ITERATED COMMUTATORS UNDER A JOINT CONDITION ON THE TUPLE OF
MULTIPLYING FUNCTIONS

TUOMAS HYTONEN, KANGWEI LI, AND TUOMAS OIKARI

ABSTRACT. We present a pair of joint conditions on the two functions by, ba strictly weaker than
b1,ba € BMO that almost characterize the L? boundedness of the iterated commutator [b2, [b1,T7]
of these functions and a Calderén-Zygmund operator 7. Namely, we sandwich this boundedness
between two bisublinear mean oscillation conditions of which one is a slightly bumped up version
of the other.

1. INTRODUCTION

The study of commutators of Calderén-Zygmund operators with pointwise multiplication has
been a long standing interest in the field of harmonic analysis; for example, in the fundamental
paper of Coifman, Rochberg, Weiss [2] a characterization of the space BMO(R?) is given with
respect to the commutators taken with the Riesz transforms:

[b,R;]: L*(RY) — L*(RY) boundedly forall j=1,...,d

if and only if b € BMO(R?). Here [b, R;] = bR; — Rj(b-). Already in [2] it was shown that
b € BMO is a sufficient condition for the boundedness of the iterated commutator [b, [b, . . ., [b, T]]]
of pointwise multiplications and a Calderén-Zygmund operator and the same argument extends
to the case of commutators [by, [bx—1,. .., [b1, T]]] with different functions, all in BMO separately.

Our object is to make the first systematic study of the iterated commutator [b, [b1, R;]] in the
case of two different functions by, b2. In particular, we want to identify a joint condition on the pair
(b1, b2) that is weaker than the individual conditions b1, b, € BMO, that is as close to optimal as
possible, and which still guarantees the boundedness of the commutator. This is, in some sense,
similar in spirit to the case of bilinear weighted theory, where w, ws € A4 is not the optimal con-

dition for the boundedness of bilinear singular integrals from L*(w;) x L4 (ws) to L*(w;/*wy/?)
but rather there is a genuinely bilinear joint condition (wy,wz) € A4 4) introduced by Lerner,
Ombrosi, Pérez, Torres and Trujillo-Gonzalez [11]. In the weighted case the identification of this
genuinely bilinear condition has been highly impactful.

We study two-sided estimates for the L? — L? norm of the commutator [bg, [b1,7]]. While the
upper bounds will be valid for all bounded singular integrals, the lower bounds require some
suitable non-degeneracy, and here we work with the Riesz transforms

7

) — 1 Tj — Y 2RA) ...

We show that
Ca(S2(b1,b2) + Ta(b1,b2)) < ||[be, [blaT]]HL2(Rd)_)L2(]Rd) < Ore(S242(b1,b2) + Toye(b1,02)), (1.1)
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where the constant Cr . tends to infinity as € tends to zero and the joint conditions S, T},, with
0 < p < o0, imposed on the complex valued functions b, b, are defined by

Splbr, ba) = o (@ /Q b1 — <b1>Q|p>1/p <Q12| /Q by — <b2>Q|p>1/p

1/p
T,(by, be) = sup (|Q/ by — (b1)q|P|b2 — <b2>Q|p> , bi, b, biby € LT (RY).

Here the supremums are taken over all cubes. Whenever it is well understood which functions
b1, by are in question, we refer to these conditions shortly as 7, and .5,,.

We show by example that the lower bound in (1.1) does not improve to Soy (b1, b2)+To4- (b1, b2)
for any € > 0 — that is, the obtained upper bound is not necessary. This leads us to consider joint
conditions involving Young functions that can be made strictly weaker than Sy, + 75, for all
e > 0. Hence, we prove the commutator upper bound with these updated conditions with a
version of the sparse domination principle introduced in Lerner [9].

and

1.1. Basic notation. We denote A < B, if A < CB for some constant C' > 0 depending only
on the dimension of the underlying space, on integration exponents and on other concurrently
unimportant absolute constants appearing in the assumptions. Then naturally A ~ B, if A < B
and B < A. Subscripts on constants (C 5 ¢,...) signify their dependence on those subscripts.

We also denote the space LP(R%) with L?.

Integral average is by dash or brackets: |712| Jof=fof={fa-

When we say that an operator A is bounded on L? we mean that A : LP — LP boundedly.

Acknowledgements. We thank Henri Martikainen for posing research questions for this paper
and for valuable discussions and comments. We also thank the anonymous referee for construc-
tive comments that improved the presentation.

2. NECESSARY CONDITIONS

We move on to derive the lower bound S; + T3 for the iterated commutator taken with the
Riesz transforms. Later we see that the condition S» + 75 is not strong enough to imply the L?
boundedness of the commutator, however.

Before proceeding any further, let us precisely define the commutator [b2, [b1, T]].

Definition 2.1. Let b;, i = 1,2, be such that by, by, b1by € L? (R?) and denote b = (b1, b2). With T
being an operator on LQ(Rd), the commutator C,T on L°(R?) is defined as
CoT = [ba, [b1, TT],
where [A, B] = AB — BA for any two operations A, B, and b, f(-) = b;(-) f(*).
We deal with the second order commutator [by, [b1,T]] but our results concerning sufficient
conditions could just as well be formulated in the higher order cases.

Lemma 2.2. Let R; be the jth Riesz transformon R%, j = 1,...,d, f1, fo € L and by, ba,bibs € L}, ..
Under these assumptions, for all cubes @, we have that

‘][][ H y) f2(y) f1(x dydx’ < Cdz ICoR:| s (72 |f1|p>1/p % |f2|p'>1/p,'

Proof. Our proof separates into two cases, to odd and even dimensions.
Case1, disodd: Let d = 2k+1 for some k € N. By composing back and forth with the translation
z — x — cg, we may assume that the cube () is centred at the origin. We begin with introducing

1as
d

T Z|x— e =l

i=1

yl4, 2.1)
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denote b(z,y) = H2 1(bi(z) — bi(y)), and then proceed with:

|| [ v s i dya] =) /Q i [ )W) dyds
1 (i — 9:)?
= e

|z — y[? o L)1 (’U)fl(l’)dydx‘
[ [/

where Y;(z) = z;|z|*"1. We momentarily force the expression into this form in order to contrast
it with the similar argument emplying spherical harmonics given in [2].

For a given a = (o, . .. ad) e NYand z € R?, let 2 = [[_, 2%. We continue with

‘/ng%/x—yps Z |:c |2d R WleWhr )dydx‘

Mm

=1

03 T o) (o) dy s

M&

=1

d
=| [ I - 1 dyd ‘
/Qslg(l)/gcyl>€ |x_ |d+1 (; Y5) ) 2(y)1loy) fi(x) dyde
= i b T Y o 8 1 dud ‘
/Qel_%/w y|>e¢ 1a+[3 d o y)‘ |d+1a 211(@)2%y" f2(y)lo(y) dy deo
* : Ti—Yi g ‘
= a 1 b(x,y) —=— 1 dyd
;a-§da ’B/ hilo iy jo—y|>e . y)\x*yld“y o) dyds
d
< Z Z leLp (Q)HObR () f21Q)HLp(Q)
i=1 atp=d
d
< Z Z ()(XHLOQ(Q)HfluLP/(Q)H(')BHLO@(Q)HCbRi|‘LP—>LPHf2HLP(Q)
=1 a+p=d
d
<Cay, D laasllQIICER| o, ol fill 1o 12l o)
i=1 O¢+ﬁ d

< Cd|Q‘ Z HCbRiHLP—wPHleLP’(Q)HfQHLP(Q)’

where at * we used the fact that the limits exist separetely as R;((-)?1¢ f2b(z, -))(z), and where in
the second to last esimate we used the assumption that () is centered at the origin. Dividing by
|Q|? gives the claim.

Case 2, d > 2: In the previous estimate we saw that the key issue with the lower bound for
CyR;’s is the following: We introduce 1 as 27:1 (x; —y;)?|r — y| =2, and would like to view this as
(z; — y;)|x — y|~¢~! times functions that depend only on z and only on y. As we saw:

d
d-1
1—; |$_y|2 Z P |d+1 —y)lz =y, (22)

and the problem becomes about expanding |z — y|?~! when d is even, hence d was odd.

Consider the function z;|z|¢"! of z € R%. By induction, we check that 9%(z;|z|%!) is a linear
combination of terms of the form 27|z|¢~1®I=18] where |3| < |a| + 1. In particular, when |a| =
d + 1, then 0%(z;|z|"!) is a linear combination of terms of the form z%|z|~1=18l. In particular,
10%(21]2]4-1)| < |21 € LL (RY) for d > 2.

loc
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Now let ¢ € C2°(R?) be a smooth bump such that ¢ = 1in Q(0, 1), and ¢ is supported in
Q(0, 3) (cube of centre 0 and “radius” 3, hence sidelength 1). We cons1der the function ¢;(z) =
¢(z)zi|z|d_1. By the previous computation and product rule, this satisfies

10%¢i| < |Z|_11Q(0,%) € L'(RY)

for|a| =d+1land d > 2.
Thus the Fourier transform of ¢; satisfies for all |o| =d + 1,

b ~ | [ oo o] < [ jo2enta)lde < .

and hence |¢;(k)| < |k|~1~%. If ®; is the 1-periodic extension of ¢;, its Fourier coefficients satisfy
this same estimate. In particular these Fourier coefficient are in ¢ (Z¢). Recalling that ¢;(2) agrees
with 2]z 1 in Q(0, 1), we hence have shown that

. 1
zi| 2|47t = Z ai(k)e?™ =, Vz € Q(0, Z)’ (2.3)

kezd

where 3, ;4 |ai (k)| < oc.

And observe that we only need to apply the formula (2.2) when z,y € @, a given cube. By
composing back and forth with dilations in addition to translations, we may assume that ) =
Q(0, ) Then if z,y € Q, we see that z — y € Q(0, 1), where (2.3) is valid. Substituting (2.3) with
z = x — y into (2.2), we obtain

1= Z |x - |d+1 Z a;(k)e' ™ (0 = Z a;(k Z |z — |d:-1 er?mhaem iy,

kezd kezd

which is a convergent series of expressions of the desired form, namely the Riesz transform kernel
multiplied by (bounded) functions that depend only on z or only on y. After this, the argument
can be concluded in the same way as before.

This Fourier series idea is based on Svante Janson [8]. (|

We gather two more basic estimates.

Lemma 2.3. Let Q be a cube and b; € L?

loc?

L 010 =) 0n() — b m ) dyta] 2 [ in2f o .4
L 00 =0 ) 0a(o) o)) e = f patof | b

where we have replaced the latter occurrance of be(y) with be(x).

i = 1,2, be such that fQ b; = 0. Then

and
, (2.5)

Proof. Multiplying out shows that

][ ][ (b1 () — b1 (9)) (b2() — ba(y))Br(@)ba(g) dy da
QJIQ

= blx 2.%‘[)1.1’33 2
: ()b()()dfuy)

][b2< e >do:][ by (1)baly >dy+f e )dz][ by ()b ()57 dy
][|b1 )2 da |b2 |2dy—‘][b1 Voo () da|”

dy - ][ @) drf b)) dy

b
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whence

. £ 010 =m0 0ate) - a0
= [ @] e+ | @G Gl 2 f e ok

As for (2.5) we compute:

][ ][ (b1 () — b)) (ba(x) — ba()) Br(@)ba() dy da
QJIQ

:][ b1 bo? *][ b2 |bl|26*][ b1][ by |b)? +][ 5152][ b1by
Q Q Q Q Q Q Q
2
:][ b1bl? + ‘][ b
Q Q

The lower bounds now follow by combining lemmas 2.2 and 2.3.

Theorem 2.4. Let R;, j = 1,...,d, be the Riesz transforms, biby € L? ., by, by € L3 . Then
d
Sa(by,b2) + To(by,b2) < Cy Z HCbR] HL2~>L2'
j=1

Proof. Denote ¢; = b; — (b;)g, i = 1,2. Then | 0 ¥; = 0 and the assumptions of Lemma 2.3 are
satisfied by which by (2.4) and lemma 2.2 we get the necessary condition S

][Wl )2 da |1/)2 \2dy<‘][][ (1 (x () (W2 (2) — Vo (y)) b2 (y)tr (z )dydm’

1/2 1/2
<> O (7{2 al?) (7{2 wp)
=1

For the condition 75, we apply lemma 2.2 with f> = 1, fi = %192 and lemma 2.3 by (2.5) with
b; = 1; to attain

F el < [ £ 010 =00 (t2(0) ~ ba(0) BN 0fo) iyt
1/2 1/2 1/2
< oYl (f ) (L 158) = oY Rl (f )
1

i=1

Dividing out equal factors and summing gives the claim. O

3. SUFFICIENT CONDITIONS

In this section we specify T' to be a Calderén-Zygmund operator satisfying the Dini condi-
tion. We begin with partially recalling, with only minor modifications, a sparse domination of
T from Lerner [9] (see also [10]) and its commutators from Ibanez-Firnkorn—-Rivera-Rios [7]. The
sparse domination would quickly give the boundedness of the commutator C,T on L?, when-
ever S,(b1,b2) + T,(b1,b2) < oo for any p > 2. However, in the last section we find that this is
too strong to characterize the boundedness of C},T" on L? and hence are motivated to introduce
the condition S4, g + T¢ involving the Young functions A, B, C, that can be made strictly weaker
than S, + T}, for all p > 2. Lastly, we prove the upper bound in Theorem 3.10 with these updated
conditions.

We begin with definitions.
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Definition 3.1. A d-dimensional Calderén-Zygmund operator 7' with an w-Dini -kernel is a
L*(R%) — L?(R%) bounded operator with the representation

/K (z,y)f(y) dy, x ¢ spt(f),

with the kernel K : R? x R?\ {(z,2) : + € R} — C satisfying the size condition |K(z,y)| <
C|z — y|~¢ and the regularity condition

c’ | — 2|
K — K@’ K - K N <
K (o)~ K )l + K ) ~ K] < -5 (2251,

whenever |z — 2/| < |z — y|, with the modulus of continuity w: [0,1] — Ry that is continuous,
increasing, subadditive, satisfies w(0) = 0 and ||w||pini = fol w(t)2 < oco.

Definition 3.2. Givenay € (0,1), we say that a collection of sets F is y-sparse, if for all distinct
elements S, R € F, there exist sets Es C S, Eg C Rsuch that Es N Eg =0 and |Es| > ~|95].

Definition 3.3. Let T be as in definition 3.1. We have the following maximal operators on L?(R9) :

i) the maximal operator 7 f(x) = sup, ]Tle(z_rs)c ()],
i) the grand maximal operator Mz (f)(z) = supgs,, €sssupPgcq |T flraysg) (€ |
iii) and its localized version My o (f)(z) = supg-ps, esssupecp |T(fls0\3p)(€)|, where Q, P
are cubes.

The control over the grand maximal operator is given by

Lemma 3.4. [9, Lemma 3.2] Let f € L2, .. The following pointwise estimates hold:

i) fora.e. x € Qwe have: |T(fl3q(x))| < C’,,HTHUHL1 @)+ Mrgf(z),
i) forall x € R we have: My f(z) < Ca(||w|| by + Cr)MS (@) + To f ().

For a more refined argument for the sparse domination in Theorem 3.5 without Lemma 3.4,
see the latest version of the sparse domination principle in Lerner, Ombrosi [10].

Theorem 3.5. Let T be a d-dimensional Calderén-Zygmund operator with a Dini kernel and denote
b(x,y) = (b1(z) — b1 (y))(ba(x) — ba(y)). We assume that f € LL(R?), and further to make everything
well- dEﬁHEd that b1, ba, 0102, blf, bgf, blbgf S Lloc

From these assumptions it follows that there exists a sparse collection S of cubes on RY such that

4
’Cbe(:r)’ <Crq Z Sif(x)
i1

where
Sif =Y |bv = (b)allbz = (b2)ol(| /) glas  Saf = Y b — (ba)al(lbr — (br)ellf]) 1o
QeS QeS
Saf =Y b1 = (b)al{b2 = (b2)llfgles  Saf =D (Ibr = (br)ellbz — (b2)allf) o Lo
Qes Qes

and the sparse constant denoted with -y depends only on the dimension d.

Proof. We recall only the part of the proof where the exceptional set is defined and control over
the appearing terms is established. In addition, a comment is made about the rest of the proof,
the details for which we refer the reader to the proof of Theorem 1.1 in [12] or [9].

For an arbitrary integrable function ) # 0 on () define

Ev(y) ={z € Q: [¥(2)] > a(|[¥l)aq},  E2(¢) = {z € Q: Mroi(z) > al|dl)sq}

and let the exceptional set be

E = U E,(f)UE;(bif)UE;(baf)U E;(b1baf).

i=1,2
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Since the localized version of the grand maximal operator is controlled with the non-localized by

Mrof < Mr(flsg),

and by the well-known facts that M, T,: L' — L'> boundedly, it follows from the weak (1, 1)
bounds implied by ii) of Lemma 3.4 in conjunction with the local integrability of all functions in
question that we may choose some o > 0 independent of the cube @ so that |E| < 27 (@+2)|()|.

Taking a Calderén-Zygmund decomposition of the function 1 at the height 27(?+1) yields a
collection F of cubes satisfying:

> IP < %|Q\, E\ |J PI=0 and PNE°#0) VPeF.
pPeF PeF
Then one decomposes
(CyT(f13q)) 1g = (CbT(f130)) Lowur + Y (CoT(flsgysp)) 1p + Y (CyT(f13p)) 1p
PeF PeF

and uses the properties of the collection F, Lemma 3.4 and that the commutator is unchanged
modulo constants in the functions b1, bs to derive

CuT(f130) 1 < Cra(lb = (B2)aclIb = (B)sol(lf e
+ [b2 — (b2)3@l([b1 — (b1)sqlf1)sq
+ [b1 — (b1)3l([b2 — (b2)sqll f1)sq

+ (b1 = (ba)sallb2 = b2)aoll Flsa) 1o + Y [T (F1ap)| e
PeF

From this situation one first iterates the above estimate with the last term and then transfers the
limit construction from the local to the global. O

Before stating and proving theorem 3.10 we need to recall and define

3.6. Young functions, their basic properties and the conditions Sy z,Tc. We may also define
joint conditions involving Young functions. A function A : [0,00) — [0,00) is called a Young
function if it is continuous, convex, strictly increasing and satisfies

A(0) =0, tlgélo A(t)/t = oo.
Given a Young function 4, the complementary Young function A is defined by
A(t) = sup{st — A(s)}, t>0.
s>0
We also have the maximal function associated with a Young function A :

Maf(x) = Zl;p<|f\>A,Q7

where the Luxemburg norm is defined by

(faq = inf{r>0: /Q AUFI/N) < 1.

We say that f € L{_if (|f|) 4.0 < oo for all cubes Q. The relative sizes of Young functions A, B

are compared with the symbol >=; we say that B > A, if there exist constants C,t, > 0 such that
A(t) < CB(t), when t > ty. Finally, we define the B, class: a Young function A € B, for p > 1 if

/°° A(t) dt
— <0
1 tPt

We record the following properties, which can be found at least in [3, Chapter 5] (see also [15]):

Proposition 3.7. Given a Young function 4, it holds that

i) forany ¢t >0,t < A7 (t)A71(t) < 2t,
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ii) for any cube Q,
(Ifghe < 2(fDaellgl) 0 3.1)
More generally, if A, B, and C are Young functions such that for all ¢ > ¢, > 0,

BT ()0 (t) < eA”' (1),
then

(Ifghae < IfB.edhcq:
111) if B = A, then <‘f|>A,Q S <|f‘>37Q and M4 5 Mp,

iv) if A € By, then A(t) = t* and (|f[?)§, < (|f]) -
Proposition 3.8. [15] M4 : L? — L? boundedly if and only if A € B,
Now we are ready to give the following definition:

Definition 3.9. Given Young functions A4, B, C such that B,C € B,, A € B,y and a pair of com-
plex valued functions b; € L{} (R9),by € LIOC(Rd), we say that the joint condition S4 5 holds
if

Sa,p(b1,bs) := Sgp<\b1 = (b1)Ql) 4 o(lb2 = (b2)al) 5 o < 0.

and for b2,b3 € LY (R?), we say that the joint condition 7¢ holds if
Te(br,ba) == SgP(\bl —(buallb2 = (b2)ql) ¢ o < oo (32)

We remark immediately, that in Theorem 4.5 we find a commutator that is unbounded on L?
a_nd_thf\t satisfies the conditions Sy + 75 but fails the conditions S, g + T for all Young functions
A, B,C € Bs.

Theorem 3.10. Assume that a pair of functions by € L{},(R) and by € L (RY) with b3, b3 € L{, .(R)
satisfy the conditions Tc and Sa p for some Young functions A, B, C with A, B,C € By, then
S;: PRYH N L3(RY) — LA(RY),  i=1,2,3,4

boundedly.
Especially, it follows with a standard density argument by Theorem 3.5 that
CyT: L*(RY) — L*(RY)
boundedly when notation and assumptions are retained.

Proof. The pairs of terms S1, 5S4 and Sy, S5 are symmetric with respect to dual pairings. Hence,
we show the estimate in the two distinct cases of S; and S3. By duality it is enough to estimate

the pairings (S;(f), ).
First, for the term S; we only use the assumptions involving the functions A, B. By sparseness
we get

(510, <Z/m (u)allvl(lb: — (bl o

Qes
S 1QI(b = () ae{v) 4.0(lb2 — (2ol B0 (/1) 5,
QeSs
< Sapbi,b2) > QNN 40N q <7 " San(bi,b) Z/ (WD aolf)s
QeSs QeS
<y Sa(biiba) Y ; MapMpf <y~ 'Sap(b1,bo)|[Mae|| .|| Maf]| .
Qes

< Sas(br,b2)||[ 0| £l
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where we have used Proposition 3.8 in the last step.
Next we use the condition T¢ to control the term Ss:

(S50, )] < D Qe = ()b = E2)oll g

QeS
<SRN Ne.obr — Bi)ellbs — (Ba)aleo
QeSs
< To(bi,b2) Y QN[N feg <7 Tolby, ba) [ M| . || Mef]| 2

QeSs
S T (b, ba) || o171l -
(]

Since with A(t) = P, A € By, for p > 2, we immediately get:

Corollary 3.11. Let T be as before and assume that a pair of functions by, by € L;” (R%) satisfy the
conditions 7}, and S, for some p > 2. Then we have

CyT: L*(RY) — L*(RY)
boundedly.
We close this section with some remarks.

Remark 3.12. For Theorem 3.10 the difference in the case p # 2 is that we need to introduce 3 more
Young functions to manage the now non-symmetric dual pairings from the terms S5, S4. Accord-
ing to Definition 3.9 the existing Young functions functions are replaced with ones satisfying

A€ By, B,CeB,
and are supplemented with Young functions D, E, F satisfying

D,FeB, EE€B,
and Sp g (b1, b2) + Tr(b1,b2) < oc.

Remark 3.13. Given a ¢ € (2, 00), adapting the proof of Theorem 3.10 shows that if by, bs satisfy
the conditions Sy, Tg+. for any € > 0, then CpT" : L? — L? boundedly.

On the other hand, for ¢ € (1, 2), the conditions S,, T}, with p € (g, 2) are not strong enough to
conclude that ;T : L9 — L7 boundedly. Indeed, if they were, then by duality and interpolation
CyT : L? — L? boundedly and Theorem 2.4 would imply the condition S,. This gives a contra-
diction since by Proposition 4.1 (see below) there exist functions ¢, ¢ such that S,, T}, are satisfied
and S is not.

4. CONJECTURE AND RELATED EXAMPLES

In this last section we continue discussing the conditions S4 g, T¢ and their interdependence
with the boundedness properties of the commutator on different L” spaces.

First, we note that it follows by the John-Nirenberg inequality that if b;,b; € BMO, then the
conditions S, T, hold for all p,q > 1. Hence, a natural question is immediate: Are S, and re-
spectively T}, equivalent for all or some 1 < p < co. Or even in a weaker sense: if both of the
conditions S, T}, hold simultaneously, could we deduce that S; or T; holds for some ¢ > p? By
Theorem 4.3 the answer is no and the example located therein is the motivation for introducing
joint conditions involving Young functions that can be made strictly weaker than Ss . + T for
alle > 0.

The next proposition will clarify the situation and point out how the counterexample in The-
orem 4.3 can be constructed. For this, recall, that a function w : R¢ — (0, c0) is said to be in the
class of A, weights, 1 < p < oo, if

’

= % < s = —0,
[wla, =sup(wiglw™ )y <oor p'=. g

O~ s
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where the supremum is taken over all cubes.

Proposition 4.1. Given 1 < p < ¢ < 0o, there exists functions ¢, ¢ € LT satisfying the conditions

Sp, T, and failing the condition S,.
Proof. Let

loc

Y(z) :xfﬁl(o,l)v ¢ =011
We check that the conditions S, T, hold. Let [a, b) be an arbitrary intervall such that [a, b)N[0,1) =
[e,d) # 0 (if the intersection is empty, then the claim is trivial) First,

bia/ab|w_< [ab)|p /|¢ Ayl < /W’ 2p+1/ .

Then, by the fact (see Grafakos [4]) that ||~ 7+ € Ay, we have

d
1 /wp 1
d—c /. d

¢ _2p
¢F <[] 77 ],
—c ),

It follows that S, (¢, ¢) < 1.
By the above estimates and ¢ < 1, it follows for an arbitrary interval I that

|f|/ =)l - <>f|”<4”|}|</1 $ror + / wPo) + / ¢P<w>€+<w>€<¢>€)51‘

Hence T, (b1, b2) < 0.

On the other hand by —2¢/(p + ¢) < —1, the singularity in fol v — (1h)10,1)|? is not integrable,
and by fol |¢ — (#)[0,1)|? > 0, we have S, (1), $) = oo. O
Remark 4.2. 1f one wishes to have ¢, ¢ € LS, say to have the joint conditions well-defined, Propo-

sition (4.1) can be modified by considering multiple copies of the situation spread out through R
and introducing the singularities in +’s only gradually as is done in the next theorem.

Theorem 4.3. There exist functions 1, ¢ € LS. failing the condition Soi. for all € > 0, such that
(6, (v, H]| : L* — L? boundedly, where H is the Hilbert transform, i.e. the 1-dimensional Riesz transform.

Remark 4.4. By Theorem 2.4 the L? boundedness implies that 1, ¢ satisfy the conditions 7%, Ss.

Proof of Theorem 4.3. Let

1
s %) =21 (@),

where ¢;, depends on k and will be determined later. Let 73, f(x) = f(x — h). Then set ¢, = T
and ¢y, = 7x10§. Finally we define

b= ok, = >

ke27 ke4N+-2

Let k € 4N + 2 be fixed. We first show that the pair (¢, ¢) satisfies S,, T}, forq = qx =2+ k~'/2.
Since 7,¢ = ¢ it suffices to prove that (1/}0, ) satisfies Sy, T;,. Again, for any interval I, we have

i 15 = st [10 = @t < 4 bl e

We first consider the case when ¢(I) < 1 and we may further assume that I C (0, 1). Since gn;, < 1
we know that |z|~7" € Ay and hence, by I C (0,1),

AT 19) (0|7 < 472 P a0 .

It remains to consider the case when ¢(I) > 1. Since certainly (0,1) NI # () (as otherwise there is
nothing to prove) we know that (0,1) C 3I. Then due to that ¢ is a periodic function we have

AT E 1D (1819 1 < ATTHDEN ) 0.1) (01D 0.0) < 472} P || 7T .

1/)]8(1‘) = Ckitink1(cgkef100k271)(1')7 Nk =
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Therefore, we conclude that
Sy < 472G a| =),

On the other hand, since 1/)§ ¢o < ci, then by similar arguments as in Proposition 4.1 we have
T, < 472G e[~ 4,
Hence by Theorem 3.10 (see below) we know that the commutator [¢, [¢, H]] is bounded on L?

with norm ~ 05/2[|:v|_q”’f],42 My ||, -. Thus, we may further demand the constant ¢, to be so

small that ||[¢, [Yx, H]||,,_, ;. < 27*. Then [¢, [¢, H]] also is bounded on L*:

e [ N[ oy e = ML D0 tons || oy e < D |l [ns H HLL+H<<§22‘

k64N+2 kE€4N+2
It remains to check that the pair (1, ¢) is precisely what we need. It is obvious that ¢, ¢ € L{?..
It remains to verify that (¢, ¢) fails S for any ¢ > 0. By Holder’s inequality we can assume
0 < & < 1. Find ¢ € N such that with k := 41 + 2 it holds that (2 + &)n;, > 1 + (2k)~'. Hence, with
I=(kk+1)weget

6k _—100k2

2+4e 1 . , 24e oie 2cy e o 1 1 (2+e
/‘w - <7/’>I‘ :/ ‘wo - <1/J0>(0,1)‘ > ¢, / ’x 24k —/ 2 kT d
I 0 Cer—IUOkz cg’“e*m%z

6k —100k2
2cp e B i 2te

2t o7 e
6k e—100k2

> 62—1650]6'
On the other hand,
2+¢e 1 2+4+¢
/1 ‘fb - <¢>I‘ = / ‘qﬁo - <¢o><o,1)‘ ~1
0
We conclude the proof by letting £ — oo. O

Theorem 4.5. There exists by, by € LS, (R) such that Sy(by, bg)—i-z“g(_bl,_bg) < oo, but Sa,p(b1,b2) = 0
and T (by, be) = oo for arbitrary Young functions A, B, C with A, B,C € Bs. Moreover, C,H : L?
L2,

Proof. We prove the result via the following example. Let Iy = [-1,1] and
o=1y, w= M(c)!,
notice that both o and w are even functions. It is immediate to see that
sup(o) r{w); < sup ian M(o)(x){w) < sup(M(o)w); = 1. 4.1)
I I z€ I
Now define

bi(z) == sgu(z)o(x),  ba(w) = sgn(w)w? (z),
and notice that immediately b,,b; € L{S . By (4.1) we see that
So(by,b2)* = s1}p<|b1 — (b1 1) {Ib2 — (b2)1]?), < 1651}p<|b1|2>1<|b2|2>1 <16<o0.  (42)

We also have

b1 — (b1)1[?[b2 — (ba)r|” < 4(|b1]? + [(b1)1[*) (1b2] + [(B2)1]?),
and by |b1b2| < 1, direct calculations give us
Ty(by,bo)? = 8111p<\bl — (1) 1lP[b2 — (b2)1[?), < 4412(|b1]*) ([b2f*), <16 < o0.  (4.3)

However, for J, = (—k, k), k > 2, since b; and b are odd functions,

Sa,p(b1,b2) > klgrolo<|b1|>A,Jk<|bZ|>B Ji ™~ hm <‘b1 > A,Jk <|b2 >Jk

xT
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1 i-1 A-1(E))2N &

o A, (G0
k—oo \ A(A~1k)

where we have used the fact that M(15,)(z) ~ (1 + |z[)~". To conclude notice that immediately
by definition lim; o, A~*(t) = co and
A 4 2t A

0 4y [ A

¢

s2 s

klggoA A=

tlggo 2 7 log2t—oo

On the other hand with I, = (0, k), k > 100, we have
Te(b1,b2) > kli_{I;O (Ibr = (br)1, I1b2 — <62>1k|>c,1k > kliﬂgo (br — (b1) 1, |[b2 — <b2>1k‘1(0:1)>c71k

. —1
= lim (1-k )bz = (b2) 1l L0,1)) ¢ g, -

Since for = > 1, by(z) = (£1)2 and for 0 < < 1, by(z) = 1, another direct calculation shows

that ’
b, = L[k + ) —2v7

by which and the assumption £ > 100 we see that
by — (b2} 1, [1(0,1) > ck?.

Hence
Toa(br,bo) > lim (1 — k™ Yk2 (L))o, = lim e(l — k)=t = oo.
k—o0 ’ k—o00

Next, we show that C, H : L? /4 L2. To see this, let

f(z) = x_%(IOg‘r)_ll[loo,oo) (z) € L*(R).

We claim that |Cy H f(z)| = oo for all € Iy, and in showing this, hence conclude the unbound-
edness of C, H on L?. Indeed, since for y € [100, co)

baly) = (M(15,)) 2 = /12,

and b1 (z) = ba(x) = sgn(z), for any x € Iy, we have

Cutt @) =] [ ) = ba() (o) - b)) Ity = | [ s \/yzﬁﬁ(_i,dy\

y+1 fy) °°f(y)
— L dy ~ —dy =
/100 2 y—=x Y 100 \/17 Y

If we take A(t) = B(t) = C(t) = t**¢, where ¢ > 0, we immediately have the following

Corollary 4.6. The conditions S, T holding simultaneously does not improve to S, or 15
forany ¢ > 0.

For our next example, we note that functions ® : [0, c0) — [0, 00) of the form
d(t) = t* log(e +t)p_1+5, p € (1,00), § € (0,00)

are called log -bumps. These are Young functions, and we recall some facts from [3, Chapter 5]:
i) If ®(t) = t? log(e + t)P~1+% then

N e
B>

dL(t) ~ t1/Plog(e + 1) and ®(t) ~ t” [log(e + 1) =®' -1 e B,
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ii) If ®(t) = tPlog(e + t)P~!loglog(e® + t)P~1+%(which is referred to as a loglog-bump), then
O(t) ~ tv log(e + t)_ﬁ log log(e® + t)_ﬁ_%
and
B(t) ~ t* log(e + ) ![loglog(ef + )] =P -V e B,
Theorem 4.7. There exist functions by, by € LS, such that CoH : L? — L? boundedly, but S (b1, bs) =

loc

oo and T (b1, be) = oo, for all log -bumps A, B, C with A, B,C € Bs.

Proof. The idea is to construct a pair of functions (b1, b2) such that it satisfies the assumption in
Theorem 3.10 so that we can conclude the boundedness of C, H directly, meanwhile, the related
bump function increases slower than log-bumps. Let ®;, = t2log(e + t)loglog(e + t)*/2, and
define
bi(e) = sgn(@)ln (@), ba(e) = sen(@)@5 (M1 (@) ™), I = [~1,1].
We will show that (b1, b2) is what we need. First of all, it is easy to check that for any cube I,
(b1 @0, {|b2]) 0,1 < <‘I’81((leo(x))_l)_l\bz\>q) St

0,

Then by the triangle inequality and general Holder’s inequality we have

(1br = (1) 1l)ao,1{[b2 — (b2) 1[)@q,r < 1.
On the other hand, since |b1b2| < 1, using triangle inequality and general Holder’s inequality
again we have
(1br = (b1)1l[b2 = (b2) 1) oo, S 1.
Using Theorem 3.10 we know that C, H is bounded on L?, thanks to ®, € Bo.

It remains to show that S g(b1,b2) = co and T (by, b2) = o0, for all log -bumps A, B, C with
A, B,C € B,. Without loss of generality we can assume that A(t) = t?log(e + t)'*%, B(t) =
t?log(e + )17 and C(t) = t2log(e + t)**7, where a, 3,7 > 0. For S4 (b1, b2) again we test with
the interval J, = (—k, k) with k > 2. Since b; and b, are odd functions, we have

(b1 = (b)) 4, (b2 = (b2) 5, ) B, = ([bal) 4,0 {[b2]) B,
~ k™% log(e + k)HTak% log(e + k)_% log log(e€ + k)~
koo
For T (b1, b2), we test with the cube I, = (0, k), £ > 100, we have

Tobyby) 2 Jlim (Jbr = (ba)nllbz = (b2drl) g, = lim (Jor = (ba) sl bz = 2o e,
= lim (1= k) (lb2 — (b2)r [L0.1))

lim (1 — k™ 1)k? log(e + k)~ 2 loglog(e® + k)~ k2 log(e + k)

k—o0

1+
2

R

= 0.
O

Corollary 4.8. The conditions S>,., 754, are not precise enough to yield a characterization of
CyH : L? — L2

Proof. The iterated commutator C, H of Theorem 4.7 is bounded on L?. We show that the condi-
tions Soye (b1, b2) and Toy. (b1, be) are not satisfied for any e > 0. To see this, it is enough to notice
that for all log -bumps A, B, C with A, B,C € Bs, we have t**¢ = A(t), B(t), C(t) by which by
Proposition 3.7 iv) and the estimates in Theorem 4.7 it follows that

(Ibr = (01) 7, 172) 377 (lba — (b2) 1 17575 2 (11 — (b1) sy ), (b2 — (B2) 1) B, — 00,
and

_1
(b = (1) 775 1b2 = (b2) 1, [PF9) 17 Z (b1 = (ba) 1] [b2 — (b2) 1, oy r — 00,

as k — oo, showing that Sa4(b1,b2) = 0o and To4. (b1, b2) = 0. O
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Corollary 4.9. The commutator of Theorem 4.7 is bounded on L? and unbounded on all L?,
p € (1,00)\ {2}
Proof. Letp > 2,q € (2,p) and f(x) = x‘l/ql[loo’oo)(a;) € L?. Forall z € [-1,1],

ut 0] = | [ 41) ~ u) ) — () L2

/oo y% Yy dy —

~ 1 3 y - OO?

100 log(e + y)2 loglog(e¢ +y)1 Y

showing that CyH : LP /A LP. It follows by duality that also Cy H : L 4 LY O

Remark 4.10. Alternatively, we can prove Corollary 4.8 by Corollary 4.9. Indeed, if the conditions
Sote(b1,b2), Toye(b1,b2) hold for some € > 0, then by Remark 3.13 we have C,H : L9 — L9
boundedly for all ¢ € (2,2 + ¢), a contradiction with Corollary 4.9.

The above considerations lead us to conjecture:

Conjecture 4.11. With the functions b1, b, subject to the same assumptions as those in Theorems
3.10 and 2.4, the boundedness of (b1, [b2, H]] on L*(R) is equivalent with the existence of Young
functions A, B, C' with A, B,C' € B such that S4 g(b1,b2) + Tc (b1, b2) < c0.
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