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Abstract

In this paper, Wang’s Harnack inequalities and super Poincaré inequality for gen-
eralized Cox-Ingersoll-Ross model are obtained. Since the noise is degenerate, the
intrinsic metric has been introduced to construct the coupling by change of measure.
By using isoperimetric constant, some optimal estimate of the rate function in the
super Poincaré inequality for the associated Dirichlet form is also obtained.
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1 Introduction
The SDE
(11) dXt == (O{ - 6Xt)dt + \V4 XtdBt, XQ > O7

which is called CIR (Cox-Ingersoll-Ross) model [6, Section 4.6], is used to characterize the
evolution of the interest rate in finance. In [1, 2, 3, 7, 11, 14, 15, 23], the authors investigate
the convergence rate of various numerical schemes of (1.1), see also [5] for distribution
dependent SDEs with Hélder continuous diffusion coefficients. Zhang and Zheng [24] obtain
the Harnack inequality and super Poincaré for (1.1). See [8, 9, 10] for more introductions on

(1.1).
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In this paper, we consider stochastic differential equations on [0, 00):
(1.2) dX; = (o — 6X,)dt + X'dB,,

with constant % <h<1, ad >0, and B; ais one-dimensional Brownian motion on some
complete filtration probability space (2,7, {%:}i>0,P). We call (1.2) a generalized CIR
model. By [12, 13], (1.2) has a unique non-negative strong solution for any positive initial
value.

Compared with SDE (1.1), the diffusion in (1.2) has stronger degeneration on 0 due to
h > %, which leads to worse regularity of the solution. Thus, the Harnack inequality for the
semigroup associated to (1.2) is non-trivial.

Wang [18] introduced coupling by change of measure to establish Harnack inequality in
the SDEs with non-degenerate diffusion coefficients, see [4, 19, 22] for more models. Wang
[17, Section 3] also gives some conditions to obtain super Poincaré inequality, which was
firstly introduced in [21] to characterize the essential spectrum. Zhang and Zheng [24]
obtained the functional inequalities of (1.1) under some reasonable conditions.

In this paper, we will prove the Harnack and super Poincaré inequality for (1.2), which
cover the results in [24] where & is assumed to be 3.

The paper is organized as follows: In Section 2, we give main results on Harnack and
super Poincaré inequality, which will be proved in Section 4 and Section 5 respectively; In
Section 3, we give some lemmas which will be used in the sequel.

2 Main Results

2.1 Harnack Inequality and Gradient Estimate

As we know, the intrinsic metric associate to the generator of (1.2) is defined as

s\/td
(2.1) p(s,1) = / o siteloo)

At

For any f € C'([0,00)), = € [0, 00), define

Vi f(a) = tim LW I T g

1 1 _1-h
Yo IRy —n?t xr

V" is called the intrinsic gradient. Obviously, we have

oy — 1 M@= F@L

The following theorem gives Wang type Harnack inequality and gradient estimate V" for
the Markov semigroup P; associated with (1.2):

Bif(x) = Bf(XY), 20,2 €[0,00), f € £([0,00)),

where X[ is the unique solution X7 to (1.2) starting at x.
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Theorem 2.1. Assume % <h<1anda> % Then the following assertions hold.
(1) The Harnack inequality holds, i.e. for any T >0, p>1 and x, y € [0,00), it holds

p(d = 3)(y' " —ath)?

b )1 hy@omehr_qy| € %y ([0, 00))-

(Prf)P(y) <Prff(x)exp

Moreover, for any f € B, ([0,00)) with f > 0, the Log-Harnack inequality

(65— By — 'y

Prlog f(y) <log Prf(z) + (1 — h)(20-ME-5)T _ 1)

holds.

(2) For any f € CL([0,00), the estimate of the intrinsic gradient holds:

V' Prf(z)] < e 0MO-DT P vt f|(z), T >0,z € [0,00).

Remark 2.2. This type inequality was introduced in [16] to characterize the hypercontrac-
tivity of diffusion semigroups on Riemannian manifolds, and has been intensively extended
and applied to various different models of SDEs and SPDEs, see [18] for a general theory on
this inequality and applications.

2.2 Super Poincaré inequality

We firstly introduce some notations:

Ta—dy 20 _ ) _ 20 )
Olr) — dy — 1-2h _ 2-2h _ _ 0
(z) /1 o YT T " —n" 1—2n 1-n) 7%
(22 __ & _
FO = 2e (1—2h l—h),
o C(CL’) o [ 1-2 2-2
Z :/ ? dr = FO/ g 2heromt TR hdx,
0o 3T 0
and r _on, %$172h_ﬁ$272h
pu(dz) = L 7 dz =: n(z)dx
Consider second-ordered differential operator on L?(j):
1, d® d
L= _a*"— —0x)—.
2" da? * (o x)dx

Let (£,D(€)) be the associated Dirichlet form to L on L?*(u). In particular, we have

1

/0 P @)Pulda), e G0, 00).
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Let p be defined in (2.1), then we have

VY dr 1 1—h 1—h
— — = — |y € 10, 00).
p(ﬂj,y) /a:/\y Th l_h‘y T ‘7 x7y [7 )

For any open set D C [0, 00), the boundary measure of D induced by p is defined as

D.) — u(D
to(0D) = lim #De) = D)
e—0 g
with D, = {x € [0, 00)|p(z, D) < €}.
The isoperimetric constant is defined as

k(r) = HolOD)

= in , > 0.
uD)<r p(D)

Theorem 2.3. Assume % < h < 1. Then the following assertions hold.

(1) The super Poincaré inequality

(2.2) p(f?) < re(f )+ Brullf)? r>0,feDE)
holds for B(r) = ﬁ with k='(r) = sup{s > 0,k(s) > r)}.

(2) Moreover, there exists constants c,rg > 0 such that k(r) > ¢(—logr)z for any r €
(0,70). Thus, (2.2) holds with 5(r) = e+ for some constant C' > 0.

(8) Finally, B(r) in (2) is optimal in the following sense: the super Poincaré inequality
can not hold for any (r) = COH™) with 0 < X\ < 1 and some constant C > 0.

Remark 2.4. The super Poincaré inequality was introduced in [21] to characterize the ab-
sence of essential spectrum of Markov generators. A general theory on this type inequality
and applications has been summarized in [17].

3 Some Preparations

In this section, we give two important lemmas which will be used in the proof of Theorem
2.1.

Lemma 3.1. Assume % < h<1 and SDE
dX, = b(X,)dt + X]'dB,;, Xo=x>0

has a non-explosive and non-negative solution X;. Here, b : [0,00) — R is locally bounded
and continuous at point 0, b(0) > 0. Then P-a.s.

| oo =o
0



Proof. For any n > 1, construct function ¢, : [0,00) — R as follows

1 1

on(T) = {2(5;311)”’1 2(h+1) 1 "o 1
n n +

S5 (n — ©) () 4 s VST <.

It is not difficult to see

2h + 1
/ " 2h| __
(3.1) on(@) < s @] 1 i) o = 2D <on s,
and
(3:2) Tim ¢, (z) =0, lim ¢ (x) = —Ly(2), lim |y (z) - 2] = 0.
Letting 7,,=inf { t > 0: X; > m}, since X; is non-explosive, then we have 7., := lim 7, =

m—0o0
oo. Applying It6’s formula to ¢, (X}), we arrive at

n

1
(3.3) den(X;) = ¢l (X,)b(X,)dt + §¢”(Xt)xfhdt + ¢ (X)) X]dB,.

This implies

on(Xunn,) = ule) + / L (X)b(X.)ds

(34) 1 tATm tATm
w5 [ eoxass [ g ) xta,
0 0

Combining the definition of 7, and taking expectations in (3.4), we obtain

tATm 1 tATm
E(ga(Xinr,)) — onl@) =B [ en(Xpx)ds + 3B [ (X)X
0 0

Thus, (3.1)-(3.2) and dominated convergence theorem yield

n—oo

tATm
(3.5) lim E / 2 (X,)b(X,)ds = 0.
0

Since b is locally bounded, there exists M > 0 such that
|90;(95)b($)| < sup |b(90)| < sup {b(m){ < M.

z€[0,1) z€[0,1)

Mover, it is clear

lim ), (2)b(x) = — L0 (2)b(0).

n—oo

So, this together with dominated convergence theorem and (3.5) implies

tATm tATm
lim E / o (X,)b(X,)ds = E / Ty (X,)b(0)ds = 0,
0 0

n—00

which yields E fOtATm I10y(X5)ds = 0 due to b(0) > 0. Letting firstly ¢ goes to oo and then m
tends to co, we have E [ Ifo1(X,)ds = 0. Thus, we have P-a.s. [J I{oy(X,)ds = 0. O
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Lemma 3.2. Let £ <h <1 and o > %. Then for any z, y € [0,00) with x <y, we have

11 hif 1 1 h 1n
Oé(y_h_ﬁ)—'—E(wl_h_F—}_x -y SO

(3.6)

Proof. We divide the proof into two cases.

(1) Case 1: 0 <z < 1.
(i) y < 1. Consider function w(z) = 7= — %, z > 0. The derivative of w is
h—(1—h)z*1!
w'(z) = JSE) :
Letting
N
20 = (1 — h) )

then we have w'(z9) = 0. Noting that zy > 1 due to h € (3,1), w is strictly

increasing on [0,1). Since 0 < z <y < 1, we obtain w(x) < w(y), i.e

1 1 <0
glh ylh Ty '

This together with % <h<l a> % and r < y implies

1 1\ k(1 1 Ch i
0‘(———>+—<x1_h—1—_h+l’ —Y
1

yrooah) o2 y

M\ (1 1\ h( 1 1 I\ hy, oy on

~(2) )i (g m) e e o

(i) y > 1. Since £ < h < 1, we have yih < yll_h. By the same reason, it holds
xih>xl%hduetox<1.Thus,

1 1 1 1 <0
gl=h yl=h Ty '

Again thanks to % <h<l a> % and x < y, we obtain

1 1\ h( 1 1 o
() o3 ey

MY [(1 1\ h( 1 11 1N\ A, o4
:<(X—§><E—E)+§<xl_h +—h——)+§(l‘ -y )<0




(2) Case 2: © > 1. Firstly, we have y > 1 due to x < y. So, we get from § < h < 1 and

x < y that
1 1 h 1 1 1-h 1-h
h(y™"h—a'" 1-h . 1-h
= 5( p—hyl=h + (= y ")
h
< 3 (yl—h plh (:L,l—h _ yl—h)) —0
Thus, we complete the proof. O

With the above two lemmas in hand, we finish the proof of Theorem 2.1 below.

4 Proof of Theorem 2.1

We use the coupling by change of measure to derive the Harnack inequality.

Proof of Theorem 2.1. (1) Fix T' > 0. For any z,y € [0,00), without loss of generality, we

may assume that y > z. Let X, solve (1.2) with X, = x, and Y solve the equation

(4.1) dY; = (a — 6Y)dt + Y'dB, — I & ()Y, dt

with Yy = y, here

2(5 _ %)(yl—h _ $1—h)e(1—h)(6—%)t
<62(1—h)(5—g)T o 1) ’

§(t) =

and 7 := inf{t > 0 : X; = Y;}, which is the coupling time. Let Y; = X, for t > 7. We will
prove 7 < T
For any € > 0, let

t>0,

sVt d
p=(s,t) :/ - s,t € 0,00).

ae (et
Applying 1t6’s formula to p.(Xy, Y;), we have
dpE(Xta }/;f)
8p5<XtaY;f) apa(XbY;f) 1 a2pa(XtaY;) 1 62P5(Xt>1/;5)
=—— 1 74X, + — T 2dY, + - — 1 (X — 104
ox et dy tF 2 0x? (X 2 Oy? (¥)e
aZPE(Xt Yt)
= T XY
Oxdy (XY,
(4.2) dX; dY; hX2hdt hY2hdt
(Xt + E)h (Yt + 8)h 2(Xt + 6)h+1 2(}/; + E)h+1
v} X} 1-h 1—h 0%
= — dB; — ¢ ((Y; — (X dt — =—=~—*_dt
((Y;—F&“)h (Xt+€)h t (( t+5) ( t+5) ) (th_l_g)h
1 1 h X32h Yy 2h
) — dt + — L — ¢ dt, t <.
teta) ((Y; Ter (X +e>h) "3 ((Xt Tt T (Y, +e)h+l> e



Combining the definition of p., we arrive at

a1 (9 = ()
v, X/ h 1-h 1-h
s = ((Yt+a>h - <Xt+s>h> - (5_ 5) (Cerey™ = (er ey de
()Y}
— mdt + M(Xy, Yy, e)dt, t<r,
where
M(Xy, Y, e) = (6 + ) ((Yt_{l_g)h o (Xt—li-g)h)

. {((Xt)f;hﬂ - ﬁ’;hﬂ)} (ke (X)),

It follows from (4.3) that

1 _ _hy(r _ B TAT e(l—h)(é—%)tg(ﬂyh
e IR (Vo 0 (e ) [
1 AT N Yh Xh
44) = ——_ 1=h _ 1—h (1—h)(6—1)t ¢ _ t 1B
1) = (e =™« [ ((Yt+5)h <Xt+e>h> t
AT
+/ -G-B N (X, Y, 2)dt.
0
Let
AT Yh Xh 2
I : = limE e<1—h><5—%>t< t )dB
S /0 Wite) (X o)

AT h h
_ limE/ eZ(lfh)(zif%)f( Yy B X, )2dt
=0 Jo (Yi+e)h (Xy+e)h ’

By Lemma 3.1 and Y, > X, we have P-a.s

/ I{XS:()}dS = O, / I{YS:()}dS =0.
0 0

This implies
T
L <E (/ MO Ty, 2y — I{Xﬁm})th) = 0.
0

Since X and Y are continuous, by dominated convergence theorem and Lemma 3.2, we
obtain

TAT

lim M=) \f (X, Y, e)dt

e—0 0



TNT
= / e1=ME=) im M (X,, Vs, e)dt
0 e—0

TNT 1 1 h Xt2h Y?h
_ o Lo L)X Y Yl‘h—Xl‘hDdt
LA ( (Y? A?) 22{(x?+1 ‘n”“) Y e

<0.

Thus, letting € go to 0 in (4.4), it holds P-a.s.
e (1—h)(6—L)t 1 (1=h)(6—2Y(+AT) (v 1—h 1—h 1 1—h 1—h
(4.5) o 2R (t)dt + -3¢ 2 (Yoar — Xoar) < m(y -z ).
On the other hand, by the definition of £(¢), it is easy to see
1-h _ xlfh)(eQ(l—h)(é—%)('r/\T) _ 1)
(1- h)(eQ(l—h)(é—g)T —1)

This and (4.5) imply P(7 > T') = 0. In fact, if P(r > T') > 0, considering (4.5) on the set
{r > T}, we have

1 1
— h(yl—h . xl—h) + — he(l—h)(a—g)T(YZ}—h . Xilp—h) < — h(yl—h _ xl—h)'

This is impossible, and P(7 < T') = 1.

. R = exp [/OTg(t)dBt - %/OT §2(t)dt] :

By Girsanov’s theorem, under the probability dQ := RdP, the process

AT s_h (y
(4.6) / o(-M6- )t (1)t —
0

1

. t
B, = B; — / Lo,y (s)é(s)ds, t>0
0
is a one-dimensional Brownian motion. Rewrite the equation for Y; as
dY; = (o — 0Y;)dt + YdB,, Yy =1y.

We see that the distribution of Y under QQ coincides with that of X¥ under P. Moreover,
Q-a.s. X7 =Yy, Thus,

Prf(y) =E%(f(Yr)) = E*(f(Xr)) = E(Rf(X7)).
By Holder’s inequality, we have
(4.7) (Prf(y)) < (E(RPO-D)PLE(fP(Xr)) = Prf?(x) - (B(RY/P-D)PL

On the other hand, from the definition of R and £(t), we arrive at

E(RP/P~1) < exp {ﬁ /0 ' §2<t>dt}
9



x E (exp [L /Tg(t)dBt - 2<pp—_21)2/0T 52(t)dtD
<o 35,2 1>2/ o]

. p(6 — L) (yth — zth)?
Pl — 121 - my@t e T — 1|

This together with (4.7) yields

(Prf(y))" < (Prff(z))exp [(

Similarly, we have
Prlog f(y) = E%(log f(Yr)) = E%(log f(Xr)) = E(Rlog f(Xr)).
Young’s inequality implies
E(Rlog f(Xr)) < E(Rlog R) + log E(f(Xr)) = E(Rlog k) + log(Prf(x)).
It is not difficult to see that

E(Rlog R) = E%log R

—E@</§ dBt—§/T§()dt>
_EQ</§ dBt+/§ dt—%/o E2(t dt)
:_E@ (/5 dt) © _)%( 3(/11;(5 o )1>.

Thus, the log-Harnack inequality holds, i.e.

(5= " — oy
(1= B0 HEDT 1)

Prlog f(y) < log Prf(x)) + L[> 0.f € B (0,).

(2) Repeat the proof of (1) with £(t) = 0 and 7 = co. From (4.5), we arrive at

ChV(s_h 1 _ _ 1 _ _
(4. BT (X < (ot

which means

—(1— _h
(4.9) p(X%, X3) < e TME2)Tp(y ),



Thus, for any f € C}([0,00), we have

[Prf(y) — Prf(z)|

\V'"Prf(z)] = lim

plya)—0 p(y, )

_ i [BSX7) - Ef(XR)]
p(y,®)—0 /)(3/7 1’)

o [BSXT) - EF(XF)] p(X7, XF)
py,2)—0 p(X7, X7) p(y, )

< e_(1_h)(5—g)TPT|vhf| (z).
[

Remark 4.1. In [2/], i.e. h = %, as € goes to 0, the first and second term in M(Xy,Y},€)

27
can be non-positive if o > i. However, it does not hold when h € (%, 1), and this is why we

construct M (Xy,Y:, €) as in the proof of Theorem 2.1.

5 Proof of Theorem 2.3

In this section, we use isoperimetric constant to derive the super Poincaré inequality.

Lemma 5.1. There ezists a small enough constant ro € (0,1) such that for any x1,x9 > 0
satisfying p((0, 1)) = u((xq, 00)) < rg, it holds

(00, 21)) > pia(8(x2, ).
Proof. By the definition of ug, we have

Iua((o J})) — lim M ({y 0 < ﬁ(yl_h _ xl—h) < 8})

e—0 g
21=h 4y (1—h)e]T-R h

iy e e (y)dy
= 111m

e—0 g

n(@) {[a' " + (1= W] 7 — '}

= lim

e—0 £

_ 1-2h_ 8 _,2-2h
_ xh (x) _ gz~ "eT-2n T-h
g 7
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Similarly, we arrive at

to((z,00)) = lim

e—0 .
= lim f[xl’h*(lfh)s}ﬁ n(y)dy

e—0 -

n() {x (1 h)g]ﬁ}

= lim

e—0 .

Loz ™" %x1*2h_ﬁx272h

= ahpy(z) = 22 °

A

Letting (z"n(x)) = 0, we get
200 = 207 + ha®'t,
Since h € (3, 1), there exists g such that z"n(z) is strictly increasing on (0, o) and strictly
decreasing on (g, 00).
Letting r > 0 be small enough, take z1(r), zo(r) € [0, 00) such that

1((0,z1(r))) = p((w2(r), 00)) = r.
It is clear

(5.1) limz(r) =0, limzy(r) = oo.
r—0 r—0

Moreover, by L’Hopital’s rule, we have

2 1—-2h ) 2—2h
foxl(’”) s 2hetmms T TTRS s
lim =1
r0 1 o2 (a2 !
2a

and

S
(5.2) lim =220 . = 1.

Thus, it holds

— 23
@ (ag(r) e TR

— Y lim e mer (@ () ) 2 (w2(r)? 7 Hlog(aa (1)

o r—0
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This means

lim {—thf (aa(r) ) 4 %(:@(T»Hh + log(mz(r))} = log %

r—0

Thus, (5.1) yields

lim
r—0

{_ 20 (y(r)71)%ht n Y (w(r))* > }:0_

2= Ty () L B )

Since o on
lim (“”U?(’;zzhmh_l) = lim(2s(r)) 7 = o0,
r—0 (Z‘Q(T))f r—0

we have

hm (‘,L,l(,r)fl)thl ~

r—0 (172 (/r)) <1*h>}(fh*1)

This together with (5.1) and the representation of 115((0,2)) and us((z, 00)) implies
pa(0(0, 4 (r)))
r=0 f15(0(2(r), 00))

h T @1 ()P = (o

))272h

= glim za(r) D"
51 (s ()
Cyono1 \ BT
= g ]_lm (:El(?ﬂ)(li})b)(z]_bil) = OQ.
) r—0 (:172 T))ih

So, there exists 79 > 0 such that for any x, s € [0, 00) satisfying p((0, 1)) = p((x2,00)) <
ro, it holds

(5.3) 110(9(0, 1)) > po(9(w2, 00)).

Thus, we complete the proof. n

Proof of Theorem 2.3. (1) Firstly, we prove that there exists small enough 7y > 0 such that
for any r € (0,7), k(r) can only get the lower bound on the set (z,00) with p((z,00)) <.

Let 7o = 3{p(0,x0) A pu(wo, 00)} A 1o with ro introduced in Lemma 5.1. Fix r € (0, 7).
For any open set A C [0,00) with pu(A) = r, let A} := AN (0,z0) and Ay := AN (z0,0).
Then p(A1) < $p(0, o) and pu(As) < (g, 00). Let 2o = inf{z : z € A} and z; = sup{z :

13



x € Ay}, Take 77 < x1 and Ty > o such that p((0,21)) = p(A;) and pu((Ze,0)) = pu(As).
Since z"n(x) is strictly increasing on (0, ) and strictly decreasing on (g, 00), we have

pa(0A1) > 115(0(0,21)) > 1a(0(0, 1))
and
po(0A2) = po(9(x2,00)) > p1p(0(Z2, 00)).

This yields
pa(04) _ 1o(9((0,7,) U (%5, 00)))
u(A) = p((0,21) U (2, 00))

(
For any 1,92 € (0, 00) satisfying u((0,91)) + u((y2,00)) = r, define

e(y1,y2) = 1a(0((0,y1) U (y2,00))) = yin(y1) + y5n(ye)-

Next, we show that

90(07 JJ) = inf{gp(yl, 92) : M((O, Y1) + ﬂ((y% OO)) = T‘},
here, pu((x,00)) = r. In fact, from p((0,41)) + p((y2,00)) = r, there exists a function ¢ such
that yo = ¢(y1) and ¢'(y1) = Zgylg Thus, we obtain
e(y1,y2) = (Y1, ¢(y1)) = 2(y1).

By the representation of n(s), we have

Oy Oy
D' (1) = =—(y1,v2) + =—— (Y1, ¥2)¢ (1)
) By v
=yt (1) + hyt " n(y) + (an' (y2) + hyh ™ n(y2)) ¢ (1)
B n(y
=yt (1) + hyt " n(y) + (van (y2) + hyh " n(y2)) (1)
77(y2)
Ty 2
_ Zoel T TR e (y?(—thl%l 4y oy gy Thogy o2y |yl o2
y72h
+yh —yl,gh (—=2hyy "1 4y 220, " — 3 220y, ") + by y "
2

= n(y1) ( —h(r T )+ 20y ") — 200" y%h)> :

Since h € (3,1) and «, § > 0, there exists a small enough constant 71 > 0 such that ' (y;) > 0
when y; € (0,71), and there exists a big enough constant r > 0 such that ®'(y;) < 0 when
Yo € (r9,00). Thus, ¢ can only take minimum on (y,,00) with u((y,00)) = r or on (0, 1)
with ©((0,y1)) = r. By (5.3), ¢ take minimum on (ys, 00) with p((y2,00)) = r. Thus, we

obtain
t po(04) _ po(((0.7:) U (2,00)) _ o0z, 0))
p@) 2 (0 U () pl(r00)

14




here, u((z,00)) = r. Thus, we have
h
k(r) = inf L(x)
{alp(z.00)<r} p((w,00))
Take z, > 0 such that u((z,,00)) = r. Then we have lim,_,o x, = co. By (5.2), we have
2h—1
lim L1 _ o5
r=0 p((2r, 00))

This implies

h 1— h 2h 1
(5.4) lim k(r) = lim G = lim °r nn) _ = lim )" = 0.
r—0 r—0 M((:ph oo)) r—0 Iu((x,” oo)) r—0

According to [17, Theorem 3.4.16], the super Poincaré inequality holds for

4
6(” W r > 0.

(2) It follows form (5.2) that

e
275
which implies
eloer ) 5 2-2h I
] — |5 ogr+i—7Tr +logz, __ 0
71«1_1}(1) e—ﬁzg_%—logmw o 71*1—I>I[1)e ot a 2Z5
This yields
11m{logr—|— 0 227" flogx,} = log&
T " 270
Since h € (3,1), we obtain
\/ log 7“‘1
r~>0 .ZEl Coplh 1—h
Combining this with (5.4), we arrive at
k 1-h
lim ) gy —1
Thus, there exist constants 7o > 0 and ¢ > 0 such that k(r) > ¢[—logr]2 for r € (0.rg).

According to [17, Corollary 3.4.17] with § = 1, (2.2) holds with 8(r) = e+ for some
constant C' > 0.
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(3) Let p(0,2) = 2", then p(0,-) € D(E). Set h, = p(0,-) An. For any g € D(E)

with u(|g|) < 1, we have

1

= LT gy @b () — [
2/0 4 Jo

8
[N}
>

>

3o
—
8
Q\
s
S~—
=
o,
&

/

| pea-mTE
<5/ 2 (1, (w)g(a) () <

So by [17, Definition 1.2.1], Lg(p(0,-)) < 1.
However, for any \ € (%, 1) and € > 0, we have

_2X F0 > _9h 27ax1—2hfix2—2h+5(L)%xw
M{GXP{€P(O, .)2/\71 }} — 7 r “he1-2r 1-h ih = 00,
0
here, in the last display, we have used 2§—f1 > 2 for any \ € (%, 1). By [17, Corollary 3.3.22],

the super Poincaré inequality (2.2) does not hold with §(r €+ for T <A<

Similarly, we can show p(explexp(ep(0,-))]) = [|p(0,-)||lc = oo. Again by [17, Corollary
3.3.22], (2.2) does not hold with 8(r) = e“0+) for 0 < A < 5. Thus, we finish the
proof. n
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