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Abstract—The automotive industry, a key part of Industrial Internet of Things (IIoT), is now converging with cognitive computing (CC)
and leading to industrial Cognitive Internet of Vehicles (CIoV). As the major data source of industrial CIoV, social media has a significant
impact on the quality of service (QoS) of the automotive industry. To provide vehicular social media services with low latency and high
reliability, edge computing is adopted to complement cloud computing by offloading CC tasks to the edge of the network. Generally,
task offloading is implemented based on the premise that edge servers (ESs) are appropriately quantified and located. However, the
quantification of ESs is often offered according to empirical knowledge, lacking analysis on real condition of Intelligent Transportation
System (ITS). To address the above-mentioned problem, a collaborative method for the quantification and placement of ESs, named
CQP, is developed for social media services in industrial CIoV. Technically, CQP begins with a population initializing strategy by Canopy
and K-medoids clustering to estimate the approximate ES quantity. Then non-dominated sorting genetic algorithm III (NSGA-III) is
adopted to achieve solutions with higher QoS. Finally, CQP is evaluated with a real-world ITS social media dataset from China.

Index Terms—Industrial Cognitive Internet of Vehicles; Edge Computing; Server Placement; Multi-objective Optimization
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1 INTRODUCTION

A S commuting and traveling have become indispens-
able parts of the daily routine, residents are calling

for a better quality of service (QoS) provided by the Intel-
ligent Transportation System (ITS). Recently, the Cognitive
Internet of Vehicles (CIoV), aiming at improving the traffic
conditions, is drawing much attention from the automotive
industry [1]. In industrial CIoV, vehicles capture and share
surrounding information through V2V (vehicle to vehicle)
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communications, then make corresponding adjustments in
their speed or route to avoid accidents and congestion [2].
In addition, smart infrastructures (e.g., smart traffic lights)
can provide vehicles with signals including weather im-
pact warning and red-light violation warning through V2I
(vehicle to infrastructure) communications. Simultaneously,
pedestrians with smart phones or wearable devices like
smart watches can communicate with vehicles through V2P
(vehicle to pedestrian) communications to receive safety
warnings. Such features provided by the industrial CIoV
have huge potential in improving the traffic condition and
raising the QoS of the ITS [3].

Generally, the above-mentioned features in industrial
CIoV are based on big data-driven cognitive computing
(CC). As the major data source of industrial CIoV, the
social media data (e.g., dash-cam videos, voice commands)
are key components of industrial manufacturing and are
collected by various multimedia devices [4]. To mine out
the value from raw social media data, applications including
computer vision (CV), automatic speech recognition (ASR),
service recommendation are conducted [5]. For example,
CV enables vehicles to perform object detection to analyze
road conditions and avoid pedestrians and other vehicles
automatically by cognitively analyzing the video data [6].
Simultaneously, with ASR and semantic understanding,
drivers can give commands to and receive feedback from
their vehicles which record and extract key information
from audio data, instead of looking for right buttons [7].

However, those CC applications based on social media
usually go beyond the local computing capacity of a single
vehicle for civil use. Thus, a powerful external computing
and administrating system is needed by the automotive
industry. Currently, the massive social media data produced
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by traffic flow are transmitted through the roadside units
(RSUs) to the cloud data center for analysis [8]. Generally,
the cloud data center is located where construction cost is
lower than urban areas. As a result, there is usually a long
distance between terminal devices and cloud data center,
and the transmission of the collected data is usually time-
consuming. In addition, network congestion is likely to
occur as redundant data are transmitted to the cloud data
center. Thus, the response time of the social media services
provided by the traditional cloud computing is usually
unbearable, and can hardly meet the real-time demand as
transporting system continues to develop [9].

Edge computing, an emerging computing paradigm con-
trary to the centralized cloud computing, has the potential
to provide real-time CIoV services and mitigate the demand
in bandwidth. Instead of transmitting data to the remote
cloud, edge computing calls for terminal devices to transmit
their data to ESs in close proximity [10]. Generally, most of
the data are processed at the edge, and small amount of
vital data are transmitted to the cloud after being prepro-
cessed by ESs. Based on those vital data, further operations
requiring global information and more computing resources
are conducted on the cloud [11]. In such a collaboration of
cloud and edge, the communication burden and the strict
requirements of response time can be alleviated [12].

As the first step of implementing edge computing, the
quantification and placement of ESs have a critical influence
on the QoS of social media services provided by edge
computing. If ESs are insufficiently deployed, they will
be assigned with excessive workload. Consequently, the
response time would significantly rise as the computing
capacity of ESs are much smaller than the centralized cloud
data center [13]. To minimize the service response time in
the industrial CIoV, an ES is supposed to be co-located with
each RSU. However, the quantity of deployed RSUs in ITS
is usually large. In such an ideal placement, the construction
cost and energy consumption of ESs are unaffordable [14].
Thus, the balance between QoS and the total cost of ESs is
crucial to the planning of the industrial CIoV.

To achieve the balance, the actual traffic flow of the city
needs to be studied to find out the specific quantity and
locations of ESs. In this paper, a collaborative method for
the quantification and placement of ESs, named CQP, is
proposed. In contrast to existing studies which estimate and
locate ESs based on empirical conclusions, this paper is the
first to quantify and locate the ESs collaboratively. Specifi-
cally, the key contributions of this paper are as follows:

• Formalize the ES placement problem as a multi-
objective optimization problem with three objectives,
namely the minimized ES quantity, the minimized
latency and the most balanced workload.

• Design a population initializing strategy based on
Canopy and K-medoids clustering to avoid CQP
falling into local optimal solutions.

• Adopt the non-dominated sorting genetic algorithm
III (NSGA-III) [15] to search for a set of ES placement
with low latency and balanced workload as well as a
proper ES quantity.

• Conduct experiments based on a real-world ITS so-
cial media dataset collected from Nanjing to evaluate

the effectiveness of CQP.

The rest of this paper is organized as follows. In section
2, the related work of this paper is summarized. In section 3,
the model of ES quantification and placement are described.
In section 4, details of CQP are presented. Then, comparison
experiments based on real datasets are conducted in section
5. And in section 6, the achievements of this paper are
concluded and future works are discussed.

2 RELATED WORK

At the early stage of ITS, vehicles can communicate with
each other through vehicular ad-hoc networks (VANET).
With the development of IoT, automotive industry enabled
the connection between smart vehicles and the Internet and
gradually formed IoV [16]. Afterwards, CC, which can assist
drivers or control vehicles, is combined with IoV and leads
to the novel idea of CIoV. Generally, CC is conducted based
on the massive social media data collected in the ITS. For
instance, the intelligent vehicle is equipped with over one
hundred sensors to ensure the vehicle safety and enhance
passenger comfort [17]. Those sensors and cameras capture
massive social media data from both inside and outside the
vehicle, then applications including object detection, vehicle
tracking and classification are conducted based on the data
and CC technology [18]. As the cognitive social media data
processing usually requires large computing capacity, cloud
computing is adopted to provide automotive industry with
Platform as a Service (PaaS) [19]. For example, Ali et al.
[20] addressed the weakness of on-board computing device
in terms of computing capacity and bandwidth, then pro-
posed a dynamic priority-based resource allocation scheme
in multimedia cloud computing to provide vehicular media
services with high QoS.

Although cloud computing has made great contributions
to cognitive social media data processing, Shi et al. [21]
stressed the weakness of the conventional cloud comput-
ing paradigm, and showed the advantages and promising
future of the edge computing. Technically, in the edge com-
puting, instead of transmitting data to the remote cloud,
terminal devices transmit their data to ESs nearby, and
most of the data are stored and processed at the edge
[22]. Such computing paradigm is lowering the latency by
simplifying data transmission, as well as mitigating the
demand of bandwidth by offloading tasks [23]. Generally,
edge computing proves to be promising in CIoV.

So far, there are three major implementations of edge
computing, namely fog computing, cloudlets and mobile
edge computing (MEC). Rimal et al. [24] reduced the of-
floading delay, while extending the battery life of edge
device through a cloudlet-aware resource scheduling. How-
ever, cloudlets are usually incapable of storage and com-
puting capacity. Thus, cloudlets cannot achieve large-scale
computation and analysis in the industrial CIoV. To process
vehicular applications, Hou et al. [25] utilized vehicles as in-
frastructures, and proposed vehicular fog computing (VFC).
However, the scale of decentralized devices is really large in
fog computing, effective centralized control becomes hard
to achieve. To overcome the weakness of fog computing
and cloudlets as mentioned above, MEC is proposed. So
far, optimal solutions to the problem of task offloading in
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MEC have been proposed and adopted. Aiming at achieving
efficient computation offloading, Chen et al. [26] proposed
a distributed computation offloading method in the multi-
user computation offloading game and derive the Nash
equilibrium. Mach et al. [27] provided an overview of of-
floading principles and illustrate the application scenarios
of edge computing, e.g., smart city and vehicle applications.

There are studies on cloudlet placement in recent years.
For example, Zhao et al. [28] proposed a method to min-
imize average access delay through SDN techniques in
cloudlets placement. However, considering the difference
between cloudlets and MEC, the placement of cloudlets
cannot be simply adopted in the MEC. In recent years,
achievements related to the ES placement in the MEC have
been made. For instance, Wang et al. [29] studied the ES
placement while giving consideration to load balancing as
well as access delay. From another starting point, Li et
al. [30] devised an ES placement which can minimize the
energy consumption of ESs while ensuring an acceptable
latency. However, these researches mainly focused on the
placement of a known quantity of ESs. To the best of
our knowledge, the predefined server numbers are mostly
based on empirical conclusions, and there is no method to
collaboratively quantify and locate the ESs.

3 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, the system model of the cloud-edge comput-
ing for the industrial CIoV is designed. To quantify the ESs
and locate them, three models, i.e., the edge utilization, load
balancing and latency model are proposed.

3.1 Cloud-edge Computing for Social Media Services
in Industrial CIoV

In the industrial CIoV, RSUs, denoted by set R =
{r1, r2, · · · , rN} (|R| = N), collect social media data from
vehicles. As the distribution of traffic flow in a city is
relatively stable, the workload of RSUs can be indicated
by the average size of collected data per offloading period,
denoted by set DS = {ds1, ds2, · · · , dsN}. For the data
processing capacity of RSUs is generally insufficient, ESs
are arranged to some certain areas to process the massive
social media data collected by RSUs. The ESs are denoted
by set E = {e1, e2, · · · , eK} (|E| = K). In the CIoV, an RSU
can communicate with other RSUs, ESs and cloud access
points (APs) in its range. To ensure that the ESs are placed
where suitable for construction, they are prescribed to be co-
located with some certain RSUs. Generally, the framework
of cloud-edge computing for social media service in indus-
trial CIoV is shown in Fig. 1.

To simplify the model, the coverage of each ES is as-
sumed to be the same and denoted by Rc, so every ES and
RSU can be respectively denoted by

ei (xi, yi, Rc), 1 6 i 6 K, (1)
rj (x̃j , ỹj , dsj), 1 6 j 6 N, (2)

where (xi, yi) and (x̃j , ỹj) represent the latitude and longi-
tude of the i − th ES and the j − th RSU respectively, and
dsj represents the social media data size of RSU rj .

2

1r 1
e

2r

4r

3re

Fig. 1. A framework of cloud-edge computing for social media services
in industrial CIoV.

Based on the latitude and longitude, the horizontal dis-
tance between each ES and RSU can be calculated. As the
difference in height between the RSUs and ESs is usually
negligible, the distance between an ES ei and an RSU pj is
calculated by the horizontal Euclidean distance as

d (ei, rj) =
√
(xi − x̃j)2 + (yi − ỹj)2. (3)

3.2 Edge Utilization Analysis in Industrial CIoV
By observing the location and data size of RSUs, it is easy
to find that there is a high correlation between the density
of RSUs and the social media service requests in certain
areas. Generally, RSUs are densely placed in the areas with
large amount of service requests like city center, whereas
away from the city center, RSUs are sparsely placed. Thus,
it is wasteful to place many ESs to cover RSUs in suburban
areas, instead, more servers are supposed to be placed in
core areas.

To achieve better collaboration of the cloud and edge,
we decide to offload the majority of computing tasks to
the ESs, while a few tasks with relative low demand for
latency and bandwidth can be processed directly by the
cloud. The collaboration can reduce the quantity of ESs
without bringing network congestion to the cloud. Thus,
we introduce the edge utilization to represent the amount
of service requests processed by the ESs.

We assume that the RSU rj is covered by the edge
when it is in the coverage of at least one ES, and all the
service requests of rj are processed by the edge. Thus, the
probability of ξj is defined as

P (ξj) =

{
1 , ∃ei ∈ E, d (ei, rj) 6 Rc

0 , otherwise
, (4)

where ξj represents the event that rj is covered by the edge.
Then, we can define the edge utilization as the ratio of edge-
processed service requests to total requests, calculated as

futil =

 N∑
j=1

P (ξj) · dsj

 /
 N∑

j=1

dsj

 . (5)

3.3 Load Balancing of Servers in Industrial CIoV
Provided that K ESs are deployed, we can classify the set
of RSUs into K + 1 subsets, i.e., {PE1, PE2, · · · , PEK+1},
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where no intersections exist in those K + 1 subsets. RSUs
in the set PEi = {ri1, ri2, · · · , rik}(1 6 i 6 K) is assigned
to ES ei, which means that those RSUs offload their social
media services to ei, while those in the set PEK+1 =
{ri1, ri2, · · · , rik}(i = K + 1) offload their social media
services directly to the cloud. Based on the classification,
the load balancing model is proposed as follows.

Since the computing capacity of ESs is limited comparing
with the cloud, optimal placement aims at making better use
of them. For it would never be an optimal solution when
some of the ESs are overloaded while others are in idle state,
we are supposed to assign similar workload to each server.
Specifically, the workload of each server is denoted by

Bi =


1

wth
edge

∑
rj∈PEi

dsj , 1 6 i 6 K

1
wth

cloud

∑
rj∈PEi

dsj , i = K + 1
, (6)

where wth
edge and wth

cloud respectively represents the maxi-
mum workload threshold of an edge or cloud server. Then,
to formalize the load balancing, standard deviation is ap-
plied. As a statistic which can measure the dispersion of a
set of values, lower standard deviation indicates that the
values are closer to each other. Therefore, we can use the
standard deviation of workload to indicate load balancing.

Specifically, let B represents the means of workload, and
the standard deviation of workload is calculated as

σB =

[
1

K + 1

K+1∑
i=1

(
Bi −B

)2] 1
2

. (7)

Smaller σB indicates that the workload is more balanced,
where the resources of the edge can be better utilized to
avoid ESs being overloaded.

3.4 Network Latency for Offloading Social Media Ser-
vices in Industrial CIoV

By adopting edge computing, we aim at complementing
the shortcomings of cloud computing in real-time tasks.
As a great obstacle to real-time processing, the network
latency should be minimized as much as possible. Generally,
network latency is caused by transmission, propagation,
processing, and queuing. However, the processing latency
is usually considered negligible unless complex encryption
is performed by the RSUs. Thus, in this paper, we mainly
focus on the transmission latency, propagation latency and
queuing latency between the RSUs and servers. Then, the
total latency of rj transmitting data to ei, denoted by T j

i ,
is the sum of transmission latency, propagation latency and
queuing latency, calculated as

T j
i = T trans

i + T prop
i + T queue

i

=
dsj
λtrans

+
d (ei, rj)

λprop
+

ui
µi − λproc

, (8)

where the amount of data transmitted from rj to ei is
dsj , the average queue length of destination server is u,
package arriving rate is µ , the transmission rate is λtrans,
propagation rate is λprop, and package processing rate of
edge and cloud is λqueue and λ′queue respectively. For those

RSUs that transmit their data directly to the cloud, the
latency can be calculated as

T j
cloud = T trans

cloud + T prop
cloud + T queue

cloud

=
dsj
λtrans

+
d (cloud, rj)

λprop
+

ucloud
µcloud − λ′proc

. (9)

Then, the average latency of RSUs transmitting their data to
destination servers is calculated as

T =
1

N

 K∑
i=1

∑
rj∈PEi

T j
i +

∑
rj∈PEK+1

T j
cloud

 . (10)

One of our aims is to find the ES placement with mini-
mum T to reduce the latency and improve the QoS of CC
services provided by edge computing.

3.5 Definition of Collaborative ES Quantification and
Placement for Social Media Services in Industrial CIoV
Latency, load balancing and edge utilization are important
indicators to the performance of cloud-edge collaboration.
Based on the models above, the problem of collaborative ES
quantification and placement is formulated as

minσB , minT , minK, (11)
s.t. futil > fth, (12)

∀i ∈ [1,K + 1], 0 6 Bi 6 1, (13)

where fth represents the minimum edge utilization that can
be accepted. Unlike a coverage problem, the edge utilization
is not an objective to be maximized but rather a constraint as
the cloud-edge collaboration enables the absence of ESs in
remote areas. When (12) and (13) are satisfied, the majority
of data are processed at the edge, whereas only a few data
are processed at the cloud, and none of the servers is over-
loaded. In this way, the burden of cloud can be alleviated
and the risk of network congestion can be reduced.

4 CQP FOR SOCIAL MEDIA SERVICES IN INDUS-
TRIAL CIOV
In this section, CQP is designed to achieve collaborative
quantification and placement of ESs for social media ser-
vices in industrial CIoV. First, a population initializing strat-
egy based on clustering algorithms is proposed. With the
initial population that obtained, NSGA-III is adopted to find
out the optimal quantity and placement of the ESs.

4.1 Clustering-based Population Initialization
In the planning of industrial CIoV, since the distribution
of RSUs is known before placing ESs, better usage on the
information can be made. By conducting a noise-robust clus-
tering operation, the number of clusters and the centroids
of RSUs can be obtained. Thus, the number of ESs and their
positions can be preliminarily estimated. In this way, NSGA-
III can avoid the blindness of randomly generating the initial
population, finally contribute to faster convergence and
smaller probability of falling into local optimal solutions.

Centroid-based clustering algorithms usually generate
clusters of similar sizes, and they tend to associate points
with the nearest centroid. These two features make these
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algorithms have satisfying performances in the facility lo-
cation problem. Generally, there are three representative
centroid-based clustering algorithms, namely K-means, K-
median and K-medoids. According to their name, K-means
and K-median calculate the centroids based on mean and
median of coordinates respectively, while K-medoids would
only choose real points as centroids. As ESs are prescribed
to be co-located with RSUs, K-medoids is considered the
most suitable solution to such a placement problem. If K-
means or K-median is adopted to replace K-medoids, an
additional process will be need to select an RSU near the
centroid as the initial population which is likely to lower the
overall accuracy of clustering. In addition, the robustness
of the three algorithms follows K-means 6 K-median 6 K-
medoids in case of noises and outliers [31].

Although K-medoids has advantages in the problem,
there are two limitations need to be noted. One is that K-
medoids requires the cluster number K given as a constant
before algorithm begins. The other is that it has a total time
complexity of O((n− k)2kt), where n and k are the number
of data points and clusters respectively, and t represents the
iteration times. That means it is time-consuming to use K-
medoids when the amount of data is large.

To obtain an approximate value of K, and shorten the
run time of K-medoids, Canopy clustering is used as a pre-
procession. Canopy is a rough clustering algorithm, which
can obtain the number of clusters and their centroids with
lower accuracy [32]. Since its result is influenced by noises,
we need additional operations to filter out the noise clusters.
As shown in Algorithm 1, those clusters with few data
points (point numberi < minPts) are viewed as noises
and abandoned. Then, the number of remaining clusters
becomes the parameter K, and closest RSUs to centroids
of those clusters become the initial medoids of K-medoids.

As the initial medoids are already close to the final so-
lution, iteration times (denoted by t in the time complexity)
needed for K-medoids to reach convergence can be reduced.
To draw a conclusion, the population initializing strategy
not only exerts advantage of K-medoids in accuracy and
robustness, but also overcomes its drawbacks in uncertain
parameter K and long executing time.

Algorithm 1 Clustering-based population initialization
Input: RSU set R, population size P , minPts, K ← 0
Output: Initial population

1: for p = 1 to P do
2: Canopy clustering
3: for ci ∈ Canopy centroids list C do
4: if point numberi > minPts then
5: K ← K + 1
6: m← argminr∈R d(ci, r)
7: Add m to initial medoids list M
8: end if
9: end for

10: K-medoids clustering with initial medoids list M
11: Encode the chromosome base on clustering result
12: Add the chromosome to the initial population
13: end for
14: return Initial population

Algorithm 1 elaborates how initial population is gener-

ated by clustering algorithms. An example of the clustering-
based population initialization is shown in Fig. 2, in which
8 dots are marked from r1 to r8 to represent 8 RSUs that col-
lect social media data in industrial CIoV. After conducting
Canopy, the eight RSUs are divided into three clusters, each
has a centroid represented by a red triangle. However, as
cluster 3 has only one RSU, it is considered as noise thereby
being removed. Thus, the number of remaining clusters
K = 2 and the nearest RSU to each centroid are passed to
K-medoids as the starting condition. Finally, two RSUs, r1
and r6, are selected by K-medoids, and their serial numbers
are encoded for further operations in the NSGA-III.

Canopy clustering K-Medoids clustering

6

8

3

Cluster 1
Cluster 2

Cluster 3 (noise)

Canopy

centroids

Remove noise clusters

Medoids list: r1, r6

Encoded as: 10000100

r5

r2
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r4

r6

r8

r7

r5

Cluster 1

Cluster 2

Noise
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r3
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Fig. 2. An example of clustering-based population initialization with 8
RSUs (i.e., r1 ∼ r8).

4.2 Collaborative Quantification and Placement of ESs
Using NSGA-III
Facility location problems, including the placement of the
ESs, are usually considered to be NP-hard multi-objective
problems. Accordingly, multi-objective optimization algo-
rithms are widely adopted in this series of problems [33].
So far, several multi-objective optimization algorithms have
been proposed, e.g., Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA). PSO has its advantage in
continuous problems, whereas GA has a better performance
in discrete problems. Since CQP of ESs for social media
services in industrial CIoV is a discrete optimization, GA
is chosen to solve the problem. Among the existing genetic
algorithms, NSGA-III proves to be effective in the CQP,
since it has an outstanding performance in multi-objective
optimizing problems with three or more objectives. The
processes of NSGA-III adopted in CQP is as follows.

4.2.1 Encoding Scheme
Since each RSU has and only has the following two states,
an ES placed next to it, or not placed next to it, so binary
coding is adopted to encode the state of each RSU. Take
Fig. 2 as an example. If there are eight RSUs in total, each
chromosome is considered to be made up of eight bits of
gene. As r1 and r6 are supposed to be located with an ES,
the chromosome is encoded as 10000100.

4.2.2 Crossover and Mutation
Crossover operation can generate new offspring by recom-
bining two parental chromosomes. At first, two individuals
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are picked from population with a probability of pc. Then
the two parental chromosomes exchange the right part of a
crossover point randomly selected. This operation generates
two offspring, each carrying genes from both parents.

After iterations of the GA, chromosomes would become
similar to each other. To preserve genetic diversity and
reduce the risk of algorithm to fall into local optimal solu-
tions, the mutation operation is introduced. In the operation,
one individual is selected with a probability of pm, then a
random bit of it is changed.

4.2.3 Fitness Function
In this operation, the chromosomes are decoded and trans-
formed into ES placements. Since the binary coding scheme
is adopted, the quantity of ESs on a chromosome is calcu-
lated as K =

∑N
i=1 gene(i). Then, to minimize the latency

of cognitive social media services, each RSU covered by
the edge is assumed to transmit its data to the nearest ES.
Based on the assumption, edge utilization, workload of each
server, standard deviation of workload and average latency
of each chromosome are calculated. Those results calculated
in this operation will be the key to the selection operation.

4.2.4 Selection
The selection operation screens better individuals to gener-
ate the next population. During the selection operation of
each generation, the parental chromosomes and offspring
chromosomes (both have the size of P ) are combined into
one population with the size of 2P . Then the best P individ-
uals are selected by fast non-dominated sorting approach
with reference points niching [15]. The best P individuals
with the minimum quantity of ESs, minimum latency and
most balanced workload, will make up the new generation.
After the selection, NSGA-III goes into the next iteration.

4.3 CQP Overview
Generally, CQP is designed on the logical basis shown in
Fig. 3. As an iterative algorithm which continuously updates
the current solution, the final solution of GA is affected by
the initial population. Inappropriate initial population may
increase the iteration times to reach convergence, or increase
the risk of falling into local optimal solution. However,
existing genetic algorithms usually initialize population ran-
domly. This strategy cannot guarantee the quality of the
initial population, in consequence, influences the perfor-
mance of genetic algorithms. From this perspective, existing
genetic algorithms have its blindness. To avoid the blindness
and ensure more accurate solutions, the clustering-based
population initializing strategy is conducted before NSGA-
III as an alternative to the random initializing operations.

In a multi-objective optimization problem, the feasible
solutions are usually more than one. Specifically, the output
of NSGA-III is a Pareto front with multiple non-dominated
solutions. To obtain the final quantification and placement
of ESs, a representative solution with the best load balancing
is selected from the Pareto front to be the final output.

5 EXPRIMENTAL EVALUATION

In this section, we implement CQP and conduct the exper-
iments based on the real-world ITS social media dataset
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Fig. 3. The programming flowchart of CQP.

collected in Nanjing. Then, we compare the results of CQP,
K-medoids and random choice. The experimental evalua-
tion shows that CQP is effective in the ES placement for the
social media services in industrial CIoV.

5.1 Experiment Setup

There are two real-world datasets applied in the experimen-
tal evaluation. One dataset contains details of 436 activated
RSUs in Nanjing, including their latitude and longitude
values. The other dataset contains vehicular social media
service requests of each RSU in 30 consecutive days (00:00:00
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Sept. 1st ∼ 23:59:59 Sept. 29th). The total number of service
requests exceeds 160 million. With these data as a sample,
good universality and authenticity are ensured. In Fig. 4,
RSUs are marked with blue dots on the map of Nanjing. This
gives us an intuitive understanding of the RSUs’ locations.

Fig. 4. Distribution of 436 activated RSUs in the datasets.

5.2 Comparative Algorithms
5.2.1 K-medoids
The K-medoids algorithm can find the centroid of each
cluster from real data points with high robustness to noise.
When the number of clusters, denoted as K, is known a
prior, K-medoids have good performance in facility location
problems. From the Pareto front obtained by CQP, a repre-
sentative result with the best load balancing is chosen as the
final result of CQP. Then, the maximum ES number is used
as the parameter K of K-medoids algorithm.

5.2.2 Proportional Selection
In the proportional selection, a probability is assigned to
each RSU ri, calculated as pi = dsi/

∑N
j=1 dsj . Then, K

RSUs are selected based on the probability sequence to co-
locate ESs. This strategy exhibits priority to RSUs with large
scale of social media service requests.

5.2.3 Random Selection
The random selection method can generate an unoptimized
ES placement by randomly select K RSUs to co-locate ESs.

5.3 Comparison Analysis
5.3.1 Comparison of Social Media QoS
The QoS of social media services by CQP, K-medoids, pro-
portional selection and random selection are evaluated from
aspects of average latency and load balancing. The results
are shown in Fig. 5 and Fig. 6, where the hollow marks
represent data points of holidays (including weekends).
According to the analysis on the original data sets, we
found that the service requests would usually have a rise
on the day before holidays, and drop significantly during
holidays. This phenomenon explains the anomalous rising
and dropping effects in both figures. This phenomenon will
not interfere with the correctness of our experiments.

As shown in Fig. 5, the average latency follows CQP
< K-medoids < Proportional < Random. According to the
statistics, CQP is 1.86% lower in latency when K = 42
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Fig. 5. Comparison of latency when K = 42.
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Fig. 6. Comparison of load balancing when K = 42.

than K-medoids in average. As K-medoids is a relatively
robust and accurate clustering algorithm based on distance,
it already has a good performance in lowering the latency
of data transmission. Thus, the slight advantage can also
verify the effectiveness of CQP. Fig. 6 indicates that the load
balancing follows CQP < Proportional < Random < K-
medoids through the standard deviation of workload. Ac-
cording to the statistics, the standard deviation of workload
by CQP is in average 21.76% lower than by K-medoids and
11.45% lower than by proportional selection. It is evident
that CQP can better balance the workload of each server
and prevent servers from being overloaded.

5.3.2 Comparison of ES Location
To have a more intuitive understanding on the difference
between CQP and K-medoids placing strategies, the place-
ments obtained by CQP and K-medoids are visualized. As
shown in Fig. 7 and Fig. 8, the ESs are placed at points with
a red square server icon, blue points represent RSUs which
have their data processed at the edge, while green points
indicate that data of those RSUs are processed at the cloud.

The major difference between the result of K-medoids
and CQP lies in the density of the ESs in different areas.
K-medoids tends to make an even placement where some
ESs are placed far from the high-demanding areas to cover
RSUs in remote areas. Consequently, ESs in core urban areas
are assigned with excessive workload, whereas those in
remote areas are often in an idle state. This result explains
the rationality of the worse-than-random load balancing
of K-medoids in Fig. 6. In contrast, CQP places ESs more
densely in core areas, and the edge abandons some remote
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Fig. 7. Central part of the distribution map with 42 ESs by K-medoids.

Fig. 8. Central part of the distribution map with 42 ESs by CQP.

RSUs so that it can focus on the high-demanding areas.
Meanwhile, the social media services in remote areas are
provided directly by the cloud. In such a placement by CQP,
the synergy between edge and cloud can be achieved.

6 CONCLUSION AND FUTURE WORK

In industrial CIoV, edge computing was adopted to provide
vehicular social media services with high QoS. To imple-
ment edge computing, the ESs need to be placed appropri-
ately. The ES placement problem was formalized as a multi-
objective optimization problem with three objectives. Then,
NSGA-III with a clustering-based population initialization
strategy is designed and adopted in CQP, a collaborative
method for the quantification and placement of ESs for
industrial CIoV. The experiments are conducted based on
the real-world ITS social media dataset collected in Nanjing,
and the result proves that CQP is effective.

To simplify the model, the computing capacity of each ES
was assumed to be equal in this paper. Actually, moderate
adjustments can be adopted to obtain higher QoS. For
instance, ESs in areas with heavy traffic are assumed to have
stronger computing capacity. While for those in areas with
light traffic, computing capacity could be reduced to lower
the construction cost and energy consumption. In future
works, a novel quantification and placement of ESs can be
designed where the computing capacity of ESs are different.
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