omega}} \otimes \hat{\text{Det}}_{\mathcal{H}(J)}^*(\Theta_{J_{\bar{X}}^d}^{-1}))^{inv.} \\ &= H^1(\mathcal{P}_{\bar{\omega}}, \omega_{\mathcal{P}_{\bar{\omega}}} \otimes \Theta_{\mathcal{P}_{\bar{\omega}}} \otimes \text{Det}_{\mathcal{P}_{\bar{\omega}}}^*(\Theta_{J_{\bar{X}}^d}^{-1})) \end{aligned}$$

which vanishes by Kodaira-type theorem and the following lemma.

Lemma 6.6. *When $X = X_1 \cup X_2$ with node x_0 , the line bundle*

$$\Theta_{\mathcal{P}_{\bar{\omega}}} \otimes \text{Det}_{\mathcal{P}_{\bar{\omega}}}^*(\Theta_{J_{\bar{X}}^d}^{-1})$$

on $\mathcal{P}_{\bar{\omega}}$ is ample if $\bar{k} > 2r$.

Proof. When $X = X_1 \cup X_2$, the moduli space $\mathcal{P}_{\bar{\omega}}$ is a disjoint union of

$$\{\mathcal{P}_{d_1, d_2}\}_{d_1+d_2=d}.$$

It is enough to consider $\mathcal{P}_{\bar{\omega}} = \mathcal{P}_{d_1, d_2}$, thus we the flat morphism

$$\text{Det} : \mathcal{P}_{\bar{\omega}} \rightarrow J_{\bar{X}}^d = J_{X_1}^{d_1} \times J_{X_2}^{d_2} = J_X^d$$

and $J_{\bar{X}}^0 = J_{X_1}^0 \times J_{X_2}^0 = J_X^0$ acts on $\mathcal{P}_{\bar{\omega}}$ by

$$((E, Q), \mathcal{N}) \mapsto (E \otimes \pi^* \mathcal{N}, Q \otimes \mathcal{N}_{x_0}).$$

Let $\mathcal{P}_{\bar{\omega}}^L = \text{Det}_{\mathcal{P}_{\bar{\omega}}}^{-1}(L)$ (which is unirational), consider the morphism

$$f : \mathcal{P}_{\bar{\omega}}^L \times J_X^0 \rightarrow \mathcal{P}_{\bar{\omega}}.$$

Then it is enough to check the ampleness of

$$f^*(\Theta_{\mathcal{P}_{\bar{\omega}}} \otimes \text{Det}_{\mathcal{P}_{\bar{\omega}}}^*(\Theta_{J_{\bar{X}}^d}^{-1}))|_{\{(E, Q)\} \times J_X^0}, \quad f^*(\Theta_{\mathcal{P}_{\bar{\omega}}} \otimes \text{Det}_{\mathcal{P}_{\bar{\omega}}}^*(\Theta_{J_{\bar{X}}^d}^{-1}))|_{\mathcal{P}_{\bar{\omega}}^L \times \{\mathcal{N}\}}.$$

It is clearly that $f^*(\Theta_{\mathcal{P}_{\bar{\omega}}} \otimes \text{Det}_{\mathcal{P}_{\bar{\omega}}}^*(\Theta_{J_{\bar{X}}^d}^{-1}))|_{\mathcal{P}_{\bar{\omega}}^L \times \{\mathcal{N}\}}$ is ample, and

$$f^*(\Theta_{\mathcal{P}_{\bar{\omega}}} \otimes \text{Det}_{\mathcal{P}_{\bar{\omega}}}^*(\Theta_{J_{\bar{X}}^d}^{-1}))|_{\{(E, Q)\} \times J_X^0} = M_1 \otimes M_2$$

where $M_1 = f_1^*(\Theta_{\mathcal{P}_{\bar{\omega}}})$, $M_2 = f_2^*(\Theta_{J_{\bar{X}}^d}^{-1})$, $f_1 : J_X^0 \rightarrow \mathcal{P}_{\bar{\omega}}$, $f_2 : J_X^0 \rightarrow J_X^d$,

$$f_1(\mathcal{N}) = (E \otimes \pi^* \mathcal{N}, Q \otimes \mathcal{N}_{x_0}), \quad f_2(L_0) = L_0^r \otimes L.$$

Then M_1 (resp. M_2) is algebraically equivalent to $\Theta_y^{r\bar{k}}$ (resp. $\Theta_y^{-2r^2}$) (see Lemma 5.3 of [9] for details). Thus $M_1 \otimes M_2$ is algebraically equivalent to $\Theta_y^{r\bar{k}-2r^2}$, which is ample when $\bar{k} > 2r$. \square

Remarks 6.7. (1) The equality $p_J^{-1}(\mathcal{H}^\omega) = \mathcal{H}(J)^\bar{\omega}$ is equivalent to the statement that for any $(E, Q) \in \mathcal{H}(J)$ with torsion τ_i at x_i we have

$$(6.15) \quad \tau_i \leq n_j^\omega + r - \chi_j \quad (j \neq i) \Leftrightarrow \tau_i \leq n_j^{\bar{\omega}} + r - \chi_j \quad (j \neq i)$$

which may not be true unfortunately. (2) The proof of Proposition 6.3 in fact implies the following estimate

$$(6.16) \quad \text{codim}(\mathcal{H} \setminus \tilde{\mathcal{R}}_\omega'^{-ss}) > \min_{1 \leq i \leq 2} \left\{ (r-1)(g_i - \frac{r+3}{4}) + \frac{|I_i|}{k} \right\}$$

where the open set $\tilde{\mathcal{R}}_\omega'^{-ss} \subset \mathcal{H}$ satisfying $\tilde{\mathcal{R}}_\omega'^{-ss} \supset \tilde{\mathcal{R}}_\omega'^{ss}$ is defined to be

$$\tilde{\mathcal{R}}_\omega'^{-ss} := \left\{ \begin{array}{l} (E, Q) \in \mathcal{H} \text{ satisfies } \text{par}\mu(F) \leq \text{par}\mu(E) \text{ for any } \\ \text{nontrivial } F \subset E \text{ of rank } (r_1, r_2) \neq (0, r) \text{ or } (r, 0) \end{array} \right\}.$$

We end up by some comments about quantization conjecture of Guillemin-Sternberg. Let M be a projective variety with an action of a reductive group G and an ample L linearizing the action of G . If $M_L^{ss} \subset M$ is the open set of GIT semistable points, then the so called quantization conjecture of Guillemin-Sternberg predict that

$$(6.17) \quad H^i(M, L)^{inv.} = H^i(M_L^{ss}, L)^{inv.}$$

which was proved when M is projective and has at most rational singularities (see [12], [13] and [14]). There is an example in [12] showing the failure of (6.17) when M has worse singularities. However, for the applications of studying moduli spaces in algebraic geometry, M is in general a locally closed subvariety of Quotient schemes or Hilbert schemes (for example, $M = \tilde{\mathcal{R}}_F$, \mathcal{H} in this article, which are quasi-projective and have at most rational singularities). Thus the following question seems natural and important for application.

Question 6.8. Let M be a normal, projective variety with action by a reductive group G . If $M_0 \subset M$ is an G -invariant open set such that $M_L^{ss} \subset M_0$ for any ample linearization L . Does the equality

$$H^i(M_0, L)^{inv.} = H^i(M_L^{ss}, L)^{inv.}$$

holds for any $i \geq 0$?

If the question has an affirmative answer, conjecture in Remark 5.6 and Conjecture 4.5 will hold, which imply $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) = 0$ for any irreducible X with one node and any data ω (see Remark

5.6). However, the affirmative answer of Question 6.8 seems not imply $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) = 0$ for reducible $X = X_1 \cup X_2$.

Let $q_L : M_L^{ss} \rightarrow \mathcal{M}_L := M_L^{ss} // G$ be the GIT quotient and assume that L descends to a line bundle \mathcal{L} (i.e. L is the pullback of \mathcal{L}). One of the general strategy of proving $H^i(\mathcal{M}_L, \mathcal{L}) = 0$ is to use equalities

$$H^i(\mathcal{M}_L, \mathcal{L}) = H^i(M_L^{ss}, L)^{inv.} = H^i(M_0, L)^{inv.}$$

where the first equality holds by definition and the second holds by the affirmative answer of Question 6.8. Then one can write (on M_0)

$$L = \omega_{M_0} \otimes L', \quad L' = \omega_{M_0}^{-1} \otimes L$$

where ω_{M_0} is the canonical bundle of M_0 . Let $q_{L'} : M_{L'}^{ss} \rightarrow \mathcal{M}_{L'}$ be the GIT quotient and L' descend to \mathcal{L}' . Assume that

$$(6.18) \quad H^i(M_0, L)^{inv.} = H^i(M_{L'}^{ss}, L)^{inv.}, \quad \omega_{M_0} = q_{L'}^*(\omega_{\mathcal{M}_{L'}}).$$

Then $H^i(\mathcal{M}_L, \mathcal{L}) = H^i(\mathcal{M}_{L'}, \omega_{\mathcal{M}_{L'}} \otimes \mathcal{L}') = 0$ ($\forall i > 0$). Assumption (6.18) does not hold in general, which need a good estimate of codimension of $M_0 \setminus M_{L'}^{ss}$ and $M_{L'}^{ss} \setminus M_{L'}^s$. It is the reason that this strategy does not work for reducible $X = X_1 \cup X_2$ since we do not have a good estimate of codimension of $\mathcal{H} \setminus \tilde{\mathcal{R}}_{\omega}^{ss}$ (we have only an estimate of $\text{codim}(\mathcal{H}^{\omega} \setminus \tilde{\mathcal{R}}_{\omega}^{ss})$). However, we will prove vanishing theorems in a forthcoming article [11] for all of these moduli spaces by a method of modulo p reduction, which essentially needs the estimates of codimension and computation of canonical bundles.

REFERENCES

- [1] A. Beauville: Vector bundles on curves and generalized theta functions: recent results and open problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., **28** (1995), 17C33.
- [2] U. Bhosle: vector bundles on curves with many components, Proc. London Math. Soc., **79** (1999), 81–106.
- [3] G. Daskalopoulos and R. Wentworth: *Local degeneration of the moduli space of vector bundles and factorization of rank two theta functions. I*, Math. Ann., **297** (1993), 417–466.
- [4] G. Daskalopoulos and R. Wentworth: *Factorization of rank two theta functions. II: Proof of the Verlinde formula*, Math. Ann., **304** (1996), 21–51.
- [5] F. Knop: *Der kanonische Modul eines Invariantenrings*, Journal of Algebra, **127** (1989), 40–54.
- [6] M.S. Narasimhan and T.R. Ramadas: *Factorisation of generalised theta functions I*, Invent. Math., **114** (1993), 565–623.
- [7] C. Pauly: *Espaces modules de fibrés paraboliques et blocs conformes*, Duke Math., **84** (1996), 217–235.
- [8] Ramadas: *Factorisation of generalised theta functions II: the Verlinde formula*, Topology, **35**, (1996), 641–654.

- [9] X. Sun: *Degeneration of moduli spaces and generalized theta functions*, Journal of Algebraic Geometry, **9**, (2000), 459-527.
- [10] X. Sun: *Factorization of generalized theta functions in the reducible case*, Ark. Mat., **41** (2003), 165–202.
- [11] X. Sun and M. Zhou: *Globally F -regular type of moduli spaces and Verlinde formula*, in prepare.
- [12] C. Teleman: *The quantization conjecture revisited*, Ann. of Math. (2) **152** (2000), no. 1, 1–43.
- [13] Y. Tian and W. Zhang: *An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg*, Invent. Math., **132** (1998), no. 2, 229C259.
- [14] W. Zhang: *Holomorphic quantization formula in singular reduction*, Commun. Contemp. Math., **1** (1999), 281C293.

CENTER OF APPLIED MATHEMATICS, TIANJIN UNIVERSITY, NO.92 WEIJIN ROAD, TIANJIN 300072, P. R. CHINA

E-mail address: xiaotaosun@tju.edu.cn