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Abstract

In this paper, the existence and uniqueness of the distribution dependent SDEs
with Holder continuous drift driven by a-stable process is investigated. Moreover, by
using Zvonkin type transformation, the convergence rate of Euler-Maruyama method
and propagation of chaos are also obtained. The results cover the ones in the case of
distribution independent SDEs.

AMS subject Classification: 60H35, 41A25, 60H10, 60C30.
Keywords: Distribution dependent SDEs, Holder continuous, Zvonkin type transformation,
Euler-Maruyama method, a-stable process.

1 Introduction

Distribution dependent stochastic differential equations (SDEs for abbreviation), also called
McKean-Vlasov SDE, can be used to characterize nonlinear Fokker-Planck equations (see
23, 6]). Recently, there are many results on Distribution dependent SDEs (see [25, 33]
and references within). Existence and uniqueness of McKean-Vlasov SDEs with regular
coefficients have been investigated extensively (see e.g. [7, 25, 33, 34]). Meanwhile, the
strong wellposedness of McKean-Vlasov SDEs with irregular coefficients has also received
much attention (see, for example, [4, 8, 15, 30], where, in [8], the dependence of laws is of
integral type and the diffusion is non-degenerate, and [15] is concerned with the integrability
condition but excluding linear growth of the drift). For weak wellposedness of McKean-
Vlasov SDEs, we refer to e.g. [15, 21, 24, 25]. [29, 35] studied the Lion’s derivative and
ergodicity for SDEs driven by Brownian motion. [32] investigated the derivative formula
and gradient estimate for McKean-Vlasov SDEs driven by jump process (See [1, 5, 9, 10, 11]
for more results on McKean-Vlasov SDEs).
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Recently, the convergence rate of Euler-Maruyama (EM for short) method for SDEs with
irregular coefficients has attracted much attention. For instance, [13, 36] revealed the conver-
gence rate in L' and LP-norm sense for a range of SDEs, where the drift term is Lipschitzian
and the diffusion term is Holder continuous with respect to spatial variable. In addition,
by using the Yamada-Watanabe approximation and heat kernel estimate, [26] studied the
strong convergence rate for a class of non-degenerate SDEs with bounded drift term satisfies
weak monotonicity and is of bounded variation with respect to Gaussian measure and the
diffusion term is Holder continuous.

Quite recently, by Zvonkin transformation [39], the convergence rate of EM method for
the SDEs with singular drift are investigated extensively. For instance, [2] discussed the case
with Dini continuous drifts; [27] obtained the strong convergence rate of EM method with
bounded Holder continuous drift driven by truncated symmetric a-stable process, see also
[22] and [14] for the symmetric a-stable process. As to the distribution dependent SDEs, [37]
proved the convergence of the EM scheme under linear growth condition by a discretized
version of Krylov’s estimate. [3] extended the results of [27] and [13] to the distribution
dependent SDEs driven by Brownian motion.

In this paper, we investigate the existence and uniqueness of distribution dependent SDEs
with bounded and Hoélder continuous drifts, where the noise is a-stable process. Due to the
distribution dependence, we adopt an approximation technique by constructing a sequence
of classical SDEs and using the Skorohod representation theorem to prove the existence of
the weak solution. As to the pathwise uniqueness, we still use the Zvonkin transform which
depend on the distribution of one solution to make two solutions be regular ones.

Since the SDE is distribution-dependent, we exploit the stochastic interacting particle
systems to approximate it. We will apply a common Zvonkin’s transform depending on the
distribution of the real solution to make the numerical SDE and interacting particle systems
be regular ones, from which the strong convergence rate is obtained.

The paper is organized as follows. In Section 2, we recall some preliminaries on symmetric
a-stable process and the Poisson random measure. In Section 3, the existence and uniqueness
for the distribution dependent SDEs with Holder continuous drift driven by a-stable process
are established. Finally, by using Zvonkin type transformation, the convergence rate of EM
Scheme for SDEs are investigated in Section 4.

2 Some Preparations

2.1 Symmetric a-stable process

Before moving on, we firstly recall some knowledge on symmetric a-stable process and the
Poisson random measure (see [14, 19, 20, 28] for more details). Recall that a Ré-valued Lévy
process Ly is called d-dimensional symmetric a-stable process if the Lévy symbol ¥ has the
following representation:

U(u) = /Rd[l — cos(u, z)|v(dx),



where

o dr
uD) = [ a9 [ (9T De AR
0
a € (0,2), S = {r € R% |z| = 1} and p is a finite symmetric measure on (S, %(S)), i.e.
w(A) = u(—A), for any A € B(9).
The Poisson random measure N associated to L is defined as follows:

N([0,4,U) = Y 1y(AL,), Ue B (RN\{0}),.t>0.

0<s<t

Here AL(s) = L — L, denotes the jump size of L at time s > 0. The compensated Poisson
random measure N is defined by

N([0,t],U) = N([0,t],U) — tv(U), U e B (RN{0}),0¢U,t>0.

It follows from the Lévy-It6 decomposition that

t t
L, = / / xN(ds,dz) +/ / xN(ds,dz), t>0.
0 Jzl<t 0 Jz|>1

For convenience, we introduce some notations. Let || - | denote the operator norm for a
bounded linear operator. For k € N and 8 € (0, 1), denote by Cf +5 (]Rd) the set of R%-valued
bounded functions, which have up to k-ordered continuous derivative and the k-th derivative
is § Holder continuous. The norm is

IV*f(z) = V*f W)

|z —y|?

k
1 llks = sup HV"f(x)H+sip , FECTT(RY).
TFY

i—0 Z€RI

In particular, C (Rd) means the set of R%valued bounded functions, equipped the norm
| flloo := sup,epra |f(z)], and we usually denote Cj. Let T" > 0, for a function f defined on

0,77 x R, let [fll700 = SUDPieo,1],xcRd | f(t, ).

2.2 Distribution dependent SDEs

Let £ be the collection of all probability measures on R? equipped with weak topology. For
p>1if p(] - 7)== [pa |z[Pu(dz) < oo, we formulate p € 2. For u, i € P,, p > 1, the
W,-Wasserstein distance between ;1 and v is defined by

1
W,(p, i) = inf (/ |z — y|p7r(dx,dy)> "
melC(u,i) Rd xRd
where C(u, i) stands for the set of all couplings of i and . As for a random variable &, its
law is written by %, and write Z;|p as the distribution of £ under P.
Let b : R? x & — R? be measurable with respect to the o-algebra generated by the
product topology on R% x &. Consider the following McKean-Vlasov SDE on R?



Definition 2.1. A cadlag adapted process (X;)i>o on R? is called a (strong) solution of
(2.1), if P-a.s.

t
(22) Xt = XO —|—/ b(Xsang) ds -+ Lt, t Z 0.
0

Moreover, if E|X;|? < oo for some 6 € [1, ) and any ¢ > 0, then we say (2.1) has a solution
in #y. We call the strong uniqueness in %y for some 6 € [1, ), if for any Fy-measurable
random variable X, with Zx, € %, there exists a unique X; satisfy (2.2) and E|X;|? < oo.

(2) A couple (X;, L) is called a weak solution to (2.2), if L is a d-dimensional sym-
metric a-stable process with respect to a complete filtered probability space (Q, {Z:}>0, ]13’),
and (2.2) holds for (X;, L;);>0 in place of (X, Lt )eso.

(3) (2.2) is said to have weak uniqueness in &y for some 0 € [1,«), if any two weak
solutions of the equation from common initial distribution in &y are equal in law.

Throughout this paper, we assume that
(H1) For fixed o € (1,2), there exists a positive constant C,, > 0 such that
U(u) > Cylul®, ueR™

(H2) [|b]|os := SUP,epa e |b(z, )] < oo, and there exists constants § € (0, 1) satisfying
2+ a>2, K >0and k € [1,«a) such that

(2.3) bz, p) = by, @) < K(Wo(u, i) + |z —y|?), p i€ Py,z,yeRE

Remark 2.1. See [14, Remark 1.1] for examples such that (H1) holds. As to (H2), we
give an example as follows. Let b: R? x R? — R? be bounded and satisfy

|B($1>y1) - B($273/2)| < K(|lzy — $2|6 +ly1 —v2l), Ty, T2, 02 € R
for some K >0 and 5 € (0,1) with 26 + a > 2. Define

b(x,pn) = / b(z, 2)pu(dz), zeRLpue 2.
R4

Then for any k € [1,Q), p, i € P, x,y € RY, € € (u, i), we have
[ b ntaz) = [ na)
R R

/]Rd Rd[g(m’ Z) - l;(y, Z/)]’]T(dz’ dzl)

b(z, 1) — by, i1)| =

< / K(le — gl + |z — #[)m(dz, d2)
R4 xRd

<Klr—y’+ K |z — 2|m(dz, d2).
RIxR4

This implies (H2).



3 Existence and uniqueness

3.1 Weak Solution

We will use the tightness and the Skorohod representation theorem to prove the weak exis-
tence. The idea of the proof of the following theorem comes from [38, Proof of Theorem 4.1]
(see also [18, Proof of Theorem 4.7] and [15, 25] for the case with Gaussian noise).

Theorem 3.1. Assume that b is bounded and there exists a constant K > 0 such that
(3.1) [b(z, 1) = b, )] < KWo(p, 1), p,jo € Py,x € RY
Then for any pg € Py, (2.1) has a weak solution with initial distribution pi.
Proof. Let 0 < p € C5°(R?) with support contained in {x : || < 1} such that [, p(z)dz = 1.
For any n > 1, let p,(x) = n?p(nz) and define
(3.2) b (z,p) = / b(x', 1) pn(z — 2)da’, (z,p) € R x 2.
R4
Then by (3.1), for any n > 1, there exists a constant C,, > 0 such that

b (z, 1) = b (y, )| < Cullz = y| + W, 1), (2, 1), (y, 1) € R x 2,

Moreover, it holds

(3.3) 6 (2, 1) = b, B)] < 18" (e, ) — U, )] 4 0" (1) — b, )|
< KW, (u, ) + | (2, 1) — b, ).

For any n > 1, define
(3.4) dX[ = 0"(X}', Lxp)dt + dLy,

with Zxn = po. Then use a distribution iteration method as in the case with Gaussian noise
([34]), it is not difficult to see that (3.4) has a solution {X"},>; on [0,7] with Lx» € Z,.

Let D be the space of all R%-valued calag functions on [0, 7] equipped with the Skorohod
topology such that DD is a Polish space. Set

H;L :/ bn(XZL,gth)dt, s € [O,T]
0

Since b is bounded, it is clear that

sup [H| < T[b]
s€[0,T

for any n > 1. Moreover, for any € > 0 and bounded stopping time 7

|H1?/\7' - g\(T-f—E)l < €||b||ooa te [O,T]
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Thus, {H"},>1 in D is tight, and so does {H™, L.},>;. So there exists a subsequence still
denoted by {H™, L.},>; such that the distribution of {H", L.},,>1 is weakly convergent in
D x D, which implies weak convergence of the distribution of {X™, L.},>1 in D x D. Then,
by Skorohod’s representation theorem [31], there exists a probability space (Q,.%,P) and
D x D-valued stochastic processes {X”, L), {X., Z~L) such that L xn 1)|p = .,2”(;(7,7@)\@, and
P-a.s. (X.(”),f)_") converges to (X.,L.) as n — oo, which implies that for any ¢ € [0,7],
,f;(tn |z weakly converges to £, |p. In particular, L is still a symmetric a-stable Lévy process

with respect to the complete filtration .%, = o{X,, L, s< t}u and has the same symbol as
L, and

(3.5) AX] = 0"(XP, Ly )dt + AL}, Xp = X,

with L% |p = Lxn|p. Next, we only need to take limit in (3.5).
For any n > m > 1, we have

/OS b (X7, ) — b(Ke, L )| dt < Li(s) + Do(s) + (s),
where
= [tz -zl
n(s) = [ T2 b (K2l
/ (K L) — b(Xe L) dt.

Below we estimate these I;(s) respectively. For simplicity, let ji; = Z%, and fif = L.
Firstly, since ||0™||c < ||b]|, applying Krylov s estimate in [38, Theorem 3.1] and Cheby-

shev’s inequality, we arrive at for any p > < \/ 1 and ¢ >

pa d’

P(sup I1(s) > =) <
s€[0,T]

| ™
| ©

T
B[ el (X0 0) = 8 )t

T
+52]E/0 1{|X”\>R}‘b< XP, i) — b™(X] )P dt

C T q/p %
S (e ﬂ?)—b%,m)r%dx) a

€ |z|<R

¢ / (X7 > R)d

Since f(t” converges to X, in probability, it is clear

lim W, (4, ) = 0,
n—oo



and R
lim @(!Xﬂ > R) < ]fD(\Xt\ > 5)
n—oo

Then it follows from the definition of 4" and (3.3) that

lim |b"(x, if') — b(x, jir)| =0, a.e. x€R™
n—oo
So, we may apply the dominated convergence theorem to derive

lim sup P( sup I;(s) > %)

n—00 s€[0,T7]
1

(3.6) < g (/T </|x<R bz, fir) — bm(x,/lt)|2pdx>Q/p dt) q
_/ (1%, > R)d

Since b™ is bounded and continuous, it follows that

6 : 3 4 m n m

§) <limsup °E | (X7, L5,) — (X, L)l dt = 0.
€

n—oo

limsup]fb( sup I(s) >

n—00 s€[0,T
Finally, since X" — X, in probability, the Krylov’s estimate in [38, Theorem 3.1] also
holds for X replacing X™. Therefore, inequality (3.6) holds for I3 replacing ;. In conclusion,

we arrive at

JRLCHEZRE T AEASIETED

lim sup ]P’ sup

n—00 sE[O T)
°. €
< lim sup IF’( sup I; _)
n—+00 @21 s€[0,T] (s) 2 3
C T a/p 7
S5 / (/ |b(z, fir) — bm(l‘,ﬂtﬂ?”dx) dt
€ \Jo \Jpl<r

c [T
+5 [ B%I 2 R
0

for any m > 0 and R > 0. Then letting first m — oo and then R — oo, we obtain from the

dominated convergence theorem that

limsupIP’ sup / (X7, .2 S —b(f(t,cf;(tﬂdtze) =0.

n—00 s€[0,T]

Finally, letting n go to infinity in (3.5), we have

(3.7) dX, = b(Xy, Ly, [p)dt + dL,.
O

Thus, (X, L) is a weak solution to (2.1).



Remark 3.2. Since the Krylov’s estimate also holds under some integrable condition on the
drift in [38], the existence of weak solution can be proved when b satisfies some integrable
condition. We only consider the bounded measurable drift in this paper since the convergence
rate of Euler-Maruyama method in Section 4 cannot be obtained under integrable condition.

Theorem 3.3. Assume (H1)-(H2). Then (2.1) has weak uniqueness in 2.

Proof. Let (X;)i>0 solve (2.1) with ZLx, = po, and let~()~(t,l~/t) on (€, {.Z}1=0,P) be a weak
solution of (2.1) such that Zx,|p = L, |3 = 1o, i.e. X; solves

(3.8) dX; = b(Xy, L, |p)dt +dLy, L, = o
We aim to prove Zx|p = L5|p. Let pp = Zx,|p and

bi(z) = b(w, 1), =€ R
According to [28], the stochastic differential equation

(3.9) dX, = b(X,)dt +dL,, Xy = X,

has a unique solution under (H1)-(H2). According to Yamada—Watanabe [17], it also
satisfies weak uniqueness. Noting that

dXt - Bt(Xt)dt + st, $X0|P - $X0|]§)7
the weak uniqueness of (3.9) implies
(3.10) Lxls = Lx|p.

So, (3.9) reduces to ) ) o .

dXt — b(Xt7 g){*tﬁ;)dt + st, X() — XO.
By the strong uniqueness of (2.1) according to Theorem 3.6 below, we obtain X = X,
Therefore, (3.10) implies L3 |z = ZLx|p as wanted. O

3.2 Strong Solution

The next lemma characterize the relationship between the existence of weak and strong
solution (see [15, 16]).

Lemma 3.4. Let (Q, {Z}i>0,P) and (Xy, Ly) be a weak solution to (2.1) with u; == Lx,|p-
If the SDE

has a unique strong solution X; up to life time with Lx, = po, then (2.1) has a strong
solution.



Proof. Since uy = Z%,|, X; is a weak solution to (3.11). By Yamada-Watanabe principle,
the strong uniqueness of (3.11) implies the weak uniqueness, so that X; is nonexplosive with
Zx, = pt,t > 0. Therefore, X; is a strong solution to (2.1). O

Remark 3.5. According to [28], (3.11) has a unique strong solution under (H1)-(H2). This
together with Lemma 3.4 and Theorem 3.1 implies that (2.1) has a strong solution.

Theorem 3.6. Assume (H1)-(H2). Let X and Y be two solutions to (2.1) in 2P, with
Xo=Yy. Then P-a.s. X =Y.

Proof. Let yuy = Zx,, iy = ZLy,,t € [0,T]. Then po = fip. Let
b?(.ﬁ) - b($7ut)7 bg(‘r) - b(x7ﬂt)7 (t,l’) € [O7T] X Rd'
Then it holds

dXt - bf(Xt) dt + st,

3.12 ’
(3.12) dY; = b(Y,)dt + dL,.

For A > 0, consider the following PDE for u™* : [0,T] x R? — R¢:
(3.13) Opu " + Lup™ + Vg™ + b = M, upt =0,

where
a1y 24w = [ 19~ )~ V@) L], S € O (R

According to [28, Theorem 3.4], for A > 0 large enough, (3.13) has a unique solution u™* €
C'([0,7], Ci*P (R%G RY)) with

1
(315) ||vu/\7“||T,oo S §a
and
(3.16) MM 700 + sup [Vl arso1 < CI[b]|.

t€[0,7]
Let 0" (x) = & 4+ u)*(x). By (3.12), (3.13), and using the Ité formula, we derive
Ao (X)) = Aup™(X,)dt + d L,
—l—/ [uz\“ (X +a) —u (Xt_)] N(dt, dx),
R4\ {0}

(3.17) Ao (V) = (V) + VO (b — b)Y (Y)Yt + dL,

[ b ) ()| Nt o).
RAN{0}

9



Noting that [19, Theorem 2.11] together with (3.15) and (3.16) implies
2
E sup

/ / #(Vie ) — ™ (V,0)] N (dt, da)
s€[0,7] Rd\{o}
2
<cIE/ / Yi @) —u (Vi )) v(de)dt
Rd\{o}
< [
{zO<\m|<1}
—i—cE/ /
—

< CTIIVUA’“IIT,OO/ 2w (dz) + T |[u™ |7 v ({2 : 2] > 1}) < oo

{z:0<|z|<1}

"Vt a) — o ()| w(da)as

H (Y ) —u (Y >] y(dz)dt

So, (3.17) is well defined and we have

(3.18) 07 (Xe) = 07" (YD) < ) Au(h)

i=1

where

[ (X @) = (X,0) = (Voo + @) + ™ (Vo) | N (ds, da)|
R4\ {0}

t
Aot) = / AR (X,) — (V)| ds,
0
t
= [ Iver - v jas.
0

Firstly, by (H2), (3.15) and Hélder inequality, for any p > x, we obtain

t t
3.19 E sup AL(s) <ci(p, T W (s, ps)Pds < c1(p, T E sup | X, — Y,[Pdr.
’ 0

0<s<t 0 0<s<r

Similarly, we have

t
(3.20) E sup A5(s) < ca(p, A,T)/ E sup | X, —Y;[’dr.
0<s<t 0 0<s<r
Finally, by [14], for any p > k, we have
t
(321) E sup AI{(S) S 03(]9, Tv v, 067/8)/ E sup |XS - Y;|p dr.
0<s<t 0 sel0.]

Combining formulas (3.18)—(3.21) and (3.15), we get

¢
E sup | X — YsP < C’/ E sup | X, — Y |’ dr.
0

0<s<t s€[0,7]

10



Since X — Y is a bounded process, Gronwall’s inequality implies that P-a.s. X; =Y, for all
t € [0,7]. O

Remark 3.7. Although the PDE considered in [28] is elliptic, the PDE (3.13) is parabolic,
we can obtain (3.15) and (3.16) by the same method in [28] since both the elliptic and
parabolic PDFEs have similar probability representation.

4 The convergence rate of EM Scheme for SDEs

In this section, we exploit the stochastic interacting particle systems to approximate (2.1).
Let N > 1 be an integer and (X¢, L!)1<;<n be i.i.d. copies of (X, L;). Consider the following
stochastic non-interacting particle systems

(4.1) dX] = b(X}, p)dt +dL;, t>0, i€Sy:={1,--- N}

with g} = Zxi. By the weak uniqueness, we have y; = pii € Sy. Let §, be Dirac’s delta
measure centered at the point # € R? and i be the empirical distribution associated with
Xt XN e,

| N
(4.2) Ay = > 0x
j=1
Moreover, the stochastic N-interacting particle systems is defined:
(4.3) XN = b(X)N, pN)dt +dLE, t >0, XpN = X{, i € Sy,
where fi¥ means the empirical distribution corresponding to th’N, e ,XtN ’N, namely,

:U’t : deX]N

We remark that particles (X');cs, are mutually independent and that particles (X*");cs,
are interacting and are not independent.

Let |a] be the integer part of @ > 0. To discretize (4.3) in time, we introduce the
continuous time EM scheme defined as below: for any § € (0,e!),

(4.4) dxPN = (XY ppMydt+dLy, t>0, XptY = XgV,
where t5 := [t/d]d and

A5N
s ._NZ(SX(SJN, k> 0.

The following result states that the continuous time EM scheme corresponding to s-
tochastic interacting particle systems converges strongly to the non-interacting particle sys-
tem whenever the particle number goes to infinity and the stepsize approaches to zero and
moreover provides the convergence rate.

11



Theorem 4.1. Assume (H1)-(H2) and suppose further £Lx, € &, for some p € [k, ).
Then, for any T > 0 and q € (p,«), there exists a constant C' > 0 depending on p,d,q,T
and sup,co ) EIX{|? such that

0% + N"2 4 Ni ", p> , 4 #2p,
sup E(OiltlfT\Xf—Xf’i’NP) <C{6% + N 3log(1+ N)+ N p=d g2
e 0% + N~i 4 Na !, p€<072) ¢ # 5

Firstly, under (H1)-(H2), the stochastic N-interacting particle systems (4.3) are strongly
wellposed, see Lemma 4.2 below.

Lemma 4.2. Assume that (H1) and (H2) hold. Then for any %y-measurable random
variable Xy with Lx, € &, for some p € (0, ), (4.3) admits a strong solution satisfying

sup E|X/N|P < 00, t>0.

€SN
Proof. For x 1= (x1,-+ ,zn)* € (RN, 2; € RY, set
L
ﬂiv = N 25%7 b(l’) = (b(l‘l,ﬂiv), U 7b(xNaﬂiv))*v Ly = (LL T ’Lz{/v)*

Obviously, (L¢)i>o is an Nd-dimensional Lévy process. Then, (4.3) can be reformulated as
(4.5) dX, = b(X;)dt +dL;, t>0.

Firstly, ﬁt~ has symbol U(u) = SN, W(w;) for u = (ur,---,un)* € (RYN. Clearly, (H1)
holds for W(u) for some constant C(N, ) > 0 since ¥ satisfies (H1) and the inequality

Ca Z lu;|* > C(N (Z m?)

holds for some constant C'(N,«) > 0. By (H2), a straightforward calculation shows that
(4.6) b(z)| < Cn, x€ (RYY

for some constant Cp > 0. Observe that
(4.7) %Za.xa €C(iy, i), wj,y; €R,
so that we have

(4.8) W (i, iy ) < ( Z jj — %I“)

12

==



This together with (H2) and Holder inequality implies that
(4.9) b(x) = b(a)] < Cfle — /| + |z — ')},

for some constant Cy > 0. Thus, according to [28], (4.3) has a unique strong solution.
Finally, the estimate follows from the fact E|L;|P? < oo for any p € (0, a) and the boundedness
of b. 0

4.1 Proof of Theorem 4.1

The proof of Theorem 4.1 is based on two lemmas below, where the first one is concerned
with propagation of chaos for McKean-Vlasov SDEs with irregular drift coefficients. We
state it as follows.

Lemma 4.3. Under the assumptions of Theorem 4.1, then for any T > 0 and q € (p, @),
there exists a constant C > 0 depending on p,d,q, T and sup,c( p E|X/|? such that

N=z + Na !, p>2 q#2p,
sup B( sup |X; = X{VP) <O 9N Hlog(1+ M)+ NI p=d q#2
(2 p
R N-G4+Ni pe(0,9), ¢# 5

Proof. For any i € Sy and z € R?, let bfi (z) = b(z, ul) and be = b(z,il¥). Then, (4.1) and
(4.3) can be rewritten respectively as

dX] = b (XP)dt + dL,
AXPN = o (XAt + d L
For A > 0, consider the following PDE for u™* : [0,T] x R? — R®:

(4.10) Ou" + L™ + Vet + 0 = At upt =0,
t

where .Z is defined in (3.14). Since p’ = p for any i € Sy, there exists large enough A > 0
independent of 7, such that (4.10) has a unique solution u** e C([0,T], o (R%,RY)),
which is equal to uM*. Moreover, (3.15) and (3.16) hold.

Applying It6’s formula to Qt’\’“i () =z + u}* (z), 2 € R? yields
Ao (X1) = Mt (X7)dt + dL
[ ) - (X)) Wt o),
RA\{0}

(4.11) AN (XN = D (XY 4+ dLE + VoM (5 — o) (XYY e

+ / [u;\’“i (XZ;N + :c) M (X;';N)] N(dt, dz).
R\ [0}
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For simplicity, set AMN = oM (X7) — oM (X}N). We have

¢ ; . i . t i ~ i .
AP < A/ Jug " (X5) — ug (X)|ds +/ (VO (B — b)) (XN)|ds
0 0

d ( (X ) = (x0)]
\{0}

[ <X’N+x>—u (X’Nﬂ)]v(ds,d:lz)
= L1,i(t) + Loi(t) + I34(1).
Completely the same with (3.21), we have

R

¢
E sup |I3,(s)? S/ E sup |X; — Xﬁ’N|pdr.
0

s€[0,¢] s€[0,r]
Next, by assumption (H2) and Hélder inequality, for any p > k, we obtain

E sup [L(s)]P < Co / W (i, i )7 + W il s

0<s<t

(4.12) < Cy {E s X5 = XNP + EW, ()Y, )P Ydr
0 se|0,r

t
< 02/ {E sup [X; — XM+ EW, (4, p,)"}dr
0 s€[0,r]

Similarly, we have
t
(4.13) E sup |I1:(s)|” < ca(p, )\,T)/ E sup | X! — X V|Pdr.
0<s<t 0 0<s<r
Thus, we find that for some constant 02 A >0,
E( sup [AMN) < Co {E sup [ X} — XEN|P 4+ EW, (i, ) b,

0<s<t 0<s<r

Set Zi"™N = Xi— X" for convenience. This, together with the facts that | Z [P < 22|A}MV [P
due to (3.15), leads to

E( sup IZZ;’NI”> < 03,,\/ {E sup [X] — X0+ EW, (i), )P }dr
0<s<t 0<s<r

for some constant C3, > 0. On the other hand, according to [12, Theorem 1], for any
q € (p; ),

N-2 4+ N, p>%, q#2p,
(414)  sup EW, (i, 1) < O N=2log(1+ N)+Na~t, p—g, q#2p
<t< 2 p_
N=a+ N, pe(0,9), ¢# 3%
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holds for some constant Cy > 0 depending on p,d, ¢ and sup;c gy pi(| - 19). Hence, due to
the boundedness of X? — X%¥ the desired assertion follows from Gronwall’s inequality. [

Remark 4.4. Noting that for ¢ > «, ui(] - |7) = oo, the condition in [7, Theorem 5.8] does
not hold. So we adopt [12, Theorem 1] in place of [7, Theorem 5.8] used in [3].

The next lemma gives the estimate for ]Xf et Xfé’i’N\, which is useful in the sequel.

Lemma 4.5. Assume (H1) and (H2), then for any 0 <p < a, t € [0,T],

. T
sup E | XN — Xft;z’N < C(p,v)da

€SN
holds for some constant C(p,v) depending on p and v.

Proof. The result follows immediately from (4.4), the boundedness of b, the scaling property
of L and E|L|? < oo for p € (0, ). O

Lemma 4.6. Under the assumptions of Theorem 4.1, then for any T > 0 and q € (p, @),
there exists a constant C' > 0 depending on p,d,q,T and sup,cp 1 E|X}|? such that

6% + N3 £ Na 1, p>9 q#2p,
sup E( sup IXZ’N—Xf’Z’N|p> <CQ6% + N ilog(1L+N)+Ni~', p=19, g #2p,
1€ESN 0<t<T 5ﬁ —f—N_% +Nﬂ—1 pE (O d) q# d
@ q s ,5 5 dTp

Proof. For x € R? and i € Sy, let b’,i;N(x) = b(x, (i) so that (4.4) can be reformulated as

AXPN = o (XN At 4 d L
Let uM* be the solution to (4.10). Again applying Itd’s formula to 62\’“i(x) =+ u;\“z(x)
gives that

4629 () = D (X0) 1 g0 (X 0 (X0 — b (XEY)) + A
/ [uf‘“z (Xf’_i’N + x) - ug\’“i (Xf_”V)] N(dt,dx).
R4\{0}

Ni,N . gt vi,N At 8,4, N 84N . vi,N 8,i,N
@t T Ot (Xt ) - Qt (Xt )7 Zt T Xt - Xt .

Then, for any p € [k, @), from (4.15) and the second SDE in (4.11), we deduce from Hélder’s
inequality that

(4.15)

Set

E( sup [©2V]7)

0<s<t

t
< CA,p,T{ / E
0

i . ; . p
ug (XNY) = (XN ds

15



b [BIVOM 0 < b)) - T e 0 (e < b () s
0

[ o (o ) - )
0 JRI\{0}
)

— [u;‘“l (X;_N + x) — M (X;ivﬂ )N(ds, dz)
= O)\,p,T{Jl(t> + Jg(t) + Jg(t)}

for some constant C),r > 0. In what follows, we intend to estimate J;(t),i = 1,2, 3, one-

by-one. Owing to (3.15) and (3.21), there exists a constant ¢; > 0 such that

+ [E sup
rel0,t]

t
(4.16) Ji(t) + Js5(t) < e / E sup [Z;%"|Pdr.
0

s€[0,r]

It remains to estimate Jo(t). By (3.15), we arrive at

t
Jo(t) < ¢ /0 {EW,.(ul, )P + EIXIWN — XOWNPP + BW,, (i, a0 )P }ds
(4.17)

8

t
< / (6% +EW, (i, i) + EW (@, i) + EW, (i, 42V )P}ds
0

for some constants cs, c3 > 0, where we have used Lemma 4.5. On the other hand, similarly
to (4.8), we obtain from Lemma 4.5

]EW,{(/’:LiV, ﬂi\f)p + EW,{Q&?]? ﬂf;N)p
N
1 o | |
1) < 5 2B - X B - X2 )
< Cy 0% + BJXS - XPVP 4 (BN — X
for some Cy 1 > 0, where in the last display we used the facts that (X7 — Xj’N)jesN and

(X7 — X%3N), s, are identically distributed. Then, plugging (4.18) back into (4.17) gives
that

t
(4.19)  Jp(t) < Caor / (6% + EW, (ul, i) + E[X] — XN+ E sup |25V} ds
0 rel0,s]
for some constant Cy 7 > 0. Now, combining (4.16), (4.19), we arrive at

t
E( sup [03V]) < Cur / {6% + EW, (i, i) + E|X! — XN +E sup |20V P)ds
0

0<s<t r€[0,s]

for some constant Cy 7 > 0. This, together with |Z2*"|P < 2¢|0}N|P due to (3.15), yields

P4+ R sup |20V |PYds
r€[0,s]

t
E( sup |Z8V7) < Cir / {65+ EW, (ul, il ) + E|X] - XN
0

0<s<t

16



for some constant C5 7~o. Consequently, the desired assertion holds true by applying Gron-
wall’s inequality and employing Lemma 4.3 and (4.14).

]

Proof of Theorem 4.1. Theorem 4.1 immediately follows from Lemma 4.3 and Lemma 4.6.

]
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