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Abstract

In this paper, Wang’s Harnack inequalities and super Poincaré inequality for gen-
eralized Cox-Ingersoll-Ross model are obtained. Since the noise is degenerate, the
intrinsic metric has been introduced to construct the coupling by change of measure.
By using isoperimetric constant, some optimal estimate of the rate function in the
super Poincaré inequality for the associated Dirichlet form is also obtained.
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1 Introduction

The SDE

(1.1) dXt = (α− δXt)dt+
√
XtdBt, X0 > 0,

which is called CIR (Cox-Ingersoll-Ross) model [6, Section 4.6], is used to characterize the
evolution of the interest rate in finance. In [1, 2, 3, 7, 11, 14, 15, 23], the authors investigate
the convergence rate of various numerical schemes of (1.1), see also [5] for distribution
dependent SDEs with Hölder continuous diffusion coefficients. Zhang and Zheng [24] obtain
the Harnack inequality and super Poincaré for (1.1). See [8, 9, 10] for more introductions on
(1.1).
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In this paper, we consider stochastic differential equations on [0,∞):

(1.2) dXt = (α− δXt)dt+Xh
t dBt,

with constant 1
2
< h < 1, α, δ > 0, and Bt a is one-dimensional Brownian motion on some

complete filtration probability space (Ω,F , {Ft}t≥0,P). We call (1.2) a generalized CIR
model. By [12, 13], (1.2) has a unique non-negative strong solution for any positive initial
value.

Compared with SDE (1.1), the diffusion in (1.2) has stronger degeneration on 0 due to
h > 1

2
, which leads to worse regularity of the solution. Thus, the Harnack inequality for the

semigroup associated to (1.2) is non-trivial.
Wang [18] introduced coupling by change of measure to establish Harnack inequality in

the SDEs with non-degenerate diffusion coefficients, see [4, 19, 22] for more models. Wang
[17, Section 3] also gives some conditions to obtain super Poincaré inequality, which was
firstly introduced in [21] to characterize the essential spectrum. Zhang and Zheng [24]
obtained the functional inequalities of (1.1) under some reasonable conditions.

In this paper, we will prove the Harnack and super Poincaré inequality for (1.2), which
cover the results in [24] where h is assumed to be 1

2
.

The paper is organized as follows: In Section 2, we give main results on Harnack and
super Poincaré inequality, which will be proved in Section 4 and Section 5 respectively; In
Section 3, we give some lemmas which will be used in the sequel.

2 Main Results

2.1 Harnack Inequality and Gradient Estimate

As we know, the intrinsic metric associate to the generator of (1.2) is defined as

ρ(s, t) =

∫ s∨t

s∧t

dr

rh
, s, t ∈ [0,∞).(2.1)

For any f ∈ C1([0,∞)), x ∈ [0,∞), define

∇hf(x) := lim
y→x

f(y)− f(x)
1

1−hy
1−h − 1

1−hx
1−h =

f ′(x)

x−h
= xhf ′(x).

∇h is called the intrinsic gradient. Obviously, we have

|∇hf(x)| = lim
ρ(y,x)→0

|f(y)− f(x)|
ρ(y, x)

= xh|f ′(x)|.

The following theorem gives Wang type Harnack inequality and gradient estimate ∇h for
the Markov semigroup Pt associated with (1.2):

Ptf(x) = Ef(Xx
t ), t ≥ 0, x ∈ [0,∞), f ∈ Bb([0,∞)),

where Xx
t is the unique solution Xx

t to (1.2) starting at x.
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Theorem 2.1. Assume 1
2
< h < 1 and α ≥ h

2
. Then the following assertions hold.

(1) The Harnack inequality holds, i.e. for any T > 0, p > 1 and x, y ∈ [0,∞), it holds

(PTf)p(y) ≤PTfp(x) exp

[
p(δ − h

2
)(y1−h − x1−h)2

(p− 1)(1− h)(e2(1−h)(δ−h
2

)T − 1)

]
, f ∈ B+

b ([0,∞)).

Moreover, for any f ∈ B+
b ([0,∞)) with f > 0, the Log-Harnack inequality

PT log f(y) ≤ logPTf(x) +
(δ − h

2
)(y1−h − x1−h)2

(1− h)(e2(1−h)(δ−h
2

)T − 1)

holds.

(2) For any f ∈ C1
b ([0,∞), the estimate of the intrinsic gradient holds:

|∇hPTf(x)| ≤ e−(1−h)(δ−h
2

)TPT |∇hf |(x), T > 0, x ∈ [0,∞).

Remark 2.2. This type inequality was introduced in [16] to characterize the hypercontrac-
tivity of diffusion semigroups on Riemannian manifolds, and has been intensively extended
and applied to various different models of SDEs and SPDEs, see [18] for a general theory on
this inequality and applications.

2.2 Super Poincaré inequality

We firstly introduce some notations:

C(x) =

∫ x

1

α− δy
y2h

dy =
2α

1− 2h
x1−2h − δ

1− h
x2−2h −

(
2α

1− 2h
− δ

1− h

)
, x > 0,

Γ0 = 2e−( 2α
1−2h

− δ
1−h),

Z =

∫ ∞
0

eC(x)

1
2
x2h

dx = Γ0

∫ ∞
0

x−2he
2α

1−2h
x1−2h− δ

1−hx
2−2h

dx,

and

µ(dx) =
Γ0x

−2he
2α

1−2h
x1−2h− δ

1−hx
2−2h

Z
dx =: η(x)dx.

Consider second-ordered differential operator on L2(µ):

L =
1

2
x2h d2

dx2
+ (α− δx)

d

dx
.

Let (E ,D(E)) be the associated Dirichlet form to L on L2(µ). In particular, we have

E(f, f) =
1

2

∫ ∞
0

x2h[f ′(x)]2µ(dx), f ∈ C1
0([0,∞)).
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Let ρ be defined in (2.1), then we have

ρ(x, y) =

∫ x∨y

x∧y

dr

rh
=

1

1− h
|y1−h − x1−h|, x, y ∈ [0,∞).

For any open set D ⊂ [0,∞), the boundary measure of D induced by µ is defined as

µ∂(∂D) := lim
ε→0

µ(Dε)− µ(D)

ε

with Dε = {x ∈ [0,∞)|ρ(x,D) ≤ ε}.
The isoperimetric constant is defined as

k(r) := inf
µ(D)≤r

µ∂(∂D)

µ(D)
, r > 0.

Theorem 2.3. Assume 1
2
< h < 1. Then the following assertions hold.

(1) The super Poincaré inequality

µ(f 2) ≤ rE(f, f) + β(r)µ(|f |)2, r > 0, f ∈ D(E)(2.2)

holds for β(r) = 4

k−1(2
√

2r−
1
2 )

with k−1(r) = sup{s ≥ 0, k(s) > r)}.

(2) Moreover, there exists constants c, r0 > 0 such that k(r) ≥ c(− log r)
1
2 for any r ∈

(0, r0). Thus, (2.2) holds with β(r) = eC(1+r−1) for some constant C > 0.

(3) Finally, β(r) in (2) is optimal in the following sense: the super Poincaré inequality
can not hold for any β(r) = eC(1+r−λ) with 0 < λ < 1 and some constant C > 0.

Remark 2.4. The super Poincaré inequality was introduced in [21] to characterize the ab-
sence of essential spectrum of Markov generators. A general theory on this type inequality
and applications has been summarized in [17].

3 Some Preparations

In this section, we give two important lemmas which will be used in the proof of Theorem
2.1.

Lemma 3.1. Assume 1
2
< h < 1 and SDE

dXt = b(Xt)dt+Xh
t dBt, X0 = x > 0

has a non-explosive and non-negative solution Xt. Here, b : [0,∞) → R is locally bounded
and continuous at point 0, b(0) > 0. Then P-a.s.∫ ∞

0

I{0}(Xt)dt = 0.
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Proof. For any n ≥ 1, construct function ϕn : [0,∞)→ R as follows

ϕn(x) =

{
1

2(h+1)n
, x ≥ 1

n
,

n2h+1

2(h+1)
( 1
n
− x)2(h+1) + 1

2(h+1)n
, 0 ≤ x < 1

n
.

It is not difficult to see

(3.1) |ϕn(x)| ≤ 1

h+ 1
, |ϕ′n(x)| ≤ 1, |ϕ′′n(x) · x2h| = 2h+ 1

n2h−1
≤ 2h+ 1,

and

(3.2) lim
n→∞

ϕn(x) = 0, lim
n→∞

ϕ′n(x) = −I{0}(x), lim
n→∞

|ϕ′′n(x) · x2h| = 0.

Letting τm=inf { t ≥ 0: Xt ≥ m}, since Xt is non-explosive, then we have τ∞ := lim
m→∞

τm =

∞. Applying Itô’s formula to ϕn(Xt), we arrive at

(3.3) dϕn(Xt) = ϕ′n(Xt)b(Xt)dt+
1

2
ϕ′′n(Xt)X

2h
t dt+ ϕ′n(Xt)X

h
t dBt.

This implies

ϕn(Xt∧τm) = ϕn(x) +

∫ t∧τm

0

ϕ′n(Xs)b(Xs)ds

+
1

2

∫ t∧τm

0

ϕ′′n(Xs)X
2h
s ds+

∫ t∧τm

0

ϕ′n(Xs)X
h
s dBs.

(3.4)

Combining the definition of τm and taking expectations in (3.4), we obtain

E
(
ϕn(Xt∧τm)

)
− ϕn(x) = E

∫ t∧τm

0

ϕ′n(Xs)b(Xs)ds+
1

2
E
∫ t∧τm

0

ϕ′′n(Xs)X
2h
s ds.

Thus, (3.1)-(3.2) and dominated convergence theorem yield

lim
n→∞

E
∫ t∧τm

0

ϕ′n(Xs)b(Xs)ds = 0.(3.5)

Since b is locally bounded, there exists M > 0 such that∣∣ϕ′n(x)b(x)
∣∣ ≤ sup

x∈[0, 1
n

)

∣∣b(x)
∣∣ ≤ sup

x∈[0,1)

∣∣b(x)
∣∣ ≤M.

Mover, it is clear
lim
n→∞

ϕ′n(x)b(x) = −I{0}(x)b(0).

So, this together with dominated convergence theorem and (3.5) implies

lim
n→∞

E
∫ t∧τm

0

ϕ′n(Xs)b(Xs)ds = E
∫ t∧τm

0

I{0}(Xs)b(0)ds = 0,

which yields E
∫ t∧τm

0
I{0}(Xs)ds = 0 due to b(0) > 0. Letting firstly t goes to ∞ and then m

tends to ∞, we have E
∫∞

0
I{0}(Xs)ds = 0. Thus, we have P-a.s.

∫∞
0
I{0}(Xs)ds = 0.
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Lemma 3.2. Let 1
2
< h < 1 and α ≥ h

2
. Then for any x, y ∈ [0,∞) with x < y, we have

(3.6) α

(
1

yh
− 1

xh

)
+
h

2

(
1

x1−h −
1

y1−h + x1−h − y1−h
)
≤ 0.

Proof. We divide the proof into two cases.

(1) Case 1: 0 ≤ x < 1.

(i) y < 1. Consider function w(z) = 1
z1−h
− 1

zh
, z > 0. The derivative of w is

w′(z) =
h− (1− h)z2h−1

z1+h
.

Letting

z0 =

(
h

1− h

) 1
2h−1

,

then we have w′(z0) = 0. Noting that z0 > 1 due to h ∈ (1
2
, 1), w is strictly

increasing on [0, 1). Since 0 ≤ x < y ≤ 1, we obtain w(x) < w(y), i.e.

1

x1−h −
1

y1−h +
1

yh
− 1

xh
< 0.

This together with 1
2
< h < 1, α ≥ h

2
and x < y implies

α

(
1

yh
− 1

xh

)
+
h

2

(
1

x1−h −
1

y1−h + x1−h − y1−h
)

=

(
α− h

2

)(
1

yh
− 1

xh

)
+
h

2

(
1

x1−h −
1

y1−h +
1

yh
− 1

xh

)
+
h

2

(
x1−h − y1−h) < 0.

(ii) y > 1. Since 1
2
< h < 1, we have 1

yh
< 1

y1−h
. By the same reason, it holds

1
xh
> 1

x1−h
due to x < 1. Thus,

1

x1−h −
1

y1−h +
1

yh
− 1

xh
< 0.

Again thanks to 1
2
< h < 1, α ≥ h

2
and x < y, we obtain

α

(
1

yh
− 1

xh

)
+
h

2

(
1

x1−h −
1

y1−h + x1−h − y1−h
)

=

(
α− h

2

)(
1

yh
− 1

xh

)
+
h

2

(
1

x1−h −
1

y1−h +
1

yh
− 1

xh

)
+
h

2

(
x1−h − y1−h) < 0.

6



(2) Case 2: x ≥ 1. Firstly, we have y > 1 due to x < y. So, we get from 1
2
< h < 1 and

x < y that

α

(
1

yh
− 1

xh

)
+
h

2

(
1

x1−h −
1

y1−h + x1−h − y1−h
)

≤ h

2

(
y1−h − x1−h

x1−hy1−h +
(
x1−h − y1−h))

≤ h

2

(
y1−h − x1−h +

(
x1−h − y1−h)) = 0.

Thus, we complete the proof.

With the above two lemmas in hand, we finish the proof of Theorem 2.1 below.

4 Proof of Theorem 2.1

We use the coupling by change of measure to derive the Harnack inequality.

Proof of Theorem 2.1. (1) Fix T > 0. For any x, y ∈ [0,∞), without loss of generality, we
may assume that y > x. Let Xt solve (1.2) with X0 = x, and Yt solve the equation

(4.1) dYt = (α− δYt)dt+ Y h
t dBt − I[0,τ)ξ(t)Y

h
t dt

with Y0 = y, here

ξ(t) :=
2(δ − h

2
)(y1−h − x1−h)e(1−h)(δ−h

2
)t

(e2(1−h)(δ−h
2

)T − 1)
, t ≥ 0,

and τ := inf{t ≥ 0 : Xt = Yt}, which is the coupling time. Let Yt = Xt for t ≥ τ . We will
prove τ < T .

For any ε > 0, let

ρε(s, t) =

∫ s∨t

s∧t

dr

(r + ε)h
, s, t ∈ [0,∞).

Applying Itô’s formula to ρε(Xt, Yt), we have

dρε(Xt, Yt)

=
∂ρε(Xt, Yt)

∂x
dXt +

∂ρε(Xt, Yt)

∂y
dYt +

1

2

∂2ρε(Xt, Yt)

∂x2
d〈X〉t +

1

2

∂2ρε(Xt, Yt)

∂y2
d〈Y 〉t

+
∂2ρε(Xt, Yt)

∂x∂y
d〈X, Y 〉t

= − dXt

(Xt + ε)h
+

dYt
(Yt + ε)h

+
hX2h

t dt

2(Xt + ε)h+1
− hY 2h

t dt

2(Yt + ε)h+1

=

(
Y h
t

(Yt + ε)h
− Xh

t

(Xt + ε)h

)
dBt − δ

(
(Yt + ε)1−h − (Xt + ε)1−h) dt− ξ(t)Y h

t

(Yt + ε)h
dt

+ (δε+ α)

(
1

(Yt + ε)h
− 1

(Xt + ε)h

)
dt+

h

2

(
X2h
t

(Xt + ε)h+1
− Y 2h

t

(Yt + ε)h+1

)
dt, t < τ.

(4.2)
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Combining the definition of ρε, we arrive at

d

[
1

1− h
(
(Yt + ε)1−h − (Xt + ε)1−h)]

=

(
Y h
t

(Yt + ε)h
− Xh

t

(Xt + ε)h

)
dBt −

(
δ − h

2

)(
(Yt + ε)1−h − (Xt + ε)1−h) dt

− ξ(t)Y h
t

(Yt + ε)h
dt+M(Xt, Yt, ε)dt, t < τ,

(4.3)

where

M(Xt, Yt, ε) = (δε+ α)

(
1

(Yt + ε)h
− 1

(Xt + ε)h

)
+
h

2

[(
X2h
t

(Xt + ε)h+1
− Y 2h

t

(Yt + ε)h+1

)]
− h

2

(
(Yt + ε)1−h − (Xt + ε)1−h) .

It follows from (4.3) that

1

1− h
e(1−h)(δ−h

2
)(τ∧T )

(
(Yτ∧T + ε)1−h − (Xτ∧T + ε)1−h)+

∫ τ∧T

0

e(1−h)(δ−h
2

)tξ(t)Y h
t

(Yt + ε)h
dt

=
1

1− h
(
(y + ε)1−h − (x+ ε)1−h)+

∫ τ∧T

0

e(1−h)(δ−h
2

)t

(
Y h
t

(Yt + ε)h
− Xh

t

(Xt + ε)h

)
dBt

+

∫ τ∧T

0

e(1−h)(δ−h
2

)tM(Xt, Yt, ε)dt.

(4.4)

Let

I1 : = lim
ε→0

E
∣∣∣∣∫ τ∧T

0

e(1−h)(δ−h
2

)t
( Y h

t

(Yt + ε)h
− Xh

t

(Xt + ε)h

)
dBt

∣∣∣∣2
= lim

ε→0
E
∫ τ∧T

0

e2(1−h)(δ−h
2

)t
( Y h

t

(Yt + ε)h
− Xh

t

(Xt + ε)h

)2

dt,

By Lemma 3.1 and Ys ≥ Xs, we have P-a.s∫ ∞
0

I{Xs=0}ds = 0,

∫ ∞
0

I{Ys=0}ds = 0.

This implies

I1 ≤ E
(∫ T

0

e2(1−h)(δ−h
2

)t(I{Yt 6=0} − I{Xt 6=0})
2dt

)
= 0.

Since X and Y are continuous, by dominated convergence theorem and Lemma 3.2, we
obtain

lim
ε→0

∫ τ∧T

0

e(1−h)(δ−h
2

)tM(Xt, Yt, ε)dt
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=

∫ τ∧T

0

e(1−h)(δ−h
2

)t lim
ε→0

M(Xt, Yt, ε)dt

=

∫ τ∧T

0

(
α

(
1

Y h
t

− 1

Xh
t

)
+
h

2

[(
X2h
t

Xh+1
t

− Y 2h
t

Y h+1
t

)
−
(
Y 1−h
t −X1−h

t

)])
dt

≤ 0.

Thus, letting ε go to 0 in (4.4), it holds P-a.s.∫ τ∧T

0

e(1−h)(δ−h
2

)tξ(t)dt+
1

1− h
e(1−h)(δ−h

2
)(τ∧T )(Y 1−h

τ∧T −X
1−h
τ∧T ) ≤ 1

1− h
(y1−h − x1−h).(4.5)

On the other hand, by the definition of ξ(t), it is easy to see∫ τ∧T

0

e(1−h)(δ−h
2

)tξ(t)dt =
(y1−h − x1−h)(e2(1−h)(δ−h

2
)(τ∧T ) − 1)

(1− h)(e2(1−h)(δ−h
2

)T − 1)
.(4.6)

This and (4.5) imply P(τ > T ) = 0. In fact, if P(τ > T ) > 0, considering (4.5) on the set
{τ > T}, we have

1

1− h
(y1−h − x1−h) +

1

1− h
e(1−h)(δ−h

2
)T (Y 1−h

T −X1−h
T ) ≤ 1

1− h
(y1−h − x1−h).

This is impossible, and P(τ ≤ T ) = 1.
Let

R = exp

[∫ τ

0

ξ(t)dBt −
1

2

∫ τ

0

ξ2(t)dt

]
.

By Girsanov’s theorem, under the probability dQ := RdP, the process

B̃t = Bt −
∫ t

0

1[0,τ)(s)ξ(s)ds, t ≥ 0

is a one-dimensional Brownian motion. Rewrite the equation for Yt as

dYt = (α− δYt)dt+ Y h
t dB̃t, Y0 = y.

We see that the distribution of Y under Q coincides with that of Xy under P. Moreover,
Q-a.s. XT = YT . Thus,

PTf(y) = EQ(f(YT )) = EQ(f(XT )) = E(Rf(XT )).

By Hölder’s inequality, we have

(PTf(y))p ≤ (E(Rp/(p−1)))p−1 · E(fp(XT )) = PTf
p(x) · (E(Rp/(p−1)))p−1.(4.7)

On the other hand, from the definition of R and ξ(t), we arrive at

E(Rp/(p−1)) ≤ exp

[
p

2(p− 1)2

∫ T

0

ξ2(t)dt

]
9



× E
(

exp

[
p

p− 1

∫ τ

0

ξ(t)dBt −
p2

2(p− 1)2

∫ τ

0

ξ2(t)dt

])
≤ exp

[
p

2(p− 1)2

∫ T

0

ξ2(t)dt

]
= exp

[
p(δ − h

2
)(y1−h − x1−h)2

(p− 1)2(1− h)(e2(1−h)(δ−h
2

)T − 1)

]
.

This together with (4.7) yields

(PTf(y))p ≤ (PTf
p(x)) exp

[
p(δ − h

2
)(y1−h − x1−h)2

(p− 1)(1− h)(e2(1−h)(δ−h
2

)T − 1)

]
, f ∈ B+

b ([0,∞)).

Similarly, we have

PT log f(y) = EQ(log f(YT )) = EQ(log f(XT )) = E(R log f(XT )).

Young’s inequality implies

E(R log f(XT )) ≤ E(R logR) + log E(f(XT )) = E(R logR) + log(PTf(x)).

It is not difficult to see that

E(R logR) = EQ logR

= EQ
(∫ τ

0

ξ(t)dBt −
1

2

∫ τ

0

ξ2(t)dt

)
= EQ

(∫ τ

0

ξ(t)dB̃t +

∫ τ

0

ξ2(t)dt− 1

2

∫ τ

0

ξ2(t)dt

)
=

1

2
EQ
(∫ τ

0

ξ2(t)dt

)
≤

(δ − h
2
)(y1−h − x1−h)2

(1− h)(e2(1−h)(δ−h
2

)T − 1)
.

Thus, the log-Harnack inequality holds, i.e.

PT log f(y) ≤ logPTf(x)) +
(δ − h

2
)(y1−h − x1−h)2

(1− h)(e2(1−h)(δ−h
2

)T − 1)
, f > 0, f ∈ B+

b ([0,∞)).

(2) Repeat the proof of (1) with ξ(t) = 0 and τ =∞. From (4.5), we arrive at

e(1−h)(δ−h
2

)T 1

1− h
(Y 1−h

T −X1−h
T ) ≤ 1

1− h
(y1−h − x1−h),(4.8)

which means

ρ(Xy
T , X

x
T ) ≤ e−(1−h)(δ−h

2
)Tρ(y, x).(4.9)

10



Thus, for any f ∈ C1
b ([0,∞), we have

|∇hPTf(x)| = lim
ρ(y,x)→0

|PTf(y)− PTf(x)|
ρ(y, x)

= lim
ρ(y,x)→0

|Ef(Xy
T )− Ef(Xx

T )|
ρ(y, x)

= lim
ρ(y,x)→0

|Ef(Xy
T )− Ef(Xx

T )|
ρ(Xy

T , X
x
T )

ρ(Xy
T , X

x
T )

ρ(y, x)

≤ e−(1−h)(δ−h
2

)TPT |∇hf |(x).

Remark 4.1. In [24], i.e. h = 1
2
, as ε goes to 0, the first and second term in M(Xt, Yt, ε)

can be non-positive if α ≥ 1
4
. However, it does not hold when h ∈ (1

2
, 1), and this is why we

construct M(Xt, Yt, ε) as in the proof of Theorem 2.1.

5 Proof of Theorem 2.3

In this section, we use isoperimetric constant to derive the super Poincaré inequality.

Lemma 5.1. There exists a small enough constant r0 ∈ (0, 1) such that for any x1, x2 > 0
satisfying µ((0, x1)) = µ((x2,∞)) ≤ r0, it holds

µ∂(∂(0, x1)) > µ∂(∂(x2,∞)).

Proof. By the definition of µ∂, we have

µ∂((0, x)) = lim
ε→0

µ
(
{y : 0 < 1

1−h(y1−h − x1−h) ≤ ε}
)

ε

= lim
ε→0

∫ [x1−h+(1−h)ε]
1

1−h

x
η(y)dy

ε

= lim
ε→0

η(x)
{

[x1−h + (1− h)ε]
1

1−h − x
}

ε

= xhη(x) =
Γ0x

−he
2α

1−2h
x1−2h− δ

1−hx
2−2h

Z
.

11



Similarly, we arrive at

µ∂((x,∞)) = lim
ε→0

µ
(
{y : −ε ≤ 1

1−h(y1−h − x1−h) < 0}
)

ε

= lim
ε→0

∫ x
[x1−h−(1−h)ε]

1
1−h

η(y)dy

ε

= lim
ε→0

η(x)
{
x− [x1−h − (1− h)ε]

1
1−h

}
ε

= xhη(x) =
Γ0x

−he
2α

1−2h
x1−2h− δ

1−hx
2−2h

Z
.

Letting (xhη(x))′ = 0, we get
2α = 2δx+ hx2h−1.

Since h ∈ (1
2
, 1), there exists x0 such that xhη(x) is strictly increasing on (0, x0) and strictly

decreasing on (x0,∞).
Letting r > 0 be small enough, take x1(r), x2(r) ∈ [0,∞) such that

µ((0, x1(r))) = µ((x2(r),∞)) = r.

It is clear

lim
r→0

x1(r) = 0, lim
r→0

x2(r) =∞.(5.1)

Moreover, by L’Hopital’s rule, we have

lim
r→0

∫ x1(r)

0
s−2he

2α
1−2h

s1−2h− δ
1−h s

2−2h

ds

1
2α

e
2α

1−2h
(x1(r))1−2h

= 1,

and

lim
r→0

∫∞
x2(r)

s−2he
2α

1−2h
s1−2h− δ

1−h s
2−2h

ds

1
2δ

(x2(r))−1e−
δ

1−h (x2(r))2−2h
= 1.(5.2)

Thus, it holds

1 = lim
r→0

1
2α

e
2α

1−2h
(x1(r))1−2h

1
2δ

(x2(r))−1e−
δ

1−h (x2(r))2−2h

=
δ

α
lim
r→0

e
2α

1−2h
(x1(r)−1)2h−1

(x2(r))−1e−
δ

1−h (x2(r))2−2h

=
δ

α
lim
r→0

e−
2α

2h−1
(x1(r)−1)2h−1+ δ

1−h (x2(r))2−2h+log(x2(r)).

12



This means

lim
r→0

{
− 2α

2h− 1
(x1(r)−1)2h−1 +

δ

1− h
(x2(r))2−2h + log(x2(r))

}
= log

α

δ
.

Thus, (5.1) yields

lim
r→0

{
− 2α

2h− 1

(x1(r)−1)2h−1

(x2(r))
(1−h)(2h−1)

h

+
δ

1− h
(x2(r))2−2h

(x2(r))
(1−h)(2h−1)

h

}
= 0.

Since

lim
r→0

(x2(r))2−2h

(x2(r))
(1−h)(2h−1)

h

= lim
r→0

(x2(r))
1−h
h =∞,

we have

lim
r→0

(x1(r)−1)2h−1

(x2(r))
(1−h)(2h−1)

h

=∞.

This together with (5.1) and the representation of µ∂((0, x)) and µ∂((x,∞)) implies

lim
r→0

µ∂(∂(0, x1(r)))

µ∂(∂(x2(r),∞))

= lim
r→0

(x1(r))−he
2α

1−2h
(x1(r))1−2h− δ

1−h (x1(r))2−2h

(x2(r))−he
2α

1−2h
(x2(r))1−2h− δ

1−h (x2(r))2−2h

= lim
r→0

(x1(r))−he
2α

1−2h
(x1(r))1−2h

(x2(r))−he−
δ

1−h (x2(r))2−2h

=
α

δ
lim
r→0

((x1(r))−1)h

(x2(r))1−h

=
α

δ
lim
r→0

(
(x1(r)−1)2h−1

(x2(r))
(1−h)(2h−1)

h

) h
2h−1

=∞.

So, there exists r0 > 0 such that for any x1, x2 ∈ [0,∞) satisfying µ((0, x1)) = µ((x2,∞)) ≤
r0, it holds

µ∂(∂(0, x1)) > µ∂(∂(x2,∞)).(5.3)

Thus, we complete the proof.

Proof of Theorem 2.3. (1) Firstly, we prove that there exists small enough r̄0 > 0 such that
for any r ∈ (0, r̄0), k(r) can only get the lower bound on the set (x,∞) with µ((x,∞)) ≤ r.

Let r̄0 = 1
2
{µ(0, x0) ∧ µ(x0,∞)} ∧ r0 with r0 introduced in Lemma 5.1. Fix r ∈ (0, r̄0).

For any open set A ⊂ [0,∞) with µ(A) = r, let A1 := A ∩ (0, x0) and A2 := A ∩ (x0,∞).
Then µ(A1) ≤ 1

2
µ(0, x0) and µ(A2) ≤ 1

2
µ(x0,∞). Let x2 = inf{x : x ∈ A2} and x1 = sup{x :
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x ∈ A1}. Take x̄1 ≤ x1 and x̄2 ≥ x2 such that µ((0, x̄1)) = µ(A1) and µ((x̄2,∞)) = µ(A2).
Since xhη(x) is strictly increasing on (0, x0) and strictly decreasing on (x0,∞), we have

µ∂(∂A1) ≥ µ∂(∂(0, x1)) ≥ µ∂(∂(0, x̄1))

and
µ∂(∂A2) ≥ µ∂(∂(x2,∞)) ≥ µ∂(∂(x̄2,∞)).

This yields
µ∂(∂A)

µ(A)
≥ µ∂(∂((0, x̄1) ∪ (x̄2,∞)))

µ((0, x̄1) ∪ (x̄2,∞))
.

For any y1, y2 ∈ (0,∞) satisfying µ((0, y1)) + µ((y2,∞)) = r, define

ϕ(y1, y2) := µ∂(∂((0, y1) ∪ (y2,∞))) = yh1η(y1) + yh2η(y2).

Next, we show that

ϕ(0, x) = inf{ϕ(y1, y2) : µ((0, y1)) + µ((y2,∞)) = r},

here, µ((x,∞)) = r. In fact, from µ((0, y1)) + µ((y2,∞)) = r, there exists a function φ such

that y2 = φ(y1) and φ′(y1) = η(y1)
η(y2)

. Thus, we obtain

ϕ(y1, y2) = ϕ(y1, φ(y1)) =: Φ(y1).

By the representation of η(s), we have

Φ′(y1) =
∂ϕ

∂y1

(y1, y2) +
∂ϕ

∂y2

(y1, y2)φ′(y1)

= yh1η
′(y1) + hyh−1

1 η(y1) + (yh2η
′(y2) + hyh−1

2 η(y2))φ′(y1)

= yh1η
′(y1) + hyh−1

1 η(y1) + (yh2η
′(y2) + hyh−1

2 η(y2))
η(y1)

η(y2)

=
Γ0

Z
e

2α
1−2h

y1−2h
1 − δ

1−hy
2−2h
1

(
yh1 (−2hy−2h−1

1 + y−2h
1 2αy−2h

1 − y−2h
1 2δy1−2h

1 ) + hyh−1
1 y−2h

1

+ yh2
y−2h

1

y−2h
2

(−2hy−2h−1
2 + y−2h

2 2αy−2h
2 − y−2h

2 2δy1−2h
2 ) + hyh−1

2 y−2h
1

)

= η(y1)

(
− h(yh−1

1 + yh−1
2 ) + 2α(y−h1 + y−h2 )− 2δ(y1−h

1 + y1−h
2 )

)
.

Since h ∈ (1
2
, 1) and α, δ > 0, there exists a small enough constant r1 > 0 such that Φ′(y1) > 0

when y1 ∈ (0, r1), and there exists a big enough constant r2 > 0 such that Φ′(y1) < 0 when
y2 ∈ (r2,∞). Thus, ϕ can only take minimum on (y2,∞) with µ((y2,∞)) = r or on (0, y1)
with µ((0, y1)) = r. By (5.3), ϕ take minimum on (y2,∞) with µ((y2,∞)) = r. Thus, we
obtain

µ∂(∂A)

µ(A)
≥ µ∂(∂((0, x̄1) ∪ (x̄2,∞)))

µ((0, x̄1) ∪ (x̄2,∞))
≥ µ∂(∂(x,∞))

µ((x,∞))
,
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here, µ((x,∞)) = r. Thus, we have

k(r) = inf
{x|µ((x,∞))≤r}

xhη(x)

µ((x,∞))
.

Take xr > 0 such that µ((xr,∞)) = r. Then we have limr→0 xr =∞. By (5.2), we have

lim
r→0

x2h−1
r η(xr)

µ((xr,∞))
= 2δ.

This implies

lim
r→0

k(r) = lim
r→0

xhrη(xr)

µ((xr,∞))
= lim

r→0

x1−h
r x2h−1

r η(xr)

µ((xr,∞))
= lim

r→0
x1−h
r =∞.(5.4)

According to [17, Theorem 3.4.16], the super Poincaré inequality holds for

β(r) =
4

k−1(2
√

2r−
1
2 )
, r > 0.

(2) It follows form (5.2) that

lim
r→0

µ((xr,∞))

Γ0x
−1
r e

2α
1−2h

x1−2h
r − δ

1−hx
2−2h
r

2Zδ

= 1,

which implies

lim
r→0

elog r

e−
δ

1−hx
2−2h
r −log xr

= lim
r→0

elog r+ δ
1−hx

2−2h
r +log xr =

Γ0

2Zδ
.

This yields

lim
r→0
{log r +

δ

1− h
x2−2h
r + log xr} = log

Γ0

2Zδ
.

Since h ∈ (1
2
, 1), we obtain

lim
r→0

√
log r−1

x1−h
r

=

√
δ

1− h
.

Combining this with (5.4), we arrive at

lim
r→0

k(r)√
1−h
δ

√
log r−1

= lim
r→0

x1−h
r√

1−h
δ

√
log r−1

= 1.

Thus, there exist constants r0 > 0 and c > 0 such that k(r) ≥ c[− log r]
1
2 for r ∈ (0.r0).

According to [17, Corollary 3.4.17] with δ = 1, (2.2) holds with β(r) = eC(1+r−1) for some
constant C > 0.
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(3) Let ρ(0, x) = 1
1−hx

1−h, then ρ(0, ·) ∈ D(E). Set hn = ρ(0, ·) ∧ n. For any g ∈ D(E)
with µ(|g|) ≤ 1, we have

E(hng, hn)− 1

2
E(h2

n, g)

=
1

2

∫ ∞
0

x2h(hng)
′
(x)h

′

n(x)µ(dx)− 1

4

∫ ∞
0

x2h(h2
n)′(x)g′(x)µ(dx)

≤ 1

2

∫ (n(1−h))
1

1−h

0

x2h(h
′

n)2(x)g(x)µ(dx) ≤ 1

2
µ(|g|) ≤ 1

2
.

So by [17, Definition 1.2.1], LE(ρ(0, ·)) ≤ 1.
However, for any λ ∈ (1

2
, 1) and ε > 0, we have

µ{exp{ερ(0, ·)
2λ

2λ−1}} =
Γ0

Z

∫ ∞
0

x−2he
2α

1−2h
x1−2h− δ

1−hx
2−2h+ε( 1

1−h )
2λ

2λ−1 x
2λ(1−h)
2λ−1

=∞,

here, in the last display, we have used 2λ
2λ−1

> 2 for any λ ∈ (1
2
, 1). By [17, Corollary 3.3.22],

the super Poincaré inequality (2.2) does not hold with β(r) = eC(1+r−λ) for 1
2
< λ < 1.

Similarly, we can show µ(exp[exp(ερ(0, ·))]) = ‖ρ(0, ·)‖∞ = ∞. Again by [17, Corollary
3.3.22], (2.2) does not hold with β(r) = eC(1+r−λ) for 0 < λ ≤ 1

2
. Thus, we finish the

proof.
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