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ABSTRACT. In this paper we present the results announced in the recent work
by the first, second, and fourth authors of the current paper concerning Rubio de
Francia extrapolation for the so-called multilinear Muckenhoupt classes. Here we
consider the situations where some of the exponents of the Lebesgue spaces ap-
pearing in the hypotheses and/or in the conclusion can be possibly infinity. The
scheme we follow is similar, but, in doing so, we need to develop a one-variable
end-point off-diagonal extrapolation result. This complements the correspond-
ing “finite” case obtained by Duoandikoetxea, which was one of the main tools
in the aforementioned paper. The second goal of this paper is to present some
applications. For example, we obtain the full range of mixed-norm estimates for
tensor products of bilinear Calderén-Zygmund operators with a proof based on
extrapolation and on some estimates with weights in some mixed-norm classes.
The same occurs with the multilinear Calderén-Zygmund operators, the bilin-
ear Hilbert transform, and the corresponding commutators with BMO functions.
Extrapolation along with the already established weighted norm inequalities eas-
ily give scalar and vector-valued inequalities with multilinear weights and these
include the end-point cases.

1. INTRODUCTION

Recently, the first, second, and fourth authors of the present paper solved in [28]
a long standing problem about the extrapolation theorem for multilinear Mucken-
houpt classes of weights. A particular and simplified version of the general result
established there is the following: suppose that a multivariable operator 1" satisfies

[TCfrs s Fm)wllee S [l Awillzen [ fmtom | o

for some fixed 1 < py,...,py < 00, and for all W = (wy, ..., w,) € Ay (see Section

2), where % = pil + -+ Ii and w = [, w;. Then, one gets the same kind of
estimates for all 1 < py,...,p, < oo, and for all @ = (wy,...,w,) € Az The
one-variable case (i.e., m = 1) is the well-known Rubio de Francia extrapolation
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theorem [33] of which one can find a great deal of extensions and refinements which
are adapted to various settings and situations (see [12]).

The first result in the multivariable case [22], due to the second author of this
paper and Grafakos, was obtained under the assumption that every individual
weight is in the corresponding Muckenhoupt class. This collection of weights is
however too small and the paper [27], coauthored by the fourth author of this
paper together with Lerner, Pérez, Torres, and Trujillo-Gonzalez, introduced and
studied the classes Ay In these, rather than looking at the weights in the m-
tuple individually, it is assumed that they collectively satisfy a Muckenhoupt-type
condition. These are in turn the natural classes for the multilinear Calderéon-
Zygmund operators in the same way that the classical A, classes are the natural
ones for the linear Calderén-Zygmund operators.

Since the appearance of [27], an associated Rubio de Francia extrapolation theory
for the classes Ay has been sought until recently when the aforementioned paper
[28] solved that problem, and even more, obtained extrapolation results for the
more general classes Az (see Section 2). That paper, however, considered only
the cases in which all the exponents are finite and it was announced that one could
consider situations in which some of the exponents p;’s and/or the ¢;’s are infinity.
While these end-point scenarios are not natural in the one-variable extrapolation
theory, it turns out that for some relevant multilinear applications it is of interest to
extend the extrapolation theory so that it includes the end-point cases. The main
goal of this paper is to present in a rigorous way these end-point extrapolation
results originally announced in [28]. Since the statement of our main extrapolation
result for the classes A7 (see Theorem 2.1) requires some notation, we postpone
that until Section 2. However, we would like to single out the particular case of the
original classes Az, which is of particular interest and also gives an-easy-to-digest
illustration of the general case.

Theorem 1.1. Let m > 2 and T be an m-variable operator. Given p'= (p1,...,DPm)
with 1 < p1,....pm < 00, let é = pil +- 4 1% € [0,m]. Assume that given any
W= (wq,...,wy,) € Ay the inequality

IT(fr s fmdwlle S T I fowill e
i=1

holds for every (fi,..., fm) € F (a fized collection of m-tuples of measurable func-
tions), where w = [[;~, w;. Then for all exponents § = (q1,...,qm), with 1 <
iy s G < 00 and% = q%“‘""h%m > 0, and for all weights T = (vq,...,vy) € Az
the inequality

IT(fr s fmolles S TT U vl
i=1

holds for every (fi,..., fm) € F, where v =[]~ v;.
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Moreover, for the same family of exponents and weights, and for all exponents
S=1(81,.-+,8m) with 1 < s1,...,8, <00 and§:i+'--+$ > 0 the inequality

(12) xRS

S [L[{# v}
Ly, ™ Jivis; L%,
3 i=1 5%

holds for all sequences {(f],..., fi)}; CF.

As mentioned, this result is a particular case of Theorem 2.1 and extends [28,
Corollary 1.5] where all the p;’s, ¢;’s, s;’s and p are assumed to be finite. Note that
Theorem 1.1 allows us to extrapolate starting with some (or even all) p;’s being
infinity. Not only that, even if we start with all the p;’s being finite, we can derive
estimates with some (but not all) of the ¢;’s being infinity.

The statement of Theorem 2.1 and its proof are given in Section 2. For the latter
we follow the blueprint established in [28] with very minor changes. However, a key
ingredient in the proof is Theorem 2.3, which is a one-variable off-diagonal result
of independent interest. This is indeed an extension of [17, Theorem 5.1] (and also
of [24]) allowing us to start with or to obtain end-point estimates. Our proof is,
however, slightly different and follows the scheme used thoroughly in [12].

Our second goal of this paper is to present some applications of our extrapolation
result. In Section 3 we briefly consider some of the examples already treated in
[28] and these include multilinear Calderén-Zygmund operators, multilinear sparse
forms, bilinear rough singular integral operators, the bilinear Hilbert transform and
their commutators with BMO functions. In Section 4, we present a new application
which concerns mixed-norm estimates (a topical subject, see e.g. [2, 3] and [15]).
Here we work with tensor products T,,®T},,, where T}, and T}, are bilinear Calderén-
Zygmund operators in R™ and R™. The tensor product is initially defined via

(To @ Tn)(f1 @ fa, 1 @ g2) () = T (f1, 91) (1) T (f2, 92) (22),

where f1,g1: R" = C, f2,92: R™ — C and = = (z1,25) € R""™. Notice that if
T, and Ty, are linear, then T,, ® T,,, = T'T?, where T f(x) = T,(f(-, z2))(x;) and
T2 f(z) = Tou(f(21,))(x2). One can then easily obtain the desired estimates by
using iterative arguments and Fubini’s theorem, and therefore, in the linear case,
bi-parameter singular integrals are only interesting if they are not of tensor product
type. Unlike the linear case, the theory of tensor products of bilinear operators is
already non-trivial. Indeed, Journé in [25] showed that a tensor product of general
bilinear operators, both bounded from L> x L? to L?, needs not be bounded from
L*>® x L? to L?. On the other hand, he obtained positive results for tensor products

of some multilinear singular integral forms from Christ-Journé [10].

As an application of our extrapolation results we are able to obtain (see Corollary
4.3) that

HTn ® Tm(fh f2) HLT’(R";L‘?(R"”)) S Hfl HLPl (Rn;qu (Rm)) Hf2 HLPQ (Rn;LqQ (Rm))

whenever pi, pa, ¢1,q2 € (1,00] are such that % = pil + p% > 0 and % = qu + q%

0. This should be compared with [30] where the first, third, and last authors
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of the present paper considered general bilinear bi-parameter Calderén-Zygmund
operators (with no tensor form). Some mixed-norm estimates were proved as quick
corollaries from the obtained weighted estimates (and operator-valued analysis).
However, since the classes of weights considered were of product type A, x A,
(in place of the corresponding bilinear class A, ;,)), in the mixed-norm estimates
one needed to assume that for the case ¢ < 1 one has p;, p» < oo. Here we are
able to obtain more sophisticated weighted estimates and this restriction can be
removed. It should be noticed that here we only work with tensor products of
bilinear singular integrals, but we can show somewhat stronger weighted estimates
compared to those in [30]: we essentially use weights which are in A, ,,)(R") and
in A, (R™) x A,,(R™) and, by extrapolation, this is enough for the mixed-norm
inequalities in question.

To conclude with this introduction we would like to mention that some interest-
ing related work has recently appeared while this manuscript was in preparation.
Nieraeth in [32] has obtained a result similar to ours with a proof which uses an
independent different method. In a nutshell, Theorem 2.1 —which was announced
in [28] before [32] was posted— is proved by following [28, Proof of Theorem 1.1]
with some appropriate changes both in the argument and in the notation. Having
said that, the main tool that we need here is Theorem 2.3, which extends [17,
Theorem 5.1] (and also [24]) to allow for end-point estimates. We also note that
our proof of Theorem 2.3 is somewhat different, and of independent interest, than
that in [17] and follows the scheme thoroughly employed in [12, Chapter 3]. On the
other hand Duoandikoetxea and Oruetxebarria in [19] have obtained mixed-norm
estimates of radial-angular type by developing an extrapolation theory for radial
weights.
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2. END-POINT EXTRAPOLATION FOR MULTILINEAR MUCKENHOUPT CLASSES

Our main result in this section contains the extension to the end-point cases
announced in our previous paper [28]. Before we state that result, let us recall
some notations and make some conventions. Given a cube @), its side-length will
be denoted by ¢(Q) and for any A > 0 we let A\Q be the cube concentric with
@ whose side-length is M(Q). Let p be a doubling measure on R™, that is, p is
a non-negative Borel regular measure such that ;(2Q) < C,u(Q) < oo for every
cube @ C R™. Given a Borel set £ C R™ with 0 < u(E) < oo we use the notation

][Efdu— /fu

This section is devoted to applying off-diagonal extrapolation to get the multi-
variable extrapolation in the end-point cases.

Hereafter, m > 2. Given p'= (p1,...,pm) with 1 < p1,...,pp < 00 and 7 =

(r1, ..y Pma1) with 1 <rq,... rp,e1 < 00, we say that 7 <, p’ whenever
1 1 1
ri <pj, i=1,...,m; and 7, ., >p, where —:i=—+- - 4 —.
p D1 Pm

This should be compared with the notation 7 < p’ from [28] where one adds the
restriction 7, ; > p. Analogously, we say that " < p'if 7" <, p’and moreover r; < p;
for every ¢ = 1,...,m and r,,,; > p. Notice that the fact that v <, p forces that

Z:ﬁlj > 1 and also s S iy 1. Hence, if 37 = > 1 then we allow p to be
smaller than one.

We can now introduce the classes of multilinear Muckenhoupt weights that we
consider in the present paper. Given g = (p1,...,pm) with 1 < py,...,p, < 00

and 7 = (ry,...,rpe1) with 1 < 7,000 11 < 0o so that 7 <, § we say that
W= (wy,..., W) € Azr, provided 0 < w; < 0o a.e. for every ¢ =1,...,m and
1P i1 m ripi 1_1
[w]Aﬁ,F = sup (][ w'mT? dff) T Tma H (][ w; " d:L‘) TP < oo,
Q Q -1 Y@

where w = [[I%, w;. When p = r] ., the term corresponding to w needs to be
replaced by esssupgw and, analogously, when p; = r;, the term corresponding

to w; should be esssupg w; 1 Also, if p; = oo the term corresponding to w;
1

becomes <fQ ”dm) . If p = oo, one necessarily have r,,.; =1 and p; = --- =

Pm = 00, hence the term corresponding to w must be esssupg w while the terms
L
corresponding to w; become (fQ “dm) When r,,,1 = 1 and p < oo the term

1

corresponding to w needs to be replaced by (fQ wpdx> ” We remark that similar
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classes of weights, to be precise when ry = --- = r,, = r > 1, were introduced
earlier in [7].
Note that with the previous definition @ € Ap 1, 1) means that

1 m , i,
[w]Aﬁ,(l ,,,,, n sup <][ wpdl‘) P H <][ w;”dx) P < 50,
Q Q i=1 Y@

where w = [[;~, w; and with the appropriate changes when some p; = 1 or p = cc.

In the sequel we will just simply denote Ay ;.. 1) by Az We would like to observe

our definition of the classes Az is slightly different to that in [27] or [28] (notice that
1

eg. [wh, .- ,w%m]jﬁ with Ay defined in [27] agrees with our [w]4, when p;’s are
finite). This change is just cosmetic but it turns out to be useful for understanding
the end-point estimates.

It is convenient to write the condition Az in a different form. With that goal in
mind, given p'= (p1,...,pm) With 1 < py,...,pp, < oo and 7= (rq,...,"me1) with

1<ry, ..., rme1 < o0 so that 7 <, p' we set
1 e 1 1 11 1
—::Z—, =1—-— and —=———, i=1,....m+1.
r P Pm+1 p 0i Ty Di

Notice that as observed above we have that 0 < r < 1 and formally pm1+1 = %

which could be negative or zero if p < 1. Note that in this way
m+1

D

i=1
Also, 7 =, p' means that 52-_1 > 0 for every 1 <7 < m+ 1. On the other hand,
7 < p means that 5;1 > 0 for every 1 <7 < m + 1. Notice that with this notation

W= (wy,..,wy,) € Az can be written as
5
<][ w;‘sidas> " < oo,
Q

Again we shall use the abstract formalism of extrapolation families. Hereafter
F will denote a family of (m + 1)-tuples (f, fi,..., fm) of non-negative measurable
functions.

m—+1

1 1 1 1—r
an ;151

Di r r

1 m
@] 4. = sup <][ w5m+1da:> e
Q Q

where w = [[1", w;.

1=

i=1

Our main result is the following:

Theorem 2.1. Let F be a collection of (m + 1)-tuples of non-negative functions.
Consider a vector ¥ = (11, ..., Tm+1), with 1 < ry, ... 1y < 00, and exponents
=P,y pm) with 1 < py,....pm < 00, so that 7 =, p. Assume that given any
W= (wq,...,wy) € Azr the inequality

fwlie < e((@a,) [T I fiwill e
=1
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holds for every (f, fi,..., fm) € F, where % = p% + e+ ﬁ, w =[]~ w;, and
¢ > 0 is a non-decreasing function. Then for all exponents @ = (q1,...,qm), with
1 <qi,...,qm <00, so that 7 < q, and for all weights U = (vq,...,vy,) € Agr the

imequality

1fvllee < @[ ag) [T fivill oo
=1

m

holds for every (f, fi,..., fm) € F, where % = q%—l—---—kq%n >0,v:=][[",v, and
@ > 0 is a non-decreasing function.

Moreover, for the same family of exponents and weights, and for all exponents
§S=(S1,...,8m) with 1 < s1,...,8, < 00, so that ¥ <§

(2:2) |{r7ohs

. < () 1 (s,

4
L

for all {(f7, f1,..., fi)}; C F and where 1= $+---+$ > 0.

We would like to remark that this result was announced in [28] and the main
difference with [28, Theorem 1.1] is that here we allow the p;’s and/or the ¢;’s to
take the value infinity. Also, in the current result we can start with p = .,
(including the case p = oo if 7,11 = 1) while in the conclusion we obtain ¢ < oo,
since " < ¢. We also remark that if we start with p;, = r;, for some given i, then
in the conclusion we can relax ¢;, > 7, to g, > r4,, see [28, Remark 1.8].

2.1. End-point off-diagonal extrapolation theorem. In this section we pre-
sent an end-point off-diagonal extrapolation result which is going to play an crucial
role in the proof of Theorem 2.1. Next we give the basic properties of weights that
we will need below. For proofs and further information, see [18, 20]. By a weight
we mean a measurable function v such that 0 < v < oo p-a.e. For 1 < p < oo, we
say that v € A,(p) if

p—1
] 4,00 = sup][ vdp (][ T4 d,u) < 00,
QR JaQ Q

where the supremum is taken over all cubes ) C R". The quantity [v]4,(,) is called
the A,(p) constant of v. Notice that it follows at once from this definition that if
v € Ay(i), then v' ™ € A, (u). When p = 1 we say that v € A;(u) if

[0] 4, () = sup (][ vdu) esssup v ! < oo,
Q@ Q Q

where the essential supremum is taken with respect to the underlying doubling
measure p. The A,(u) classes are properly nested: for 1 < p < ¢, Ay(n) € A,(p) €
A,(p). We denote the union of all the A,(u) classes, 1 < p < 00, by A ().
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Given 1 <p < oo and 0 < r < oo we say that v € A,,(u) if

[v]4,.,(u) = sup (J[ v du) T (][ 4 du)p < o0,
Q Q Q

where one has to replace the first term by esssupg v when r = oo and the second
term by esssupg v~! when p = 1, and these essential suprema are taking with
respect to u. The case p = 1 and r = oo gives a trivial class of weights since
v € A o amounts to say that v = 1 p-a.e.. Assuming that we are not in that case
we always have
11
Vo 3= + v >0

and one can easily see that v € Ay, (u) if and only if v" € A, (1) if and only if
v € Ay, With

;oL
' ary

1 _
[U]Ap,r(u) = [UT];\r'ypm-(M) - [U ]Ap’vp,r(u)

when 1 <p<oocand 0 <r <oo. If p=1and 0 <r < oo then ,, ::%and
v € Ay, () if and only if v" € Ay (p) with [v]a,, () = [UTEh(u)' Also, if 1 <p < o0
and 7 = oo then ~,, = z% and v € A,,(u) if and only if v € A;(y) with

1
P ;’1'1 (- We remark that the current definition of A, constant is

[U]Ap,r(,uf) = [U
slightly different with the one that was used in [17] and [28], because we have to
take care of the case r = oo.

When p is the Lebesgue measure we will simply write Ay, A,,, .... It is well-
known that if w € Ay then dw = w(z)dz is a doubling measure. Besides, since
0 < w < oo a.e., then the Lebesgue measure and w have the same null measure
sets hence the essential suprema and infima with respect to the Lebesgue measure
and w agree.

We shall use the abstract formalism of extrapolation families. Hereafter % will
denote a family of pairs (f, g) of non-negative measurable functions. This approach
to extrapolation has the advantage that, for instance, vector-valued inequalities are
an immediate consequence of our extrapolation results. We will discuss applying
this formalism to prove norm inequalities for specific operators below. For complete
discussion of this approach to extrapolation in the linear setting, see [12].

The main result of this section is the following off-diagonal Rubio de Francia
extrapolation result which extends [17, Theorem 5.1] (and also [24]) allowing us to
start with or to obtain end-point results:

Theorem 2.3. Let .F be a collection of pairs of non-negative functions. Let 1 <
po <00, 0 <1 <00, and 0 < gy < 0o. Assume that for all w € A, ,, we have

(2.4) [fwllzo < (fw]a,y,)llgwlzro,
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for all (f,g) € F and where ¢ > 0 is a non-decreasing function. Then for all
l<p<oo, 0<r<oo, and 0 < g < oo such that

1 1 1 1 1 1
(2.5) ==
q 4o r To P Do

and all w € A, , we have

(2.6) [fwllze < o(fwla,)llgwllLe,

for all (f,g) € F and where ¢ > 0 is a non-decreasing function.

We observe that this result is on the nature of best possible in the sense that
one cannot expect to reach the end-points p = 1 and/or r = co. The fact that one
cannot obtain p = 1 is well-known. To see that we cannot extrapolate to r = oo we
let pp = qo = 10 = 2 (again v,,,, = 1 > 0) and consider the pairs (|H f|,|f|) with
f € L¥(R) and where H is the Hilbert transform. Note that (2.4) follows since the
Hilbert transform is bounded on L?(w?) for every w? € A,. If we could extrapolate
to r = oo, picking p = ¢ = r = oo we would obtain [|H fwl|ze S ||fw]|zee(w) for
every w € Au o, that is, for any w™! € A;. Taking in particular w = 1 we would
obtain that Hf € L>*(R") for every f € L>°(R) leading contradiction.

Even more we can see that we cannot extrapolate to r = oo with 0 < ¢ < o0.
This requires some extra work. For any f € L(R), let E; be the set of Lebesgue
points for the function |Hf|*> € L'(R) so that |[R\ E;| = 0. Define, for every
z € R and 0 < 7 < oo, the non-negative function g, , = T_%l(x,T/ZHT/Q) so that
|9 |lL2r) = 1 and consider the family

F ={(Hf| gor;|f]): fE€LZR), z€Ey, 0<T7 <00}
Let go = 1 and py = 9 = 2, and note that ,,,, =1 > 0. For every w € Ay, (that
is, w? € Ay) one has for every pair (F,G) = (|Hf| gur, [) € F
1wl = [[1HF| gorw]] 12 gy < 1H Fll 2o 9o |2y
= [H 22wy < Cullfllz2w?) = CullGll2we).

If we could extrapolate to r = oo then we would pick p = o0, ¢ = 2, and r = 00
so that (2.5) holds to obtain that ||[Fwl|2r) < ||Gw|| p=m) for all (F,G) € # and
W € As oo, that is, w™' € A;. We could take again w = 1 to see that for every
(F,G) = (|Hf| gur, f) € F, that is, for every f € L°, x € Ef and 0 < 7 < 00

1
(/ HFOP) = 1Flleo < Cullloxes = oo
(xo—7/2,20+7/2)
Since Cj does not depend on f, z and 7 (note that C' is the same for all the pairs
in the family .%), and = € Ef we could let 7 — 0% and conclude that
|Hf(z)| < Coll fllpe, VoL

Consequently, we would obtain that H f € L> for every f € L2 which is again a
contradiction.
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Proof of Theorem 2.3. The case 1 < pg < 00, 0 < 1rg < 00, and 1 < p < oo was
proved in [17, Theorem 5.1]. Here we provide a somehow alternative argument
which gives that case as well as the desired end-point estimates. Our first observa-
tion is that if v, ,, = 0 there is nothing to prove. Indeed this only happens when
po = 1, 7o = oo and hence (2.5) gives that % =1+ % which contradicts the facts
that p > 1 and r < oo. Thus, from now on we assume that 7,, ., > 0 and observe
that (2.5) allows us to easily write v := 7, = Ypo.r0-

=1_1 590 hence 1 < p < py < o0,

1
q0 r 70
o < 0o (note that py and/or rg and/or g could be

Case 1: + =1 _ 1L

s p Ppo

0<g<qg<oocand0<r
infinity).

Fix (f,g) € .Z and w € A,,. As observed above, one has w™ € A,.,. Also,
pPy=1 +%/ > 1 since r < rg, hence if we set M'h := M (hw™"") w” where M is the
Hardy-Littlewood maximal function one has that M’ is bounded on L®" (w=?"),
write |[M'|| to denote its operator norm and introduce the Rubio de Francia algo-
rithm

/
R'h = ZQk |M/|k’

where for & > 1, we write (M")®) = M’ o --- o M’ to denote k iterations of M’
and for k£ = 0 is the identity operator . Based on this definition (see [12] for more
details) one can readily see that if 0 < h € L# (w™") then

(27)  h< Ry Rl < 20l oy @y, [Rhw™]a, < 2]M).

Notice that in particular 0 < R'h < oo a.e. if h is non-trivial.

Next let us observe that without loss of generality we may assume that 0 <
llgw||rr < oo: if ||gw||zr = oo there would be nothing to prove and if ||gw]|» = 0
then g = 0 a.e. and by (2.4) we would get that f = 0 a.e. which would trivially
yield the desired estimate. This implies that the auxiliary function 0 < h =

@'

gw? /||gw| e clearly satisfies Il pog-sy = 1. Set H = R’(h@’pv)’) o =R/(h™)P
which satisfies that 0 < H < oo a.e. and by (2.7)
(28)  h<H  |[Hlpw-» S Wl =1 [How ], <20

Set W = H—*w't% and we claim that W € A, ,,. Assuming this momentarily we
note that (2.5) and the definition of s gives é = qLO + 1. Hence we can use Holder’s

inequality, (2.4), and (2.8) to obtain

L
s

I fwlln = 1GW) EEw™llr < W 10 e S lgW o
< gl ™ W = gl =7 G

S llgwllzr,

where the last estimate is trivial when py = 0o since s = p, and otherwise follows

from (2.8) and the fact that 1 — & = -
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This gives the desired estimate and therefore it remains to show that W =

H= 5w € Ay If 7o = 00, one can easily see that (2.6) and the definition of s
give that s = r and

1 1 1 1 / 1 1 1 /
r.p Po Do s p s Po Do

Hence W70 = Hw ™" and the last condition in (2.8) readily yields W6 € A;.
That is, W € A, « as desired.

Consider next the case 0 < ry < oo and note that definition of s implies that

S S S S r

On the other hand, (2.6) and the definition of s also yield vy = + + 1% and
0

T0

poPory (L opyy (L ey =LY e (1LY ey
s r s o s ro \py rop’

Note that the right-hand side is positive and strictly smaller than 1 since in this
case 0 < r < 1r9g <ooand 1 < p < pg. As a consequence, 0 < &g < 1 and

(=) = 2" - We can then use Holder’s inequality and the previous calculations
DPoTY TPo
to conclude that

1 1
, o P , p67"’y _P/T F
<][ Wb da:) Y= (][ (HAw™) = w dx> '
Q Q
ry

< <][ Hrw™ dx) 5 (][ w™ dx) e
Q Q

P el . P Ty o rop’
< [Hmw™P]; esstf(Hmw s <][ (O dx) :
Q

This yields

1 1
(e’ (e
Q Q
< [H%w_p/]A1 (][ H> w7 W dx) ' (][ w P d:c) ’
Q Q
= [H%w_p/]:h (][ w” dx) * <][ w dx) o
Q Q

p ry -
< [Hmw™®

J

5

J

/q— %

Lay [wl i,

Using (2.8) we conclude as desired that W € A, ,, and the proof of the present
case is complete.
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Case 2: O<q<ooand1'—pi0—%: 1—l:———>0 hence 1 < pg < p < o0,
O<g<g<ooand 0 <rg<r< oo (note thatpcould be infinity).

Fix (f,g) € # and w € A,,. As observed above, one has w™ € A,,.,. Addition-
ally, p'v =1+ 7%’ > 1 since r < 0o, hence M is bounded on LP(w™"") and writing
| M]| for its operator norm one can then introduce the Rubio de Francia algorithm

Rh = y~ MY
2 F [

This (see [12] for more details) readily gives that if 0 < h € LP/(w™") then

(29)  h<Rh, Ry < 20 pry:  [RAay < 2| M].

On the other hand, notice that the definition of s and (2.5) give - 11 PR L hence
£ =(2)". Then by duality there exists 0 < h € L (w?) with ||h|| = 1 such
that

1

| fwllee = If2)° = </ fqohwqu) .
L0 (w7)

@ +9)a0

, p'apy
Set H = R(hmw e ) " w™ s which satisfies by (2.9)

' +q

(210) h<H,  |H g 0 S0, =1 [H7 0w ], < 2| M.

qu qu (w9) ’

1
Let W = Hwww and claim that W € Apyro- Assuming this momentarily we
conclude that

Il = ([ £t de) =Wl S 19W o = gu) (EF 0 1

< |lguw|| e[| Hwwio |

% o S gl

where we have used (2.10), that pio = % + %, Holder’s inequality and the fact that
s(L —1) = ¢ by (2.5) and our choice of s.

Lo = [lgwl[ e[| H]|

1
To complete this case we just need to see that W = Hwwi € Apyro- When

po=1onehasy=ry' s= T = o and (2.5) yield
P +q (1 1) P +q _ rog
; =Tq | —T— | = =
Py qQ p Py do

p+q

As a result, W™ = Hvw w7+ and (2.10) readily gives that W™ € A;, that is,
W e A ,, as desired.

On the other hand, if py > 1 we observe that by (2.5) and the definition of s

P;’:pf<1_i>:/<1_1>:g_€_£’:1_p’+q
Do Do P s o S S q s
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and also that

. rop'y (1 p’v) B (1 1 p’v) B (1 Py — 1)
— =ro|l———)=ro|-+—-———)=ro| - —
S To S T S S T S

1 p rop’ [ 1 1 rop
=719 —— — = — -~ = - = T
r o rs r \p s P}

Note that the right-hand side of the last displayed equation is positive and strictly
smaller than 1 since 7y < r < oo and 1 < py < p. As a consequence, 0 <

@ <land () = B0 We can then use Holder’s inequality and the previous
) op’y Top
calculations to conclude that

% 09 % /+ ()P’Y TO/pl %
W™ dx = quwqo dx = ][(HPqOWwM) 5w P dx
Q Q Q
Py 4
< <][ Hp';ovw% d;p)
Q

(e
Q

p't+a Py p+q Py
[Hﬂmwm 14 essanf(Hme e )% (][ w’“dm) °
Q

This and (2.5) imply

(][ wro d$) ( WP d:v) ’
Q
s pl+q Py rpT P (»’+0)p{ , i
[Hpqovw p:] ] (][ wrdx) 0( H%w *s OW—Pod:L“) 0
Q Q

~ 7B (forae) ® (o i)
Q Q

[Hp qo’v wpptvq ]:S: [w]z(low,

bfh

Taking the supremum over all cubes and using (2.10) we obtain that W € A4, ,,

Case 3: q—ooandl‘:plo—%— L :%——>0 hence 1 < pg < p < 0,
0<qp<oo,and 0 <1y <r < oo (note that p could also be infinity).

Again, fix (f,g) € # andw € A,,. We may assume that ||gw||z» < 0o, otherwise
there is nothing to prove. Note that as above one has w™? € A,.. Additionally,
Py = 1—1-%/ > 1 since r < oo, hence M is bounded on L (w™") and writing || M ||
for its operator norm one can then introduce the Rubio de Francia algorithm

00 k)h
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This (see [12] for more details) readily gives that if 0 < h € LP(w™"") then
(2-11) h <Rh, HRhHLp’W(w*p’) < 2||h||LP/’Y(w*P/)7 [Rh]Al < 2||M||

We fix 2o € R" and 0 < 79 < oo and let h := hy -, := |B(xo, 70)| "' 1 5(20,r,) Which

1\P7

is a non-negative function satisfying ||h||z1 = 1. Set H := R(hﬁuﬁ) w™? which
satisfies by (2.11)

(2.12) h<H, |[H|pZbllee=1,  [Hw]a <2M].

1
Set W = Hww and claim that W € A, ,,. Assuming this momentarily we
conclude that

(f @)™ = ([ rommar)® <15l S oo
B(z0,70)

1 1
= [[(gw)H = [|Leo < llguwl[o[[H o |[Lo0 S llgwl|zo,

where we have used (2.12), that pio = % - qio and Holder’s inequality. Note that
the implicit constants are all independent of xy and 7. Hence, since we have
that ||gwl||z» < 0o, we conclude that fw € L (R™). Thus, if we write Ey,, for the

Lebesgue points of (fw)? we have that |R"\ Ey,,| = 0. Moreover if we let g € Ef,,

we conclude that
1

Feoyutan) = 1 (f (m)<f<x>w<x)>q0dx)% < gl

T—=0t

This eventually shows that fw € L>*(R") with || fw| L~ < |Jgw| r» which is our
desired estimate.
1
We are left with showing that W := How € A, ,,. Consider first the case
po = 1. In this case we have that (2.5) implies that p' = go, 7 = 75+ and N = I7+’Y'
Thus, W' = H77w" and (2.12) readily implies that W™ € A, that is, W € A, ,,
as desired.

Consider next the case py > 1 and observe that (2.5) implies z% — L =21 and

@ D
! 1 ! 1 1 /
l_mm_ro(__m) _TO<_+__m)
qo0 To qo r qo qo0

<1 p”y—l) rop’ (1 1) rop’
=T - — = _—— — — .
"\r qo r \p  q TPy

Note that the right-hand side is positive and strictly smaller than 1 since in this
case 7o < 7 and 1 <Po <P A§ a consequence, 0< ”’q% < land (;1-) = %po,.
Using this and Holder’s inequality we obtain

"o o " 4 1 rory ror "
<][ Wwro dx) = (][ Hawo w™ dq;) = (][ (Hp’vw?) 0 q Po dx)
Q Q Q
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/ /
p

a1 a0 TZ;TE,
< (][ Hv~vw~ dw) <][ w” dx)
Q Q
1 Z)IJ

11 . 1o1py v
< [H7 7 w7] esstf(Hp’vwW)qo (][ w” dx) :
Q

This and (2.5) imply

(][ W dx) h (][ WP dx) "o
Q Q

1 o1 kX P py  P'pg / P
< [Hvvw7] w" dz Haow o WP dx
Q Q

o\‘b—‘

Taking the supremum over all cubes and using (2.12) we obtain that W € A, .
This completes the proof. Il

Remark 2.13. A careful read of the above argument reveals it works in the setting
of spaces of homogeneous type, as there we have a theory of Muckenhoupt weights
much as in the case of the Fuclidean setting. Also, the argument can be easily
extended to Muckenhoupt bases (see for instance [12, Chapter 3]). The proof can
be easily adapted to that setting. Further details are left to the interested reader.

2.2. Proof of Theorem 2.1. To prove our main result we need some character-
ization of the Az classes. The following result extends [28, Lemma 3.2] to the
end-point cases. The proof can be carried out mutatis mutandis (with the appro-
priate changes of notation) and we leave the details to the interested reader.

Lemma 2.14. Consider p = (p1,...,0m) with 1 < p1,....pm < 00 and 7 =
(r1, .y Pg1) with 1 < rq,... rpme1 < 00 such that 7 <, p. Using the previous
notation we assume that

1 1
=— +

1 1 1 1
0 Tm T4l

= — +
1 Pi Om (5m+1

> 0,

and for every 1 <1 <m —1

Then the following hold:
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(1) Gen & = (w1, ..., wy) € Azr, write w = [[;", w; and set
m—1 0 Crm
W= ( H wi> and Wi=wmw om+1 = wrmwém
i=1
Then,
(i.1) wl e Arry with [wfi}A < [ﬁ]i{’ﬁ, for every 1 <i<m—1.
v Ly, ,

(:2) @ € Av, with [@]a,., <[]

pm Sm+1 (A) thh [W]A

™m’ Tm

(1.3) We A

s 4
=1

and W € A, 5,1 (W), let us set

7"m7 Tm
a1
Wy i = Wrmw™ om .
Then W = (wy, ..., wy,) € Agzr and, moreover,
1 1 m—1 1
— — % 0.]
Wa, . < |[W]Lm _ [w]® H[w]
[ ]Ap,r —[ ]Ai,émﬂ(w)[ ]Al;fe | “la,
m ™m =1 T G’L

(1i1) For any measurable function f > 0 and in the context of (i) or (it) there hold

I Fwlee = || (72 ) "W

™m

_p_
Lrm (dw)

and
Tm

Pm .
Lrm (d®)

et = 55)

In the previous result we are assuming that 6,,}; and 4,,' cannot be simultane-
ously zero, but they could be zero individually, in which case some of the statements
require appropriate interpretations which are left to the interest reader. We also

~

note that the assumption o=! > 0, leads to the fact that the class A, s,., (©)

is non-trivial —recall that, as observed above, W € A; (W) means that W ~ 1
almost everywhere.

Proof of Theorem 2.1. The argument is almost identical to that in [28, Proof of
Theorem 1.1] with the difference that we allow the p;’s or ¢;’s to be infinity, and
this requires us to use Theorem 2.3 in place of [28, Theorem 3.1] (which is really
[17, Theorem 5.1]) and Lemma 2.14 in place of [28, Lemma 3.2]. There is however
a subtle point that we would like to address here. In the present scenario, to
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use Lemma 2.14 we need to assume that ¢! > 0, while in [28, Lemma 3.2] this
condition follows automatically from the assumption that d,,', > 0 since there it
was required that p > r; ., (using the notation there 7 < p’). Thus we consider
two possible scenarios r;, , > por ., =p.

Assume first that 7/, ., > p (that is, 7 < §), hence 4.}, > 0. We just follow
28, Proof of Theorem 1.1], an argument which changes one exponent at a time,
with the alterations pointed out above after noting that implicit in that scheme
it is shown that the intermediate exponents t = (t1,...,t,,) satisfy ¥ < £, that is,
o >t= 000 %)*1 since in the present case 7 =< p and ¥ < ¢. This means
that in the successive uses of Lemma 2.14 we always have that the corresponding
0~' > 0 and in the iteration argument we never reach the end-point 7/, in the

target space.

The second scenario is that on which p = 7/, that is, §,,}; = 0. Let § =
(q1,---,qm) satisfy 7 < ¢sothat p =7/, | >¢q Let T={i:1<i<m,p; > ¢}
and observe that 7 7é () since otherwise we get a contradiction:

1 1
= - = — > —=->— .
1 i q T+

Thus rearranging the fi’s if needed we may assume that p,, > ¢, > 7, —since
7 < ¢. In particular 6! > 0 and Lemma 2.14 applies. This allows us to follow
Step 1 in [28, Proof of Theorem 1.1] mutatis mutandis with the modifications
pointed out above to obtain the desired estimate for the exponent ¢ = (t1,. .. tm)
with t; = p; for 1 < i < m and t,, = ¢,, and the associated class of weights A;f.

Moreover,
m—1 m

1 1
dm 1 Pi p Tima1

Hence r;, ., > t, that is, 7" =< ¢ and we can extrapolate from this exponent to change

m 1_
t —=

=1 i o P

=

the other entries in ¢ much as in the first scenario above. Let us observe that, again,
at any step in the iteration we will never reach the end-point /., in the target
space. Further details are left to the interested reader.

To complete the proof we sketch how to establish (2.2). The proof is almost
identical to [28, Proof of Theorem 1.1], the only difference is that here some of the
s;’s could be infinity. If that is the case we just need to observe that by assumption
not all the s; can be infinity (otherwise s = 0), hence

1
)

(ZHHM BRI (Z H | o
L)Z:HH{JCZJM}J I

1:8; =00 1:8; 7
With this estimate in hand the proof can be completed in exactly the same manner

IT | tre), iy (Z | o
and we omit the details.

1:8;=00 ZSz
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g

3. CALDERON-ZYGMUND OPERATORS, THE BILINEAR HILBERT TRANSFORM,
AND SPARSE FORMS

In [28] several applications were given to show that extrapolation can be used
to provide almost trivial proofs of known results and also to obtain new estimates.
With our main result in this paper we can easily complete the picture and obtain
the end-point cases. Here we will just indicate the resulting estimates, see [28] and
the references therein for more details and the precise definitions.

We start with T being a multilinear Calderén-Zygmund operator. Applying The-
orem 1.1 together with the weighted estimates from [27] one immediately obtains
(1.2). This should be compared with [28, Section 2.1] where all the ¢;’s and s;’s
are assumed to be finite.

Our second example is as follows. Fix 7 = (ry,...,7n41), with r, > 1 for
1<i<m+1,and 3.7 rl > 1, and a sparsity constant ¢ € (0,1). Let T" be an

operator so that for every fi,..., f;, h € C2°(R")

(3.1)

/ hT(fh?fm)dx SsgpAS,'F(flv”'afmah)a

where the sup runs over all sparse families with sparsity constant (. In [28,
Corollary 2.15] it was shown that for all exponents ¢ = (q1,...,¢mn), with 1 <
Q-5 qm < 00 and 7 < ¢, for all weights v = (v1,...,v,) € Azr and for all
fiy-o oy fm € C(R™) one has

IT(frsee s Sudvlles S TT I villze,
=1

where % = qil + -+ qi and v := [[*, v;. From this and Theorem 2.1 we can

immediately allow the ¢;’s to be infinity (provided that ¢ < oco). Moreover, we
obtain (1.2) for all exponents q =(q1, -, qm), With 1 < q1,...,qn < 00, 7 < ¢,
and 1 = q%—i—---—i—q—m > 0; §=(S1,.--,8m), with 1 < s1,...,8, < 00, 7 < ¢
and =L 4.4 L > 0; and for all weights ¢ = (vq,...,vn) € Azr Again,
comparlng “with [28 Corollary 2.15], here we could have that some of the ¢;’s (but
not all) and/or some of the s;’s (but not all) are infinity.

A particular case of interest is that of rough bilinear singular integrals introduced
by Coifman and Meyer and further studied by [21]. As explained in [28, Section 2.4],
either from the weighted estimates obtained in [9] or from the sparse domination
from [1] one easily gets an extension of [28, Corollary 2.17] covering the end-point
cases.

Our next example is the bilinear Hilbert transform, denoted by BH, which can
be framed within the previous class of operators that are controlled by a sparse form
as above (see [14, Theorem 2|). From that, repeating the argument in [28, Section
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2.5] but invoking Theorem 2.1 we obtain the following estimates. Let ¥ = (r1,72,73)
be such that 1 < ry,79,73 < co and

1 1 1

3.2
( ) min{'rb 2} + 1’[1111{’)“27 2} + min{rg, 2} =

2.

L4 Lo,

Let p'= (p1,p2), 5= (s1,52) With 1 < p1,pa, 51,50 < 00 beso that 1= -+ -

l::i—l—é>0. If ¥ < pand W = (wy,ws) € Ay then

IBH(f, g)wiws||e S || fwrllpe ||gw:lzee

Moreover, if additionally ¥ < § then

H {BH(f;, g9;)wiwa}

S H{fjwl}j

{gjw2}j

Ly, 7 L'z,
Again, here we can allow p; or ps (but not both) and/or s; or sy (but not both)
to be infinity. The same kind of argument allows us to readily get iterated vector-

valued inequalities in spaces of the form Lfst. All these should be compared with

the helicoidal method developed in [2, 3, 4], ﬁ)n which they prove all these estimates
by some delicate discretization arguments. In a nutshell once we have the estimates
from [14, Theorem 2] in hand, our powerful method based on extrapolation easily
gives all the desired estimates, including the vector-valued ones, and does not
require to use any further fine analysis or decomposition of the operator. This
occurs because extrapolation is not something related to operators, is a property
about families o functions satisfying weighted norm inequalities.

Finally, our method allows us to deal with commutators of the previous operators
with BMO functions. In [28, Section 2.6], the method developed in [5], was further
pushed to obtain [28, Theorem 2.22]. The latter in conjunction with Theorem
2.1 easily yields the following extension where both in the hypotheses and the
conclusions one can include the end-points:

Corollary 3.3. Let T be an m-linear operator and let ¥ = (ry,...,Tms1), with
1L < ry,oo iy < oo Assume that there exists p = (p1,...,Pm), with 1 <
Dis-- -y Dm < 00 and 7 =, P, such that for all W = (wy, ..., wy,) € Azr, we have
(3.4) IT(frs for oo F)wlie S T I fiwillors,

i=1

S SN T
where = o~ 4+ + = and w = [[}Z, w;.

Then, for all exponents ¢ = (qi,...,qm), with 1 < q,...,¢n < 00 so that
7 =< q_’and% = qil_{—.”_{—qu > 0, for all weights U = (vy,...,vy) € Agr, for all
b= (b,...,bn) € BMO™, and for each multi-index c, we have

(3.5) T, Bla(frs for - f)ollie S TTI0 B0 N frvill o

i=1
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where v := [~ v;. Moreover if §= (s1,...,8m), with 1 < s1,...,8, < oo so that
F—<§and§::i+---+%>0, then

(3.6) H{T Blo(fi, fh, ..,

, < 1110550 (703,

v,

Proof. We first use (3.4) and Theorem 2.1 to see that for all exponents t =
(t1,...,tm), with 1 <ty ... tm < 00 so that 7 < and % ::i+"'+i > 0, and
for all weights ¢ = (v1,...,vn) € Ag; there holds

HT(fla f2> ] fm)vHLt ,S H ”fi'UiHLtm
=1

where v := [[", v;. In particular, this estimate is valid for a particular choice
of ¢ which additionally satisfies 1 < t;,...,t, < oo. This allows us to invoke
28, Theorem 2.22] to see that (3.6) is valid for the same exponents as in the
statement with the additionally assumption that 1 < ¢,...,¢, < oco. Another
use of Theorem 2.1 immediately remove that restriction and also yields the vector-
valued inequalities in (3.6). This completes the proof. O

As a consequence of this result and all the applications considered above we can
obtain that (3.5) and (3.6) hold in the following scenarios:

e T'is an m-linear Calderén-Zygmund operator, ¢ = (q1,...,¢m), S = (S1,- -, 5m),
With1<qz,32§oo 1<i<msothat1'—qi1+ +%>Oandl‘:

L4 ++ = >0, and v € Az. The same applies to a bilinear rough singular
mtegral as in [28, Section 2.4] in the case m = 2.

e T is any linear operators satisfying (3.1), ¢ = (q1,.-.,qm), §
Withf<cjand77<§sothat%::qil+---+$ >0and l:=21
and U = (v1,...,0,) € Agr

These are respectively extensions of [28, Corollaries 2.25 and 2.26] where we are
now able to consider the end-point cases, and these estimates are new to the best
of our knowledge. The same occurs in the case of the bilinear Hilbert transform
for which we have the following extension [28, Corollary 2.27] which contain new
estimates at the end-point cases:

Corollary 3.7. Assume that 7= (ry,r9,13), 1 < 11,729,173 < 00, verifies (3.2). Let

p= (P17P2) § = (51,82) with 1 < p1,pa, 51,82 < 00 be so that % = pil + p% > 0,

Li=L14L >0, IfF < p, for all weights & = (wy,ws) € Ay, for all b= (b1, by) €
BMO2, and for each multi-indez a = (o, ag) it follows that
I[BH, bla(f, g)wiws e S |[brlByollb2llBiso L will o lgwe ez,
and, if one further assumes that ¥ < S,
Lz REATATAVEY N Y Y PR [/ [P
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4. MIXED-NORM ESTIMATES AND TENSOR PRODUCTS OF BILINEAR SINGULAR
INTEGRALS

In [30] the first, third and last authors of the present paper showed that if 7" is a
bilinear bi-parameter Calderén-Zygmund operator that is free of full paraproducts
(see [30] for the definitions), then

IT(f1, f)wllee S | frwsllze || fows | cre

holds for all py, ps € (1,00) and weights w; and ws such that wi* € A, (R" x R™)
and wh® € A, (R" x R™). Here p is defined by % = p% + p%, w = wywy and
A,(R™ x R™) is the class of bi-parameter A, weights (obtained by replacing cubes
by rectangles in the usual definition). In addition, the same estimate were obtained
for all tensor products T' = T, ® T,,, where T,, and T,, are bilinear one-parameter
Calderén-Zygmund operators in R™ and R™, respectively (we recall the definition
below). Tensor products T,, ® T;,, are examples of bilinear bi-parameter Calderén-
Zygmund operators, which are not necessarily free of full paraproducts (if both of
them are not free of paraproducts). Recall that initially 7,, ® T, is defined via

(To @ Tn)(f1 @ fa, 1 @ g2) () = T (f1, 91) (1) T (f2, 92) (22),

where f1,g1: R" = C, f3,90: R™ — C and z = (21, 22) € R"™™.

The main goal of this section is to prove Theorem 4.2 where we establish weighted

estimates for the previous tensor products of bilinear Calderén-Zygmund operators
with the new class of weights introduced in Definition 4.1. In turn, we can extrap-
olate using Theorem 2.1 to prove Corollary 4.3. The latter result contains some
mixed-norm end-point estimates that were not proved in [30]. The bottom line is
that with our current extrapolation result we can consider the cases in which the
outer exponents are infinity even when the inner exponents are in the quasi-Banach
range.
Definition 4.1. Given j = (p1,p2) with 1 < p1,p2 < o0 let 1% = pil + p%- Let
W = (wq,wsy) be such that 0 < wy(xq,-), we(z1,:) < 0o a.e. in R™ for a.e. z; € R”
and 0 < wq(-, @), wa(+,xe) < 00 ae. in R™ for a.e. o € R™. We say that
W € Agpm if wi(zy, )P € A, (R™) and wa(xy, )P € A, (R™) for ae. z; € R”
(wi (-, 22),wa(+, 22)) € Ap(R™) for a.e. 29 € R™; and moreover

ess ?Rup[(w1('7372)7w2(‘ax2>]Aﬁ(R") <
xo €ER™

and

esssup[wy (w1, )" ] 4, (rm) + esssup[wa (71, )] a,, @m) < 00.
z1ER™ z1ER™

Here A;(R™) is the class of bilinear A; weights in R™ as defined in Section 2 and
A, (R™) is the class of A, weights in R™.

A function K: R3\ A — C, where A = {(z,7,2) € R* : 2 € R4}, is called
a bilinear singular integral kernel if for some o € (0,1] and a constant C' > 0 it
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satisfies the estimates

1
K(z,y,2)| < C
K. 2)l < O e =

for (z,y,2) € R3\ A,
‘K(l’/,y72> - K(Z‘,y,Z)l + \K(y,x/,z) - K(y,l’,Z)l
|z — '
(lz =yl + |z — 2[)2dte

for (2/,y,2), (x,y,2) € R\ A such that |2/ — 2| < max(|Jz — y|,|z — 2])/2. We
denote the smallest possible constant C' in these inequalities by || K||cz., -

+ |K(y,z,x’) —K(y,Z,ZL‘)| S C

We say that T is a bilinear singular integral in R if there exists a bilinear singular
integral kernel K such that

Tt ) = [[[ K@) AR ) dndya:

for all f1, f2, f3 € L(R?) whenever two of the functions are disjointly supported,
that is, supp f; Nsupp f; = 0 for some 7 # j. We say that T is a bilinear Calderdn-
Zygmund operator in R? if T is a bilinear singular integral in R? and moreover
T is bounded from LP'(R?) x LP*(R%) into LP(R?) for some 1 < p;,ps < oo such
that Il) = pil + p% > (. For more information about multilinear Calderén-Zygmund
operators see [23] where it is shown, among other things, that 7" is bounded from
Lo (RY) x L2(R?) into L¢(R?) for all g1, ¢, € (1,00] and 1 = L + L > 0.

So-called T'1 theorems give conditions under which singular integrals are indeed
Calder6n-Zygmund operators. For bilinear 7'1 theorems see for example [23] (where
multilinear singular integrals are also treated) or [29].

The following theorem contains our weighted estimates for tensor products of
bilinear Calderén-Zygmund operators involving the class of weights appearing in
Definition 4.1.

Theorem 4.2. Let T}, and T), be bilinear Calderon-Zygmund operators in R™ and
R™, respectively. Let o= (p1,p2) be such that 1 < p1,ps < oo and set % = pil + piz.
Then

1T @ T (f1, fo)wrwal|e S || frws] oo || fowa || Les

holds for all weights W = (wi,ws) € Apnm and for all frw, € LPY(R™™) and
f2w2 € Lpr? (Rn—&—m)_

Given 0 < p, ¢ < oo, the space LP(R™; L(R™)) consists of measurable functions
f: R™™ — C such that

HfHLP(]R";Lq(]Rm)) = H||f(I1,$2)||L22(RM)HL51(RTL) < o0.

Combining Theorem 4.2 with our main extrapolation result, Theorem 2.1, we
will easily get the following consequence:
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Corollary 4.3. Let T, and T,, be bilinear Calderdon-Zygmund operators in R"
and R™, respectively. Let 1 < pi,pe < 00 and 1 < q,q2 < oo be such that
1L 150, Then

p p1 p2

(4.4) T @ Tl fr, fo)le@esso@my) S [ f1ller @espo @y || fol | Lre @i @)

for all fi, fo € LE(R™™).

Our last goal is to extend the previous result in the following ways. First, we
would like to consider the end-points ¢; = oo or ¢o = co. Also, we wish to show
that (4.4) holds for all f; € LP*(R"; L9(R™)) and fy € LP>(R™; L%(R™)). This
is straightforward if pi, p2,q1,¢2 < 0o by a standard density argument. However,
such approach fails when some of the exponents is infinity and in that scenario one
even needs to make sense of T, ® T, (f1, f2). All this is done in the main result of
this section:

Theorem 4.5. Let T, and T,, be bilinear Calderdon-Zygmund operators in R™ and
R™, respectively. Let 1 < p1,p2,q1,q2 < 00 be such that 217 = pil + p% > 0 and

L1150 Then we have
q q1 q2

(4.6) 1T @ Ton(f1, fo)llLo@nsamyy S 1 f1llon @nsa ey || f2 | o2 (s po2 )
for all f; € LP(R™; L™"(R™)) and fy € LP*(R™; L2(R™)).

To prove the previous results we need some preliminaries. Let Qg := ({0, 1}9)Z be
the set of {0, 1}%valued sequences (w;)icz equipped with the probability measure
such that the coordinates are independent and uniformly distributed over {0,1}%.
We write E,, to denote the associated conditional expectation.

Let

DY = {27%([0,1)"+m): k€ Z, meZ%
be the standard dyadic lattice of cubes in R?. For w € €, define the dyadic lattice
Dl = {I+w: I € DI}, I+w:=1+ Z 27 w;.
i: 271 <(])
By a dyadic lattice D¢ we mean that D? = D¢ for some w € €.

Let D9 be a dyadic lattice and suppose I € D?. The sidelength of I is denoted
by ¢(I). If k = 0,1,2,..., then I® denotes the k-ancestor, that is, I*) is the
unique cube in D? such that I ¢ I®) and ¢(I*)) = 2%¢(I). We define ch(I) to be
the collection of dyadic children of I, that is, those I’ € D¢ such that (I')") = 1.

Suppose f € LL (R?) and I € D% The average (f); and the martingale differ-

loc

ence A;f are defined by
=1 [rae. A= 3D (et = ()

I'ech(I)

Given I € D¢ we denote by h; a cancellative L? normalized Haar function. That
is, writing I = I; X - -+ x I; we can define the Haar function h7, n = (m1,...,14) €
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{0 1}9, by setting h] = hj! ®---@hj?, where hY, = |I;| 21, and hy = L]~ 2(11

M) for every i = 1,. d Here I;; and I;, are the left and r1ght halves of the
interval [; respectively. If n € {0,1}4\ {0}? the Haar function is cancellative, that
is, [h}dz = 0. We usually suppress n and simply write h; to mean that h}, for
some 7 € {0,1}7\ {0}¢ and we write hY to denote A} for n = (0,...,0). It is
standard to see that for every I € D? one has

(4.7) Arf= %, (LRDA].
n€{0,1}4\{0}4
Let D = D¢ be a dyadic lattice in R? and let k = (ky, ko, k3) € N3 —here and

elsewhere Ny = NU {0}. A bilinear dyadic shift 2% of complexity k is an operator
that has three possible different forms. One of them is

(48) UD flan Z Z f17h]1><f27h12>h13’

KeD 11 Is, IseD
IZ(kZ):K

where every ag (1) = ak 1,,1,,1, satisfies
112 | T2 | )2
D e k1
- |KP
Another form of the shift is formed by replacing the Haar functions in the above
formula by hy,, b}, and hy,, and in the third form we have hy,, hj, and h{,.

|aK(1)

s\ 44

A bilinear dyadic paraproduct Up has also three possible forms. One of them is

(4.9) Up(fr, fr) = > ac{fi) i (fa)ichic,

KeD

where the coefficients satisfy

1 5\ 2
sup (— a ) <1
Koep \ | Ko 2 loxd

KeD
KCKy
The second form is (f, hK><f2>Km and third one is (f1)x (f2, hK>W'

We will refer to bilinear dyadic shifts and paraproducts as bilinear dyadic model
operators.

Suppose T is a bilinear Calderén-Zygmund operator in R? related to a kernel K.

We will repeatedly use the following bilinear one-parameter representation theorem
from [29]: if fi, fo, f3 € L3(R?) then

(4.10) (T(f1, fo), f3) = CrE., Zzz—m (Up, u(f1, f2), f)-

keNd u=1

Here |Cr| S T\ 1sxrs—rs2 + || K |lcz, and « is the parameter in the Hélder con-
tinuity assumptions of the kernel K of T'. Also, Cy is a finite constant depending
just on d. For each u and k = (ky, ko, k3) € N3, if maxk; > 0, then Uéw,u is a
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bilinear dyadic shift of complexity k with respect to the lattice D,,, that is, it has
the form Uf,  (see (4.8)). On the other hand, if maxk; = 0, then Up, , is either

a bilinear dyadic shift of complexity (0,0,0) of the form ugi;o*”) (see (4.8)), or a
bilinear dyadic paraproduct of the form Up, (see (4.9)).

Let p = (p1,p2) with 1 < p;,ps < oo such that 1/p = 1/p; + 1/py > 0. Given
k = (ky, ko, k3), let UK be a bilinear dyadic shift of complexity k if maxk; > 0, or
if max k; = 0 assume that UL is either a bilinear dyadic shift of complexity (0,0, 0)
or a bilinear dyadic paraproduct. We claim that for fi, fo € L°(R%) we have

(4.11) 1UB(fr. fo)wllpe S (maxk; + 1) frwn |z || fows 12,

where @ = (w1, ws) € Ax(R?), w = wyw, and the implicit constant depends on the
A, po) characteristic of (wy, w,). To obtain these estimates we first observe that in
29, Section 5] it was shown that bilinear dyadic shifts and paraproducts satisfy the
so-called sparse form domination. Second, in [31, Theorem 3.2] it was shown that
sparse operators satisfy (4.11) under the further assumption p;,ps < oo. Finally
we can apply Theorem 1.1 to conclude as well the case on which either p; or p, are
infinity.

Lemma 4.12. Let Qy be a probability space and let {D%},cq, be a collection of
dyadic grids in R?. Given 0 < p < oo and v € A (R?), for every sequence of
functions {g.}wea, with g,: RT — C for every w € Qy one has

B Y 18P’

JeDE

]Eww 1‘1/<’ .
Eugillioe < o

Proof. Given D¢, a dyadic lattice in R?, one can first show that

(413) lgllzew 5 | ( X 18 )’

L'w)

for any ¢ € (0,00) and v € A, (R?) where the implicit constant is independent of
D4, To see this we can first invoke [8] or [16, Theorem 3.4] to obtain the case t = 2.
In turn, using A-extrapolation, see [11, Theorem 2.1], we conclude that the same
estimate holds for all 0 < ¢ < oo.

We next use (4.13) with ¢t = 1 to see that for every v € A, (R™) we have

2](X )’

JeDd

HEwngLl( < E, ||gw||L1(V) ~

Li(v)

( > A9 )

JeDd

We use again A, extrapolation, see [11, Theorem 2.1], to obtain the desired esti-
mate. Il

Li(v)
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Given a sequence of scalars {a;;}75_; C C and p,q € (0, 00|, we define

el oy = |[{lassbill ),

The following lemma states a variant of the bilinear Marcinkiewicz-Zygmund in-
equality:

w

Lemma 4.14. Let Qg be a probability space. Assume that the sequence of bilinear
operators {T% },eq, satisfies

(4.15) sup [T (f1, f2)wrws|| ps2 S [ frw || ps]] f2wal[ e
wello
for all weights @ = (w1, ws) € Az (RY) and fi, f» € LX(R?). Let 1 < s < 2,
ﬁ: (plap2); and i: (Q1aQ2) be such that 1 < P1,P2,4q1,42 S oo, % = le + piQ >0
and * =L + L > 0. Then, the estimate
q q1 q2
o0 o0 q 1
W[ fw ) s\s\«¢
’Ew<z < Z T (fl,i,kafZ,j,k>| ) ) w1W2 .
k=1 ij=1
2 3 2 3
S H<Ew”{floji,k}@kHeZluzg)) wl‘ o1 <Ew”{féfj,k}jkazZQ(zj)> w2‘ P2

holds for all weights «f = (w1, ws) € A(R?) and for fi; ., f5, 1, € L*(RY).

Proof. Take an arbitrary w € €. Let 7= (r1,72) be such that 1 < ry,r, < s and
set L = L + L. Note that in particular £ > 2 > 1. On the other hand, from (4.15)

T1

Theorem 1.1 we deduce that 7% satisfies the estimate

17 (frs f)wrwal| e S [ frwsllm || fawal[ e

for all @ = (wy,ws) € Ax(R?), and fi, fo € L°(R?). With this in hand, since
0 < r < max{r;,m} < s < 2 we can apply the bilinear Marcinkiewicz-Zygmund
inequality in [6, Proposition 5.3] to obtain that

(3 s ) ], < [l

Z7J:

{2}

szl‘ £5w2)

I

L L2

for all W = (wl, ’LUQ) € A,:'(Rd) and fl,ia fg,j S L?(Rd)

By Theorem 1.1, for every ¢ = (qi, ), t = (t1,t5) with 1 < ¢, gz, t1,t3 < 00 50

that 1 =L + L >0and i =21+ L >0onecan immediately obtain that
q q1 q2 t t1 to

S a1
H (Z ( Z T (fr,iks f2,j,k)|s) 5) “wywsy t
k=1 ij=1 L

5 HH{fl,i,k}i,k”gzl(zf)wl H{f2,j,k}j,k

holds for every @ = (w1, ws) € A{R?) and fi 4, fojx € L (R?). Here it is crucial
to emphasize all the implicit constants are uniformly bounded on w € )y because

w .
Lt ’422 (€5) 2 Lt2
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of (4.15). Applying this for the particular choice £ = (2,2) so that t = 1 one can
easily see that

B (Z(Z (i Fos)l")
(3 (30 Ui £

k=1 .9.]_

a 1
s q
W1wWsa
Ll

q
s

1
<E, )qwlwz

Ll

S Ee iJfHegl (e

w
; i w
,],k‘}]:kaz2(£'§) 2 I2

B 1
< H <]Ew}|{ffl7k}z,k”21 (£:)> 2’LU1 <]EwH{f27j,k’}j,ksz2 (z;)) 2w2‘

for every @ = (w1, ws) € A{R?) and f1, 1, fo;x € LE(RY). We extrapolate from
this and Theorem 1.1 readily leads to the desired estimate. O

L? L2

Lemma 4.16. Let Q be a probability space and let {D%},cq, be a collection of
dyadic grids in RY. For every w € Qo, I € D¢ and k > 0 set

Arnf= Y Asf
JeDy
J® =g

If1<p<ooandv € Ay(RY) then

1
(B o (a19)?) ", S lollznes

IeDd

sup
k>0

Proof. Fix w € )y and note that clearly

S TIAkglP =)0 D AP =D Al

IeDd IeDd J(e)Dg IeDd
JE) =1

Hence, for every v € Ay(R?), the boundedness of M and the dyadic square function
on L?(v) imply

Sl;pH(Ew Z(M(Al,kg>)2>2H22V —SupE Z/ (Arrg))vda

IeDd IeDd,

<supE Z/ |Aspg|°vde = E, <Z\A1g|) ‘2

IeDd IeDd

2
S lgllzew)

We can now invoke Rubio de Francia extrapolation theorem to obtain at once the
desired inequality. O

Lemma 4.17. Let Qg be a probability space and let {D%},cq, be a collection of
dyadic grids in R?. Suppose we have a sequence {77 }weao,1epa of complex numbers
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such that

1
w 2
> o) <

IeDd,ICIy

sup ( sup
weo ™ [peDY | 0|

Then, for every 1 < p < oo and v € A,(R?) we have
2
H( Z i lghl |I|)

Proof. By Rubio de Francia extrapolation we just need to obtain the case p = 2.
Assuming that v € A5(R?) one can see that if we write fo, = Y ,;cpa 77 {9)1 h] (for

some fixed n € {0,1}%\ {0}9) then (4.7) easily yields

H( Z ity |1|> (Z Akl )

IeDd

5 19l zr(w)-

2
o) SEall Ll

2
Ih”H S gll7 2
P )1 hy ) 911720

where we have used the L?(v)-boundedness of the dyadic square function and the
dyadic paraproduct (with the dyadic-BMO function b, = >, pa 77h]), see for
instance [13]. O

4.1. Proof of Theorem 4.2. To set the stage we fix = (p1,p2) such that 1 <
p1,p2 < 0o and set % = p% + p%' We also pick @ = (wy, w2) € Agpm.

Let f1, f2, f3 be finite linear combinations of tensor products of bounded and
compactly supported functions. We apply the representation theorem from [29]
(see (4.10)) to both T,, and T,,. For T, we will use w; to denote the random
parameter and Ufl «, for the different bilinear model operators. Analogously, for

T, these will be respectively w, and U;’Q w- We also let E, := E, E,,. Using this
notation (4.10) readily leads to

<Tn®Tm(f1,f2)7f3> CT CTmE Z Z Z Z Ckv wl uq ®U:J]2 ug(flaf2)7f3>7

keN3 veNd u1=1uz=1

—max;

— max, k&L Lz . :
where ¢, , = 27 maxi ki Yiz and oy and ay are respectively the parameters in

the Holder continuity assumptions of the kernels of T}, and T},. It is not too hard
to show, and this also follows directly from [30], that

(Ui ® Uiy (frs f2)s f)| S M fillza fell ol fll s,

uniformly in wy,wsy, k,v. Since finite linear combinations of tensor products of
bounded and compactly supported functions are dense in L3, this implies via the
above representation that T, ® T}, : L3 x L? — L3 is bounded, and that the repre-
sentation holds for f1, fo, f3 € LS°(R™™).
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Take next fi, fo € L°(R™™). Tt is easy to see that if p > 1 we have

T @ T (f1, f)wllie S D0 DY crnlBoUL, oy @ UL, L, (frs fo)w]l 1o,

keN3 veN] u1,u2

and if p < 1, then
170 ® Tu(fr 2wl S D0 D 0 Y GBS,y © Ul oy (frs fo)wl 7

keEN} veNG u1,u2

We claim that
(4.18) IELUE, uy @ UL, 0 (f1, )Wl S Croll frws || o || fows | e

holds with Cj, = 2m®% ki tmaxivi? - With this in hand, all the previous obser-
vations readily lead us to the desired estimate for fi, fo € L°(R™*™). By density
this completes the proof of Theorem 4.2.

We are left with showing our claim (4.18). Let us observe that when p > 1 we
could take the expectation out of the LP norm and prove a uniform estimate for
all w. However, in the case p < 1 we cannot do this, and therefore we need to keep
working with the expectation. We consider two cases, whether Uy, . is a bilinear
dyadic shift or is a bilinear dyadic paraproduct.

Case 1: Proof of (4.18) when U?, . is a dyadic bilinear shift.

w2,u2
To simplify the notation we write U = Uk and U3, = Up, .. In this scenario
Uy, is of the form L{%TQ (see (4.8)). Recall that dyadic “shifts have three different
expressions depending where the non-cancellative Haar function is located. For
now we consider the case on which the non-cancellative Haar function is in the

“second” position, that is,

U(/JZ 91’92 Z Z a’V( <gl7hJ1> <g27h0JQ>hJ3'

VG'Dm J1,J2,J3 E'Dm
T =y

The other possibilities of U, will be handled in a similar manner.

If we next write U, := U* L ®@ Uy, one can easily see that

(419)  Us(fi.f) = > Z as? 5 U ({fr b)), (fa, 15, )2) @ T,

VeDy, Ji,J2,J3€D,
Ji(vi):V

where (-, )9 stands for the inner product with respect to the variable z5 —recall
that we always write © = (z1, x2) with z; € R™ and z5 € R™. Here it is useful to
remember that the Haar functions live in R™, hence they only depend on xs.

Let us recall that by assumption @ = (wy, w2) € Agym, see Definition 4.1. For
w = wywy we have by Holder’s inequality that

P P

€SS sup [w(‘rlv ')p]AQp(]Rm) < ess sup [wl(mla ')pl]i (R™) [w2(x17 ')p2]f}2 R™) < Q.
xr1ER™ x1ER™ 1 P2
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Hence w(zy,-)? € Axo(R™) uniformly in z; € R". With z; € R” fixed, we can
invoke Lemma 4.12 with g, := U,(f1, f2)(x1, ) and the weight w(z1, )P € A (R™).
Then, we integrate over x; € R" and after some straightforward computations we
arrive at

(4.20) / LU (fr, fo)PuPda

Rn+m

// ’ Z aV(J) w1(<f1’hjl>2a<f2ahJ2> ) @ hy, 2F>pwpdx.

Js, VG'Dm Jl,JQGDm
J(”S) Ji(vi):V

Rn+m

Let s = (8;") so that 7 = ¢ and clearly 1 < s < % < 2. Let J3,V € D! be such
that J§U3) =V. From the size estimate of the coeflicients a“‘?( ) We get that

(420) | N0 @ Uk (U he, (o, ,)2) @ B,

J1,J2€D,
Jf””:V
1
S & s
< Qmaxivig < Z ‘Uoljl(fl,leVv f2,J2,V)|s> ® 1y,
J1,J2€DZL2
T =y
% J 3
where we abbreviated f s, v = <f1,hJ1>2 and fo 5, v = | ‘ <f2, 7,02 Using

this in (4.20) we have

a2 ( [[mu,ppee)’

Rner

< QmE,Lxlul4 // Z Z UL (frnv, 2, )|s>§®1v}2>pwpdx>p.

VeDr,  Ji,J2€D,
Sy

-
=

Rn+m

We next introduce some notation. Write M?f(z) = M(f(x1,-))(xs), where M
stands for the Hardy-Littlewood maximal function (over cubes) in R™ and

(4.23) AV A@) = ) Aplfilen, ) (@),  VeDD,
J1€Dm
T —y

and when v; = 0 we will simply write AZ. Recalling the definition of f; j,1 and
(4.7) one can see that

EAE
V]

Ji|2
‘fLJl,Vl || |‘ ‘<f17 J1> }

‘<A%/,U1f17h']1> ‘ |AVU1f1’d'r27

’V| J1
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and, analogously,

’J2|7 0 1
ROV = —|(fy,1 das.
|f2,J2,V‘ |V| | f27 JQ ‘ ’V|‘ f2 J2 ’ = |V’ s ‘f2| x?
Thus,
(424) > |faviely SMYAY, fi) and Y |fanv|®@1ly < M.
J1eD, J2€D],
Jl(vl):V Jév2):‘/

Recall that (wy(-,z2), ws(-,x2)) € AzR"™) for a.e. x9 € R™ uniformly on z,
(see Definition 4.1), and that U satisfies the estimate (4.11). Therefore, we may
invoke Lemma 4.14 with the choice ¢; = 2, g = 00, ¢ = 2 and with s as above to
conclude that

1 1

(/ < [ Z < Z UJ1 flJ1 Vaf2]2 )’S>§ ®1V($2):|2)pw(_’x2)pd$l>z7
VeDy,  Ji,J2€D[,
JZ(UZ)

S (1+ maxk;) (/ <w2 Z ( Z | frvl’ ®1V($2))

VE'Dm J1 G'Dm
J('Ul) \4

* </n (E“’2< Sup < > fanvl® lv(:cg))i) 2 wz(_’xz)pzdxl)é

VEDwg JQG'DL)’LZ
g2y
P1 1
(1 +maxk )(/ (EW Z (MQ(A%/MJCI))Q) Sy (-, 9)? dx1> 1
" vepm

where in the second estimate we have used that s > 1 and (4.24). This, Holder’s
inequality, the fact that by assumption wy(zy, )" € A, (R™) and wq(zq,-)P* €
A,, (R™) uniformly for a.e. x; € R™ (see Definition 4.1), and Lemma 4.16 readily

give
(JIE[X (X whtmvfonnr)

veDy,  Ji,J2€D],

@ [
-
=

& 1V] 5>pwpalyc> !

Rn+m
JW:V
Pl 1
20 A2 2\ 2 p Pl
1+max/<: // (M>(AY,, 1) ) w11d55>
Rnt+m VGD"L

X (/ (M2j'"2)7”2’ctJ§’26i:L’)E

Rn«!»m
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S (14 maxk;)|| frwn]| e[| f2ws[ ez

Plugging this into (4.22) we arrive at (4.18) in the case when U,, ® U,, is of the
form (4.19).

Let us now consider the cases in which U}, is a bilinear dyadic shift of some
other form. The case in which the non-cancellative Haar function is located in the
“first” position (i.e., our operator is written in terms of hy,, Y, and hy,) is clearly
symmetric to the case we treated already (one just needs to switch the roles of f;
and f5). Thus, we only need to consider the case when

Us(fisfo) = > > a2 U ((frsh)as (fo, hup)a) @ B,
vVeDm J1,J2,J3€'Dm
g =y

This time, rather than using the lower bound for the square function estimate,
we just proceed as in (4.21), putting absolute values inside and using Hoélder’s
inequality with s as before. This gives that

Ul )l < 270 57 (ST |UB (s o)) @ 1y,

VG'Dm J1,J2€'Dm
Jf”“:v
1
where f1 5, v = |‘|]V|2 (fi,hy )2 and fo 5, v = %(fg,hbh. We can proceed much
as before, with the difference that Lemma 4.14 is used with the exponents ¢ =
g2 = 2, ¢ = 1 and also that since h, is cancellative we have the analog of the first
estimate in (4.24) for fo s, v. This gives that

H]Ewa(fl, f2)wHLP

S 2maxvio¢/4(1 + max kz)

(B, Y (283, 1)) s

VeDy,

X H<Ew Z Mz(AVv2f2))2>§w1
=

p1

P2
< gmaxvie/d(] 4 max ko)l frwr || oo || fowa || ez,

where in the last estimate we have used that w (z1, )" € A, (R™) and wo(z1,-)P* €
A,, (R™) uniformly for a.e. x; € R™ (see Definition 4.1), and Lemma 4.16. This
ends our treatment of the case when U,, is a dyadic bilinear shift.

Case 2: Proof of (4.18) when U], . is a dyadic bilinear paraproduct.
As before to simplify the notation we write U, k= Uk and us, =U; Here

wi1,u1 w2,u2”’

we assume that U, is of the form Upy, , see (4.9), and hence v = (O, 0,0). On the

other hand, Ufjl is any model operator. The argument for this case is easier than
the previous one: before we used the Marcinkiewicz-Zygmund type estimate in
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Lemma 4.14 to deal with the complexity of U, and in this scenario the complexity
is zero.

Recall that dyadic bilinear paraproducts have three different expressions depend-
ing on where the cancellative function is located. We first consider the case where

91792 Z a 92 vhv,

VeDy,

and the other cases will be treated below.
We write as before U, := Ufl ® Uy, so that

Us(fis f2) = Y a?UL ((fi)vas (Fo)va) @ hy.

VG'DZ])““2

As shown in the previous case wy(xy, - )Pwa(z1, -)P € Aso(R™) uniformly in z; € R™.
With z; € R” fixed, we can use Lemma 4.12 with g, := U,(f1, f2)(z1,) and the
weight wy (x1, -)Pwa(xy, )P € Ax(R™). After that we integrate on z; and arrive at

(3 WL e Gy ) ]

VeDy,

|E,Us(f1, fo)w| e S

Recall that (wi(-,z2),wa(-,22)) € Az(R") for a.e. x5 € R™ uniformly on z, (see
Definition 4.1) and that U,, satisfies (4.11). Thus, we may with fixed zo € R™
invoke Lemma 4.14 with the choice ¢; = 2, ¢ = 0o and ¢ = 2 in the very special
case where the inner £*-sums have only one non-zero term. This gives that

(/ ( [ > 12U ((fve, (fo)via) © By (a2)] ]1>pw(.,x2)pdx1>p

VGDm

Samak)( [ (B 3 o © b)) )

VengT2

8 </n (EW sup [(f2)v2 ® 1V(x2)]2>pgw2(.7x2)pzdxl>plz

VGDL”2

<@ —I—m;axkﬂ(/n (sz Z lag? (fi)ve ® hv(xg)\2)p21w1( To)P dxl)

VEDL”2

1
P1

1

X </H(M?fz)pQwQ(-,xg)p2d$1>pz,

where we have used the pointwise inequality SUPy ey (fo)vel ® 1y < M?fy.
Using the obtained estimates, Holder’s inequality, the fact that by assumption
wy(zq, )Pt € A, (R™) and wy(xq,-)P? € A,,(R™) uniformly for a.e. 2, € R (see
Definition 4.1), and Lemma 4.17 we conclude that
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(B 3 It © 1)

VeDy,

||Ewa<f1>f2)w||LP 5 (1 +m2axk‘z)

LPr1

1
< ([[orryaan) < 0 maxh) | oo foval

Rn+m

This gives the desired estimate in the present case. Let us finally consider the
remaining two possibilities for U7, . By symmetry, we may suppose that

Ly

f1,f2 Z aw2Uk f1 2,<f2,hv>v2) |V\

VeDy,

and the other cases is treated similarly switching the roles of f; and f,. This time
we do not use the lower square function estimate and directly apply Lemma 4.14
with exponents ¢4 = ¢ = 2, ¢ = 1 and again the inner ¢*-sums have only one
non-zero term. Hence, much as before we obtain

|EuUs(f1, fo)w|r S (1+ max k;)

(B 3 It @ o)

VEDm

< S el e ) e

V'Dm

LP1

LP2

S+ max k)|l frw | Loy || fowal| £e2

where the term corresponding to f; has been treated as before. For f5, using the
notation introduced in (4.23)), one first sees that (4.7) gives

1 1y
V= (AL fo, hy)ya| @

VI I\Q

< m /v |AY foldze @ 1y < M? (AL fo)

|(fo; hv)ve| ®

and therefore Lemma 4.16 with & = 0, along with the fact that wq(zq,-)P* €
A,,(R™) uniformly for a.e. 1 € R (see Definition 4.1), yields

H( Z [(f2, v )val? ®|V|>l

2

Lr2

S [l 2wzl zea.

<& 3 oretay) e,

This concludes the proof of (4.18), and hence that of Theorem 4.2. O
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4.2. Proof of Corollary 4.3. We proceed by extrapolation. Fix 1 < ¢q1,¢s < 00
and let % = qil + qu > 0. Given fi, fo € LP(R™™) define for every z; € R™ and for
i=1,2

(4.25) F(x1) == |Tn @ Tin(f1, f2) (@1, )| Lammy and  Fi(z1) == || fi(21, -) || Lai @m)

Suppose W = (wy,ws) € Az(R™) with ¢ = (g1, ¢2) and as usual we define w = wyws,.
It is easy to see that (w3 ® 1l,ws ® 1) € Az m. From Theorem 4.2 —here it is
crucial that 1 < ¢1, ¢y < co— we see that

(4.26) [Fw| zany = T @ Ton(f1, f2) (0 @ 1)|| Laqa+m)
S fi(wr @ D) par @ntmy || fo(we @ 1) || oo mnsm)
= ||F1w1||Lq1(Rn)||F2w2”Lf12(Rn).

We can extrapolate from this estimate with the family F consisting on the triples
(F, Fy, F5) and Theorem 2.1 (with 7 = (1,1,1)) gives with p = (p1,p2) and 1 <

ith 1 = L ¢ 1
p1,p2 < 00 with = - + - > 0 that

| FwlLr@ny S ([ Frws || e @e) || Fowa || pes ey

for all (wy,wy) € Az(R™). This in the special case w; = 1 and wy = 1 gives us the
estimate

(4.27) T @ Ton(f1, fo) |l o @nsLo@my) = | F || o gen)
S o o) [ Fl oz gn) S [ fill zos e pon ey || foll Loz (e a2 (e
for all f1, fo € L(R™; L7 (R™)). This ends the proof of Corollary 4.3. O

4.3. Proof of Theorem 4.5. We first observe that a trivial density argument
allows us to see that Corollary 4.3 readily gives the desired estimate for all f; €
LP(R™; L2 (R™)) and fo € LP2(R™; L2(R™)) provided 1 < p1,pa, ¢1,q2 < oo. This
means that we only need to consider the cases ¢ = oo or ¢ = oo and/or p; = 0o
or po = 0. In these scenarios we need to justify why the operators are well-defined
and also get the desired estimates. To accomplish all these we split the argument
in two main steps which are almost independent, and each of them is interesting in
its own right. In Case 1 we use sparse domination techniques and the main goal is
to treat the cases ¢4 = oo or ¢; = 0o on which our main extrapolation result is not
useful. However, we prove more, mostly because in Case 2 we will need to know
that the operators are well-defined for some class of functions. As a result, Case 1

deals with the exponents 1 < pi, ps < co with 110 = p% + p% >0and 1 < q,q2 <00

with 0 < é = qil + iQ < 1. We note that the restriction ¢ > 1 is natural since we
use sparse domination and duality, hence we need to be in the Banach range at
least for ¢. In this direction, if ¢ = 0o (resp. ¢ = o0) then ¢ = g > 1 (resp.
q = q1 > 1), thus in these two cases we do not have a real restriction. In Case 2,
where 1 < q1,q2 < 00, we are going to use our extrapolation result again, Theorem
2.1, and in doing so we need to take a detour to show that the operators are well-
defined and this is where Case 1 is invoked in a particular case where the ¢;’s are

finite. It is important to note that at the end-point cases (i.e., when some of the p;’s
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or ¢;’s are infinity) we are able to obtain the desired estimates for functions in the
corresponding spaces and not just in L°(R"*™). This requires to justify why the
operators are well-defined and we do this by duality using the two adjoints of our
operators. This makes some of our argument tedious needing to consider several
cases quite carefully. If one were interested in obtaining the desired estimates just
for compactly supported functions one could skip some of those cases.

Case 1: 1<p1,p2§oowith%:i+i > 0 and 1 < ¢1,¢20 < oo with

1 1 1 pP1 p2
1 _ 1 1 <«
0<q q1+q2—1‘

We first prove certain vector-valued sparse domination result using dyadic model
operators. The starting point is that as observed above we already know that for

f1, f2, f3 € L°(R™™) we have
'n/ C’Vn

(T @ Tuf1, f2): f3) = Cr, O, B Y 0 > > > (UL @ UL, (frs £), fo),

keN3 veNd u1=1uz=1

where ¢y, 1= 271 kig-—maxivi? and oy and g are respectively the parameters

in the Holder continuity assumptions of the kernels of T;, and 7,,,. Denote U, :=
k

le Ul ® U:J}z u*

Then, with 1 < ¢1,q2 < o0 so that 0 < 1/q := 1/¢; + 1/¢2 < 1 and for any
Ji, f2, f3 € LOO(R"+m) we write

< (f17f2 Z Z au11{17(7;1)< wg,u2(<f17h11>17<f27h12> ) <f377“3>1>7

KeDn 11,127I3GIDW1 uq
* =k

w1,u1

where h; € {hr,h%}. Tt is not hard to adapt the bilinear sparse domination ar-
gument of model operators [29, Section 5| and deduce that for all fi, fo, f3 €
L (R™™) we have

[{Uu(frs fo), Fadl S (14 max k) As ([ full o eoms [| foll oz ey W[ Fll 2o eomy )
= (L maxks) Y |QICIillzor ) g (1 fell o)) o (I fisll 2o ey )

QesS

for some dyadic grid D" and sparse collection of cubes & C D" depending on fi,
f2, f3, q1, 2. Here it is important to notice that & and D™ do not depend on w
(see Lacey-Mena [26] or [29]). Thus,

(4.28)  [(To @ Tolf1s f2), f3)| < CAs([[ falla@emys [ fall Lo @omys | foll Lo om))-

Case la: ¢q1, ¢ < 0o and p1, ps < 00.
This case follows at once from Corollary 4.3 and a standard density argument.

Case 1b: ¢1,¢q2 < 0o and p; = o0 or py = 0.

By symmetry we may assume that p; = oo and hence p, = p with 1 < p < oo.
We proceed by duality and observe first that 7* (resp. TX*), the adjoint with
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respect the first entries of T, (resp. T,,) is a bilinear Calderén-Zygmund operator
in R™ (resp. R™). Also, one can see that (T, ® T;,)"* = T}* @ T* and therefore
the already established estimates give

(T ® Tm)l*(f?n f2)HL1(Rn;LQ’1 (R™)) N HfSHLp’(Rn;Lq’(Rm))Hf2HLP(R";Lq2(Rm))

for all f3 € L¥ (R™; LY (R™)) and f, € LP(R™; L%(R™)) since in the current case we

havel<p’,p<oo,1<q',qg<oo,andqi,:§—l—qi2<1.
1

In turn for every f; € L>®°(R"; L9 (R™)) and f, € LP(R"; L%(R™)) we can define
T, @ Tr(f1, f2) € LP(R™; LY(R™)) by setting for all f5 € L¥ (R™; L7 (R™))
<Tn ® Tm(fla f2)7 f3> = <(Tn @ Tm)l*(f?n f2)7 f1>
All these eventually show that (4.6) holds and Case 1b is complete.

Case 1c: ¢ = 00 or ¢u = 00 and py, ps < 0.

By symmetry we may assume that ¢; = oo, hence 1 < ¢ = ¢ < oo. Our first
goal is to see that the above sparse estimate (4.28) holds for any f; € L>(R"*™)
and fy, f3 € L°(R™™™). As observed before (T, @ Tp,) ™ (f3, fo) = T* @ T (f3, f2)
and by Case la with exponents p; = ps = §1 = ¢ = 2 we have

(T @ Ton) ™ (fs, f) L @nrmy = (T @ Ton) ™ (f3, f2) |l s ey
S I3l ze@nipz@my 1 f2ll 2 @nsp2@my) < oo

Let Ry C Ry C --- be an increasing sequence of rectangles such that | J, Ry = R"™
and note that by duality

<Tn ® Tm(fla f2)7f1> = <(Tn ® Tm)l*(f37f2)v f1>
= kh_glo«Tn & Tm)l*(ff%a f2)7 1ka1> = klinc}o<Tn X Tm(le.fh f2)7 f3>

Hence since all the quantities involved are finite we can choose k (depending on
flu f27 f3) so that

(T @ T (f1, f2), f3)| < 2T @ Ton(1g, f1, f2), [3)]-

At this point we can invoke (4.28) —which is valid with ¢; = 00, g = ¢ as observed
above— for 1g, f1, fo, f3 € L (R™™) and find a sparse family S and a dyadic grid
D" with § € D" (both § and D™ depending on fi, fs, f3, and on k& which ultimately
depends on these three functions) such that

(Lo ® Tn(f1, f2), f3)] S As(ILry fillLoe®my, || foll Lagmy, [ f3]| por o))

< As(l[fill zoo@mys 1 f2llLagmys | f3]l por gomy)-

All in one, we have been able to show that for any f; € L®(R"™™) fy f3 €
L°(R™™) there is a sparse domination formula as in (4.28) with a possible larger
constant.

To proceed, let w € A (R™) and note that for any f; € L®(R™™) and f, €
L (R™™) we have
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1T ® Ton(f1, f2)l| La(uar)dar R La@myy = (| Tn @ Tl f1s fo)ll Lo gr+m)
1
ISllp|< n & m<f17f2)7f3(w®1>q>‘7

where the sup runs over all f; € L‘X’(]R”*m) with || f3]| .+ = 1. Fix such a function

f3 and write fl = ||f1”Loo R™) = ||f2||Lq(]Rm )s and f3 = ||f3||Lq3 (R™)- By the
previous argument we know that there exists a sparse family S and a dyadic grid

D™ with § € D™ (both § and D" depending on fi, fa, f3) such that

un®ﬂmmﬁyﬁW®mm<Aaﬂﬁfmb

1

= 3w Rayigy | e,

QES

<Z w(Eq) f1 <f2>Q /f3w %)del
QEeS

S | M(fu, )M (fsw 7 ywdx,

R?’L
SINM (o, )l oqurm | M5 (fsw™
5 ||M(f17 f2>||L‘1(w,R”)-

In the previous computations we have used that {Eg}ges is the pairwise disjoint
family associated with the sparse family S for which we have |Eg| ~ |Q|. Also,
since w € Ay it follows that w(Q) ~ w(Eg) since |Eg| ~ |Q|. Finally, MP" is
the D"-dyadic Hardy-Littlewood maximal function with underlying measure wdx,
which is bounded in L9 (w,R™) for every 1 < q < oco. Gathering all the obtained
estimates we have concluded that for all w € A, (R™)

\\H

T 2o ey

H T, @ Ton( fr, fQ)HLq(Rm)”Lq(w’Rn) = T @ Ton(f1, f2) || L9 (w (1 )dar R ;Lo (R
SNIM(fr, fo)llpoqugn-

Using then A..-extrapolation, see [11, Theorem 2.1], we obtain for every 0 < r < 0o

1T @ Ton(f1s f2) || Lr (s pammy) = H T @ Ton(f1s f2) || Lagm)

Lr(Rn)
SIM(Fr, fo) e @,

At this point, given 1 < py, ps < oo with 117 = p— +L o 0 we can apply the previous

estimate with » = p and the well-known estimates for the bilinear maximal operator
(see [27]) to conclude that

(4.29) || T, ® Tl 1 fo) lomszaemyy S 1M (fiy Fo)lleqeny S I Filloes oy | foll oo ey

= [ fill ey @ oo ) || foll o2 ens Lo emy)

for all fi € L®(R™™) and fy € L°(R™™™).
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Next, given f; € LP'(R™; L®(R™)) and f, € L*(R™™™) consider f{¥(z1,zs) =
F1(1, 29) Va1, ) | oo ey <y fOT every (21, 22) € R™™™ and N > 1. It is straight-
forward to see that {f{}y>; is Cauchy sequence in LP*(R"; L>°(R™)) and hence
this allows us to define

T, @ Tu(f1, fo) = lim T, @ T(f", )

where the convergence is in LP(R"; LY(R™)). Since f{¥ € L>®(R™™) and f, €
L (R™™) we can invoke (4.29) to see that (4.6) holds for all f; € LP*(R"; L>(R™))
and fy € L2 (R™™). Next, since ps, ¢ < oo we can readily extend this estimate by
density to all f; € LP*(R™; L*(R™)) and fy € LP>(R"; L4(R™)) and this completes
the proof of (4.6) in the present case.

Case 1d: ¢; = o0 or ¢g; = 00, and p; = 00 or py = 0.
Again by symmetry we may assume that ¢ = oo, hence 1 < ¢ = g2 < 0.

Consider first the case p; = oo, thus 1 < ps = p < co. As before, from Case 1la
we readily get

(T @ Ton) ™ (f35 f)ll @it @y S sl ot s qomy 1 f2ll 2o s ooy

for every fo € LP(R™ LY(R™)) and f3 € LP (R™; L7 (R™)). Then for every f; €
L*°(R™; L>°(R™)) and fo € LP(R™; L4(R™)) and we can define T,, ® T,,(f1, f2) €
LP(R™; L9(R™)) by setting for all f3 € L (R™; LY (R™))

<Tn ® Tm(fla f2)7 f3> = <(Tn & Tm)1*<f3a f2)7 f1>
All these readily imply the desired estimate.

In the second case, that is, when ps = oo and hence 1 < p; = p < 0o we can
show much as before that Case 1c yields

H(Tn ® Tm)2*<f17 f3)HL1(Rn;Lq’(Rm)) 5 HflHLP(R";L“’(RW))HfSHLP’(]Rn;Lq’(]Rm))a

for every f; € LP(R™; L®°(R™)) and f; € L (R"; LY (R™)). As a consequence,
for any f; € LP(R"; L>*(R™)) and fo € L>®(R"; LY(R™)) and we can define T, ®
T, (f1, f2) € LP(R™; L4(R™)) by setting for all f3 € L' (R™; LY (R™))

<Tn ® Tm(f1, f2)7 f3> = <(Tn ® Tm)Q*(fla f3)7 f2>

This gives the desired estimate in the present scenario completing Case 1d and
hence Case 1.

Case 2: 1<p1,p2§oowith%:pil+pi2>Oand1<q1,qg<oo.

By Corollary 4.3 and a standard density argument we only need to treat the cases
where either p; = oo or p; = 0o. By symmetry we just explain the case p; = oo,
1 <py=p<oo. Let fi € L®°(R™; L™(R™)) and fo € L°(R"*™). Pick 1 < ¢» < o0
large enough so that % = qil + q% < 1. Since fo € L*(R™™) C LP(R"; L%(R™)),
our choices of exponents allows us to invoke Case 1 we know that T, ®@T,,(f1, fo) is
a well-defined function in LP(R"; LI(R™)) —we would like to emphasize that this is
the only place in this proof on which we use Case 1 and it is done just qualitatively

and with the exponents ¢;’s being finite. At this point we proceed as in the proof of
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Corollary 4.3 and define F', F; and F} as in (4.25). Our goal is to show the validity of
(4.26). For w as above, we may assume that || f1(w; ® 1)|| par mntmy = || Frws || Lo mmy
and || fo(wy ® 1) pa2 mrtmy = || Fows|| o2 mny are finite, otherwise there is nothing to
prove. That means that we can invoke again Theorem 4.2, and (4.26) follows in
the same manner. We can then extrapolate and in the special case w; = 1 and
wy = 1 obtain (4.27) in the present scenario:

1T @ T (f1, f2) |l o @niza@myy S || fill oo @nsza @my)ll foll o @nspae @my)-

The important fact is that this estimate holds for any f; € L>(R"; L% (R™)) and
fo € LE(R™™). In turn, since 1 < py, g2 < oo we can run a standard density
argument to conclude that it also holds for all f; € L*®°(R™; L9 (R™)) and f, €
LP(R™; L% (R™)). This completes the proof. O
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