FACTORIZATION OF GENERALIZED THETA
FUNCTIONS REVISITED

XIAOTAO SUN

ABSTRACT. This survey is based on my lectures given in last a few
years. As a reference, constructions of moduli spaces of parabolic
sheaves and generalized parabolic sheaves are provided. By a re-
finement of the proof of vanishing theorem, we show, without using
vanishing theorem, a new observation that dim H°(Uc, Oy, ) is in-
dependent of all of the choices for any smooth curves. The estimate
of various codimension and computation of canonical line bundle of
moduli space of generalized parabolic sheaves on a reducible curve
are provided in Section 6, which is completely new.

1. INTRODUCTION

Let C' be a smooth projective curve of genus g, Q be the quotient
scheme of quotients V ® Oc(—N) — E — 0 with

X(E)=x=d+r(l—g)

and let V® Ocxq(—N) — F — 0 (where V = C”®™)) be the universal
quotient on C' x Q. There is an SL(V')-equivariant embeding

Q — G = Grassp()(V ® H(Oc(m — N))),
and the GIT quotient U = Q**//SL(V') respecting to the polarization

@st = detR'/TQSS (F)_k ® det(‘Fy)kTX

(where F, = F|{y1xq) is the so called moduli space of semi-stable
rank 7 vector bundles of degree d on C. When r|ky, ©qs: descends
to an ample line bundle ©;, on Uc. When r = 1, the sections s €
H°(Uc, ©y,,) are nothing but the classical theta functions of order
k and dim HO<Uc, @Uc> = k9.
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When r > 1, the sections s € H*(Uc, Oy, ) are so called general-
ized theta functions of order k on Uy. It is clearly a very interest-
ing question for mathematicians to find a formula of dim H°(Uc, Oy, ),
which however was only predicted by Conformal Field Theory, the
so called Verlinde formula. For example, when r = 2,

BN (k+2\ '~ (=D
. 0 _ _ -
dim H (Uc,@uc) = (2) < 9 > Z (i+1)7r)29—2'

i—o (sin Thr2

2

According to [1], there are two kinds of approaches for the proof of
Verlinde formula: Infinite-dimensional approaches and finite-dimensional
approaches (see [1] for an account). Infinite-dimensional appeoach is
close to physics, which works for any group G, but the geometry behind
it is unclear (at least to me). Finite-dimensional approach depends on
well understand of geometry of moduli spaces, but it works only for
r =2 (as far as I know).

One of the finite-dimensional approaches is to consider a flat family
of projective curves X — T such that a fiber X}, := X (ty € T) is
a connected curve with only one node zop € X and X, (t € T'\ {to})
are smooth curves with a fiber X;, = C (t; # ;). Then one can
associate a family of moduli spaces M — T and a line bundle © on
M such that each fiber M; = Uy, is the moduli space of semi-stable
torsion free sheaves on X; and O, = Ouy, - By degenerating C' to an
irreducible X, there are two steps to establish a recurrence relation of

Dy(r,d, k) = dim H°(Uc, Oy, ) in term of g (the genus of C):
(1) (Invariance) dim H°(Uz,, Oy, ) are independent of t € T;
(2) (Factorization) Let 7 : X — X be the normalization of X, then

HO(Ux, Ouy ) = €D H U, Oun),
I

where 1 = (g1, -+, ptr) runs through 0 < p,, < -+ <y < k—1,
Z/{;% are moduli spaces of semi-stable parabolic bundles on X
with parabolic structure at z; € 7! (xo) = {x1, 22} determined
by p and X has genus g()N() =g—1
In order to carry throught the induction on g, one has to start with
moduli spaces Uy, = Ux,(r,d,w) of semistable parabolic torsion free
sheaves E' on A, of rank r and deg(E) = d with parabolic structures of
type {7i(x)}.er and weights {@(z)}.e; at smooth points {z}.e; C A,
where w = (k,{7i(z), @(x)}ser) denote the parabolic data. In [9], the
factorization theorem as above (2) was proved for Uy = Ux (r, d,w).
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Let Uc = Uc(r,d,w) be the moduli space of semi-stable parabolic
bundles of rank r and degree d on C' with parabolic structures of type
{7(x)}rer and weights {d(z)}.ecr at a finite set I C C of points, and

Dy(r,d,w) = dim H(Uc, Oyy.).
If the invariance property that dim H°(Uc, ©y.) is independent of C'

and choices of points z € I holds (for example, if H'(Ux,, Oy, ) = 0),
we will have the following recurrence relation

(1.1) g (r d,w) ZDglrdw

where = (g1, , fty) TUDS through 0<p<---<p <kand

W = (k, {71(x), a(2)}eervfe as))
with 7i(x;), d(z;) (i = 1, 2) determined by u. A vanishing theorem

Hl(uxtv@uxt) =0

was proved in [9] when (r — 1)(g — 1) + %
invariance property for g > 3.

The recurrence relation (1.1) decreases the genus g, but it increases
the number |I| of parabolic points. By degenerating C' to an reducible
X = X; U X,, we can establish a recurrence relation for the number
of parabolic points if we can prove the invariance property (1) and a

factorization (2). In [10], we proved the factorization theorem

HO(UX1UX2> @leuxg) = @ Ho(ugﬁ’ @Z/{f;{l) ® HO(”;{y @Z/G‘Q)

> 2, which implies the

where = (py,- -+ , ) Tuns through 0 < p, <--- <y < k. If
HY(Ux, 0y, ) =0
holds for X = X; U Xs, fix a partition I = I; U I5, we have

(12) DQ(ﬁ dw) = ZDgl(Ta dlliawit) ’ Dgz(ra dgawg)v G1+92=9
o
where &} + dj = d, W = (k, {7i(2), @(@)}acropen) (G = 1, 2).
For a projective variety M with an ample line bundle £, if a reductive

group G acts on M with respect to the polarization £ and assume that
L descends to a line bundle £ on GIT quotient M = M**(£)//G, then

Hi(M, L) = H'(M*(L), £)™

If there is another G—variAety J:/ with an G-morphism p : Y — M such
that H'(M, L) = H'(Y,p*L)"™", we would be able to show the van-
ishing theorem H*(M, L) = 0 by assuming the following statements:
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(i) There are line bundles ﬁl, £, on Y such that p*ﬁ = wj,®ﬁ1®ﬁg
(where wy, is the canonical line bundle of V) and £;, £, descend
to ample line bundles £;, £5 on GIT quotient Y = Y%5(£4)//G:

(i) If ¢ ;Ayis(ﬁl) — Y i? qqutierAlt map, wy = W*wyss(gl))G;
(iii) HY (M, L)y™ = H'(M*(L), L) and

Hz(j)’p*ﬁ)znv _ Hz(ﬁss(ﬁl)7p*ﬁ)znv

The above statements imply H'(M, L) = H'()Y,wy ® L1 ® Ls), then
Kodaira-type vanishing theorem for ) do the job. To establish (i), (ii)
and (iii), one has to compute canonical bundle and singularities of the
moduli spaces, to estimate codimensions of

VE(L)\VH(Lr), MAMS(L), V\V*(Ly),

which were done in [9] for moduli spaces of parabolic bundles and
generalized parabolic sheaves on an irreducible smooth curve, so that
H'(Ux, Oy, ) = 0 was only proved for the irreducible nodal curve X of
genus g > 3 in [9]. If H (Ux, Oy, ) = 0 holds for both irreducible X
and reducible X of arbitrary genus, the numbers D, (r, d,w) will satisfy
the recurrence relation (1.1) and (1.2) which will imply a formula of
Dgy(r,d,w). However, the vanishing theorem for reducible curve X
remains open.

In this survey article, we provide a detail construction of various
moduli spaces in Section 2. The theta line bundles ©, and the two
factorization theorems are reviewed in Section 3. We review firstly
the proof of vanishing theorem for smooth curves of g > 2, then we
show, without using the vanishing of H'(Uc, Oy ), that the invariance
property of dim H%(Uc, ©y.) holds for any smooth curve of genus g >
0 in Section 4 (see Corollary 4.8). Section 5 contains the review of
vanishing theorem for irreducible node curves. Section 6 is an attempt
to prove, using the same method of Section 5, the vanishing theorem
H'(Ux, Oy, ) = 0 for reducible curve X = X; U Xo.

2. CONSTRUCTION OF MODULI SPACES

Let X be an irreducible projective curve of genus g over an alge-
braically closed field of characteristic zero, which has at most one node
xg. Let I be a finite set of smooth points of X, and £ be a coherent
sheaf of rank r and degree d on X (the rank r(FE) is defined to be
dimension of E¢ at generic point £ € X, and d = x(£) —r(1 — g)).
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Definition 2.1. By a quasi-parabolic structure on E at a smooth point
x € X, we mean a choice of flag of quotients

Ea: - Qlw—&—l(E)z - QZW<E)r TR - Ql(E>z - QO(E)m =0

of the fibre E, of E at « (each quotient Q;(E), — Q;—1(F), in the flag
is not an isomorphism). If, in addition, a sequence of integers called
the parabolic weights 0 < a1(x) < as(z) < -+ < ap+1(x) < k are
given, we call that £ has a parabolic structure at x.

Notice that, let F;(E), = ker{E, — Q;(F).}, it is equivalent to
give a flag of subspaces of E,:

Let r;(x) = dim(Q;(E).), ni(x) = dim(ker{Q;(F): - Qi—1(E).})
(or simply defining n;(z) = r;(x) — r;_1(x)) and
() : = (a1(x), az(@), -+ a4 (x))
(@) : = (@), na(x), - - s 1,41 (2)).

d (resp., 1) denotes the map = — d(x) (resp., z — 7i(x)).

Definition 2.2. The parabolic Euler characteristic of E is

lz+1

parx(E) == x(F) — <alﬁ1<x>dim<E;> -3 ai<x>n@-<x>>

i=1
where E™ C E is the subsheaf of torsion and E] = E7|}.

Definition 2.3. For any subsheaf F' C E, let Q;(F)f C Q;(E), be the
image of I, n!" = dim(ker{Q;(E)Y — Q;_1(F)L}) and

x
lz+1

parx(F) i= xX(F) - 1 <azz+l<x>dim<F;> -y m(az)nf(m)) .

=1

Then F is called semistable (resp., stable) for (k, @) if for any nontrivial
subsheaf E' C E such that E/E’ is torsion free, one has
E
pary(E) < PEXE) L pn esp. <),
r

Remark 2.4. Stable parabolic sheaf must be torsion free. If E is
semistable, then FE is torsion free outside x € I, the quotient homo-
morphisms in Definition (2.1) injection E7 to Q;(F), (1 < i < [,)
for any x € I. Moreover, if ET # 0, we must have a;(z) = 0 and
alac‘i'l(l‘) = k
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Fix a line bundle O(1) on X of deg(O(1)) =¢, let x =d+1r(1 — g),
P denote the polynomial P(m) = crm + x, W = O(—N) = O(1)™
and V = CP™N)_ Consider the Quot scheme
T-flat quotients V@ W — E — 0 over }

X x T with x(E:(m)) =P(m) (VteT)
and let Q C Quot(V @ W, P) be the open set
VW — E — 0, with R'pr.(E(N)) = 0 and
am - '

Quot(V @ W, P)(T) = {

V ® Or — pr.E(N) induces an isomorphism

Choose N large enough so that every semistable parabolic sheaf with
Hilbert polynomial P and parabolic structures of type {7i(x)}.cr with
weights {@(z)}.er at points {x},c; appears as a quotient corresponding
to a point of Q. Let Q be the closure of Q in the Quot scheme,
VoW — F — 0 be the universal quotient over X x Q and F, be
the restrication of F on {z} x Q = Q. Let Flags (Fz) — Q be the
relative flag scheme of locally free quotients of type 7i(x), and

R = XQFlagﬁ(z) (.Fx) — Q
zel
be the product over Q A (closed) point (p, {pr, (@), -+ Pry, (2) Jaer) Of R
by definition is given by a point V@ W % E — 0 of the Quot scheme,
together with the flags of quotients

{E’ac —» erz(x) - erz_l(x) T Qrg(x) - Qm(r) - 0}9661
where p,, o) : V@ W H5E S E, - Qrw) = = Qriw)

For large enough m, we have a SL(V')-equivariant embedding
R — G = Grasspm)(V @ Wy,) x Flag,
where W,,, = H°(W(m)), and Flag is defined to be
Flag = H{GTGSSm YV @Wy) x - x Grass, (V@ W)},
zel
which maps a pOiIlt (pv {pTI (x)s -+ Pry (2) };L’EI) =

p"'l(93> zz( x)

(V@W—)E{V@W Qm(:}c)a aV®W er }zel)
of R to the point (g, {gr)(2): -+ Iri, (2) Jecl) =
(V ® Wm £> U7 {V ® W M) U?"l(x)7 te V ® W %(1) Urlx(x)hfe[)

of G, where g := H%(p(m)), U := H°(E(m)), gri@) = H°(pry@)(m)),
Uri(x) = HO(Q”(I)) (Z = 1, ceey lac) and TZ(I) = dim(Qri(x)).
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Notation 2.5. Given the polarisation (N large enough) on G:
E L+ keN ch
< [[{d(@), -~ di ()}
zel

where d;(x) = a;11(x) — a;(x) and £ is the rational number satisfying

(2.1) ZZd z) +rl = ky

zel i=1

By the general criteria of GIT stability, we have

Proposition 2.6. A point (g, {gr,(z) - 9ri, (v) Yze1) € G is stable (re-
spectively, semistable) for the action of SL(V'), with respect to the above
polarisation (we refer to this from now on as GIT-stability), iff for all
nontrivial subspaces H C V' we have (with h = dimH )

0+ keN ,
e(H) ::m(h}j(m) — P(N)dim g(H @ W,,))+
ZZd x)h — P(N)dim g, (H ® Wi,)) < (<) 0.

Notation 2.7. Given a point (p, Py, (a); -+, Pr, (2) fzer) € R, and a sub-
sheaf F of E we denote the image of I in Q) by Q). Similarly,

given a quotient E = G — 0, set Qi(m) = Qry)/Im(ker(T)).
Lemma 2.8. There exists My(N) such that for m > My (N) the follow-
ing holds. Suppose (p, {Pr(z)s Pri(x)> -+ Pro, (x) }oecI) € R is a point which
1s GIT-semistable then for all quotients E L G — 0 we have

(2.2)  KhY(G(N)) > T ( (G)(¢ 4 keN) —|—ZZd )R Qg ))

zel =1

In particular, V. — HY(E(N)) is an isomorphism and E satisfies the
requirements in Remark 2.4.

HO(p(N))

Proof. The injectivity of V' H°(E(N)) is easy to see. Let

°(p(NV)) H°(T(N))

H = ker{v 2% [0p(N)) HY(G(N))}

and ' C E be the subsheaf generated by H. Since all these F' are
in a bounded family, dim g(H ® W,,) = h°(F(m)) = x(F(m)) and
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Gri(z)(H @ Wy,) = hO(QZ(@) (Vx € I) for m > M{(N). Then, by
Proposition 2.6 (with h = dim(H)), we have

e(H) =(t + keN)(rh = r(F)P(N)) + (€ + keN)P(N >%
+sz r)h — P(N)R°(QF ) -

By using h > P(N)—=h*(G(N)), r—r(F) > r(G) and ri(2)-h°(QF ) >
hO(in(x)), we get the inequality

WHGIN)) 2(E-+ kel) hkzﬁ(_Fz(v]Q) B kezgl@) !

k(( )(¢ 4 keN) +ZZd (2)h*(QY )

xzel 1=1

For given N, the set {h — x(F'(NN))} is finite since all these F' are in a
bounded family. Let x(N) = min{h — X(F(N))} If x(N) > 0, then

h*(G(N)) > E(( )(£ + kcN) +sz hOQg >_k€]£1(q]\)[)

zel 1=1

When x(N) < 0, let Mi(N) > max{M{(N),—x(N)({ + keN) + cN}
and m > M;(N). Then, since e(H) < 0, we have

h(G(N)) > k(( )(€ + keN) +ZZd (2)n°(QY )

zel 1=1

Now we show that V' — HY(E(N)) is an isomorphism. To see it

being surjective, it is enough to show that one can choose N such that
H'(E(N)) =0 for all such E. If H'(E(N)) is nontrivial, then there is
a nontrivial quotient E(N) — L C wx by Serre duality, and thus

h(wx) > h°(L) > N + B,

where B is a constant independent of E, we choose N such that
H'(E(N)) = 0 for all GIT-semistable points.
Let 7 =Tor(E), G = E/7, note h°(G(N)) = P(N) — h°(7) and

W(Q7 ) = Ti(e) = B(QF ),
then the inequality (2.2) becomes

() < 33 Q) £ 3t 1(2) — an(a) )

xel =1 xzel
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which implies the requirements in Remark 2.4. U

Proposition 2.9. Suppose (p, {pr,(2); s Pr, (2) faer) € R s a point
corresponding to a parabolic sheaf E. Then E is semistable iff for any
nontrivial subsheaf F C E we have

0+ keN

s(F) = M=)

(X(F'(N))P(m) = P(N)x(F(m)))+
le

S di@) @ (FN) = PINR(QE,)) < 0.

zel =1

If s(F') < 0 for any nontrivial F C E, then E is stable. Conversely,

if E is stable, then s(F) < 0 for any nontrivial subsheaf F C E except

that r(F) =r, 7 := E/F = 0 outside x € I, aj,4+1(x) — a1(x) = k if

7. # 0, and nf'(z) = ny(x) — WO (7,), nf'(z) = ni(x) 2 <i <1, +1) for

any x € I.

Proof. The point corresonding to a quotient V@ W & E — 0 and
{Eac - Q'rlm(x) - Q"'lm—l(ff) o T Qrz(:c) - Qm(z) - O}xel

Priwy : VOW S E — Ep — Qo) =+ = Q). For F C E such
that E/F is torsion free, we have the flags of quotient sheaves

{F > Fo > Q)= Qry i) > = Qo) = @rye) ~ Ooer

Let nf (z) = h%(Q}. ) — h°(Q}. (), notice that

DD di@)ri(w) = Y (@) + ) an s (@)h(E])

zel =1 zel zel
lo+1

-2 2 alw)m(x)
zel =1
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X(F(N))P(m) = P(N)x(F(m)) = c(m = N)(rx(F) —r(F)x(E)), then

la
s(F) = (M + rkeN + Z Zdz(x)n(x)> <X(F) - T(f)x(E)) +

) <@Zidi<x> ZZd QL )
=kP(N) (parx((F) — T(f) parx(E)) )

For any nontrivial subsheaf F' C FE, let 7 be the torsion of E/F
and F' C E such that 7 = F'/F and E/F' torsion free. If we write
T =743 e Tuy note A(7,) + A(QL ) — hO(in'(x)) > 0, then

S(F) = s(F") = =kP(N)R'(7) = P(N) Y _(k = a1 (x) + a1 (2))h°(7,)

xzel
)Y S ) 0() + 19(@E )~ QL) <0
xzel 1=1

If F is stable and s(F') = 0, it is easy to see that the last requirements
in the proposition are satisfied. U

Proposition 2.10. There exists an integer My(N) > 0 such that for
m > My (N) the following is true. If a point
(p7 {pn(x)a "'7p7‘lx(a:)}a7€l> €eR

is GIT-stable (respectively, GIT-semistable), then the quotient E is a
stable (respectively, semistable) parabolic sheaf and V- — H°(E(N)) is
an isomorphism.

Proof. If (p, {Pr(2)s > Pri, (2) }ec1) € R is GIT-stable (GIT-semistable),
by Lemma 2.8, V' — H°(E(N)) is an isomorphism. For any nontrivial
subsheaf F' C F with E/F torsion free, let H C V be the inverse image
of H(F(N)) and h = dim(H), we have (for m > N)

X(F(N))P(m) — P(N)x(F(m)) < hP(m) — P(N)h"(F(m))
for m > N (note h'(F(N)) > h'(F(m))). Thus s(F) < e(H) since
(the inequalities are strict when A = 0). By Proposition 2.6 and Propo-

sition 2.9, F is stable (respectively, semistable) if the point is GIT
stable (respectively, GIT semistable). u
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For a semistable parabolic sheaf E of rank r on X, we have, for any
subsheaf F' C E, x(F) < @T(F) + 2r|I|. The following elementary
lemma should be well-known.

Lemma 2.11. Let E be a coherent sheaf of rank r on X. If

W <XEpyie vEcE

r

Then, for any F C E with H'(F) # 0, we have

(E)

WOF) < X2 0 (F) - 1)+ C 4 1 (F)g.

Proof. H'(F') # 0 means that we have a nontrivial morphism F — wx.
Let I’ be the kernel of F' — wx, then h°(F) < hP(F')+g. It HY(F') =
0, we have hO(F) < x(F')+g < B (p(F) = 1) +C+g. If H'(F') # 0,
by repeating the arguments to F’, we get the required inequality. [

Proposition 2.12. There exist integers N > 0 and Ms(N) > 0 such
that for m > My(N) the following is true. If a point

(p7 {pm(m)a "'7p7‘lx(x)}2761) eER

corresponds to a semistable parabolic sheaf E, then the point is GIT-
semistable. Moreover, if E is a stable parabolic sheaf, then the point is
GIT stable except the case aj,11(x) — ay(z) = k.

Proof. There is N; > 0 such that for any N > N; the following is
true. For any V@ W & E — 0 with semistable parabolic sheaf E, the
induced map V' — H°(E(N)) is an isomorphism.

Let H C V be a nontrivial subspace of dim(H) = h and F' C F be
the sheaf such that F/(N) C E(N) is generated by H. Since all these F’
are in a bounded family (for fixed N), dim g(H @ W,,,) = h°(F(m)) =
X(F(m)), Griz)(H @ Wy,) = hO(QZ(I)) (Vaxel)form> M{(N) and

{4+ kem

G(H) :S(F)+C(m—_]\/.)

P(N) (h = x(F(N))) .

If HY(F(N)) = 0, we have e(H) < s(F) since h < h°(F(N)). Then
e(H) < s(F) <0 by Proposition 2.9 since F is a semistable parabolic
sheaf. If H'(F(N)) # 0, by Lemma 2.11, we have

reN + x

ROF(N)) <

(r(F)—1)+r(g +2|1)).
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Putting h < h°(F(N)) and above inequality in the equality

h—x(F(N)))

e(H) =P(N) (kh— (0 + kEcN)r(F)+ (¢ 4+ keN) c(m —N)

PSS A (@QF ).

zel =1
then, let C = k|x| + (g + 2|I|)k + |¢|r, we have
h = x(F(N))
c(m—N) )~

Choose an integer Ny > Nj such that —kcNy; + C < —1. Then, for any
fixed N > Ny, there is an integer Ms(N) such that for m > My(N)

h — x(F(N))
c¢(m — N)

e(H) < P(N) (—ch+C+(€+k:cN)

(¢ + keN) <1

for any H C V, which implies e(H) < 0 and we are done.

Theorem 2.13. There exists a seminormal projective variety
uX = uX (Ta da {ka ﬁ(l’), C_i(l‘)}mél)v

which is the coarse moduli space of s-equivalence classes of semistable
parabolic sheaves E of rank r and x(E) = x = d+r(1—g) with parabolic
structures of type {fi(x)},er and weights {d(x)}rer at points {x},er. If
X is smooth, then it is normal, with only rational singularities.

Proof. Let R** C R be the open set consisting of semistable parabolic
sheaves. Ux := Ux(r,x, I, k,d, 1) is defined to be the GIT quotient
R*//SL(V). The statements about singularities of Uy are proved
in [9]. The case a;,+1(x) — a1(z) = k can be covered by the same
arguments in [9] where we proved that H is normal with only rational
singularities. U

When X is a reduced projective curve with two smooth irreducible
components X; and X5 of genus g; and g, meeting at only one point
xo (which is the only node of X), we fix an ample line bundle O(1)
of degree ¢ on X such that deg(O(1)|x,) = ¢ > 0 (i = 1,2). For any
coherent sheaf E, P(E,n) := x(F(n)) denotes its Hilbert polynomial,
which has degree 1. We define the rank of E to be
1 . P(E,n)

"B = Gegiom) AT
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Let r; denote the rank of the restriction of E to X; (i = 1,2), then
C1 Co
P(E,n) = (cir1 + cara)n + x(E), r(E)= o+ 027”1 + ot 027’2-
We say that F is of rank » on X if r; = ro = r, otherwise it will be
said of rank (r1,73).
Fix a finite set [ = I; U I; of smooth points on X, where I; = {x €
I'lz € X;} (i =1,2), and parabolic data w = {k,7i(x), d(z) } zes with

kX = Y per Sty di(@)ri(z)

0=

(recall d;(z) = a;y1(x)—a;(z), ri(x) = ni(x)+- - -+n;(x)). Then we will
indicate how the same construction gives moduli space of semistable
parabolic sheaves on X (see [10] for details). For simplicity, we only
state the case that a;,1(z) —a1(z) < k (Vx € I).

Definition 2.14. For any coherent sheaf F' of rank (r1,79), let

m(F) =" S 0wy + TS

zel z€ls
the modified parabolic Euler characteristic and slop of F' are
pary., (F)
r(F)
A parabolic sheaf F is called semistable (resp. stable) if, for any sub-

sheaf FF C E such E/F is torsion free, one has, with the induced
parabolic structure,

pary,, (F) := parx(F) +m(F), paru,(F):=

m(E
parx, (F) < pa%Eg)r(F) (resp. <).
There is a similar R and a SL(V)-equivariant embedding R — G.
As the same as Notation 2.5, give the polarization on G:

E—i—ch " H{dl e d (@)}

xzel
Then we have the same Proposition 2.6, Lemma 2.8, Proposition 2.9
and Lemma 2.11. The modification in the proof of Proposition 2.9 is:
for F' C E of rank (71, 72) such that E/F is torsion free, we have

lo+1

Z szz(az)m(x) = TZGZIH(ZE) - Z Z a;(z)n;(x)

xel =1 xzel xzel =1
lo+1

Z Z d;(x)h%( QF(x =r Z a, +1(2)+ry Z alzﬂ(:c)—z Z a;(z)nf

xel i=1 xzelq z€ls xel i=1
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r(F)

r

s(F) = kP(N) (parxm((F) -

In particular, we have

parxm(E)) :

Proposition 2.15. There exist integers N > 0 and Ms(N) > 0 such
that for m > Ms(N) the following is true. If a point

(p7 {pn(ac)a --wpnx(z)}zeI) eR

corresponds to a quasi-parabolic sheaf E/, then the point is GIT-semistable
(resp. GIT-stable) under the above polarization if and only if E is a
semistable (resp. stable) parabolic sheaf for the weights 0 < ai(x) <
as(z) < - <apu(r) <k Vzel)

Theorem 2.16. There exists a reduced, seminormal projective scheme
z/[X = UX(T, d7 0(1)7 {k7 ﬁ(l‘), a(£)}m€I1Ulg)

which is the coarse moduli space of s-equivalence classes of semistable
parabolic sheaves E of rank v and x(E) = x = d + r(1 — g) with
parabolic structures of type {n(x)}rer and weights {d(x)}.er at points
{x}rer. The moduli space Ux has at most r+1 irreducible components.

Proof. Let R*® C R be the open set of semi-stable parabolic sheaves.
Ux = Ux(r,d,O(1),{k,7(z),d(x)}ser,us,) is defined to be the GIT
quotient R**//SL(V). Let U C Ux be the dense open set of locally
free sheaves. For any FE € L{%, let £y and E3 be the restrictions of £
to X7 and X,. By the exact sequence

0— Ey(—z9) > E — Ey— 0

and semi-stability of FE, we have

C1 C1
arxm(E) < parym,(F1) <
P Xm(E) < parxm(Er) P
Co Co
arxm(E) < pary,(Es) <
P Xm(E) < parxm(Es) P

For j =1, 2 and w = {k,7(2), d(z) }rer,un, let x; = x(£;) and

parxm(E) +r,

parxm(E) +r.

(2.3) n‘;’ = % r 5 (+ Z Zxdz(x)m(x)

c1+c
1 C2 zel; i=1

Then the above inequalities can be rewritten as
(2.4) ny <x1<n{+r, ng<x2<ng+r
There are at most r + 1 possible choices of (x1,x2) satisfying (2.4)

and x1 + x2 = x + r, each of the choices corresponds an irreducible
component of Uy. O
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Remarks 2.17. (1) If n (j = 1, 2) are not integers, then there are at
most r irreducible components Uy ** C Ux of Ux with

(2.5) ny <x1<ny+r, ng<xa<ng+r
such that the (dense) open set of parabolic bundles E € Ug"** satisfy

X(nyl) = X1, X(E|X2) = X2

For any xi1, x2 satisfying (2.5), let Uy, (resp. Ux,) be the moduli
space of semistable parabolic bundles of rank r and Euler characteris-
tic x1 (resp. x2), with parabolic structures of type {7i(x)}.ecr, (resp.
{71(2) baer,) and weights {@(z) }acr, (1esp. {3(2)}acs,) at points {Thect,
(resp. {7}ser,), then Uy ** is not empty if Uy, (j = 1, 2) are not empty
(See Proposition 1.4 of [10]). In fact, U¥""** contains a stable parabolic
bundle if one of Uy, (j = 1, 2) contains a stable parabolic bundle.

(2) Let E € Uy, for any nontrivial F' C E of rank (r1,75) such that
E/F torsion free, we have

kr(F)(parpim(F) — parp,(E))

chz VW(QE ) — T(F)L,

xel =1

(2.6)

which implies the following facts: (i) When ¢ = 0, the moduli spaces Ux
is independent of the choices of O(1). (ii) When ¢ # 0, we can choose
O(1) such that all the numbers n¢, ng and r(F)¢ (for all possible
1 # ro) are not integers (we call such O(1) a generic polarization,
its existence is an easy excise). Then, for any E € Ux \ U5 (i.e. non-
stable sheaf), the sub-sheat F' C E of rank (r1,73) with paru,,(F) =
par i, (F) must have r; = ro.

When X is a connected nodal curve (irreducible or reducible) of
genus ¢, with only one node xg, let 7 : X — X be the normalization
and 7! (o) = {21, 22}. Then the normalization ¢ : P — Ux of Uy is
given by moduli space of generalized parabolic sheaves (GPS) on X.

Recall that a GPS (F, Q) of rank r on X consists of a sheaf E on X,
torsion free of rank r outside {x1,x2} with parabolic structures at the
points of I (we identify I with 771(I)) and an r-dimensional quotient

E, ®E,, % Q—0.

The moduli space P consists of semistable (F, Q) with additional
parabolic structures at the points of I (we identify I with 7—!(I))
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given by the data w = (1, x, {7(z), d(z)}zer, O(1), k) satisfying

ZZd z) 4 rl = kY

zel i=1

where d;(z) = a;11(z) — ai(z), X = x + 7, { =k + ¢ and the pullback
7*O(1) is denoted by O(1) (See [9] and [10] for details).
Definition 2.18. A GPS (F, Q) is called semistable (resp., stable), if

for every nontrivial subsheaf £ C E such that E/E’ is torsion free
outside {z1, x5}, we have, with the induced parabolic structures at

points {x}.er,

dZTn(QEl) < T(E/) . pCLTXm(E) — dlm(@)

) (resp., <),

parxm(E') —
where Q¥ = q(E,, ® E,,) C Q.

When X isirreducible, let P denote the polynomial P( ) = crm+X,
W =O(=N) = O(1)~" and V = C”™). Consider the Quot scheme

T-flat quotients VoW — E — 0 over
X x T with x(E,(m)) = P(m) (V t € T)}
and let Q C Quot(f/ ® )7\7, P) be the open set
o) { VoW — E—0, with R'pr.(E(N)) =0 and}

Quot(V ® W, P)(T) = {

V ® Or — pr E(N) induces an isomorphism

Let Q be the closure of Q in the Quot scheme, Vow = F — 0 be
the universal quotient over X x Q and F, be the restriction of F on
{z} x Q = Q. Let Flags(z) (f ) = Q be the relative flag scheme of
locally free quotients of type 7i(x), and

R = XQFlagﬁ(x)(ﬁx) — Q, R =R X~ Grassr(fx D ]::,32)
zel

A (closed) pomt (p, {p,,l(x cois Pry, (@) Yol Qs) OF R/ by definition is given
by a point VoW L E — 0 of the Quot scheme, together with the
flags of quotients

{E: = Qry0) = @ry @) > = Qra(w) > @ri@) — Otaer
and a r-dimensional quotient F,, @& E,, 4 Q — 0, where Pri) -
VAW B E > E, = Quu & = Quuand g : Vaw 5
E—FE, ®F, 2 Q. Choose N large enough so that every semistable
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GPS (E, Q) with x(E(m)) = P(m) and parabolic structures of type
{7i(z) }zer with weights {a@(z)}.er at points {z}.e; appears as a point
of R'. For large enough m, we have a SL(V)-equivariant embedding

R < G = Grassp,, (V ® Wy,) x Flag x Grass,(V @ W,,),
where W,,, = H'(W(m)), and Flag is defined to be
Flag = I_I{GmssT1 (V Q Wp) X -+ X Gmss%(x)(v Q@ W)t

zel

which maps a point (p, {pr, (), .- Pry, (2) Jael> ) = (‘N/ WL E,

{V ® W e Qm(x)v ’ V ® W e Qm }IGD ‘7 ® W Q_s> Q)
of R’ to the point (g, {gr(2): -+ Iy, (@ }z€[7gg> = (\N/ QW,, L U,
(VoW 2% Uy s VO W —=5 Up oy baer, VO Wi 25 T,)
&@wMW—me»U:mw<»%m:mmmm»
Uri(z) == H(Q,, @) (t=1,..,0), 9¢ .= H %(qs(m)), U, := H*(Q) and

7i(2) = dim(Qr,(z)). Given G’ the polarisation
(0 + keN)
AL d e d k.
c(m— N) X ;!;I]:{ 1(I)7 > h(l’)} X
Then, by the general criteria of GIT stability, we have

Proposition 2.19. A point (¢, {9, (2): --» 9, (2) }ae1> 9a) € G’ is stable

(respectively, semistable) for the action of SL(V'), with respect to the
above polarisation (we refer to this from now on as GIT-stability), iff

for all nontrivial subspaces H C V' we have (with h = dimH )

e(H) :w(hlg(m) — P(N)dim g(H @ Wy,))+
(m =)
ZZd (2)h — P(N)dim gy, () (H ® Wi))

+ k(rh — P(N)dim go(H @ W,,)) < (<)

0.

Lemma 2.20. There exists My(N) such that for m > M;(N) the
following holds. Suppose (p, {Dr(x)> Pri(2)» -+ Pry, () Yol 4s) € R’ is GIT-
semistable, then for all quotients E K Q — 0 we have

( (G)(€ + keN) +ZZd )hO( Qg(z))) + h(Q9).

zel i=1

Prl»—k

R(G(N)) =
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In particular, V. — HY(E(N)) is an isomorphism and E satisfies
the following conditions: (1) the torsion Tor E of E is supported on
{z1,29} and q : (Tor E),, @ (Tor E),, — Q, (2) if N is large enough,
then HY(E(N)(—x — 21 — x3)) = 0 for all E and z € X.

Proof. Let H = ker{V "2 gop(ny) I go(G(n))} and
F C E be the subsheaf generated by H. Since all these F' are in a
bounded family, there exists an integer M;(NN) such that dim g(H ®
Win) = HOE(m)) = x(F (), gy (H © Win) = B(QF ) (¥ 2 € 1)
and dim go(H @W,,) = h°(QF) for m > M](N). Then, by Proposition
2.19 (with h = dim(H)), we have

h = x(F(N))

c¢(m— N)

+ZZdZ ) (ri(@)h = POVRYQE(,))) + k(rh — PINAY(QT)).

By using h > P(N) = h%(G(N)). r = r(F) > r(G). ri(x) = i°(Qf](,)) >
hO(QZ(I)) and 7 — h9(QF) > h(QY), we get the inequality

h—x(F(N)) _ e(H)
k(m — N)c kﬁ(N)

k(( )(£ 4 keN) +ZZd (2)h*(QY )

zel 1=1

e(H) = (0 + keN)(rh — r(F)YP(N)) + (£ + keN)P(N)

W (G(N)) 2(£ + keN) Q%)+

For given N, the set {h — x(F(N))} is finite since all these F are in a
bounded family. Let x(N) = min{h — X(F(N))} If x(N) >0, then

hY(G(N)) > k(( )(€ + keN) +ZZd (2)h*(QY )

zel i=1
H
ooy — <UD
kP(N)
When x(N) < 0, let Mi(N) > max{M{(N),—x(N)({ + keN) + cN}
and m > M;(N). Then, since e(H) < 0, we have

K(G(N)) > %( (G)(£ + keN) +ZZd Q. >+h0(Qg).

Now we show that V — H°(E(N)) is an isomorphism. The injectiv-

ity of V LACCIIN H°(E(N)) is easy to see. To see it being surjective,
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it is enough to show that one can choose N such that H'(E(N)) =0
for all such E. We prove H'(E(N)(—z1 — x5 —)) = 0 for any r € X.
Otherwise, there is a nontrivial quotient E(N) — L C wg(z1+ 22+ )
by Serre duality, and thus
ho(wg (21 + @5 +2)) > B°(L) > N + B,
where B is a constant independent of E, we choose N such that
HY(E(N)(—z1 — z9 — x)) = 0 for all GIT-semistable points.
Let 7 = Tor(E), G = E/7, note h°(G(N)) = P(N) — h°(7) and

W(QF ) = rilx) = Q). h(Q7) =7 —1(Q")

then the inequality in Lemma 2.20 becomes

khO(1) < kh°(QT) +ZZd QL)
zel i=1
<kRY(QT) + ) (a1, 11(x) — ar (@) (7s).
xel
Thus 7 = Tor(E) is supported on {x,z2} (since a;,+1(x) — a1 (x) < k)
and E,, & E,, % Q induces injection 7,, & 75, — Q. l

Notation 2.21. Let # C R’ be the subscheme parametrising the
generalised parabolic sheaves E = (FE, E,, ® E,, - Q) satisfying the
condltlons (1) and (2) at the end of Lemma 2.20. Then, if R (resp.
R ) denotes the open set of R/ consisting of the semistable (resp.

stable) GPS, then it is clear that we have open embedding
R S HoTR.

Proposition 2.22. Suppose (p, {pr, (), ...,pmw(x)}xg, qs) € H is a point
corresponding to a GPS (E, Q). Then (E, Q) is stable (resp. semistable)
iff for any nontrivial subsheaf F' C E we have

{+ keN ~ ~

S(F) = o O E () Plm) = PONX(F(m)+

S°3 " du@) (@)X (FV)) — BV (@QF )

zel =1

+k(rx(F(N)) = P(N)R*(Q")) < (resp. <)0.
Proof. The point corresonding to a quotient Vew L E -0 with
{E:E - erx(x) - an_l(x) s T Qrg(a:) - Qm(a:) - O}mel
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and £, B E,, N Q — 0, where ¢, : V@W—) E, ®FE,, 4 @ — 0 and
Priw) : VOW S E — Ep — Qo) =+ = Q). For F C E such
that F'/F is torsion free outside {x, 25}, we have the flags of quotient
sheaves

{F>Fo> Q)™ Qi) Qroe) = Q) ~ Oaer
Let nf'(z) = hO(QZ(x)) — hO(Qi,l(x)) and F' have rank (ry,r2). Then

lz+1

o
ZZdi(x)m = TZG;Z_H Z Zaz
zel i=1 zel zel =1
ZZd ho QF —Tl Zalzﬂ(a:) + 79 Zalz+1(x)
zel i=1 xely xels
lx+1
- Z Z a;(z)nf
zel =1

Thus we have

S(F) = kP(N) e
— r(f) <X(E> - r— %Z Z dl(x)ﬁ<l')>
— P ar im(OF parxm(E) — dim(Q)
= kP(N) (p X (F) — dim(Q") — r(F) r(E) )

(E,Q) is semi-stable (resp. stable) iff s(F) < 0 (resp. s(F) < 0) for
nontrivial /' C F such that E/F torsion free outside {xy, z2}.

For any nontrivial subsheaf F' C FE, let 7 be the torsion of E/F
and F' C E such that 7 = F'/F and E/F’ torsion free. If we write

T =T+ Ty + Ty + D cs To» then
S(F) = s(F') = — kP(N)R"(F) = P(N) Y "(k — a1 (x) + ay(2))h(7,)

zel

— P IS di(@) (10(r) + KQF ) — hAQE )

— kP(N)(R"(2,) + RO (12,) + R2(QT) — hO(Q™)).

Since h°(7,) +h(Q[ ) — hO(QSI)) >0 and h°(7,, & 7p,) + h(QT) —
hO(QF') > 0, we have s(F) < s(F') and s(F) < s(F')if 7+, ;7o # 0.
Thus stability of (£, Q) implies s(F') < 0 for any nontrivial F C E. O
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Proposition 2.23. There exist integers N and M(N) > 0 such that
form > M(N) the following is true. A point

(E> Q) = (pa {prl(:r)a ooy Pry ()5 QS}:UEI) eR
is GIT-stable (respectively, GIT-semistable) if and only if (E, Q) is a

stable (respectively, semistable) GPS such that V. — H(E(N)) is an
isomorphism and (p, {Pr,(z); -+ Pr, (2)» Us }ec1) € H.

Proof. If (p, {pri(a)s > Pri, (2) Jael» Us) € R’ is GIT-stable (GIT-semistable),
by Lemma 2.20, V — HY(F(N)) is an isomorphism and

(pa {prl(m)v ooy Pry (2)5 QS}JEGI) €EH.

For any nontrivial subsheaf F© C E such that E/F is torsion free

outside {z1, x5}, let H C V be the inverse image of HO(F(N)) and
h = dim(H), note h'(F(N)) > h*(F(m)) when m > N, we have

X(F(N))P(m) — P(N)x(F(m)) < hP(m) — P(N)L(F(m)).
Thus s(F) < e(H) since dim g(H ® W,,) < h°(F(m)) and
dim gy, () (H @ Wy) < h(Qf (),  dimga(H @ W) < h(QF)

(the inequalities are strict when h = 0). By Proposition 2.19 and
Proposition 2.22, (E, Q) is stable (respectively, semistable) if the point
is GIT stable (respectively, GIT semistable).

There i§v Ni > 0 such that for any N > N the following is true. For
any VeoWw L E — 0 with semistable GPS (E,Q), the induced map
V — H°(E(N)) is an isomorphism and (E, Q) € H.

Let H C V be a nontrivial subspace of dim(H) = h and F C E be
the sheaf such that F(N) C E(NN) is generated by H. Since all these
F are in a bounded family (for fixed N), there is a M;(N) such that

dim g(H @W,,) = h°(F(m)) = x(F(m)), dimge(H@W,,) = h*(Q")
and g, (H @ Wp,) = hO(QTFi(x)) (V z € I) whenever m > M;(N),
which imply that

{+ kem ~

mP(N) (h = Xx(F(N)))-

If H'(F(N)) = 0, we have e(H) < s(F) since h < h°(F(N)). Then
e(H) < s(F) < (resp. <)0 by Proposition 2.22 when (F, Q) is stable
(resp. semistable). If H'(F(N)) # 0, by Lemma 2.11, we have

e(H) = s(F) +

reN + X

WO(F(N) < 2

(r(F)—1)+ A
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where A is a constant. Putting h < h°(F(N)) and above inequality in

e(H) =P(N) <kh — ((+ keN)r(F) + (€ + kd\g%)

ZZd (QF ) — kP(N)R(Q™),

zel =1

then, let C' = k|x| + (JA| + |¢|)r, we have

5 h — x(F(N))
H) < P(N) | —kcN {4+ kcN)—F————— ).
e() < (V) (et 4 € ¢ (¢ ko) XECE
Choose an integer Ny > Nj such that —kcNy 4+ C < —1. Then, for any
fixed N > Ny, there is an integer Ms(N) such that for m > My(N)

h — x(F(N))

c¢(m—N) <1

(£ + kcN)

for any H C V', which implies e(H) < 0 and we are done. O

Theorem 2.24. When X is irreducible, there exists a (coarse) moduli
space P* of stable GPS on )A(i, which is a smooth variety. There is an
open immersion P® — P, where P is the moduli space of s-equivalence
classes of semi-stable GPS on )?, which is reduced, irreducible and
normal projective variety with at most rational singularities.

Proof. Let P* := R //SL(V) and P := R’ //SL(V) be the GIT
quotlent When (E Q) is a stable GPS, F must be torsion free. Thus
R’ is a smooth variety, so is P*. By Proposition 3.2 of [9], H is reduced,
normal with at most rational singularities, so are R cHandP. O

The above construction also works for the case when X = X 1 U Xs
is a disjoint union of two irreducible smooth curves. However, for later
applications, we need to use a different quotient space R. Let y; and
X2 be integers such that y; + xo — r = x, and fix, for ¢ = 1,2, the
polynomials P;(m) = ¢;rm + x; and W; = Ox,(—N) where Oy, (1) =
O(1)|x, has degree ¢;. Write V; = CPV) and consider the Quot schemes
Quot(V; @ Wi, P;), let QZ be the closure of the open set

Vi@ W; — E; — 0, with H'(E;(N)) = 0 and
Vi H O(E;(N)) induces an isomorphism
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we have the universal quotient V; @ W; — F* — 0 on X; X Ql and the
relative flag scheme

Ri = X@Flagﬁ(z)(f;) — Qz

z€l;

Let F = F' @ F? denote direct sum of pullbacks of F*, F2? on
X x (Ql X Qz) = (X7 X 61) L (Xa x Q2)
Let &€ be the pullback of F to X x (Ry x Ry), V =V, @& V3 and
PR = Grass,(E,, ®E) > R =Ri X Ry = Q :=Q, x Q,.

Note that Vi oW, & Vo @ Wy, = F = 0is a Ql Q2 flat quotient
with Hilbert polynomial P(m) = Pi(m) 4+ Pay(m) on X x (Q, X Q,),
we have for m large enough a G-equivariant embedding

Q1 X Q2 — GrassP (V1 QW e Voo Wi,
where W™ = HO(W;(m)) and G = (GL(V1) x GL(V3)) N SL(V). More-

over, for large enough m, we have a G-equivariant embedding
R — G = Grassls(m)(v ® W,,) x Flag x Grass,(V @ W,,)
(Warning : V @ W, :== V; @ W» & V, ® Wy"), which maps a point
(P =1 ® P2 {Pri(2)> -+ Pry, (@) YD s) € R,

where V,@W; 25 E; — 0, (Vi@ W)@ (Va@W,) 22 | .— B ¢ B,
denotes the quotient on X = X; L X5 and

{Mew)e (Va@Ws) ——
(VioW) @ (Vo @ W) %5 @ denotes the surjection of sheaves
gs: (VieaW1) @ (Va@Ws) = By, @ By, = Q — 0,
to the point (g, {gr(w)s -+ Gry, (@) baets 9a) = (V @ Wi 5 U,

pTz(z)

Qn(m) — 07 1<:1< l;r }xEIa

Irqi(x) lz( =)

{‘7®W — Url(x : V®W rlx(w)}xela ‘7®Wm 9_G> Ur)
of G, Where g = Ho(p(m))a U := H0<E<m>)7 Iri(z) = HO(prl(x)(m))a
Uri(z) = (Qr @) (t=1,..,1), 96 == H°(gs(m)), U, :== H°(Q) and
7i(2) = dim(Qr,(z)). Given G’ the polarisation
f L+ keN k:cN
< [[{ea(x), - . di,(x)} x k.
zel

Then we have criterion (see Proposition 1.14 and 2.4 of [2])
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Proposition 2.25. A point (9, {gr(x), > Gri, (x) }oel, 9a) € G is stable
(semistable) for the action of G, with respect to the above polarisation,
iff for all nontrivial subspaces H C ‘7, where H = Hi ® Hy, H; C 'V}
(i=1,2), we have (with h = dimH, H .= H;, @ W™ & Hy @ Wi*)

(+keN [ .
le
+ 3D diw) (rile)h = P(N)dim g, (H))

+k <rh — B(N)dim ggufz)) < (<)o.

The Lemma 2.20 and Proposition 2.22 (thus Proposition 2.23) are
also true for the case X = X; U X,. Thus we have

Theorem 2.26. When X = X, U X,, there exists a (coarse) moduli

space P* of stable GPS on )?, which is a smooth scheme. There is an
open immersion P* < P, where P is the moduli space of s-equivalence
classes of semi-stable GPS on X, which is a disjoint union of at most
r + 1 irreducible, normal projective varieties with at most rational sin-
qularities.

Proof. For any x; and y» satisfying x; + x2 = x + r and
ny <x1<nf+r, ng <xa<ny+r,

=R"//G, Py =R /)G and

P? = |_| Plive: Pi= |_| Pyt xa-

X1+Xx2=x+7r X1+x2=x+r

let P

X1, X2

Then P}, ,, are smooth varieties and Py, ,, are reduced, irreducible

and normal projective varieties with at most rational singularities. [

3. FACTORIZATION OF GENERALIZED THETA FUNCTIONS

The moduli spaces Ux := Ux(r,d, O(1),{k,7i(x),d(x)}rcr) is inde-
pendent of the choice of O(1) when X is irreducible. However, when
X = X jUXy, the moduli spaces Uy := Ux (r,d, O(1),{k,7i(z),d(x)}zrer)
depends on the choice of O(1) (more precisely, it only depends on the
degree ¢; of O(1)|x,). We will require in this section that

X e it di(@)ri(2)

(3.1) (:

is an integer.



FACTORIZATION OF GENERALIZED THETA FUNCTIONS REVISITED 25

When X is irreducible, for any divisor L = {,z, of degree £ on X
(supported on smooth points), there is an ample line bundle

Oux,r = O(r,d, {k,ii(x), d(x)}zer, L)

on Uy, which is called a theta line bundle on Uy. We are going to
define it as follows.

By a family of parabolic sheaves of rank r and Euler characteristic
x with parabolic structures of type {7(z)}.cr and weights {@(x)}.er
at points {z},e; parametrized by T, we mean a sheaf F on X x T,
flat over T', and torsion free with rank r and Euler characteristic y on
X x {t} for every t € T, together with, for each = € I, a flag

Flayxt = QatxTilo+1 = QatxTie = LatxTlo—1 = =+ = Qpaixr,1 — 0
of quotients of type 7(z) and weights @(x). We define © x 1, to be

Iy
(detRmpF) ™% ® ®{® det(Q{x}XT,i)di(m)} ® ® det(]:{zq}xT)eq
q

zel =1

where 7 is the projection X xT — T and det RmpF is the determinant
of cohomology: {det RrrF}; := det HY(X, F;) @ det H (X, F;)~'. We
have the following theorem (see [6] for r = 2 and [7] for r > 2):

Theorem 3.1. Let X be irreducible and L = Zq lyzq a divisor of degree
¢ supported on smooth points of X. Then there is an unique ample line

bundle Oy, 1 = O(r,d,{k,7(x),d(x)}rer, L) on Ux such that

(1) for any family of parabolic sheaf F of rank r and degree d
parametrised by T, with parabolic structures of type {7(z)}per at
points {x}.er, semistable with respect to the weights {d(x)}zer,
we have 970y, 1 = OF, 1, where ¢p : T'— Ux s the morphism
induced by F.

(2) for any two choices L and L', Oy 1, and Oy 1 are algebraical-
ly equivalent.

Proof. (1) Let € be the universal family on X x R*, then the line
bundle ©¢ 1, on R**, which was defined as

lz
(detRrrrs+E) ™ @ (R det(Qpaywres,i) ™} @ (X) det(Egzpxres)

zel =1 q

descends to the line bundle Oy, 1 on Ux (see [7] for the detail).
(2) Let XY C X be the open set of smooth points and Ly = L — z,
where z is a point in the support of L. It is enough to show that O,
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is algebraically equivalent to Oy, 1,4, for any y € X°. To prove it,
note that X% x R% — X% x Uy is a good quotient and the line bundle
Trss (O, 1 @ det(E,) ™) @ det(€)
descends to a line bundle £ on X° x Uy such that
Llaxux = Oux.n,  Lliyyxuy = Ouy, Loty

i.e. Oy, 1 and Oy, 1,4+, are algebraically equivalent.
The ampleness of Oy, 1 follows the ampleness of Oy ¢, Which is
the descendant of restriction (on R**) of the polarization (Notation

2.5) if we choose O(1) = O(cy). O
When X = X; U X,, we choose O(1) = Ox(c1y1 + cay2) such that
7
(3.2) A i =1,2) are integers.

Cl+02

Then the following theorem can be proven similarly (see [10] for the
detail).

Theorem 3.2. Let X = X; U X5 and L; = quXi lyzq be a divisor of
degree {; supported on X; \ {zo}. Then there is an unique ample line
bundle Oy 1+, = O(r,d, {k,7(z),d(x)}rer,un, L1 + L2) on Ux such
that
(1) for any family of parabolic sheaf F of rank r and degree d
parametrised by T, with parabolic structures of type {7(z)}per at
points {x}.er, semistable with respect to the weights {d(x)}zer,
we have ¢7Oyy 1,41, = OF 1,+1,, Where ¢p : T — Ux is the
morphism induced by F.
(2) for any two choices Ly + Ly, Ly + L, Oyy 1,11, and Oy 11411
are algebraically equivalent.

Remarks 3.3. (1) When X is irreducible, the map £ — E® Ox(+y)
induces an isomorphism (¢ — ¢+ k)
flUx(r,d, {k,i(z),d(x)}eer) = Ux(r,d £ 7, {k,7(z),d(x)}ser)
such that Oy, 1ary = [*Ouy, 1 for the divisor L = 3° (,z, of degree (.
(2) If £ #0, for any L = 3 o 42, of degree £, then Oy, 1 is the
descendant of restriction (on R**) of the polarization (Notation 2.5) if
we choose O(1) = O(3_, |e'#zq) where ¢ = |{|.

In the rest of this paper, we will fix a smooth point y € X (and
y; € X; when X is reducible), and choose

L="{y+ Zozxx, Li=14,y, + Zamx (i=1,2).

el zel;
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This choice determines, when X is irreducible, the theta line bundle
Ouy = O(r,d, {k,7i(x),d(x), oy trer, ly)

where £, + >, a, = {, and it determines, when X is reducible,

@L{X = @(T, da {k7 ’fl:(l'), Ei(l'), Ofx}xthIQ;Eyl)ng)

where £, + 37, a, ={; (i =1, 2).

Now we are going to state the factorizations proved in [9] and [10].
Firstly, let X be an irreducible projective curve of genus g, smooth
but for one node zy. Let 7 : X — X be the normalization of X, and
71 (xg) = {x1,72}. Let I be a finite set of smooth points on X and
y € X be a fixed smooth point. Given integers d, k, 7, {a }zer, 4y,

d(x) = (al(x)v a2($)a e 7alz+1($))
ii(z) = (ni(z),na2(x), -+ 1, 41())
satisfying €, + ., o, = £ and
0<a(zr) <ay(z) <---<a,u(x) <k (xel).
Recall that ¢ is defined by

(3.3) > Zd Y4+l =k(d+r(1—g)) =k

zel i=1
where d;(x) = a;11(x) — a;(x) and r;(x) = nqy(z) + -+ - + ng(x).

Let Ux be the moduli space of (s-equivalence classes of) parabolic
torsion free sheaves of rank r and degree d on X, with parabolic struc-
tures of type {7i(x)}.er at points {z},cs, semistable with respect to
the weights {a@(z)}.er-

For = (py,--+ ,pbr) with 0 < p, < -+ < g <k —1, let

{dl = My, — /er‘-i-l}lﬁiﬁl

be the subset of nonzero integers in {p; — pti+1}iz1,... r—1. We define
Ti(%) =Ty di($1) =di, Iz =1, oz =y
Ti(@) =T —=Ti—i+1, di(ﬂiz) =diiv1, lepy=1 az=k—
and for j = 1,2, we set

lz -1

6(3:]>: MT:MT+d1(x] R s Zd Z'] Mr+zd J}'j

ni(x;) = (ri(x;), ra(w) —riag), - v, (25) — i - (25), 7 = 1, (25))
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Let L{;i( be the moduli space of semistable parabolic bundles on X
with parabolic structures of type {7i(2) }zerufey 20} at POINtS {2} scru(e, 20
and weights {@(x)}zerufa; 20}, and let

@M;i( = @(T7 d7 {k7 ﬁ(ZE), 6([E), aw}xelu{xl,xg}a Ey)
Then the following is the so called Factorization Theorem I

Theorem 3.4. There exists a (noncanonical) isomorphism

HO(Z/{X> 61/1)() = @ HO(U;’Z? @Z/{;)
m

where pr = (p, -+, pr) Tuns through 0 < p, < -+ < py <k —1.

When X = X;UX,, I =1, UL, X = X; U X, is the disjoint union
of smooth projective curves X; and X,. Recall that

Ouy = O(r,d, {k,n(x),d(x), oy twerury, by s Lys )
where £, + > ., o, = {; (i = 1, 2), are the theta line bundles on
Ux =Ux(r,d,O(1),w).
For = (py,- -+, pbr) with 0 < p, <-++ < g < k — 1, we define

¥:%<T€1+sz )‘F%;Mi:ﬁf“‘%;m

zel; i=1

_<rez+zzd ) N O

xely =1

One can check that the numbers satisfy (j = 1, 2)

Iz
(3.4) Z Zdz(x)m(x) +r Z oy +1ly, = kXY
CEEIjU{Ij} 1=1 CEEIjU{Ij}
Let wé'l = {k>ﬁ(x)76(x)}fﬂ€1jti{fﬂj} (1=12), d? = X? +7(g; — 1) and
Uy, == Ux, (r,d},wy)

Y j )
be the moduli space of s-equivalence classes of semistable parabolic
bundles E of rank r on X; and x(E) = X? , together with parabolic
structures of type {7i(2)}serufz;} and weights {@(x)}zeruge,) at points
{7} eerufa;y- We define L{“‘ to be empty if x/ is not an integer. Let

@Z/{f{j = @(7’, dga {ka ﬁ(l’), 6(1‘), ax}wélju{xj}a gy]')

then we have Factorization Theorem 11
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Theorem 3.5. There exists a (noncanonical) isomorphism

HO (U0, Oux,x,) = €D H U, Oup ) ® HOUY,, Oy )
12

where = (pi1, -+ , fy) Tuns through 0 < p, < -+ < g <k — 1.

4. INVARIANCE OF SPACES OF GENERALIZED THETA FUNCTIONS

For a smooth projective curve C' of genus g > 0 and a finite set
I, C C of points, to compute the dimension of H%(Uc, ©y.), we take
a family {(X;, I;) hier of curves with parabolic data such that

(X1, ) = (C, I)

is the curve C' with given parabolic data and (Xo, Ip) = (X, ) is an
curve X with one node and parabolic data. If dimension of the spaces
H O(Uxt,@uxt) is invariant, we can reduce, by using Factorization
Theorem I, the computation of dimension for a genus g curve to the
computation of dimension for a genus g — 1 curve. Then, by the same
procedure and using Factorization Theorem II, we can decrease the
number of parabolic points.
In order to prove the invariance, we proved in [9] that

H'(Ux,Oy,) =0

when X is an irreducible curve of g > 3 with at most one node (which
implies the invariance for g > 3). We recall in this section the proof of
vanishing theorem for smooth curves and remark that our arguments
in [9] in fact imply the invariance for any smooth curves X, :== X

Let X be a smooth projective curve of genus g. Fix a line bundle
O(1) on X of deg(O(1)) = ¢, let X = d+ r(1 — g), P denote the
polynomial P(m) = crm+¥, Oz(-N)=0(1)Nand V = CP). Let
Q be the Quot scheme of quotients

VeoOz(-N)—=F =0

(of rank r and degree d) on X. Thus there is on X x Q a universal
quotient V ® Oz, 5(—N) — F — 0. Let F, be the sheaf given by

restricting F to {z} X Q, Flagz)(Fz) — Q be the relative flag scheme
of type 7i(x) and

7% = XQFlagﬁ(x)(fx) — Q

zel

Let ﬁp denote open set of locally free quotients and

V®0)~(Xﬁ(—N) —>f—>0
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denote pullback of the universal quotient V ® Oz, 5(—N) = F — 0.
The reductive group SL(V') acts on R.
For large enough m, we have a SL(V')-equivariant embedding
R G= Grassp (V@ W) x Flag,
where W,,, = H(O%(m)), and Flag is defined to be
Flag = H{GTGSSm YV @Wy) x -+ x Grass, @) (V& Wy)}.
el

For any given data w = {k, 7(z),@(x)}per, £ is defined by

(4.1) ZZd x) + 1l =k(d+7r(1 - §) = kY,

rzel =1
w determines a polarisation (for fixed O(1)) on G:

€+k:cN " H{d1 ().

zel

The set R C Ry of GIT semistable (resp. stable) points for the
SL(V) action under this polarisation is precisely the set of semistable

(resp. stable) parabolic bundles on X of the type determined by the
given data. Its good quotient L{ % ., 18 our moduli space and

Og. = (det R, F) " @(QQ{ (det F,) %®® (det Qu5)" Y@ (det F,)

zel
where Ey + D e Va = ¢, descends to an ample line bundle O, on
Uz . To prove H'(Ux Ou, ) =0, we need essentially the following
codimension estimates:

Proposition 4.1 (Proposition 5.1 of [9]). Let |I| be the number of
parabolic points. Then

(1) codim(R** \ R*) > (r = 1)(§ — 1) + {1,

(2) codim(Rp\R*) > (r—1)(g— 1)+ 2[1].
Proposition 4.2 (Proposition 2.2 of [9]). Letwg = O5(3_q) and wg,
be the canonical sheaf of X and Rp respectively. Then

:(det R?T,R —2r (9 ® { detf' Nip+1—T ® ® d@t Q )TLZ +n1+1(:(:)}
=1

zel

F

®® (det F)' " @ (det F,)* =72 @ Det*(0,2)
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where Det : Ry — J;i( is the determinant morphism and ©, is the theta
line bundle on J;l?.

The following result due to F. Knop is essential in our arguments,
whose global form was formulated in [6].

Lemma 4.3 (Lemma 4.17 of [6]). Let X be a normal, Cohen-Macaulay
varirty on which a reductive group G acts, such that a good quotient
m: X — Y exists. Suppose that the action is generically free and
dimG =dim X —dimY . Suppose further that

(1) the subset where the action is not free has codimension > 2,
(2) for every prime divisor D in X, (D) has codimension < 1,
where D need not be invariant.

Then wy = (W*wx)G where wyx, wy are the respective dualizing sheaves.

Theorem 4.4 (Theorem 5.1 of [9]). Assume (r—1)(g—1) + £[I] > 2.
Then, for any data w such that ( € Z, we have
H'(Us.,,Ou, ) =0.
Proof. Note that, on good quotient I/ %00 WE always have for any ¢ > 0
H' Uz, Ou; ) = H (R, O, )™

) MRS

7w’

By the assumption and Proposition 4.1, we have codim(Rp \ RE) > 2.
Thus H' (R, G)ﬁis)m” = H'(Rr,05,)™, where

o i
Oz, = (det Rr, F) @@ (det ) @(R)(det Q,,)* ) }@(det )"

zel i=1

with £, + Y ower Mz = (. Let J = J;i( be the Jacobian of line bundles of

degree d on X , L the universal line bundle on X x J and
0, = det(Rm;L) ' ® £;l+1—§‘
The line bundle det(F) on X x R induces (for any data &)
Det: Rp —J, Det:Us  —J
such that det RﬂﬁFdetJE = Det"(det(Rm;L)). Then we can write

Oz, ® w%; =0, ® Det*(@z’,)_2
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lz —
05 =(det Rnz F) " o X) {(det Fo)% ® ®(det Qx,i)dw}

zel

® (detF,)" ®® (det F,)' ™" @ (det F,)r—D-2)

where k =k + 2r, a, = a, +n;,41(z) —r, £, =2X + gy and

koni(x),a(2)}oer with a(z) = (ai(2),as(x), -+, ,41(2))
(2) = a1 (z) —ai(z) (i=1,2, -, 1,). Let

o1 RY = RY//SL(V) = Ug(r,d, @) = Us o,

Let w =

{
such that d;

there is an ample line bundle ©; on Uz  such that éw = %0, since

g_ - ]%% — Zze[ ZiI:1 sz(x)rz(x)

= {27 =7l + Y ()

zel
is an integer. Then we have @RSS VE (0 @ Det*(©,) ) ® wzss and
( o ﬁE}S)mfu _ ( - ® Det* ( ) ) (9 (ww*wﬁf;)inv.
Since codim(Re \ RE) > 2, conditions in Lemma 4.3 are satisfied and

= Wiy

)inv
X, @

(Voo
Then, since Oy ® Det*(0,)~? is ample by Lemma 5.3 of [9], we have
Hl(Z/{)} s @”;?,w) = Hl(um, Oz ® Det*(0,) ? ® wu)a@) =0.
0
The idea of the proof is to express Hl(wa, @Ui,w> by
HY (M, L ® wy)

such that £ is an ample line bundle, where M is another GIT quotient.
In this process, we need essentially the equality

Hl (ﬁfus’ @ﬁF)mv — Hl(ﬁp, @ﬁF)inv
which perhaps holds unconditional. In fact, we have the following
Conjecture 4.5. For any data w satisfying (4.1) and any i >0
(4.2) H'(R,05,)™ = H(Rp,0z,)™,
where O  1is the polarization determined by w.

Then the proof of Theorem 4.4 implies the following
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Corollary 4.6. Assume the Conjecture 4.5 is true. Then, for any data
w , we have, for any i >0,

H' (Z/{X w7@u~ ) = 0.
Proof. For any data w = {k,7(z), d(z)}.er, we choose
W(I/) = {k7ﬁ(x)7 6<$)}IEIUI’

such that (r —1)(g — 1) + ‘,ﬁé;‘ > i+ 2. Note that the projection

pr: R(I') = X&, Flagsq) (Fe) = Rp = X &, Flagag) (F)
zelul’ zel

is a Flag bundle and SL(V')-invariant. By Conjecture 4.5, we have
Hi(u)?yw’ @L{~ ) — H'L(rfézs’ @ﬁF)zm)

X, w

= H'(Rr, O5,)" = H(R(I'), p;(O,)) ™.

Write p7(0z,) ® wzl =0,® Det*(©,)~2, then we have

R(I')

Ly )
Op =(det Rng, F) " @ X {(det Fo)™ @ Q) (det Qm-)di(z)}

xelul’ i=1

® (detF,) @ R)(det F,)' ™" @ (detF,) T2
Yy q
q

where k = k4 2r, a, = a, +ny, 1 (z) —r, £, =2X + £, and
(2) = di(x) + ni(@) + nipa (2)

d;
(we define a, = 0, d;(z) = 0whenz € I'). Let o = {k,7(x),a(z)}perur
with @(z) = (a1(x), as(x),- -+, @y, 41(x)) such that

dl(l’) = C_Li+1(flf) — C_Lz(l'), (Z = ]., 2, LN lx)

Let 7%(1”)35 C ﬁ([’) be the open set of GIT semi-stable points (respect
to the polarization defined by @), then

Hi(u)?,wﬂ @u)?,w) — Hi(ﬁff, @ﬁp)mv _ H%ﬁp, @ﬁp)mv
= H'(R(I'),p}(07,)™ = H(R(I')*,p;(0,))"™"
the last equality holds since, by (2) of Proposition 4.1, we have

(LU J]|

codim(R(I') \ R(1)) > r=D@-D+ "

>1+2.
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Let v : 75([’)5‘; — Uz, be the good quotient. Then O descends to an

ample line bundle ©5 on Uy , and (Y.wz I,)Es)i"” = Wy, since
- ~ I
codim(R(I') \ R(1)3) > (r — 1)(5— 1) + u—é]r' > i+ 2

by (1) of Proposition 4.1. Thus we have
(4.3) H' Uz Ouy ) = H'(Us 5, 00 @ Det™(0,) > @ wyyy, )

,w? X,

for any 4 > 0. In particular, H'(Us ,, Ou, ) = 0 for i > 0. O
For ¢ = 0, Conjecture 4.5 is true according to a general fact

Lemma 4.7 (Lemma 4.15 of [6]). Let V' be a projective scheme on
which a reductive group G acts, L an ample line bundle linearizing the
G-action, and V*° C V the open set of semi-stable points. Then, for

any open G-invariant (irreducible) normal subscheme V*° C W C V,
HO(VSS, Z)znv — HO(VV, E)M’L”L)

Corollary 4.8. For any data w = {k,7(x),d(z)}rer) such that ¢ € Z,
the dimension of

H'Us  Ou. )

7UJ’ X, w
is independent of the choices of curve X and the points x € X.
Proof. By the above Lemma 4.7 and (4.3), we have
HO(UX GM)Z,UJ) = HO(UX@,@@@Det*(@y)_Q®wug’m).
The dimension of H°(Us ,, 05 ® Det™(0,)? @ wy, ) is independent

’w7

of the choices of curve X and the points = € X since
Hi<u)‘f7w, @@ ® Det*(@y)ﬂ ® L(Ju)? w) = 0
for all 2 > 0.

5. VANISHING THEOREM FOR IRREDUCIBLE NODAL CURVES

When curves degenerate to a nodal curve X, the invariance of spaces
of generalized theta functions for smooth curves has proved in last
section (See Corollary 4.8). To complete the program, we need the
vanishing theorem H'(Ux, Oy, ) = 0. Its proof was reduced to prove a
vanishing theorem on the normalization P of Ux.

Let X be a connected nodal curve of genus g, with only one node z €
X, let m: X — X be the normalization of X and 77 (x¢) = {z1, z2}.
The normalization ¢ : P — Ux of Ux is given by moduli space of
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semi-stable GPS (E,Q) on X with additional parabolic structures at
the points of I (we identify I with 7=1(I)) given by the data

w={k,n(z), d(r)}ser

satisfying

ZZd z) +rl=kY

xel =1

where d;(z) = a;41(2) — a;(z), X = x + 1, { = k + £. Recall that
R’ = Grass,(Fy, & Fa,) X R
with the SL(V)-equivariant embedding
R < G = Grassp,,(V © W) x Flag x Grass,(V @ Wy,),

where W,,, = HO(W(m)) and Flag is defined to be
Flag = H{GTGSSm YV @Wy) x -+ X Grass, ) (V& W)}

zel

On G/, take the polarisation (determined by w)

(5.1) k x % < [[{di(x), - di, ()}

Then, when X is irreducible, P := P, is the GIT (good) quotient
bR = P, =R/ /SLV).

There is a open subscheme # C R’ such that R’** C H for any data
w (See Notation 2.21), one of the main results proved in [9] and [10]
is that H is reduced, normal and Cohen-Macaulay with only rational
singularities (so is P). Thus the Kodaira-type vanishing theorem and
Hartogs-type extension theorem for cohomology are applicable.

Let p: R" — R be the projection, V® Oz, ., (—N) = & =0,

{ Epxn = Qayxr o1 = Layxtte = - = Qayx a1 = 0 Jaer
denote pullbacks of universal quotients V ® O, z(—N) — F =0,

{ ‘F{x}xR Q{x}XRl +1 77 Q{x}XRl T Q{x}xﬁ,1 = 0 faer-
Then the restriction of polarisation (5.1) to H is

lz
6} = det(Q)F @ (det Ry (m)) ™ @ {® det<9{xw>di(x)}
xel

i=1
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where &,, ® &, = Q — 0 is the universal quotient on H. If we choose
O(1) = Ox(cy), note that Oy = detRryE(N), we have

(detRmy, &)~ ! = (det&, )N, detRmpE(m) = (deté, )c(mfN)’

0}, = det(Q)*@(det Rry€) *@(X) {@ det(Qpayxr, i)™ }@(detgy)f-

zel =1

We will write @’ = 77]; ® p*éﬁ, where 7, = det(Q) ® det(&,) ™! and

é (detRﬂR ke ® {® det( Q{x}xﬁ l ) (z) } ® (detfy)z

zel =1

The universal quotient &,, & &,, — Q — 0 induces an exact sequence

(5.2) 0= Fy — (m xidy)s€ = ,,Q —0

on X x H, where X x H =% X % H. The sheaf FR,SS

defines
ngS : ﬁfs — Uy = Ux, o,

which induces a morphism ¢ : P = R/**//SL(V) — Ux such that

Ro P

N

Ux

is commutative and ¢*Oy, = @ . Thus @’ o8 descends to an ample

line bundle ©p = ¢*Oy, . In fact there are more general ample line
bundles ©p ,, on P, which are the descendants of

@;:(detRWR, ®®{ (det &;) a”®® (det Qq;)" ’”)}®(det5) ®77];

zel

= 'Oz, (et Q®det &, DL

such that ©p ,, = ¢*Oy, ,, where Zy—i—zxel oy = EN, and Oy, . = Oy L
is determined (cf. Theorem 3.1) by the data w = {k, 7i(z), d(z)}.er and

L="{yy+ Zazx.

zel

By Lemma 5.5 of [9], we have injection ¢* : H (Ux, Oy, o) — H (P, Op ).
Thus it is enough to show H(P,0p ) = 0. Let K be the kernel of

V& O)}Xﬁ,(—N) — & =0,
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and consider 0 = K — V ® Oz, ,,(~=N) — £ — 0. The line bundle
det(K) '@ 0%, 5, (—dim(V)N) on X xH defines Dety, : H — J;i( which
induces the determinant morphism (cf. Lemma 5.7 of [9])

(5.3) Det : P — J2.
Proposition 5.1 (Proposition 3.4 of [9]). Let wg = O(_, q) and

Oy0 = (detRmya £)72 @ L5, ® L3, ® LT @ QL
q

where L is the universal line bundle on X x J;i(. Then we have

wy' = (det Rry&) ™' ®

lz
® {(det &)ttt T ® ®(det Qm,i)”"(xH"i“(x)} ® (det Q)*"

zel i=1

® (det £,) " @ Det;‘_[(@;;).
X

We will prove R'Det.(0p,,) = 0 and H'(J%, Det.Op ,,) = 0, which
imply H'(P,©p ) = 0. To recall the proof of Hl(J;lZ,, Det,©p ,) = 0.

Let 7€’F c R , Rr C R denote open set of locally free quotients, for
H = ([1’17"' nur) WlthOSur S S,ul Ska let

{di = My, — Mr,-+1}1§i§l

be the subset of nonzero integers in {p; — pti+1}iz1... r—1. We define

7’1'(331) =T, T’Z'(.TQ) =T —Ti—it1, lxl = lmQ =

ni(x;) = (ri(x;), ra(wy) —riay), - s, (25) — i, -1 (25)),
ﬁ; = XQF Flagﬁ(x)(fm) £—> ﬁp = XQFFlagﬁ(x)(.Fm).
zelU{z1,z2} zel

Then, by Remark 4.2 of [9], we have decomposition (on Rp)
(5.4) p-(0),) = P r:(©,)
o

= (u1,- -, pr) runs through integers 0 < py < ---p, < k and

Iz
é#:(demﬂﬁ%ﬁ)*k@ Q) {(det F,) @) (det Qi)™ }@(det F,)

zelU{z1,z2} i=1



38 XTAOTAO SUN

dis Loy =1, ag, = fiy, 75(T2) = 1 — 112441,

where 7;(z1) = 14, di(z1) =
L, g, =k — 111 andforj—l 2, we set

di(iUQ) = dl—i+1> lm

lzjfl lzj
a(x;) = | o i+ da(), o e+ Y dilay), e+ di(w;)
=1 =1

It is easy to check that

Z szi(x)ri(a:)+r Z ag +rly, = kX.

zelU{zy,z2} 1=1 zelU{z1,z2}

For the data w" = {k,7(x), @(%) }se1U{z1, 22}, We choose

WN(II) = {k, ﬁ@), ai(ﬁ)}xelu{xl,xg}ul'

such that (r —1)(g —1) + %;{ll > 2. Note that the projection

pr: RMI') = RY xgq, (XQFFlagﬁ(x)(fz>> — R

zel’

is a SL(V)-invariant Flag bundle, consider the commutative diagram

(5.5) RH(I') 2> RE
) \LDAetu
Det,, |
T%
and write p3(0,) ® Ru(p @ (D%til)*(@y)_z' Then

éwu —(det Rt F) ™" ® ® {(det F,)* & ®(det Q,,)% @y

z€lU{z1,z2 }UI" =1

® (det )+ =002 @ (R)(det F,)'~
q

where k =k +2r, a, = a, +ny, 1 (x) — 7, £, = 2 + Zy and

wu = {k,71(2), @(2) }10ger, zayor With a(z) = (a1(x), @2(2), -+, G111 (2))
(note: ay, 41(x) —ar(x) = Y2, di(w) = ay, 1 (2) — ax () +2r — () —
ny1(x) < k4 2r —ni(z) —ng, . (x) < k).
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Let ﬁ“(I/)gi C R*(I') be the open set of GIT semi-stable points
(respect to the polarization defined by @, ), then
/
2+ 11U -
k+2r —

Wy

codim(RH (1) \RM(I")s,) = (r=1)(G— 1) +

Let 1 : ﬁ“([’)fvi — Ug , be the good quotient. Then (:)@M descends

to an ample line bundle ©5, on U %o and (Vwsz, (I)gz)mv =W, -

Lemma 5.2. Let Det/]; : Z/{X’% — J;% be the morphism induced by
SR A ss
Det,, : RM(I"), — J%
and Det : P — Jf} be the determinant morphism. Then

(5.6)  Det.(0p.,) = P (Dety, ).(0z, ® (Det),)*(0,) > @ wy, _ )

X, ap
o

where = (i1, , ly) runs through integers 0 < py < -+ p, < k. In
particular, we have

H'(J%,Det,Op ) =0 Vi>0.
Proof. Note Det,(0p,.,) = {(Detg..).0,}™ = {(Detg, ).OL}™ and
(Detﬁ%)*é; = (DetﬁF)*p*(:)(’d, by the decomposition (5.4), we have
(Detg, ).6., = @D (Det,,).0,,

In

where DAetu : 7%’} — J;i( satisfies the commutative diagram

F F

R DCtﬁF
Det,,

d
IS

~ A

By diagram (5.5) and p3(©,) = Og, ®(DAet;/)*(@y)_2®wﬁu(1,), we have
“ R ~ T “ ~ T . _
(5.7) (Dety) 0, = (Det, ). (O, ® (Det,, )*(0,) ’® wﬁu([/)>‘

Recall 9 : 7%“(]’);%1 — Uz 5, (:)@H = 1"Og,, (VsWin(pyss )" =g
) @p x=m
then we have the decomposition (5.6). The vanishing result follows the

decomposition clearly since Oy, ® (Detf;)*(@y)_2 is ample. O
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To prove R'Det,(Op ) = 0, the idea is same with Section 4. Let
'fé(fl) = XQ Flagﬁ(w)(fx) p_1> 7% = XQFla/gﬁ(a;)<fx>,
zeIUT’ zel
R(I') = Grass,(Fp, &F,) Xéﬁ(_f’) P R = Grass,(Fo, ®Fa,) Xéﬁ
be the projection, (') € R'(I'), H C R’ be the open set defined in
Notation 2.21. By Proposition 5.1, we have
(5.8) pi(0) ® wy () = O, ® Deti,{[(p)(@;%)

Wlth w= (d> r, ffa Zya {axa gi<$)}xGIUJ l<i<lz) and

O}, =(det Rry1n€) @ Q) {(det £,)™ ® @ (det Qi)™

xzelul’
® (det Sy) v @ (det Q)F @ (det Sy)’
where k =k + 2r, a, = ap +ny,1(x) — 1, £, = Zy + 2x, and
di(x) = di(x) + n;(x) + nipr (2).

Let R/(I'): ~ H(I') be the open set of GIT semi-stable points (re-
spect to @), 1 : R/(I")% — Py := R/(1)2/ /SL(V) be the quotient map.
There is an ample line bundle ©p 5 on Py such that ©f = ¢*(Op ),
and CUpw = (w*(JJﬁ,(I/)%S)va lf

/
1+,
k+2r —
where we need essentially the estimate of codimension from [9].

(5.9) (r—1)(g—1)+

Proposition 5.3 (Proposition 5.2 of 9]). Let D] = D1 U D! and
'Dg = Dy U D2; where D; C R’ is the Zariski closure of DF 1 C RF
consisting of (E,Q) € R that E., — @ is not an isomorphism, and
D! c R’ (rep. Db C ﬁ') consists of (E,Q) € R’ such that E is not
locally free at x4 (resp. at x1). Then
(1) codim(H \ R**) > (r — 1) + %
(2) the complement in R5\{DJUDJ} of the set R!S of stable points
has codimension > (r — 1)g + %

Lemma 5.4. When (r —1)g + %' > 2 and I' C X \ I satisfying (5.9),
(5.10) H'(P,,0p,,) = H' (Ps,0p,, ®Det(0,,) @ wp,)
X

where Det : Py — J;i( is induced by Detyry : H(I') — J)d?.
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Proof. By using Proposition 4.1 (1) and Proposition 5.3 (2), we have
(Yutizr(gryee)™ = wps

(cf. Lemma 5.6 of [9]). By Proposition 5.3 (1), we have
codim(H \ R’**) >3, codim(H(I') \ R'(I')Z) > 3
for any data w. Thus, by theory of local cohomology, we have
H'(Po,©p,0) = Hl(ﬁ'ss OL)" = H'(H,0.,)™ = H'(H(I'),p;(8),)"™
H'(H(I'),0, ® DetH(I,)(@;;%) ® wy(r)) ™
H\(R(I'), &L, ®DetR,(1,)SS(@;§() ®wﬁ,m%§)m
= H\(R/(I)3, 4" (0p o ® Detj(@;gi)) ® Wiy ()
' (Pay 5. ® Det} (0,1) @ (s 1) ™)
H'(Py, ©p,5 @ Det(0, ) ® wp,).

U

When X is irreducible, Op 5 ® Det”}(@;é) may not be an ample line

bundle on Py. But, for any L € J%, on the fiber PL = Det™'(L) of
Det : P, — J‘i
and the fiber PL = Det ' (L) of Det; : Py — Jd we have
HY(PL, @7L>,w) = H'(P}, @P,:D Qwpr) =0
when (r —1)(g — 1) + % > 2, which means R'Det.(Op ) = 0.
Theorem 5.5 (Theorem 5.3 of [9]). If X is an irreducible curve of
genus g with one node and (r —1)(g — 1) + % > 2, then
H'(Ux, Ouy,w) = H' (Py, Op,,) = 0.

Remark 5.6. The condition (r —1)(g — 1) + |—Q > 2 is used only for

the proof of H' (R[5, €/ )" = H'(#,©/,)" in Lemma 5.4, which may
hold unconditional. In fact, we conjecture that for any ¢« > 0 and w,

Hz(ﬁ:js, é;)mv _ Hl(H, é;)mv

If the conjecture is true, H i(?’f,@éyw) = 0 holds unconditional for
i > 0, which implies that H*(P,,0p ) =0 for i > 0.
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6. GENERALIZED PARABOLIC SHEAVES ON REDUCIBLE NODAL
CURVES

A natural idea to prove a vanishing theorem H'(Ux,Oyy ) = 0
for X = X; U X3 is to extend above method to reducible curves. In
this section, we give estimates of various codimension and compute
canonical line bundle of moduli space of generalized parabolic sheaves
on a reducible curve. However, the estimate is not good enough to
prove a vanishing theorem via the method in last section.

Let x; and y» be integers such that x; + x2 — r = x, and fix, for
i = 1,2, the polynomials P;(m) = ¢;rm+x; and W; = Ox,(—N) where
Ox,(1) = O(1)|x, has degree ¢;. Write V; = C%™) and consider the
Quot schemes Quot(V; @ W;, P;), let Q, be the closure of the open set

{ V, @ Wi — E; — 0, with H'(E;(N)) =0 and}

V; — H°(E;(N)) induces an isomorphism
P

we have the universal quotient V; @ W; — F* — 0 on X; X Qz and the
relative flag scheme

Ri = XQiFlagﬁ(m) (.7:;) — Qz

z€el;

Let F = F' @ F? denote direct sum of pullbacks of F', F? on
X x(Qx Q) = (X1 x Q) U (Xy x Qy).
Let € be the pullback of F to X x (Ry x Rs), and
p:R = Grass,(E, ®E) > R =R xRy = Q:=Q, X Q,.
When m is large enough, we have a G-equivariant embedding
R — G = Grassﬁ(m)(f/ ® W,,) x Flag x Grassr(v Q@ Wh).
For w = (7, x1, x2, {7(2), d(z)}zer, O(1), k), give G’ polarization
(6.1) % « [[{s (), -+ o ()} x k.

rel
where I = I U Iy, d;(z) = a;41(x) — a;(x), ri(x) = ny(z) + - - - + ny(z),

0 — kX = Y ser Xita dz(@“(@

Let % C R’ be the open set defined in Notation 2.21, ’féfs C H be the
open set of GIT semi-stable points (respect to the polarization). Let

Y RET = Py i=RE /G
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If O(1)|x, = Ox;(c;jy;), the restriction of polarization (6.1) to H is
0, = p*(Or, K Og,) @ det(Q)"
where (for j =1, 2, mg, : X; X R; — R, is projection) we have
.

Or, = (detRrg, &) * @ (X) {@ det(Qpuyxr;,i) z<x>} ® (detEij)qJTcz

z€l;

where we assume that ¢ and ¢; := are integers. The sequence

cit
c+c
0—=F = (7 xid).&£ = ,Q—0

on X x R’** defines a morphism ¢ : R/** — Uy such that

é*(@ux) :detRﬂﬁ,ss F® ® {® det( Q{x}xR/SS ) z)}

zel =1

® (detF,, )" @ (detF,,)"” = O/

Rlss

Clearly, QAS induces a morphism ¢ : P, — Ux such that $ = ¢ 1.
Thus @’ . descends to an ample line bundle ©p, = ¢*(Oy, ) on P,.

Slmllarly, ¢* s H'(Ux, Oy, ) = H'(P,,Op,) is injective. To prove
H (Pw, @Pw) = 07

we need as before to compute canonical bundle wp, and to estimate
the codimension of non-semistable points. However, the situation is
slightly different with the case when X is connected. We firstly figure
out some necessary conditions when (E, Q) € R/s*.

For (E,E,, ®E,, 5 Q —0)cH, F = (F,F,) C E=(E,E,), let

parxm(E) —r
r

D(F) = (MM - paTX(Fl)) + <r2w - parx(F2>>

r

Dy (F) :=r(F) — (parxm(F) —t)

where ¢ = dim(Q"), QF = q(Fy, ® F.,) C Q, r; = tk(F};). Then

62 D,.(F) = D(F) + (“T;”) (D (Er) — dim(Q"")) +t — 1y
= D(F) + (rz =) (D (E2) — dim(Q™)) +t — 1.

r
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Lemma 6.1. For (E,Q) € ﬁfs, let B; = B ® ,,C% and

Then, for the fixed x; :== x(E;) (j =1, 2), we have
(D ny<x;<ny+r (j=1,2),
(2) s1<n5+71—x2, s2<ny+71— X1,
(3) let (B,Q) € H\ {D] UD}} with ng < x(Ej) <nf +r, then
B eRP, B, eRY = (BE,Q)eR™.

Moreover, when ny < x1 < ny+r, we have (E,Q) € ﬁfj if one
of E1, Es is a stable parabolic bundle,
(4) let (E,Q) € H\{D{ UDI}, if xy =n¥ +7r or x, = n¥, then
(E,Q) € R = E,€Ry, EyeRY.
Proof. Note that x1 + x2 = x + 7 and ny + n§ = x, (1) and (2) are
clear by the following formulas (j = 1, 2)
X(E;) = ng + dim(Q™) — D, (E;)
X(E1) + 55 = n¢ + dim(Q™) — D, (E})
X(E») + 51 = n§ + dim(Q™) — D, (E3)
where B = (Ey, ,,C*), ES = (,,C*', Ey). The formula (6.2) becomes

2200 = nd) + dim(QF) — 1y

D(F) = D(F) +

(6.3)

L —T2

= D(F) + "2 (g — ) + dim(Q") — 1.

To prove (3), by (6.3) and dim(Q¥) —r; > 0 (j = 1, 2), we have
D,,(F) > 0 whenever D(F) > 0. Thus

ELeRP, B, eRY = (BE,Q)eR>™.
When n{ < x; < n{ +r (which implies n§ < x2 < n% + r), we have
D,,(F) > D(F) >0 if r; # ry. Thus (F,Q) € R’ if one of E, Ey is a
stable parabolic bundle.
To prove (4), if x1 =n{ +r or x1 = ny, the formula (6.3) becomes
(6.4) Dy, (F) = D(F) + dim(Q") — ry.
For Fy C E; of rank 7y, take F' = (F},0) C E in (6.4), we have

Don(F) = D(F) = LX)

A2 parx()
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which implies that F; € RS if (E,Q) € ﬁifs. For F, C E5 of rank ry,
take F' = (E1, Fy) C F in (6.4), we have

parx(Es)
T

D, (F)=D(F)=r — parx(Fy)

which implies that By € RS if (B, Q) € RL. O
Notation 6.2. For w = (7, x1, x2, {7(z), d(x) }.er, O(1), k), let
™ (B,Q) € H, with nf < x(Ej) =x; <nf +r (j=1,2),and

~ | dim(Tor(Ey)) < n§ +r — vz, dim(Tor(Ey)) <n{+7r—x1 |
Proposition 6.3. Let D/ = D, UD! and D} = D, UD,. Then

3 w\ Pss : _ o T+3 243]
(1) codim(H® \ R%) > 11%1%12{(7" D(gi — =) + ¢ }
(2) codim(Res* \ {D{ UD{}\ RE) > min {(r - 1)(g: — 1)+ 4}

1<i<2
when ny < x1 <ny +r.
1;

(3) codim(RE*\ {D{ UD{I\RL*) > min {(r = 1)(g: — 1) + 1}

1<i<2

when x1 =n{ or n{ +r, where

=5 . (E,Q) € R satisfies parp(F) < paru(E) for any
“ "\ nontrivial F C E of rank (r1,72) # (0,7) or (r,0) )

Proof. To prove (1), let (E,Q) € H* \ R** with E = (B, E,), then
there exists a F' = (F, Fy) C E such that E/F is torsion free and

m E)—
(6.5) parym(F) — dim(QF) > mm%.
Let t = dim(Q"), r; = rk(F;), mi(z) = dim%, Xi = Xx(E)
r(F) —r r(F) —r
m(p) =" IS 0y )+ TS
zel z€l2
where 7(F) = 432222 Then we can rewrite (6.5) as
r(F) = o
rx(F) —r(F)x >rt —rm(F) + p ; ZZI a;(z)n;(x)
(6.6) o
Tk Z Z a;(z)mi(z)
zel i=1

03 F—E—E/F:=F=(F,F) >0
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Write E = ' ,,C*'q¢ ,,C2 F =F ¢ ,C"'® ,,C2 and F; =
Fl&,C" F=F&,,C?where E', F’ (thus F], F}) are torsion free
sheaves satisfying the exact sequences

0= F - FE - F =0, 0= F,—E,—F—0.

Let d; = deg(FY), r; = rk(F}), deg(F;) = x; — (1 — ¢;) — d; — s; and
Pi(m) = cirm+d; +r;(1 — g:), Pi(m) = cirm+ xi — si — Pi(m).
For W, = Ox,(—N), V; = CP™ (resp. V; = CP(M), et
Q; C Quot(V; @ W;, P)

(resp. Q; C Quot(f/i QW;, é)) be the open set of locally free quotients
F! (vesp. F;) with vanishing H!(F!(N)) (resp. H'(F,(N))) and F/(N)
(resp. Fj(N)) generated by global sections. Let F/ (resp. F;) be the
universal quotient on X; x @Q); (resp. on X; x QVZ), let V; = Q; % QVZ and
g = ]’52-\/ ® F! on X; x V;. Then we have

V= J v

hi>0

such that R'f;,(G;) is locally free of rank h; on V" where f; : X; x V; —
V; is the projection. Let P,, = P(R'f;.(G;)V) — V" be the projective
bundle on V; and 0 — F/ @ Op, (-1) = &/(h;) = F; — 0 be the
universal extension on X; x Py, (we set Py, = V; and &/(h;) = F! Gaj-:i if
h; = 0). For v, = (d;,ri, {m1(x), -+ ,my,4+1(x) }zer, hi), we can define
a variety X (v}) — Pp,. It parametrises a family of parabolic bundles
E!, which occur as extensions 0 — F! — E! — F; — 0 (the extension
being split if h; = 0), with parabolic structures at x € I; of type
ni(x) =ny(x), -+ ,ny+1(x)), whose induced parabolic structures on F
are of type (mq(x), -+ ,my,+1(x)) (we will forget m;(x) if it is zero).

Let 0 — F/(=1) — &'(v)) — F; — 0 be the pull back of universal

extension to X; x X(v}), £(v)) = &' (v]) ® ,, 0% and let F(v}) be the
frame bundle of the direct image of £(v})(N) (under the projection
X; x X(v)) — X (v))). Write £(v') := E(v]) @ E(v)), we consider

Gy = Grass,(E(V)e, & EW)z,) = F(v]) x F(uvy)
and define a subvariety of G, by
X(o) = { (Ewy ® Eyy 5 Q = 0) € Gy), ker(q) N (C* @ C2) = 0,} |
dim(ker(q) N (F, ®C" @ F, & C?))=ri+ro+s—1
Then X (v) parametrises a family of GPS (£ = E'® ,,C* @ ,,C*, Q),
where E' = (E1, EY) occurs as extensions 0 — F) — E! — F; — 0 (it is
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split if h; = 0) with parabolic structures at x € I of type 7i(x), whose
induced parabolic structures on F; are of type (my(z),--- ,my,11(z))
(we will forget m;(z) if it is zero), such that ,, C** @ ,,C* — @ is in-
jective and rank(F, ® C* @ F, ® C*? — @) = t. There is a morphism
X(v) = HY \ R whose image contains (F, Q). Therefore we have a
(countable) number of quasi-projective varieties X (v) and morphisms

Yy : X(v) = HY\ R such that the union of the images covers H¥\R?.
One computes dim F(v}) = dim X (v}) + (cir N + xi)?,
dim X(0)) = 4 2zoet; A X + i = 1+ dim Q; + dim Qi, ifhi #0

dim Q; 4+ dim Q; = (g; — 1)(r2 + (r — r4)?) + Pi(N)2 + P;(N)? and the
dimension of H, X (v) are (let s = s1 + $9):

r*(g—2)+7r +Z cirN + xi)? Zdszlagnm (Fz),

i=1 zel

2 2
r(r+s)—r—t)(ri+ro+s—1t)+ Z(cirN +xi)* + ZdimX(vg).
i=1 i=1
To estimate the minimum e of fiber dimension of ¢,, note that

dim Aut(E) > dim Aut(E}) + dim Aut(Eb) + rs + s7 + s5
and 0 — F/ — E — F; — 0, we have
iy { LE D Dt
Define e(h;) = 1 when h; # 0 and e(h;) = 2 when h; = 0, then
e>rs+ 2+ 2+ hO(FY @ F)) + hO(FY ® F}) + e(hy)
+e(hy) — 4+ Pi(N)? + Pi(N)? + Py(N)? + Py(N)2.

Then the codimension of H* \ ﬁif is bounded below by
2
Z (r—r)(g: 1)+Z(ri—|—si—t)si—I—(r—t)(rl—i—Tg—t)+
i=1 i=1
lot1
rX(F) = (rixa + raxa) + Y Y (r1— Zmz —my(z))
zelp j=1
lot1

YD (- Zmz —my(x)).

zelr j=1
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If ri > 7y, use x1+ 52 <nY+rand xyo2 =x+r—x1 to get

rX(F)=(rixa + r2x2) 2 rx(F) = r(F)x + rm(F)—

T+ (1 —12)se + n- o ) Z Z ai(z)ni(x)
(6.7) koS
Lol 7( =
Z > ai(a)n(x
z€ly 1=1

Similarly, if ro > r;, we have

X (F)—=(rix1 +raxz) = rx(F) —r(F)x +rm(F)—

ry —r(F) let!
ror + (rg —11)81 + — Z Z a;(x)n;(x)
(68) zel, i=1
lo+1

LD W

z€ly 1=1

By using of the inequalities (6.6), (6.7) and (6.8), we have

codim(H* \ R®) > Z ri(r —r)(g; — 1) + (max{ry,r2} —t)s

fs? + 53+ r-min{ry, v} — t(ry + 1y — 1)
> = Y i) s a) = s a)
T Z \ ]:llerl -

LS i) ()

DR o
T+ () — ()




FACTORIZATION OF GENERALIZED THETA FUNCTIONS REVISITED 49

where s = s1 + so. Let f(rq, 79, 51, S2,t) denote
(max{ry,ro} —t)s + 57+ 52 +r-min{ry, ro} —t(r +ry — t) =
Tt s, 2(sT+83)+ (s1—s2)?  max{ry,r} —min{r;,ry}
(t — ) + s
2 4 2
(7"1 — 7“2)2
4

When 1 = 19, it is clear that f(rq,rs, $1, S2,t) > ri(r—r1) and we have

+ min{ry, 7o} (r — max{ry,ro}) —

~ 1
codim(H* \ Ry®) > ri(r—r)(g—1) + u

k
In general, we have only f(ry,rs, s1,592,t) > _% and
. W\ D/ss . B o r+3 |Iz|
codim(#*\ R.)") > 1%1;12{(7* 1)(gi 4 ) + L[

To prove (2), note s; = so = 0, max{ry,r} <t for (F,Q) € ﬁﬁs\
{DIUDJ}, we have f(r1, 12, 51, 52, t) = r-min{ry, ro} +t(t—r —713) > 0.
Then, when n{ < x; < n¢ + r, which implies (r1,72) # (r,0), (0,r),

codim(R5™\ {Df UDJ}\ RL) > min {<7” ~Dlg -1+ |k:| } '

The assertion (3) follows the same arguments of (2) and the definition
of RI7%. In fact, R.7* = p~(R§ x R3) by Lemma 6.1 (4), where

p: R\ DI UDI} = RS x RS,
O

The schemes H and P are Gorenstein, so they have canonical sheaves.
To compute the canonical sheaves wy and wp, let

6.9 0 =K = V,®0x.xr(-N) =& =0 (j=1,2)
J J J

be the universal quotient on X; x R; (K7 are in fact locally free), and

lz
iy =(det B, €)% @ @) {<det gl @ Q)(det Qx,mi“)*"”l(x)}

xEIj =1
® (X (det €)' @ (det R, deté’)?
qGXj
where wy, = Ox; (X ,ex, q)- Let Det; : R; — J;l(jj, where d; = x; +
(g; — 1), be defined by det&? := (detk?) ™' @ Ox,xr,(—P;(N)N), let
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L; be a universal line bundle on X x Jf{j and

(610) €0 = (detRr o, £;)7 @ (£,);, @ Q) (L, LYy
J J qeX;

(which are independent of the choices of £;). Let
Det := (Dety, Dety) : R = Ry x Ry — J& = J x J2,

which induces DAetH H— J;% and Det : P, — J;% such that

H RisS
l Yetﬂ l DetR/ss
p
R—— J% d d
Det 5 P, Det J)?

are commutative. Let ©j0 = pi© 4, @ p;0 4, (Where p; : Ji =
X X1 Xo X

JB X JE = J?é are projections). Then similar arguments of [9] give

Proposition 6.4. Let p: H — R := Ry x Ry and & ®EL, - Q=0
be the universal quotient on H. Then

1

wy' = P (wry @ wih) ® (detQ)” ® (detkC;))" @ (detk?,)" =

Iz
(detRnyn€) ™ @ ® {(det £,) =@ g ®(det Qx’i>ni(x)+ni+1(x)}

zel i=1
® (detQ)” ® ® (det&,, )" ® Dety, (0] 1)=0,.® Dety,(©7.)
Jj=1 *

where

Iy
O, =(det Rry &)™ @ (X) {@ (det Q, ;)@ Hrini( } ® det(Q)*"

zel =1

@ (deté,, )" @ (deté,,) ™™ @ R)(det £,) =)

zel

Let J; C X; \ (I; U{x;}) be a subset, J = J; U Jy and

R(J)i = xg Flagaw(F;) — Q;,

zel;UJ;
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R(J) =R(J)1 x R(J)2 25 R = Ry x Ry be the projection. Consider

and H(J) :=p;*(H) 2% H. Then, by Proposition 6.4, we have
(6.11) Wiy = -0, o) ® DetH(J)(@ 1)

where

l.'L‘
OL,e(sy =(det Ry €)™ @ (X) {(X) (det Qg ;)" @) Hnari(@) } ® det(Q)*"
zeluJ \ i=1
® (deté,, )" @ (det&,,) " @ (X) (det &)=,
zeluJ
Let w(J) = (r,x1, X2, {{ns(2) hr<i<tor1, {d7(2) h<ici, Foeros, O(1), k)
where k¢ = 2r, df(z) = ni(@)+ni1(2), let 6§ = 2x;—r—=3" o p 5, 71, (2)
and 0¢ =05+ 05 =2y — > 71, (x). Then

zelUJ

ZZdC 2)ri(x) + ¢ = Koy

zelUJ =1

The type {ri(x)},es of flags at x € J will be chosen to satisfy

C1
6.12 05 = I
( ) ! c1+ co

which is equivalent to the following condition

1 Z r, () — co Z r,(x) =

xE€J zeJ1
(6.13)
c (2)@ —r— Z o (x)) — Cy <2X1 —r— Z L, (x)) )
z€ly xzely

The choices of {7i(x)},c, satisfying (6.12) for arbitrary large |.J;| and
|.Jo| are possible since the equation (6.13) has arbitrary large integer so-
lutions. In this case, the line bundle (:):JC () 18 (algebraically) equivalent
to the restriction (on H(J)) of the following polarization

C CN
g ““ < T Ads(@), -+ e (@)} x e,

zelnJ
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(/)

On the other hand, it is easy to compute that n;-’C = X; — 5, thus

we(J)

n; < x; < n;JCU) +r  (j=1, 2).

Moreover, for any polarization (6.1) (determined by w), let €%, be its
restriction to H. Then we can write

Py (0%4) = wy) © 0L ® D%t;u)(@ﬁ)y
X

where @ = (r, x1, X2, {{ni(@) h<i<i,+1, {di() h<i<t, Yaeros, O(1), k),

Lo i .
0L =(det Rrp &) * © ® {®(d€t Qx,i)di(x)} ® det(Q)"

zelUJ =1

® (det€,,) T2 @ (det€,,) 2 © () (det &) 7,

zelUJ

k=Fk+2r di(z) =di(z) +ni(x) + nip1(z) (di(z) =0 for x € J). Let

li=t+2G—r— Y nle)=4+E

a:GI]-UJ]-

=l h=0+20— > r(x) =0+

xelUJ
Then it is easy to see that £; = Cli@@ (by (6.12)),
lz — — —
S S dia)re) 4l = k.

zelUJ i=1

and (:):3 is (algebraically) equivalent to the restriction of polarization
determined by @. The condition (6.12) implies the following identities

(6.14) 2r(x; —nd) =1+ k(ny —nY) (j=1,2).

Lemma 6.5. For any (E,Q) € H(J), we have n§ < x; < n¥ +r
(which is the necessary condition that R(J)5s #0).

Proof. If n > n¥, by (6.14), we have n{ < x1 < n{+r < n{+r, which
implies n§ < x2 < ng + 7. If nY <ny, by ny +nf = x =ny + n, we
have n§ > ng which implies n§ < xa < n§ +r < ng +r by (6.14) again
(thus ny < x1 <ny +7). O
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To prove HY(P,,Op,) = 0 via the same method of Section 5, even
it we assume that ml { —1)( %) + %} > 3, we only have

r
1 Rlss @IlRlééym]. _ H1<Hw,é;{>inv.

H(
= H'(p; " (H*), p5(0)))™"
= H'(p;'(HY), Wi (g ®@ ®DetH( (O, 1))i’“".

HY(P,,O0p,) :

If p; ' (H*) = H(J)¥, we would have (choosing |J;|, | Jo| large enough)
H'(p5'(H?), wn(s) ® O}, @ Detyy >(@Jdl))m”'
= HY(Py,wp, ® Op, ® Det;k)w(@;%))
which vanishes by Kodaira-type theorem and the following lemma.
Lemma 6.6. When X = X; U Xy with node x, the line bundle
Op, ® Det;?w(@}%)
on Py is ample if k > 2r.
Proof. When X = X7 U X5, the moduli space P is a disjoint union of
{Pay.ds Y +dz=d

It is enough to consider Py = Py, 4,, thus we the flat morphism
Det : Py — JE = J¢ x JE = Jg
and J% = J%, x J%, = J% acts on Py by
(E,Q),N) = (EQmN,QN,).

Let PL = Dety! (L) (which is unirational), consider the morphism

fiPEx IS — Pa.
Then it is enough to check the ampleness of
[ (Op, ® Det%@(@;gi))‘{(E,Q)}ng( , [(Op, ® Det%@(@;;%))ngw}-
It is clearly that f*(Op, ® Det%ﬁ(@};))\%x{/\/} is ample, and

X
f1(©p, ® Detp (07.)) (s, qyxss = M1 ® My
X
where M; = fl*(@'p@), My = f;(@}i), f1 : Jg( — P@, f2 : J)O( — J;l(,
X
fl(N):(E®7T*N>Q®Nxo)7 f2(L0)2L6®L
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Then M; (resp. Ms) is algebraically equivalent to @;E (resp. ©, 2r%)
(see Lemma 5.3 of [9] for details). Thus M; ® M, is algebraically
equivalent to @Zk_m"z, which is ample when k > 2r. O

Remarks 6.7. (1) The equality p;'(H*) = H(J)? is equivalent to the
statement that for any (E, Q) € H(J) with torsion 7; at z; we have

(6.15) <nd+r—x; (£ & n<nd+r—x; (j#£10)

which may not be true unfortunately. (2) The proof of Proposition 6.3
in fact implies the following estimate

(6.16) codim(H \ R/5**) > min {(T —1)(gi — $) T %}

1<i<2
where the open set R/ C H satisfying R.** D R/ is defined to be

s (E,Q) € Hsatisties paru(F) < paru(E) for any
v o {nontrivial F C E of rank (r1,r9) # (0,7) or (r, O)} '

We end up by some comments about quantization conjecture of
Guillemin-Sternberg. Let M be a projective variety with an action
of a reductive group GG and an ample L linearizing the action of G. If
M;7® C M is the open set of GIT semistable points, then the so called
quantization conjecture of Guillemin-Sternberg predict that

which was proved when M is projective and has at most rational sin-
gularities (see [12], [13] and [14]). There is an example in [12] showing
the failure of (6.17) when M has worse singularities. However, for
the applications of studying moduli spaces in algebraic geometry, M
is in general a locally closed subvariety of Quotient schemes or Hilbert
schemes (for example, M = Rp, H in this article, which are quasi-
projective and have at most rational singularities). Thus the following
question seems natural and important for application.

Question 6.8. Let M be a normal, projective variety with action by
a reductive group G. If My C M is an G-invariant open set such that
M7® C My for any ample linearization L. Does the equality

Hi(Mo, L)inv. — HZ(MES’L)’L’HU
holds for any ¢ >0 ?

If the question has an affirmative answer, conjecture in Remark
5.6 and Conjecture 4.5 will hold, which imply H'(Ux, Oy ) = 0
for any irreducible X with one node and any data w (see Remark
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5.6). However, the affirmative answer of Question 6.8 seems not imply
H'(Ux, Oy ) = 0 for reducible X = X; U X,.

Let qr : M;* — My = M;*//G be the GIT quotient and assume
that L descends to a line bundle £ (i.e. L is the pullback of £). One

of the general strategy of proving H (M, L) = 0 is to use equalities
Hz(ML,,C) — HZ(MES, L)'mv — H’L(MO’L)’NLU

where the first equality holds by definition and the second holds by the
affirmative answer of Question 6.8. Then one can write (on M)

L=wy®L, L=wy ®L

where w)y, is the canonical bundle of M,. Let g/ : M7 — M, be the
GIT quotient and L’ descend to £'. Assume that

(6.18) H' (Mo, L)™ = H'(Mj3, L)"™,  wy = g} (wr,,)-

Then H'(Mp, L) = H'(Mp,wm,, ® L) =0 (Vi > 0). Assumption
(6.18) does not hold in general, which need a good estimate of codi-
mension of My \ M;7 and M5\ Mj,. It is the reason that this strategy
does not work for reducible X = X; U X, since we do not have a
good estimate of codimension of H \ R/3* (we have only an estimate

of codim(H* \ R’*)). However, we will prove vanishing theorems in a
forthcoming article [11] for all of these moduli spaces by a method of
modulo p reduction, which essentially needs the estimates of codimen-
sion and computation of canonical bundles.
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