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Abstract

In this paper, using Zvonkin type transform, the large deviation principle is proved
for stochastic differential equations with Dini continuous drifts, where the existed meth-
ods for large deviation principle are unavailable. The method and result are new in
related fields. Moreover, the result is also extended to a class of degenerate stochastic
differential equations with Dini continuous drifts.
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1 Introduction

The large deviation principle (LDP for short) is proved for various stochastic differential
equations (SDEs) with Lipschitz continuous drift. For instance, Freidlin and Wentzell [10]
firstly studied the LDP for the finite dimensional setting, where the SDE is driven by finitely
many Brownian motions and its coefficients satisfy suitable regularity properties. Peszat [20]
(also the references therein) investigated the LDP for stochastic partial differential equations
(SPDEs) under global Lipschitz condition on the nonlinear term. Cerrai and Röckner [6] ob-
tained the LDP for stochastic reaction-diffusion systems with multiplicative noise under local
Lipschitz conditions. Moreover, the LDP for semilinear parabolic equations on a Gelfand
triple was proved by Chow in [7]. Röckner, Wang and Wu [23] established the LDP for s-
tochastic porous media equations within the variational framework. All these papers mainly
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used the classical ideas of discretization approximations and the contraction principle, which
was firstly developed by Freidlin and Wentzell.

Budhiraja, Dupuis and Maroulas [3] also get the LDP of the infinite dimensional setting
by the weak convergence method (see [1]). This approach is now a powerful tool which
has been extensively used to prove LDP for various stochastic dynamical systems. For
instance, Cerrai and Freidlin [5] established the LDP for the langevin equation, see also
[2, 17, 18, 19, 22, 24, 25, 28, 30] and the references therein for more works. There are also
some results with non-Lipschitz coefficients, for instance, [8, 14, 15].

Recently, pathwise uniqueness of SDEs/SPDEs with singular drifts is proved. The main
idea is to construct Zvonkin’s transform ([31]) which is a homeomorphism map to transform
the original one to a new one, where the singular drift is killed and the pathwise uniqueness
can be obtained. This technique strongly depends on the regularity of the solution to PDE
like (2.4) below with singular coefficients. Wang [26] proved the pathwise uniqueness for
semi-linear SPDEs with Dini continuous drift and non-degenerate noise. In [27], Wang and
Zhang studied existence and uniqueness for stochastic Hamiltonian system with Hölder-Dini
continuous drifts, where the noise is degenerate. There are also many other results on this
topic, see [9, 12, 13, 21, 29] and references therein.

So far, there are no results on LDP for SDEs with Hölder continuous or more singular
drifts, where the Gronwall lemma, which is crucial in both discretization approximations
and weak convergence, can not been used directly. The aim of this paper is to solve this
problem. To this end, we need to search for new technique and Zvonkin’s transform offers
an effective method to regularize the singular drifts. The idea is to use Zvonkin’s transform
to change the SDEs with singular drifts as a new one with Lipschitz continuous coefficients,
where the LDP holds. Then we can obtain the LDP for the original SDE by the inverse of
Zvonkin’s transform and the definition of LDP.

Throughout the paper, the following notations will be used. For T > 0, d ∈ N+, let
C([0, T ],Rd) be all Rd-valued and continuous functions on [0, T ]. For a function f from Rm

to Rn, set ‖f‖∞ := supx∈Rm |f(x)|.
Before moving on, let us recall some knowledge on LDP.

Definition 1.1. Let S be a Polish space. A function I : S → R1 is called a rate function if
it is lower semicontinuous. If for any constant c > 0, the level set {f ; I(f) ≤ c} is compact
in S, then I is called a good rate function.

Definition 1.2. Let S be a Polish space. We call a family of S-valued random variables
{Zε}ε∈(0,1) satisfies an LDP with speed function ε−1 and rate function I : S → [0,∞), if the
following conditions hold.

(1) For any closed subset F ⊂ S,

lim sup
ε→0+

ε logP(Zε ∈ F ) ≤ − inf
f∈F

I(f).

(2) For any open subset G ⊂ S,

lim inf
ε→0+

ε logP(Zε ∈ G) ≥ − inf
f∈G

I(f).
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From now on, we fix T > 0. Next, we give a known result in Lemma 1.2 which will be
used in the sequel, see [10] or the introduction in [11]. Consider an SDE on Rn:

(1.1) dX̃ε
t = bε1(X̃ε

t ) +
√
εσ(X̃ε

t )dWt, t ∈ [0, T ], X̃ε
0 = x0 ∈ Rn,

where ε ∈ (0, 1), bε1 : Rn → Rn, σ : Rn → Rn ⊗ Rn, and (Wt)t∈[0,T ] is an n-dimensional
Brownian motion defined on a complete filtration probability space (Ω,F , (Ft)t∈[0,T ],P).
Without loss of generality, we assume x0 = 0.

(A1) There exists a constant L > 0 such that for any ε ∈ (0, 1),

‖σ(x)− σ(y)‖+ |bε1(x)− bε1(y)| ≤ L|x− y|, x, y ∈ Rn.(1.2)

Moreover, there exists a Lipschitz continuous function b0
1 : Rn → Rn such that

lim
ε→0

{
sup
x∈Rn
|bε1(x)− b0

1(x)|
}

= 0.(1.3)

Let C([0, T ],Rn) be equipped with sup-norm, and define rate function I : C([0, T ],Rn) →
[0,∞) as

(1.4) I(f) =
1

2
inf

f=g(h),h∈H
‖h‖2

H , f ∈ C([0, T ],Rn),

where

H =

{
h ∈ C([0, T ],Rn); ‖h‖2

H :=

∫ T

0

|ḣt|2dt <∞
}

and for any h ∈ H, g(h) ∈ C([0, T ],Rn) satisfies

(g(h))t =

∫ t

0

b0
1((g(h))s)ds+

∫ t

0

σ((g(h))s)ḣsds, t ∈ [0, T ].(1.5)

Remark 1.1. Under (A1), for any ε ∈ (0, 1), (1.1) has a unique strong solution denoted by
{(X̃ε

t )t∈[0,T ]}. Furthermore, (A1) also implies that for any h ∈ H, g(h) defined above is the
unique solution to the following deterministic differential equation:

dZt = b0
1(Zt)dt+ σ(Zt)ḣtdt, t ∈ [0, T ], Z0 = 0.(1.6)

Lemma 1.2. Under (A1), the family {(X̃ε
t )t∈[0,T ]}ε∈(0,1) obeys an LDP on C([0, T ];Rn) with

the speed function ε−1 and the good rate function I given by (1.4).

The outline of this paper is organized as follows: In Section 2, we study the LDP for
non-degenerate SDEs with singular drift; In Section 3, we investigate an LDP for degenerate
SDEs with singular drift.
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2 LDP for Non-degenerate SDEs

In this section, we add a small singular interruption in (1.1), i.e., consider the following SDE
on Rn:

(2.1) dXε
t = bε1(Xε

t ) + εb2(Xε
t )dt+

√
εσ(Xε

t )dWt, t ∈ [0, T ], Xε
0 = x0,

where ε, σ, bε1 and (Wt)t∈[0,T ] are introduced in Section 1, and b2 : Rn → Rn is the singular
drift. Without loss of generality, we assume x0 = 0.

To characterize the singularity of b2, we introduce some definitions which are taken from
[4] and [27].

Definition 2.1. (1) An increasing function φ : [0,∞) → [0,∞) is called a Dini function
if ∫ 1

0

φ(s)

s
ds <∞.

(2) A function f defined on the Euclidean space is called Dini continuous if

|f(x)− f(y)| ≤ φ(|x− y|)

holds for some Dini function φ.

(3) A measurable function φ : [0,∞)→ [0,∞) is called a slowly varying function at zero
(see [4]) if for any δ > 0,

lim
t→0

φ(δt)

φ(t)
= 1.

Let D0 be the set of all Dini functions, and T0 the set of all slowly varying functions at
zero that are bounded away from 0 and ∞ on [ε,∞) for any ε > 0. Notice that the typical
examples for functions contained in D0 ∩T0 are φ(t) := (log(1 + t−1))−β for β > 1.

To obtain the LDP for (2.1), we make the following assumptions.

(A1’) Besides (A1), there exists a constant K > 1 such that

sup
ε∈(0,1)

‖bε1‖∞ + ‖b2‖∞ ≤ K

and

(2.2) K−1I ≤ σσ∗ ≤ KI.

(A2) There exists φ ∈ D0 ∩T0 such that

(2.3) |b2(x)− b2(y)| ≤ φ(|x− y|), x, y ∈ Rn.
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Under (A1’) and (A2), (2.1) admits a unique non-explosive strong solution (Xε
t )t∈[0,T ]; see,

e.g., [27, Corollary 1.5]. In fact, by Zvonkin’s transform, we can kill b2, see (2.8) below for
more details.

Our main result is

Theorem 2.1. Assume (A1’)-(A2), then {(Xε
t )t∈[0,T ]}ε∈(0,1) obeys LDP on C([0, T ];Rn)

with the speed function ε−1 and the good rate function I given by (1.4).

Remark 2.2. Due to the singularity of b2, we need to give stronger condition (A1’) in
Theorem 2.1 than (A1) in Lemma 1.2, see the proof of Theorem 2.1 for more details.

2.1 Proof of Theorem 2.1

In order to obtain the LDP for (2.1), we adopt Zvonkin type transform to change (2.1) to
a new equation with Lipschitz continuous coefficients, where the Freidlin-Wentzell theorem
([10]) can be available. Let (ei)i≥1 be an orthogonal basis of Rn. For any λ > 0, consider the
following Rn-valued PDE:

L uλ + b2 +∇b2uλ = λuλ,(2.4)

where

L :=
1

2

n∑
i,j=1

〈(σσ∗)ei, ej〉∇ei∇ej .

By [27, Theorem 3.10] with d1 = 0, d2 = n, there exists a constant λ0 > 0 such that for
any λ ≥ λ0, the equation (2.4) has a unique solution uλ satisfying

(2.5) ‖uλ‖∞ + ‖∇uλ‖∞ + ‖∇2uλ‖∞ ≤
1

2
.

For any λ ≥ λ0, let θλ : Rn → Rn be defined by θλ(x) := x + uλ(x), x ∈ Rn. By
(2.5), θλ is a homeomorphism on Rn. Let θ−1

λ denote the inverse of θλ, then it holds that
∇θ−1

λ = (∇θλ)−1.
We are now in a position to complete the Proof of Theorem 2.1.

Proof of Theorem 2.1. Throughout the whole proof, we assume λ ≥ λ0. Since

(2.6) dXε
t = bε1(Xε

t ) + εb2(Xε
t )dt+

√
εσ(Xε

t )dWt, t ∈ [0, T ], Xε
0 = x0,

applying Itô’s formula to θλ(X
ε
t ), we deduce from (2.4) that

dθλ(X
ε
t ) = ελuλ(X

ε
t )dt+ (∇θλbε1)(Xε

t )dt+
√
ε(∇θλσ)(Xε

t )dWt, t ∈ [0, T ].(2.7)

Denote Y ε
t := θλ(X

ε
t ), then (2.7) becomes

(2.8)
dY ε

t =ελuλ(θ
−1
λ (Y ε

t ))dt+ (∇θλbε1)(θ−1
λ (Y ε

t ))dt+
√
ε(∇θλσ)(θ−1

λ (Y ε
t ))dWt

= : b̃ε(Y ε
t )dt+

√
εσ̃(Y ε

t )dWt, t ∈ [0, T ], Y ε
0 = θλ(x0),
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where

b̃ε(x) = ελuλ(θ
−1
λ (x)) + (∇θλbε1)(θ−1

λ (x)), σ̃(x) = (∇θλσ)(θ−1
λ (x)), x ∈ Rn.

Since θλ is a diffeomorphic operator, by (A1’) and (2.5), b̃ε and σ̃ satisfy the following
conditions:

(1) for some constant K̃ > 1, we have

‖σ̃(x)− σ̃(y)‖+ |b̃ε(x)− b̃ε(y)| ≤ K̃|x− y|, x, y ∈ Rn.

(2) Let b̃0 := (∇θλb0
1) ◦ θ−1

λ , then

lim
ε→0
‖b̃ε − b̃0‖∞ = 0.

By Lemma 1.2, {Y ε
t , t ∈ [0, T ]}ε∈(0,1) satisfies the LDP in C([0, T ],Rn) with the speed func-

tion ε−1 and the good rate function given by

(2.9) IY (f) :=
1

2
inf

f=gY (h),h∈H
‖h‖2

H

with

(gY (h))t =

∫ t

0

b̃0((gY (h))s)ds+

∫ t

0

σ̃((gY (h))s)ḣsds, t ∈ [0, T ].

This implies that

(i) for any constant c > 0, the level set {f ; IY (f) ≤ c} is compact in C([0, T ];Rn);

(ii) for any closed subset F ⊂ C([0, T ];Rn),

lim sup
ε→0+

ε logP(Y ε ∈ F ) ≤ − inf
f∈F

IY (f);

(iii) for any open subset G ⊂ C([0, T ];Rn),

lim inf
ε→0+

ε logP(Y ε ∈ G) ≥ − inf
f∈G

IY (f).

Define

(2.10) IX(f) :=
1

2
inf

f=gX(h),h∈H
‖h‖2

H

with

(gX(h))t =

∫ t

0

b0
1((gX(h))s)ds+

∫ t

0

σ((gX(h))s)ḣsds, t ∈ [0, T ].

In the following, we will prove that {Xε
t , t ∈ [0, T ]}ε∈(0,1) satisfies the LDP in C([0, T ],Rn)

with the speed function ε−1 and the good rate function IX . This will be completed in Lemma
2.3.
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Lemma 2.3. Assume (A1’) and (A2), then {Xε
t , t ∈ [0, T ]}ε∈(0,1) satisfies the LDP in

C([0, T ],Rn) with the speed function ε−1 and the good rate function IX .

Proof. We only need to prove that (i)-(iii) hold with notation Y replaced by notation X.
For any λ ≥ λ0, define Θλ on C([0, T ];Rn) as

(Θλ(ξ))t = θλ(ξt), t ∈ [0, T ], ξ ∈ C([0, T ];Rn).

For any ξ, ξ̃ ∈ C([0, T ];Rn) and s, t ∈ [0, T ],

|(Θλ(ξ))t − (Θλ(ξ̃))s| = θλ(ξt)− θλ(ξ̃s) ≤ ‖∇θλ‖∞|ξt − ξ̃s|,(2.11)

which means that Θλ(ξ) ∈ C([0, T ];Rn) by taking ξ = ξ̃. Moreover, for any ξ ∈ C([0, T ];Rn),
let η ∈ C([0, T ];Rn) be defined as ηs = θ−1

λ (ξs), s ∈ [0, T ]. Then Θλ(η) = ξ. On the other
hand, for any ξ, ξ̄ ∈ C([0, T ];Rn) satisfying Θλ(ξ) = Θλ(ξ̄), i.e., θλ(ξs) = θλ(ξ̄s), s ∈ [0, T ],
we have ξ = ξ̄. So, Θλ is a bijection on C([0, T ];Rn). Moreover, taking t = s in (2.11)
implies that Θλ is a continuous map. Similarly, Θ−1

λ is also a continuous map. Thus, Θλ is
a homeomorphism.

(i) We firstly prove that IX is a good rate function. IX = IY (Θλ(·)). By chain rule, we
have

θλ((g
X(h))t) =

∫ t

0

[(∇θλb0
1) ◦ θ−1

λ ](θλ((g
X(h))s))ds

+

∫ t

0

[(∇θλσ) ◦ θ−1
λ ](θλ((g

X(h))s))ḣsds

=

∫ t

0

b̃0(θλ((g
X(h))s))ds

+

∫ t

0

σ̃(θλ((g
X(h))s))ḣsds, t ∈ [0, T ].

By the uniqueness of solution, we have θλ((g
X(h))t) = (gY (h))t, t ∈ [0, T ], i.e., Θλ(g

X(h)) =
gY (h). Combining the definition of IX and IY , it is easy to see that IX = IY (Θλ(·)).
Thus, for any c > 0, {f ; IX(f) ≤ c} = {f ; IY (Θλ(f)) ≤ c} = Θ−1

λ {f ; IY (f) ≤ c}. Since
{f ; IY (f) ≤ c} is a compact set, and Θλ is a homeomorphism, we conclude that {f ; IX(f) ≤
c} is a compact set.

(ii) For any closed subset F ⊂ C([0, T ];Rn),

lim sup
ε→0+

ε logP(Xε ∈ F )

= lim sup
ε→0+

ε logP(Y ε ∈ Θλ(F ))

≤ − inf
f∈Θλ(F )

IY (f)

= − inf
f∈F

IY (Θλ(f)) = − inf
f∈F

IX(f).
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Similarly, for any open subset G ⊂ C([0, T ];Rn),

lim inf
ε→0+

ε logP(Xε ∈ G) ≥ − inf
f∈G

IX(f).

Thus, (iii) holds.
We finish the proof.

3 LDP for Degenerate SDEs

Consider the following degenerate SDEs on Rd1+d2 :

(3.1)


dXt = b̄ε(Xt, Yt)dt,

dYt = B̄ε(Xt, Yt)dt+ εb(Yt)dt+
√
εσ(Yt)dWt,

(X0, Y0) = (x0, y0) ∈ Rd1+d2 ,

where ε ∈ (0, 1), W = (Wt)t≥0 is a d2-dimensional standard Brownian motion with respect to
a complete filtration probability space (Ω,F , {Ft}t≥0,P), b̄ε : Rd1+d2 → Rd1 , B̄ε : Rd1+d2 →
Rd2 , b : Rd2 → Rd2 and σ : Rd2 → Rd2 ⊗ Rd2 are measurable and locally bounded (bounded
on bounded sets). Again we assume (x0, y0) = 0.

Suppose that there exist φ ∈ D0 ∩ T0 and a constant K > 1 such that the following
conditions hold.

(H1) ‖B̄ε‖∞ + ‖b‖∞ ≤ K,

‖σ(y1)− σ(y2)‖ ≤ K|y1 − y2|, y1, y2 ∈ Rd2 ,(3.2)

and
|b̄ε(z1)− b̄ε(z2)|+ |B̄ε(z1)− B̄ε(z2)| ≤ K|z1 − z2|, z1, z2 ∈ Rd1+d2 .

Moreover,

(3.3) K−1Id2×d2 ≤ σσ∗ ≤ KId2×d2 .

(H2) There exist Lipschitz continuous functions b̄0 : Rd1+d2 → Rd1 and B̄0 : Rd1+d2 → Rd2

such that

lim
ε→0

{
‖b̄ε − b̄0‖∞

}
= 0,(3.4)

and

lim
ε→0

{
‖B̄ε − B̄0‖∞

}
= 0.(3.5)

(H3) (Regularity of b2 )

(3.6) |b(y1)− b(y2)| ≤ φ(|y1 − y2|), y1, y2 ∈ Rd2 .
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Under (H1) and (H3), for any ε ∈ (0, 1), (3.1) admits a unique non-explosive strong solution
(Xε

t , Y
ε
t )t∈[0,T ]; see, e.g., [27, Theorem 1.1].

Let C([0, T ],Rd2) be equipped with sup-norm, and define rate function I : C([0, T ],Rd2)
→ [0,∞) as

(3.7) I(f) =
1

2
inf

f=g(h),h∈H̃
‖h‖2

H̃
,

where

H̃ =

{
h ∈ C([0, T ],Rd2); ‖h‖2

H̃
:=

∫ T

0

|ḣt|2dt <∞
}

and for any h ∈ H̃, g(h) ∈ C([0, T ],Rd1+d2) satisfies

(g(h))t =

∫ t

0

(b̄0((g(h))s), B̄
0((g(h))s)ds+

∫ t

0

(0, σ((g(h))s)ḣs)ds, t ∈ [0, T ].

3.1 Main results

The main result of this section is the following theorem.

Theorem 3.1. Assume (H1)-(H3). The family {(Xε
t , Y

ε
t ))t∈[0,T ]}ε∈(0,1) obeys the LDP on

C([0, T ];Rd1+d2) with the speed function ε−1 and the good rate function I given by (3.7).

3.2 Proof of Theorem 3.1

Similarly to the proof of Theorem 2.1, let (ei)i≥1 be an orthogonal basis of Rd2 . For any
λ > 0, consider the following Rd2-valued PDE:

L̃ uλ + b+∇buλ = λuλ,(3.8)

where

L̃ :=
1

2

d2∑
i,j=1

〈(σσ∗)ei, ej〉∇ei∇ej .

Then by [27, Theorem 3.10], there exists a constant λ0 > 0 such that for any λ ≥ λ0, the
equation (3.8) has a unique solution uλ satisfying

(3.9) ‖uλ‖∞ + ‖∇uλ‖∞ + ‖∇2uλ‖∞ ≤
1

2
.

For any λ ≥ λ0, let θλ : Rd2 → Rd2 be defined by θλ(x) := x + uλ(x), x ∈ Rd2 . By
(3.9), θλ is a homeomorphism on Rd2 . Let θ−1

λ denote the inverse of θλ, then it holds that
∇θ−1

λ = (∇θλ)−1. Throughout the whole proof, we assume λ ≥ λ0. Since

(3.10)


dXε

t = b̄ε(Xε
t , Y

ε
t )dt,

dY ε
t = B̄ε(Xε

t , Y
ε
t )dt+ εb(Y ε

t )dt+
√
εσ(Y ε

t )dWt,

(X0, Y0) = (x0, y0) ∈ Rd1+d2 ,
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it follows from Itô’s formula and (2.4) that

(3.11)

{
dXε

t = b̄ε(Xε
t , Y

ε
t )dt,

dθλ(Y
ε
t ) = ελuλ(Y

ε
t )dt+∇θλ(Y ε

t )B̄ε(Xε
t , Y

ε
t )dt+

√
ε(∇θλσ)(Y ε

t )dWt.

Denote Ỹ ε
t := θλ(Y

ε
t ), then (3.11) can be written as

(3.12)

{
dXε

t = b̃ε(Xε
t , Ỹ

ε
t )dt,

dỸ ε
t = B̃ε(Xε

t , Ỹ
ε
t )dt+

√
εσ̃(Ỹ ε

t )dWt,

where
B̃ε(x, y) = ελuλ(θ

−1
λ (y)) +∇θλ(θ−1

λ (y))B̄ε(x, θ−1
λ (y)),

and
b̃ε(x, y) = b̄ε(x, θ−1

λ (y)), σ̃(y) = (∇θλσ)(θ−1
λ (y)), (x, y) ∈ Rd1+d2 .

Since θλ is a diffeomorphic operator, by (H1), (H2) and (3.9), B̃ε, b̃ε and σ̃ satisfy the
following conditions:

(1) There exists a constant K̃ > 1 such that for any z1 = (x1, y1), z2 = (x2, y2) ∈ Rd1+d2 ,

‖σ̃(y1)− σ̃(y2)‖+ |b̃ε(x1, y1)− b̃ε(x2, y2)|+ |B̃ε(x1, y1)− B̃ε(x2, y2)| ≤ K̃|z1 − z2|.

(2) Let b̃0(x, y) = b̄0(x, θ−1
λ (y)) and B̃0(x, y) := ∇θλ(θ−1

λ (y))B̄0(x, θ−1
λ (y)), (x, y) ∈ Rd1+d2 ,

then it holds that

lim
ε→0

{
‖b̃ε − b̃0‖∞

}
= 0,

and

lim
ε→0

{
‖B̃ε − B̃0‖∞

}
= 0.

Again by Lemma 1.2, {(Xε
t , Ỹ

ε
t ), t ∈ [0, T ]}ε∈(0,1) satisfies the LDP in C([0, T ],Rd1+d2) with

the speed function ε−1 and the good rate function Ĩ given by

(3.13) Ĩ(f) :=
1

2
inf

f=g̃(h),h∈H̃
‖h‖2

H̃

with

(g̃(h))t =

∫ t

0

(b̃0((g̃(h))s), B̃
0((g̃(h))s))ds+

∫ t

0

(0, σ̃((g̃(h))s)ḣsds), t ∈ [0, T ].

This implies that

(i’) for any constant c > 0, the level set {f ; Ĩ(f) ≤ c} is compact in C([0, T ];Rd1+d2);
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(ii’) for any closed subset F ⊂ C([0, T ];Rd1+d2),

lim sup
ε→0+

ε logP((Xε, Ỹ ε) ∈ F ) ≤ − inf
f∈F

Ĩ(f);

(iii’) for any open subset G ⊂ C([0, T ];Rd1+d2),

lim inf
ε→0+

ε logP((Xε, Ỹ ε) ∈ G) ≥ − inf
f∈G

Ĩ(f).

Next, we will prove that {(Xε
t , Y

ε
t ), t ∈ [0, T ]}ε∈(0,1) satisfies the LDP in C([0, T ],Rd1+d2)

with the speed function ε−1 and the good rate function I defined by

(3.14) I(f) :=
1

2
inf

f=g(h),h∈H̃
‖h‖2

H̃

with

(g(h))t =

∫ t

0

(b̄0((g(h))s), B̄
0((g(h))s))ds+

∫ t

0

(0, σ((g(h))s)ḣsds), t ∈ [0, T ].

This will be completed in Lemma 3.2.

Lemma 3.2. Assume (H1)-(H3), then {(Xε
t , Y

ε
t ), t ∈ [0, T ]}ε∈(0,1) satisfies the LDP in

C([0, T ],Rd1+d2) with the speed function ε−1 and the good rate function I given in (3.14).

Proof. We only need to prove that (i’)-(iii’) hold with Ỹ replaced by Y and the good rate
function Ĩ replaced by I. For any λ ≥ λ0, ξ = (ξ1, ξ2) ∈ C([0, T ];Rd1+d2), let

(Θλ(ξ))t = (ξ1
t , θλ(ξ

2
t )), t ∈ [0, T ].

Then it is easy to see that Θλ is a homeomorphism on C([0, T ];Rd1+d2). In fact, for any
ξ ∈ C([0, T ];Rd1+d2),

|(Θλ(ξ))t − (Θλ(ξ))s| ≤ (‖∇θλ‖∞ ∨ 1)|ξt − ξs|,

which means Θλ(ξ) ∈ C([0, T ];Rd1+d2). Moreover, for any ξ ∈ C([0, T ];Rd1+d2), let η ∈
C([0, T ];Rd1+d2) be defined as ηs = (ξ1

s , θ
−1
λ (ξ2

s )), s ∈ [0, T ]. Then Θλ(η) = ξ. On the
other hand, for any ξ, ξ̄ ∈ C([0, T ];Rd1+d2) satisfying Θλ(ξ) = Θλ(ξ̄), i.e., ξ1

s = ξ̄1
s and

θλ(ξ
2
s ) = θλ(ξ̄

2
s ), s ∈ [0, T ], we have ξ = ξ̄. So, Θλ is a bijection. Moreover, for any

ξ, ξ̄ ∈ C([0, T ];Rd1+d2), we have

‖Θλ(ξ)−Θλ(ξ̄)‖∞ ≤ (‖∇θλ‖∞ ∨ 1) sup
t∈[0,T ]

|ξt − ξ̄t| = (‖∇θλ‖∞ ∨ 1)‖ξ − ξ̄‖∞,

which means that Θλ is a continuous map. Similarly, Θ−1
λ is also a continuous map. Thus,

Θλ is a homeomorphism on C([0, T ];Rd1+d2).
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(i’) We firstly prove that I = Ĩ(Θλ(·)). By chain rule and the definition of B̃0, b̃0, σ̃ and
Θλ, it is not difficult to see that

(Θλ(g(h)))t =

∫ t

0

(b̃0((Θλ(g(h)))s), B̃
0((Θλ(g(h)))s))ds

+

∫ t

0

(0, σ̃((Θλ(g(h)))s)ḣsds), t ∈ [0, T ].

By the uniqueness of solution, we have Θλ(g(h)) = g̃(h). Combining the definition of I and
Ĩ, we arrive at I = Ĩ(Θλ(·)). Thus, for any c > 0, {f ; I(f) ≤ c} = {f ; Ĩ(Θλ(f)) ≤ c} =
Θ−1
λ {f ; Ĩ(f) ≤ c}. Since {f ; Ĩ(f) ≤ c} is a compact set and Θλ is a homeomorphism, we

conclude that {f ; I(f) ≤ c} is a compact set.
(ii’) for any closed subset F ⊂ C([0, T ];Rd1+d2),

lim sup
ε→0+

ε logP((Xε, Y ε) ∈ F )

= lim sup
ε→0+

ε logP((Xε, Ỹ ε) ∈ Θλ(F ))

≤ − inf
f∈Θλ(F )

Ĩ(f)

= − inf
f∈F

Ĩ(Θλ(f)) = − inf
f∈F

I(f).

Similarly, for any open subset G ⊂ C([0, T ];Rd1+d2),

lim inf
ε→0+

ε logP((Xε, Y ε) ∈ G) ≥ − inf
f∈G

I(f).

Thus, (iii’) holds.
We finish the proof.

Remark 3.3. By [16, Lemma 3.2], we know that (2.5) and (3.9) also hold if we assume
(A2) and (H3) for φ(x) = xα with α ∈ (0, 1). Thus, the assertions in Theorem 2.1 and
Theorem 3.1 still hold by replacing (2.3) and (3.6) with φ(x) = xα for some α ∈ (0, 1).

Acknowledgement. The authors would like to thank Professor Feng-Yu Wang for helpful
comments.
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Coefficient, SIAM J. Math. Anal., 48(2016), 2189–2226.

[28] T. Xu, T. Zhang, White noise driven SPDEs with reflection: Existence, uniqueness and large
deviation principles, Stochastic Processes & Their Applications, 119(2017), 3453–3470.

[29] X. Zhang, Strong solutions of SDEs with singural drift and Sobolev diffusion coefficients,
Stoch. Proc. Appl., 115(2005), 1805–1818.

[30] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential
equation, Journal of Functional Analysis, 258(2017), 1361–1425.

[31] A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the
drift, Math. Sb. , 93(1974), 129–149.

14


