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Abstract

In this paper, the existence and uniqueness of the distribution dependent SDEs
with Hölder continuous drift driven by α-stable process is investigated. Moreover, by
using Zvonkin type transformation, the convergence rate of Euler-Maruyama method
and propagation of chaos are also obtained. The results cover the ones in the case of
distribution independent SDEs.
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1 Introduction

Distribution dependent stochastic differential equations (SDEs for abbreviation), also called
McKean-Vlasov SDE, can be used to characterize nonlinear Fokker-Planck equations (see
[23, 6]). Recently, there are many results on Distribution dependent SDEs (see [25, 33]
and references within). Existence and uniqueness of McKean-Vlasov SDEs with regular
coefficients have been investigated extensively (see e.g. [7, 25, 33, 34]). Meanwhile, the
strong wellposedness of McKean-Vlasov SDEs with irregular coefficients has also received
much attention (see, for example, [4, 8, 15, 30], where, in [8], the dependence of laws is of
integral type and the diffusion is non-degenerate, and [15] is concerned with the integrability
condition but excluding linear growth of the drift). For weak wellposedness of McKean-
Vlasov SDEs, we refer to e.g. [15, 21, 24, 25]. [29, 35] studied the Lion’s derivative and
ergodicity for SDEs driven by Brownian motion. [32] investigated the derivative formula
and gradient estimate for McKean-Vlasov SDEs driven by jump process (See [1, 5, 9, 10, 11]
for more results on McKean-Vlasov SDEs).
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Recently, the convergence rate of Euler-Maruyama (EM for short) method for SDEs with
irregular coefficients has attracted much attention. For instance, [13, 36] revealed the conver-
gence rate in L1 and Lp-norm sense for a range of SDEs, where the drift term is Lipschitzian
and the diffusion term is Hölder continuous with respect to spatial variable. In addition,
by using the Yamada-Watanabe approximation and heat kernel estimate, [26] studied the
strong convergence rate for a class of non-degenerate SDEs with bounded drift term satisfies
weak monotonicity and is of bounded variation with respect to Gaussian measure and the
diffusion term is Hölder continuous.

Quite recently, by Zvonkin transformation [39], the convergence rate of EM method for
the SDEs with singular drift are investigated extensively. For instance, [2] discussed the case
with Dini continuous drifts; [27] obtained the strong convergence rate of EM method with
bounded Hölder continuous drift driven by truncated symmetric α-stable process, see also
[22] and [14] for the symmetric α-stable process. As to the distribution dependent SDEs, [37]
proved the convergence of the EM scheme under linear growth condition by a discretized
version of Krylov’s estimate. [3] extended the results of [27] and [13] to the distribution
dependent SDEs driven by Brownian motion.

In this paper, we investigate the existence and uniqueness of distribution dependent SDEs
with bounded and Hölder continuous drifts, where the noise is α-stable process. Due to the
distribution dependence, we adopt an approximation technique by constructing a sequence
of classical SDEs and using the Skorohod representation theorem to prove the existence of
the weak solution. As to the pathwise uniqueness, we still use the Zvonkin transform which
depend on the distribution of one solution to make two solutions be regular ones.

Since the SDE is distribution-dependent, we exploit the stochastic interacting particle
systems to approximate it. We will apply a common Zvonkin’s transform depending on the
distribution of the real solution to make the numerical SDE and interacting particle systems
be regular ones, from which the strong convergence rate is obtained.

The paper is organized as follows. In Section 2, we recall some preliminaries on symmetric
α-stable process and the Poisson random measure. In Section 3, the existence and uniqueness
for the distribution dependent SDEs with Hölder continuous drift driven by α-stable process
are established. Finally, by using Zvonkin type transformation, the convergence rate of EM
Scheme for SDEs are investigated in Section 4.

2 Some Preparations

2.1 Symmetric α-stable process

Before moving on, we firstly recall some knowledge on symmetric α-stable process and the
Poisson random measure (see [14, 19, 20, 28] for more details). Recall that a Rd-valued Lévy
process Lt is called d-dimensional symmetric α-stable process if the Lévy symbol Ψ has the
following representation:

Ψ(u) =

∫
Rd

[1− cos〈u, x〉]ν(dx),
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where

ν(D) =

∫
S

µ(dξ)

∫ ∞
0

1D(rξ)
dr

r1+α
, D ∈ B(Rd),

α ∈ (0, 2), S = {x ∈ Rd, |x| = 1} and µ is a finite symmetric measure on (S,B(S)), i.e.
µ(A) = µ(−A), for any A ∈ B(S).

The Poisson random measure N associated to L is defined as follows:

N([0, t], U) =
∑

0≤s≤t

1U(∆Ls), U ∈ B
(
Rd\{0}

)
, t ≥ 0.

Here ∆L(s) = Ls−Ls− denotes the jump size of L at time s ≥ 0. The compensated Poisson
random measure Ñ is defined by

Ñ([0, t], U) = N([0, t], U)− tν(U), U ∈ B
(
Rd\{0}

)
, 0 /∈ Ū , t ≥ 0.

It follows from the Lévy-Itô decomposition that

Lt =

∫ t

0

∫
|x|≤1

xÑ(ds, dx) +

∫ t

0

∫
|x|>1

xN(ds, dx), t ≥ 0.

For convenience, we introduce some notations. Let ‖ · ‖ denote the operator norm for a
bounded linear operator. For k ∈ N and β ∈ (0, 1), denote by Ck+β

b

(
Rd
)

the set of Rd-valued
bounded functions, which have up to k-ordered continuous derivative and the k-th derivative
is β Hölder continuous. The norm is

‖f‖k+β :=
k∑
i=0

sup
x∈Rd
‖∇if(x)‖+ sup

x 6=y

‖∇kf(x)−∇kf(y)‖
|x− y|β

, f ∈ Ck+β
b

(
Rd
)
.

In particular, C0
b

(
Rd
)

means the set of Rd-valued bounded functions, equipped the norm
‖f‖∞ := supx∈Rd |f(x)|, and we usually denote Cb. Let T > 0, for a function f defined on
[0, T ]× Rd, let ‖f‖T,∞ = supt∈[0,T ],x∈Rd |f(t, x)|.

2.2 Distribution dependent SDEs

Let P be the collection of all probability measures on Rd equipped with weak topology. For
p ≥ 1, if µ(| · |p) :=

∫
Rd |x|

pµ(dx) < ∞, we formulate µ ∈ Pp. For µ, µ̄ ∈ Pp, p ≥ 1, the
Wp-Wasserstein distance between µ and ν is defined by

Wp(µ, µ̄) = inf
π∈C(µ,µ̄)

(∫
Rd×Rd

|x− y|pπ(dx, dy)
) 1
p
,

where C(µ, µ̄) stands for the set of all couplings of µ and µ̄. As for a random variable ξ, its
law is written by Lξ, and write Lξ|P as the distribution of ξ under P.

Let b : Rd ×P → Rd be measurable with respect to the σ-algebra generated by the
product topology on Rd ×P. Consider the following McKean-Vlasov SDE on Rd

(2.1) dXt = b(Xt,LXt)dt+ dLt, t ≥ 0.
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Definition 2.1. A càdlàg adapted process (Xt)t≥0 on Rd is called a (strong) solution of
(2.1), if P-a.s.

Xt = X0 +

∫ t

0

b(Xs,LXs) ds+ Lt, t ≥ 0.(2.2)

Moreover, if E|Xt|θ <∞ for some θ ∈ [1, α) and any t ≥ 0, then we say (2.1) has a solution
in Pθ. We call the strong uniqueness in Pθ for some θ ∈ [1, α), if for any F0-measurable
random variable X0 with LX0 ∈Pθ, there exists a unique Xt satisfy (2.2) and E|Xt|θ <∞.

(2) A couple (X̃t, L̃t)t≥0 is called a weak solution to (2.2), if L̃ is a d-dimensional sym-
metric α-stable process with respect to a complete filtered probability space (Ω̃, {F̃t}t≥0, P̃),
and (2.2) holds for (X̃t, L̃t)t≥0 in place of (Xt, Lt)t≥0.

(3) (2.2) is said to have weak uniqueness in Pθ for some θ ∈ [1, α), if any two weak
solutions of the equation from common initial distribution in Pθ are equal in law.

Throughout this paper, we assume that

(H1) For fixed α ∈ (1, 2), there exists a positive constant Cα > 0 such that

Ψ(u) ≥ Cα|u|α, u ∈ Rd.

(H2) ‖b‖∞ := supx∈Rd,µ∈P |b(x, µ)| < ∞, and there exists constants β ∈ (0, 1) satisfying
2β + α > 2, K > 0 and κ ∈ [1, α) such that

|b(x, µ)− b(y, µ̄)| ≤ K(Wκ(µ, µ̄) + |x− y|β), µ, µ̄ ∈Pκ, x, y ∈ Rd.(2.3)

Remark 2.1. See [14, Remark 1.1] for examples such that (H1) holds. As to (H2), we
give an example as follows. Let b̃ : Rd × Rd → Rd be bounded and satisfy

|b̃(x1, y1)− b̃(x2, y2)| ≤ K(|x1 − x2|β + |y1 − y2|), x1, y1, x2, y2 ∈ Rd

for some K > 0 and β ∈ (0, 1) with 2β + α > 2. Define

b(x, µ) =

∫
Rd
b̃(x, z)µ(dz), x ∈ Rd, µ ∈P1.

Then for any κ ∈ [1, α), µ, µ̄ ∈Pκ, x, y ∈ Rd, π ∈ C (µ, µ̄), we have

|b(x, µ)− b(y, µ̄)| =
∣∣∣∣∫

Rd
b̃(x, z)µ(dz)−

∫
Rd
b̃(y, z′)µ(dz′)

∣∣∣∣
=

∣∣∣∣∫
Rd×Rd

[b̃(x, z)− b̃(y, z′)]π(dz, dz′)

∣∣∣∣
≤
∫
Rd×Rd

K(|x− y|β + |z − z′|)π(dz, dz′)

≤ K|x− y|β +K

∫
Rd×Rd

|z − z′|π(dz, dz′).

This implies (H2).
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3 Existence and uniqueness

3.1 Weak Solution

We will use the tightness and the Skorohod representation theorem to prove the weak exis-
tence. The idea of the proof of the following theorem comes from [38, Proof of Theorem 4.1]
(see also [18, Proof of Theorem 4.7] and [15, 25] for the case with Gaussian noise).

Theorem 3.1. Assume that b is bounded and there exists a constant K > 0 such that

|b(x, µ)− b(x, µ̄)| ≤ KWκ(µ, µ̄), µ, µ̄ ∈Pκ, x ∈ Rd.(3.1)

Then for any µ0 ∈Pκ, (2.1) has a weak solution with initial distribution µ0.

Proof. Let 0 ≤ ρ ∈ C∞0 (Rd) with support contained in {x : |x| ≤ 1} such that
∫
Rd ρ(x)dx = 1.

For any n ≥ 1, let ρn(x) = ndρ(nx) and define

bn(x, µ) =

∫
Rd
b(x′, µ)ρn(x− x′)dx′, (x, µ) ∈ Rd ×P.(3.2)

Then by (3.1), for any n ≥ 1, there exists a constant Cn > 0 such that

|bn(x, µ)− bn(y, µ̄)| ≤ Cn(|x− y|+ Wκ(µ, µ̄)), (x, µ), (y, µ̄) ∈ Rd ×Pκ.

Moreover, it holds

|bn(x, µ)− b(x, µ̄)| ≤ |bn(x, µ)− bn(x, µ̄)|+ |bn(x, µ̄)− b(x, µ̄)|(3.3)

≤ KWκ(µ, µ̄)) + |bn(x, µ̄)− b(x, µ̄)|.

For any n ≥ 1, define

dXn
t = bn(Xn

t ,LXn
t
)dt+ dLt,(3.4)

with LXn
0

= µ0. Then use a distribution iteration method as in the case with Gaussian noise
([34]), it is not difficult to see that (3.4) has a solution {Xn}n≥1 on [0, T ] with LXn

t
∈Pκ.

Let D be the space of all Rd-valued càlàg functions on [0, T ] equipped with the Skorohod
topology such that D is a Polish space. Set

Hn
s =

∫ s

0

bn(Xn
t ,LXn

t
)dt, s ∈ [0, T ].

Since b is bounded, it is clear that

sup
s∈[0,T ]

|Hn
s | ≤ T‖b‖∞

for any n ≥ 1. Moreover, for any ε > 0 and bounded stopping time τ

|Hn
t∧τ −Hn

t∧(τ+ε)| ≤ ε‖b‖∞, t ∈ [0, T ].
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Thus, {Hn
· }n≥1 in D is tight, and so does {Hn

· , L·}n≥1. So there exists a subsequence still
denoted by {Hn

· , L·}n≥1 such that the distribution of {Hn
· , L·}n≥1 is weakly convergent in

D× D, which implies weak convergence of the distribution of {Xn
· , L·}n≥1 in D× D. Then,

by Skorohod’s representation theorem [31], there exists a probability space (Ω̃, F̃ , P̃) and
D×D-valued stochastic processes {X̃n

· , L̃
n
· ), {X̃·, L̃·) such that L(Xn

· ,L·)|P = L(X̃n
· ,L̃

n
· )|P̃, and

P̃-a.s. (X̃
(n)
· , L̃n· ) converges to (X̃·, L̃·) as n → ∞, which implies that for any t ∈ [0, T ],

LX̃n
t
|P̃ weakly converges to LX̃t

|P̃. In particular, L̃ is still a symmetric α-stable Lévy process

with respect to the complete filtration F̃t = σ{X̃s, L̃s, s ≤ t}
P̃

and has the same symbol as
L, and

dX̃n
t = bn(X̃n

t ,LX̃n
t
)dt+ dL̃nt , X̃n

0 = X̃0(3.5)

with LX̃0
|P̃ = LXn

0
|P. Next, we only need to take limit in (3.5).

For any n ≥ m ≥ 1, we have∫ s

0

|bn(X̃n
t ,LX̃n

t
)− b(X̃t,LX̃t

)| dt ≤ I1(s) + I2(s) + I3(s),

where

I1(s) :=

∫ s

0

|bn(X̃n
t ,LX̃n

t
)− bm(X̃n

t ,LX̃t
)| dt,

I2(s) :=

∫ s

0

|bm(X̃n
t ,LX̃t

)− bm(X̃t,LX̃t
)| dt,

I3(s) :=

∫ s

0

|bm(X̃t,LX̃t
)− b(X̃t,LX̃t

)| dt.

Below we estimate these Ii(s) respectively. For simplicity, let µ̃t = LX̃t
and µ̃nt = LX̃n

t
.

Firstly, since ‖bn‖∞ ≤ ‖b‖∞, applying Krylov’s estimate in [38, Theorem 3.1] and Cheby-
shev’s inequality, we arrive at for any p > d

α
∨ 1 and q > pα

pα−d ,

P̃( sup
s∈[0,T ]

I1(s) ≥ ε

3
) ≤ 9

ε2
Ẽ
∫ T

0

1{|X̃n
t |≤R}

|bn(X̃n
t , µ̃

n
t )− bm(X̃n

t , µ̃t)|2 dt

+
9

ε2
Ẽ
∫ T

0

1{|X̃n
t |>R}

|bn(X̃n
t , µ̃

n
t )− bm(X̃n

t , µ̃t)|2 dt

≤ C

ε2

(∫ T

0

(∫
|x|≤R

|bn(x, µ̃nt )− bm(x, µ̃t)|2pdx
)q/p

dt

) 1
q

+
C

ε2

∫ T

0

P̃(|X̃n
t | > R)dt.

Since X̃n
t converges to X̃t in probability, it is clear

lim
n→∞

Wκ(µ̃
n
t , µt) = 0,
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and

lim
n→∞

P̃(|X̃n
t | > R) ≤ P̃(|X̃t| ≥

R

2
).

Then it follows from the definition of bn and (3.3) that

lim
n→∞

|bn(x, µ̃nt )− b(x, µ̃t)| = 0, a.e. x ∈ Rd.

So, we may apply the dominated convergence theorem to derive

lim sup
n→∞

P̃( sup
s∈[0,T ]

I1(s) ≥ ε

3
)

≤ C

ε2

(∫ T

0

(∫
|x|≤R

|b(x, µ̃t)− bm(x, µ̃t)|2pdx
)q/p

dt

) 1
q

+
C

ε2

∫ T

0

P̃(|X̃t| ≥ R)dt.

(3.6)

Since bm is bounded and continuous, it follows that

lim sup
n→∞

P̃
(

sup
s∈[0,T ]

I2(s) ≥ ε

3

)
≤ lim sup

n→∞

3

ε
E
∫ T

0

|bm(X̃n
t ,LX̃t

)− bm(X̃t,LX̃t
)| dt = 0.

Finally, since X̃n
t → X̃t in probability, the Krylov’s estimate in [38, Theorem 3.1] also

holds for X̃ replacing X̃n. Therefore, inequality (3.6) holds for I3 replacing I1. In conclusion,
we arrive at

lim sup
n→∞

P̃
(

sup
s∈[0,T ]

∫ s

0

|bn(X̃n
t ,LX̃n

t
)− b(X̃t,LX̃t

)| dt ≥ ε
)

≤ lim sup
n→∞

3∑
i=1

P̃
(

sup
s∈[0,T ]

Ii(s) ≥
ε

3

)

≤ C

ε2

(∫ T

0

(∫
|x|≤R

|b(x, µ̃t)− bm(x, µ̃t)|2pdx
)q/p

dt

) 1
q

+
C

ε2

∫ T

0

P̃(|X̃t| ≥ R)dt

for any m > 0 and R > 0. Then letting first m→∞ and then R→∞, we obtain from the
dominated convergence theorem that

lim sup
n→∞

P̃
(

sup
s∈[0,T ]

∫ s

0

|bn(X̃n
t ,LX̃n

t
)− b(X̃t,LX̃t

)| dt ≥ ε
)

= 0.

Finally, letting n go to infinity in (3.5), we have

dX̃t = b(X̃t,LX̃t
|P̃)dt+ dL̃t.(3.7)

Thus, (X̃, L̃) is a weak solution to (2.1).
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Remark 3.2. Since the Krylov’s estimate also holds under some integrable condition on the
drift in [38], the existence of weak solution can be proved when b satisfies some integrable
condition. We only consider the bounded measurable drift in this paper since the convergence
rate of Euler-Maruyama method in Section 4 cannot be obtained under integrable condition.

Theorem 3.3. Assume (H1)-(H2). Then (2.1) has weak uniqueness in Pκ.

Proof. Let (Xt)t≥0 solve (2.1) with LX0 = µ0, and let (X̃t, L̃t) on (Ω̃, {F̃t}t≥0, P̃) be a weak
solution of (2.1) such that LX0 |P = LX̃0

|P̃ = µ0, i.e. X̃t solves

(3.8) dX̃t = b(X̃t,LX̃t
|P̃)dt+ dL̃t, LX̃0

= µ0.

We aim to prove LX |P = LX̃ |P̃. Let µt = LXt|P and

b̄t(x) = b(x, µt), x ∈ Rd.

According to [28], the stochastic differential equation

(3.9) dX̄t = b̄t(X̄t)dt+ dL̃t, X̄0 = X̃0

has a unique solution under (H1)-(H2). According to Yamada–Watanabe [17], it also
satisfies weak uniqueness. Noting that

dXt = b̄t(Xt)dt+ dLt, LX0|P = LX̃0
|P̃,

the weak uniqueness of (3.9) implies

(3.10) LX̄ |P̃ = LX |P.

So, (3.9) reduces to
dX̄t = b(X̄t,LX̄t|P̃)dt+ dL̃t, X̄0 = X̃0.

By the strong uniqueness of (2.1) according to Theorem 3.6 below, we obtain X̄ = X̃.
Therefore, (3.10) implies LX̃ |P̃ = LX |P as wanted.

3.2 Strong Solution

The next lemma characterize the relationship between the existence of weak and strong
solution (see [15, 16]).

Lemma 3.4. Let (Ω̄, {F̄t}t≥0, P̄) and (X̄t, Lt) be a weak solution to (2.1) with µt := LX̄t|P̄.
If the SDE

dXt = b(Xt, µt) dt+ dLt, 0 ≤ t ≤ T(3.11)

has a unique strong solution Xt up to life time with LX0 = µ0, then (2.1) has a strong
solution.
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Proof. Since µt = LX̄t |P̄, X̄t is a weak solution to (3.11). By Yamada-Watanabe principle,
the strong uniqueness of (3.11) implies the weak uniqueness, so that Xt is nonexplosive with
LXt = µt, t ≥ 0. Therefore, Xt is a strong solution to (2.1).

Remark 3.5. According to [28], (3.11) has a unique strong solution under (H1)-(H2). This
together with Lemma 3.4 and Theorem 3.1 implies that (2.1) has a strong solution.

Theorem 3.6. Assume (H1)-(H2). Let X and Y be two solutions to (2.1) in Pκ with
X0 = Y0. Then P-a.s. X = Y .

Proof. Let µt = LXt , µ̄t = LYt , t ∈ [0, T ]. Then µ0 = µ̄0. Let

bµt (x) = b(x, µt), bµ̄t (x) = b(x, µ̄t), (t, x) ∈ [0, T ]× Rd.

Then it holds

dXt = bµt (Xt) dt+ dLt,

dYt = bµ̄t (Yt)dt+ dLt.
(3.12)

For λ > 0, consider the following PDE for uλ,µ : [0, T ]× Rd → Rd:

(3.13) ∂tu
λ,µ
t + L uλ,µt +∇bµt

uλ,µt + bµt = λuλ,µt , uλ,µT = 0,

where

(3.14) L f(x) =

∫
Rd\{0}

[
f(x+ y)− f(x)− 〈y,∇f(x)〉1{|y|≤1}

]
ν(dy), f ∈ C∞c (Rd).

According to [28, Theorem 3.4], for λ > 0 large enough, (3.13) has a unique solution uλ,µ ∈
C1([0, T ], Cα+β

b

(
Rd;Rd

)
) with

(3.15) ‖∇uλ,µ‖T,∞ ≤
1

2
,

and

(3.16) λ‖uλ,µ‖T,∞ + sup
t∈[0,T ]

‖∇uλ,µt ‖α+β−1 ≤ C‖b‖β.

Let θλ,µt (x) = x+ uλ,µt (x). By (3.12), (3.13), and using the Itô formula, we derive

dθλ,µt (Xt) = λuλ,µt (Xt)dt+ dLt

+

∫
Rd\{0}

[
uλ,µt (Xt− + x)− uλ,µt (Xt−)

]
Ñ(dt, dx),

dθλ,µt (Yt) = {λuλ,µt (Yt) +∇θλ,µt (bµ̄t − b
µ
t )(Yt)}dt+ dLt

+

∫
Rd\{0}

[
uλ,µt (Yt− + x)− uλ,µt (Yt−)

]
Ñ(dt, dx).

(3.17)
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Noting that [19, Theorem 2.11] together with (3.15) and (3.16) implies

E sup
s∈[0,T ]

∣∣∣∣∫ s

0

∫
Rd\{0}

[
uλ,µt (Yt− + x)− uλ,µt (Yt−)

]
Ñ(dt, dx)

∣∣∣∣2
≤ cE

∫ T

0

∫
Rd\{0}

∣∣∣uλ,µt (Yt− + x)− uλ,µt (Yt−)
∣∣∣2 ν(dx)dt

≤ cE
∫ T

0

∫
{x:0<|x|≤1}

∣∣∣uλ,µt (Yt− + x)− uλ,µt (Yt−)
∣∣∣2 ν(dx)dt

+ cE
∫ T

0

∫
{x:|x|>1}

∣∣∣uλ,µt (Yt− + x)− uλ,µt (Yt−)
∣∣∣2 ν(dx)dt

≤ cT‖∇uλ,µ‖2
T,∞

∫
{x:0<|x|≤1}

|x|2ν(dx) + cT‖uλ,µ‖2
T,∞ν({x : |x| > 1}) <∞.

So, (3.17) is well defined and we have

|θλ,µt (Xt)− θλ,µt (Yt)| ≤
3∑
i=1

Λi(t),(3.18)

where

Λ1(t) =

∣∣∣∣∫ t

0

∫
Rd\{0}

[
uλ,µs (Xs− + x)− uλ,µs (Xs−)− uλ,µs (Ys− + x) + uλ,µt (Ys−)

]
Ñ(ds, dx)

∣∣∣∣ ,
Λ2(t) =

∫ t

0

λ|uλ,µs (Xs)− uλ,µs (Ys)|ds,

Λ3(t) =

∫ t

0

|∇θλ,µs (bµ̄s − bµs )(Ys)|ds.

Firstly, by (H2), (3.15) and Hölder inequality, for any p ≥ κ, we obtain

E sup
0≤s≤t

Λp
3(s) ≤ c1(p, T )

∫ t

0

Wκ(µ̄s, µs)
pds ≤ c1(p, T )

∫ t

0

E sup
0≤s≤r

|Xs − Ys|pdr.(3.19)

Similarly, we have

E sup
0≤s≤t

Λp
2(s) ≤ c2(p, λ, T )

∫ t

0

E sup
0≤s≤r

|Xs − Ys|pdr.(3.20)

Finally, by [14], for any p ≥ κ, we have

E sup
0≤s≤t

Λp
1(s) ≤ c3(p, T, ν, α, β)

∫ t

0

E sup
s∈[0,r]

|Xs − Ys|p dr.(3.21)

Combining formulas (3.18)–(3.21) and (3.15), we get

E sup
0≤s≤t

|Xs − Ys|p ≤ C

∫ t

0

E sup
s∈[0,r]

|Xs − Ys|p dr.
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Since X − Y is a bounded process, Gronwall’s inequality implies that P-a.s. Xt = Yt for all
t ∈ [0, T ].

Remark 3.7. Although the PDE considered in [28] is elliptic, the PDE (3.13) is parabolic,
we can obtain (3.15) and (3.16) by the same method in [28] since both the elliptic and
parabolic PDEs have similar probability representation.

4 The convergence rate of EM Scheme for SDEs

In this section, we exploit the stochastic interacting particle systems to approximate (2.1).
Let N ≥ 1 be an integer and (X i

0, L
i
t)1≤i≤N be i.i.d. copies of (X0, Lt). Consider the following

stochastic non-interacting particle systems

(4.1) dX i
t = b(X i

t , µ
i
t)dt+ dLit, t ≥ 0, i ∈ SN := {1, · · · , N}

with µit := LXi
t
. By the weak uniqueness, we have µt = µit, i ∈ SN . Let δx be Dirac’s delta

measure centered at the point x ∈ Rd and µ̃Nt be the empirical distribution associated with
X1
t , · · · , XN

t , i.e.,

(4.2) µ̃Nt =
1

N

N∑
j=1

δXj
t
.

Moreover, the stochastic N -interacting particle systems is defined:

(4.3) dX i,N
t = b(X i,N

t , µ̂Nt )dt+ dLit, t ≥ 0, X i,N
0 = X i

0, i ∈ SN ,

where µ̂Nt means the empirical distribution corresponding to X1,N
t , · · · , XN,N

t , namely,

µ̂Nt :=
1

N

N∑
j=1

δXj,N
t
.

We remark that particles (X i)i∈SN are mutually independent and that particles (X i,N)i∈SN
are interacting and are not independent.

Let bac be the integer part of a ≥ 0. To discretize (4.3) in time, we introduce the
continuous time EM scheme defined as below: for any δ ∈ (0, e−1),

(4.4) dXδ,i,N
t = b(Xδ,i,N

tδ
, µ̂δ,Ntδ )dt+ dLit, t ≥ 0, Xδ,i,N

0 = X i,N
0 ,

where tδ := bt/δcδ and

µ̂δ,Nkδ :=
1

N

N∑
j=1

δXδ,j,N
kδ

, k ≥ 0.

The following result states that the continuous time EM scheme corresponding to s-
tochastic interacting particle systems converges strongly to the non-interacting particle sys-
tem whenever the particle number goes to infinity and the stepsize approaches to zero and
moreover provides the convergence rate.
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Theorem 4.1. Assume (H1)-(H2) and suppose further LX0 ∈ Pp for some p ∈ [κ, α).
Then, for any T > 0 and q ∈ (p, α), there exists a constant C > 0 depending on p, d, q, T
and supt∈[0,T ] E|X i

t |q such that

sup
i∈SN

E
(

sup
0≤t≤T

|X i
t −X

δ,i,N
t |p

)
≤ C


δ
pβ
α +N−

1
2 +N

p
q
−1, p > d

2
, q 6= 2p,

δ
pβ
α +N−

1
2 log(1 +N) +N

p
q
−1, p = d

2
, q 6= 2p

δ
pβ
α +N−

2
d +N

p
q
−1, p ∈ (0, d

2
), q 6= d

d−p .

Firstly, under (H1)-(H2), the stochasticN -interacting particle systems (4.3) are strongly
wellposed, see Lemma 4.2 below.

Lemma 4.2. Assume that (H1) and (H2) hold. Then for any F0-measurable random
variable X0 with LX0 ∈Pp for some p ∈ (0, α), (4.3) admits a strong solution satisfying

sup
i∈SN

E|X i,N
t |p <∞, t > 0.

Proof. For x := (x1, · · · , xN)∗ ∈ (Rd)N , xi ∈ Rd, set

µ̃Nx :=
1

N

N∑
i=1

δxi , b̂(x) := (b(x1, µ̃
N
x ), · · · , b(xN , µ̃Nx ))∗, L̂t := (L1

t , · · · , LNt )∗.

Obviously, (L̂t)t≥0 is an Nd-dimensional Lévy process. Then, (4.3) can be reformulated as

(4.5) dXt = b̂(Xt)dt+ dL̂t, t ≥ 0.

Firstly, L̂t has symbol Ψ̃(u) =
∑N

i=1 Ψ(ui) for u = (u1, · · · , uN)∗ ∈ (Rd)N . Clearly, (H1)
holds for Ψ̃(u) for some constant C(N,α) > 0 since Ψ satisfies (H1) and the inequality

Cα

N∑
i=1

|ui|α ≥ C(N,α)

(
N∑
i=1

|ui|2
)α

2

holds for some constant C(N,α) > 0. By (H2), a straightforward calculation shows that

|b̂(x)| ≤ CN , x ∈ (Rd)N(4.6)

for some constant CN > 0. Observe that

(4.7)
1

N

N∑
j=1

(δxj × δyj) ∈ C(µ̃Nx , µ̃Ny ), xj, yj ∈ R,

so that we have

(4.8) Wκ(µ̃
N
x , µ̃

N
y ) ≤

(
1

N

N∑
j=1

|xj − yj|κ
) 1

κ

.

12



This together with (H2) and Hölder inequality implies that

|b̂(x)− b̂(x′)| ≤ ĈN{|x− x′|+ |x− x′|β},(4.9)

for some constant ĈN > 0. Thus, according to [28], (4.3) has a unique strong solution.
Finally, the estimate follows from the fact E|Lt|p <∞ for any p ∈ (0, α) and the boundedness
of b.

4.1 Proof of Theorem 4.1

The proof of Theorem 4.1 is based on two lemmas below, where the first one is concerned
with propagation of chaos for McKean-Vlasov SDEs with irregular drift coefficients. We
state it as follows.

Lemma 4.3. Under the assumptions of Theorem 4.1, then for any T > 0 and q ∈ (p, α),
there exists a constant C > 0 depending on p, d, q, T and supt∈[0,T ] E|X i

t |q such that

sup
i∈SN

E
(

sup
0≤t≤T

|X i
t −X

i,N
t |p

)
≤ C


N−

1
2 +N

p
q
−1, p > d

2
, q 6= 2p,

N−
1
2 log(1 +N) +N

p
q
−1, p = d

2
, q 6= 2p

N−
2
d +N

p
q
−1, p ∈ (0, d

2
), q 6= d

d−p

Proof. For any i ∈ SN and x ∈ Rd, let bµ
i

t (x) = b(x, µit) and bµ̂
N

t = b(x, µ̂Nt ). Then, (4.1) and
(4.3) can be rewritten respectively as

dX i
t = bµ

i

t (X i
t)dt+ dLit,

dX i,N
t = bµ̂

N

t (X i,N
t )dt+ dLit.

For λ > 0, consider the following PDE for uλ,µ
i

: [0, T ]× Rd → Rd:

(4.10) ∂tu
λ,µi

t + L uλ,µ
i

t +∇
bµ
i

t

uλ,µ
i

t + bµ
i

t = λuλ,µ
i

t , uλ,µ
i

T = 0,

where L is defined in (3.14). Since µi = µ for any i ∈ SN , there exists large enough λ > 0
independent of i, such that (4.10) has a unique solution uλ,µ

i ∈ C1([0, T ], Cα+β
b

(
Rd,Rd

)
),

which is equal to uλ,µ. Moreover, (3.15) and (3.16) hold.

Applying Itô’s formula to θλ,µ
i

t (x) := x+ uλ,µ
i

t (x), x ∈ Rd yields

dθλ,µ
i

t (X i
t) = λuλ,µ

i

t (X i
t)dt+ dLit

+

∫
Rd\{0}

[
uλ,µ

i

t

(
X i
t− + x

)
− uλ,µ

i

t

(
X i
t−
)]
Ñ(dt, dx),

dθλ,µ
i

t (X i,N
t ) = {λuλ,µ

i

t (X i,N
t ) + dLit +∇θλ,µ

i

t (bµ̂
N

t − b
µi

t )(X i,N
t )}dt

+

∫
Rd\{0}

[
uλ,µ

i

t

(
X i,N
t− + x

)
− uλ,µ

i

t

(
X i,N
t−

)]
Ñ(dt, dx).

(4.11)
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For simplicity, set Λλ,i,N
t = θλ,µ

i

t (X i
t)− θ

λ,µi

t (X i,N
t ). We have

|Λλ,i,N
t | ≤ λ

∫ t

0

|uλ,µis (X i
s)− uλ,µ

i

s (X i,N
s )|ds+

∫ t

0

|(∇θλ,µis (bµ̂
N

s − bµ
i

s ))(X i,N
s )|ds

+

∣∣∣∣∣
∫ t

0

∫
Rd\{0}

([
uλ,µ

i

s

(
X i
s− + x

)
− uλ,µis

(
X i
s−
)]

−
[
uλ,µ

i

s

(
X i,N
s− + x

)
− uλ,µi

(
X i,N
s−

)])
Ñ(ds, dx)

∣∣∣∣∣
=: I1,i(t) + I2,i(t) + I3,i(t).

Completely the same with (3.21), we have

E sup
s∈[0,t]

|I3,i(s)|p ≤
∫ t

0

E sup
s∈[0,r]

|X i
s −X i,N

s |pdr.

Next, by assumption (H2) and Hölder inequality, for any p ≥ κ, we obtain

E sup
0≤s≤t

|I2,i(s)|p ≤ C2E
∫ t

0

Wκ(µ̂
N
s , µ̃

N
s )p + Wκ(µ̃

N
s , µ

i
s)
pds

≤ C2

∫ t

0

{E sup
s∈[0,r]

|X i
s −X i,N

s |p + EWκ(µ̃
N
r , µ

i
r)
p}dr

≤ C2

∫ t

0

{E sup
s∈[0,r]

|X i
s −X i,N

s |p + EWp(µ̃
N
r , µ

i
r)
p}dr

(4.12)

Similarly, we have

E sup
0≤s≤t

|I1,i(s)|p ≤ c2(p, λ, T )

∫ t

0

E sup
0≤s≤r

|X i
s −X i,N

s |pdr.(4.13)

Thus, we find that for some constant C2,λ > 0,

E
(

sup
0≤s≤t

|Λλ,i,N
s |p

)
≤ C2,λ

∫ t

0

{E sup
0≤s≤r

|X i
s −X i,N

s |p + EWp(µ̃
N
r , µ

i
r)
p}dr.

Set Zi,N
t = X i

t−X
i,N
t for convenience. This, together with the facts that |Zi,N

t |p ≤ 2p|Λλ,i,N
t |p

due to (3.15), leads to

E
(

sup
0≤s≤t

|Zi,N
s |p

)
≤ C3,λ

∫ t

0

{E sup
0≤s≤r

|X i
s −X i,N

s |p + EWp(µ̃
N
r , µ

i
r)
p}dr

for some constant C3,λ > 0. On the other hand, according to [12, Theorem 1], for any
q ∈ (p, α),

(4.14) sup
0≤t≤T

EWp(µ̃
N
t , µ

i
t)
p ≤ C4


N−

1
2 +N

p
q
−1, p > d

2
, q 6= 2p,

N−
1
2 log(1 +N) +N

p
q
−1, p = d

2
, q 6= 2p

N−
2
d +N

p
q
−1, p ∈ (0, d

2
), q 6= d

d−p
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holds for some constant C4 > 0 depending on p, d, q and supt∈[0,T ] µ
i
t(| · |q). Hence, due to

the boundedness of X i −X i,N , the desired assertion follows from Gronwall’s inequality.

Remark 4.4. Noting that for q ≥ α, µit(| · |q) =∞, the condition in [7, Theorem 5.8] does
not hold. So we adopt [12, Theorem 1] in place of [7, Theorem 5.8] used in [3].

The next lemma gives the estimate for |Xδ,i,N
t −Xδ,i,N

tδ
|, which is useful in the sequel.

Lemma 4.5. Assume (H1) and (H2), then for any 0 < p < α, t ∈ [0, T ],

sup
i∈SN

E
∣∣∣Xδ,i,N

t −Xδ,i,N
tδ

∣∣∣p ≤ C(p, ν)δ
p
α

holds for some constant C(p, ν) depending on p and ν.

Proof. The result follows immediately from (4.4), the boundedness of b, the scaling property
of L and E|Lt|p <∞ for p ∈ (0, α).

Lemma 4.6. Under the assumptions of Theorem 4.1, then for any T > 0 and q ∈ (p, α),
there exists a constant C > 0 depending on p, d, q, T and supt∈[0,T ] E|X i

t |q such that

sup
i∈SN

E
(

sup
0≤t≤T

|X i,N
t −X

δ,i,N
t |p

)
≤ C


δ
pβ
α +N−

1
2 +N

p
q
−1, p > d

2
, q 6= 2p,

δ
pβ
α +N−

1
2 log(1 +N) +N

p
q
−1, p = d

2
, q 6= 2p,

δ
pβ
α +N−

2
d +N

p
q
−1, p ∈ (0, d

2
), q 6= d

d−p .

Proof. For x ∈ Rd and i ∈ SN , let bµ̂
δ,N

kδ (x) = b(x, µ̂δ,Nkδ ) so that (4.4) can be reformulated as

dXδ,i,N
t = bµ̂

δ,N

tδ
(Xδ,i,N

tδ
)dt+ dLit.

Let uλ,µ
i

be the solution to (4.10). Again applying Itô’s formula to θλ,µ
i

t (x) = x + uλ,µ
i

t (x)
gives that

dθλ,µ
i

t (Xδ,i,N
t ) =

{
λuλ,µ

i

t (Xδ,i,N
t ) +∇θλ,µ

i

t (Xδ,i,N
t )(bµ̂

δ,N

tδ
(Xδ,i,N

tδ
)− bµ

i

t (Xδ,i,N
t )) + dLit∫

Rd\{0}

[
uλ,µ

i

t

(
Xδ,i,N
t− + x

)
− uλ,µ

i

t

(
Xδ,i,N
t−

)]
Ñ(dt, dx).

(4.15)

Set
Θλ,i,N
t := θλ,µ

i

t (X i,N
t )− θλ,µ

i

t (Xδ,i,N
t ), Zδ,i,N

t := X i,N
t −Xδ,i,N

t .

Then, for any p ∈ [κ, α), from (4.15) and the second SDE in (4.11), we deduce from Hölder’s
inequality that

E
(

sup
0≤s≤t

|Θλ,i,N
s |p

)
≤ Cλ,p,T

{∫ t

0

E
∣∣∣uλ,µis (Xδ,i,N

s )− uλ,µis (X i,N
s )
∣∣∣p ds

15



+

∫ t

0

E
∣∣∣∇θλ,µis (bµ̂

N

s − bµ
i

s )(X i,N
s )−∇θλ,µis (Xδ,i,N

s )(bµ̂
δ,N

sδ
(Xδ,i,N

sδ
)− bµis (Xδ,i,N

s ))
∣∣∣p ds

+ E sup
r∈[0,t]

∣∣∣∣∣
∫ r

0

∫
Rd\{0}

([
uλ,µ

i

s

(
Xδ,i,N
s− + x

)
− uλ,µis

(
Xδ,i,N
s−

)]
−
[
uλ,µ

i

s

(
X i,N
s− + x

)
− uλ,µi

(
X i,N
s−

)])
Ñ(ds, dx)

∣∣∣∣∣
p}

=: Cλ,p,T{J1(t) + J2(t) + J3(t)}

for some constant Cλ,p,T > 0. In what follows, we intend to estimate Ji(t), i = 1, 2, 3, one-
by-one. Owing to (3.15) and (3.21), there exists a constant c1 > 0 such that

(4.16) J1(t) + J3(t) ≤ c1

∫ t

0

E sup
s∈[0,r]

|Zδ,i,N
s |pdr.

It remains to estimate J2(t). By (3.15), we arrive at

J2(t) ≤ c2

∫ t

0

{EWκ(µ
i
s, µ̂

N
s )p + E|Xδ,i,N

s −Xδ,i,N
sδ
|pβ + EWκ(µ

i
s, µ̂

δ,N
sδ

)p}ds

≤ c3

∫ t

0

{δ
pβ
α + EWκ(µ

i
s, µ̃

N
s )p + EWκ(µ̃

N
s , µ̂

N
s )p + EWκ(µ̃

N
s , µ̂

δ,N
sδ

)p}ds
(4.17)

for some constants c2, c3 > 0, where we have used Lemma 4.5. On the other hand, similarly
to (4.8), we obtain from Lemma 4.5

EWκ(µ̃
N
t , µ̂

N
t )p + EWκ(µ̃

N
t , µ̂

δ,N
tδ

)p

≤ 1

N

N∑
j=1

{E|Xj
t −X

j,N
t |p + E|Xj

t −X
δ,j,N
tδ
|p}

≤ C1,T δ
p
α + E|X i

t −X
i,N
t |p + c(p)E|X i,N

t −Xδ,i,N
t |p

(4.18)

for some C1,T > 0, where in the last display we used the facts that (Xj − Xj,N)j∈SN and
(Xj − Xδ,j,N)j∈SN are identically distributed. Then, plugging (4.18) back into (4.17) gives
that

(4.19) J2(t) ≤ C2,T

∫ t

0

{δ
pβ
α + EWp(µ

i
s, µ̃

N
s )p + E|X i

s −X i,N
s |p + E sup

r∈[0,s]

|Zδ,i,N
r |p}ds

for some constant C2,T > 0. Now, combining (4.16), (4.19), we arrive at

E
(

sup
0≤s≤t

|Θλ,i,N
s |p

)
≤ C4,T

∫ t

0

{δ
pβ
α + EWp(µ

i
s, µ̃

N
s )p + E|X i

s −X i,N
s |p + E sup

r∈[0,s]

|Zδ,i,N
r |p}ds

for some constant C4,T > 0. This, together with |Zδ,i,N
t |p ≤ 2p|Θλ,i,N

t |p due to (3.15), yields

E
(

sup
0≤s≤t

|Zδ,i,N
s |p

)
≤ C5,T

∫ t

0

{δ
pβ
α + EWp(µ

i
s, µ̃

N
s )p + E|X i

s −X i,N
s |p + E sup

r∈[0,s]

|Zδ,i,N
r |p}ds
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for some constant C5,T>0. Consequently, the desired assertion holds true by applying Gron-
wall’s inequality and employing Lemma 4.3 and (4.14).

Proof of Theorem 4.1. Theorem 4.1 immediately follows from Lemma 4.3 and Lemma 4.6.
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