AUTOMORPHISM GROUPS OF SMOOTH CUBIC THREEFOLDS

LI WEI AND XUN YU

ABSTRACT. In this paper, we classify groups which faithfully act on smooth cubic three-
folds. It turns out that there are exactly 6 maximal ones and we describe them with
explicit examples of target cubic threefolds.

1. INTRODUCTION

Throughout this paper, we work over the complex number field C. The purpose of
this paper is to study the automorphism group of a smooth cubic threefold, an impor-
tant counterexample to the three-dimensional Liiroth problem (J[CG72]). Let X C P4 be a
smooth cubic threefold defined by an irreducible homogeneous polynomial F. It is known
(IMMG3]) that the automorphism group Aut(X) is finite, every element of Aut(X) extends
to an automorphism of the ambient space P4, and two smooth cubic threefolds are isomor-
phic if and only if they are projective linearly isomorphic. Classification of finite groups
appearing as subgroups of Aut(X) seems still unknown (for studies of automorphism groups
of smooth cubic hypersurfaces, see [Se42], [Ad78], [Ho97], [Ro09],[GL11], [Dol2], [GL13],
[Mo13], [HM14], [BCS16], [Ful6],[DD18], [LZ19], etc). Our main result is the following (see
Section [3| for more details about the 6 groups in the theorem)

Theorem 1.1 (Theorem B.2). A finite group G has a faithful action on a smooth cubic
threefold if and only if G is isomorphic to a subgroup of one of the following 6 groups:
Cd % S5, ((C3 % C3) x C4) x Ss, Cau, Chg, PSL(2,11), Cy x Ss.

The automorphism group of Klein cubic threefold is isomorphic to the finite simple group
PSL(2,11) (JAdT78]), and it is, up to isomorphism, the unique smooth cubic threefold admit-
ting an automorphism of order 11 ([Ro09]). On the other hand, by a result of [GL11], all pos-
sible prime orders of automorphisms of smooth cubic threefolds are 2, 3,5, 11. Therefore, in
order to classify subgroups of Aut(X), we are reduced to consider subgroups of order 2¢3°5¢,
Our approach to classify such subgroups is the same as that of [OY19] in which all possi-
ble groups of automorphisms of smooth quintic threefolds are classified. By Matsumura-
Monsky ([MMG63]), it suffices to consider finite subgroups G C PGL(5,C) = Aut(P*) such
that F' is G-invariant (i.e., for each g = [A] € G, A(F) = AaF for some Ay € C*, where
A € GL(5,C) is a representative of g). As in [OY19], we use the notion F-liftability (see
Definition in Section |4) to transfer classification problem in PGL(5,C) to classification
problem in GL(5,C), and the latter one can be handled with the help of non-smoothness
criteria (Proposition and computer program GAP (see Appendix [A]). It turns out that
for a smooth cubic threefold X, Aut(X) C PGL(5,C) always admits an F-lifting (Theorem
. For a candidate finite group G of order 293°5¢ < 2000, smoothness of X gives strong
constraints (see Table[2)) on eigenvalues (“local information”) of each element in an F-lifting
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G (which is naturally viewed as a 5-dimensional faithful linear representation of G) . On
the other hand, GAP provides character table and list of all subgroups (especially, abelian
subgroups) of G (“global information”). Then our way of ruling out groups is simply by
combining local and global information (see Theorem and its proof). It turns out that
this method of ruling out groups which cannot faithfully act on smooth cubic threefolds is
quite efficient in our study. Larger orders cases (i.e., |G| = 2?3%5¢ > 2000) are reduced to
smaller orders cases just mentioned in PC free way.

Acknowledgements. We would like to thank Professors Keiji Oguiso and Song Yang for
helpful conversations. We also would like to thank the referee for useful comments. The
second author is partially supported by the National Natural Science Foundation of China
(Grant No. 11701413).

2. NOTATION AND CONVENTIONS

In this paper, if A € GL(n,C), then we use [A] denote the corresponding element in
PGL(n,C).

X (resp. Gx,), i =1,...,6, are the six smooth cubic threefolds (resp. finite groups) in
Example in Section

I, := the identity matrix of rank n;

& = e k-th primitive root of unity, where k is a positive integer;

We use 7 : GL(n,C) — PGL(n,C) to denote the natural quotient map.

Let G be a finite group and p be a prime. If no confusion causes, we use G, to denote a
Sylow p-subgroup of G.

The following is the list of symbols of finite groups used in this article:

Ch: cyclic group of order n,

Do,,: dihedral group of order 2n,

Sn(Ap): symmetric (alternative) group of degree n,

Qs: quaternion group of order 8.

3. EXAMPLES AND MAIN THEOREM

Throughout this paper, we identity PGL(n + 1, C) with Aut(P") via the following group
action:

(3.1) U :PGL(n +1,C) x B — P,
where, for any A = (a;;) € GL(n+1,C) and any (21 : -+ : 2p41) € P,
n+1 n+1
U([A], (z1: " 2pg1)) = (Z ayizi: - Za(nﬂ)izi).
=1 =1

For any A = (a;j) € GL(n + 1,C) and any homogeneous polynomial F' € Clz1, ..., Tp+1],
we denote by A(F') the homogeneous polynomial

n+1 n+1

(3.2) F(Z A15Tgs " Z A(n+1)i%i) -
i=1

i=1
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For a finite subgroup G < PGL(n + 1,C) and a smooth hypersurface X C P™ defined by
an irreducible homogeneous polynomial F' = F'(x1, ..., z,41) of degree greater than 1, if, for
any [A] € G, A(F) = Mg F for some A4 € C*, then clearly G acts on X via ¥ and G is a
subgroup of Aut(X).

Example 3.1. (1) Fermat cubic threefold X1: F = 23 + 23 + 23 + 23 + 23 = 0. Let G,
be the subgroup of PGL(5,C) generated by the following three matrices:

01000 01000 1 0 0 00
10000 00100 0 & 0 0 0
An=[00 10 0,45=]00 0 1 0|,A3=[0 0 € 0 0
00010 00001 00 0 10
00001 10000 00 0 01

Then Aut(X;1) = Gx, = C5 x S5 and |Gx,| = 2%-3% -5 = 9720.

(2) Let Xy : F' = a3 + 23 + 23 + 3(V3 — Dzyz023 + 235 + 23 = 0 (see [DDIS, Lemma
12.15]) and let Gx, be the subgroup of PGL(5, C) generated by the following five matrices:

01000 1 0 0 00 1 1.1 0 O
00100 0 & 0 00 1 & & 0 0
A21:10000,A22:00§OO,A23:%1§§300,
00010 00 0 10 00 0 V3 0
00001 00 0 01 00 0 0 3
10000 1 00 0 0
01000 0100 0
Ayy=10 0 1 0 0],45=l0 01 0 0
00001 000 & O
00010 000 0 &
Then Gy, acts on Xo, Gx, = ((C2 x C3) x Cy) x S3, and |Gx,| = 23 - 31 = 648.

(3) Let X3 : F = 239 + 23w3 + 2324 + 23 + 23 = 0, and let Gy, be the subgroup of
PGL(5,C) generated by the following matrice:
& 0 0 0 0
0 &2 0 0 0
As;=10 0 -1 0 O
0 O 0O 1 0
0 O 0 0 &
Then Gx, acts on X3, Gx, is isomorphic to Oy and |G x,| = 23 -3 = 24.

(4) Let Xy : F = 229 + 2323 + $§x4 + 2375 + :cg = 0 and let Gx, be the subgroup of
PGL(5,C) generated by the following matrice:
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&6 0 0 0 O
0 && 0 0 0
Ap=10 0 €& 0 0
0 0 0 —-10
0 0 0 0 1

Then Gx, acts on X4, Gx, = Ci6 and |Gx,| = 24 — 16.

(5) Klein cubic threefold X5 : F' = x%x2+x%x3+x§x4+xix5+x§x1 = 0 and let Gx, be the
finite simple group PSL(2,11). Then Gx. = Aut(X5) ([Ad78]) and |G x| = 22-3-5-11 = 660.
Note that PSL(2,11) is not a subgroup of the Cremona group of rank 3 ([Prl12]).

(6) Let Xg : {23 + a3 + 23 +af + 2 + 2} =21 + 22+ 23 + 24 + 25 = 0} C P° and let
Gx, be the subgroup of PGL(6, C) generated by the following three matrices:

010000 01000 0 10000 0
100000 00100 0 01000 0
4 _|001too0o0f o JOoOOLTOOf _JOOL1O0O O
61 00010 0] ¢ 0000710 00010 0
000O0T10 100000 0000T1 0
00000 1 000001 0000 0 &
Then Gy, acts on Xg, Gx, = S5 x C3 and |Gx,| = 2% - 3% -5 = 360.

Our main theorem is the following:

Theorem 3.2. For a finite group G, the following two conditions are equivalent to each
other:

(i) G is isomorphic to a subgroup of one of the 6 groups above, and

(i) G has a faithful action on a smooth cubic threefold.

We will prove Theorem in Section [9]

4. SMOOTHNESS AND LIFTABILITY

In this section, we recall some definitions and results from [OY19], and we will prove
that any subgroup of the automorphism group of a smooth cubic threefold has an F-lifting
(Theorem {4.11)).

Definition 4.1. Let F = F(x1,...,x,+1) be a homogeneous polynomial of degree d > 0
and let m = m(x1,...,x,41) be a monomial of degree d. Then we say m is in F' (or m € F)
if the coefficient of m is not zero in the expression of F'.

We will frequently use Lemm [£.2] and Proposition [£.3] to check smoothness of hypersur-
faces in the sequel.

Lemma 4.2 (JOY19, Lemma 3.2 and Proposition 3.3]). Let F' = F(x1,...,2n41) be an
irreducible homogeneous polynomial of degree d > 3 and let M := {F = 0} C P". Leta andb
be two nonnegative integers, and 2a+b < n. The hypersurface M is not smooth if there exist
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a+b distinct variables x;,, ..., x;, ., such that F' € (x;y,...,%:,) +(Tig 1, ,xiHb)Q, where
(Tkyy -+, Tk, ) means the ideal of Clxy,...,n41] generated by xy,, - ,xk, . In particular,
if M is smooth, then, for any i € {1,2,....,n+ 1}, x?flxj € F for some j =j(i) (j =1 is
also allowed here).

Proposition 4.3 ([OY19, Proposition 3.4]). Let M be a hypersurface in P* defined by an
irreducible homogeneous polynomial F = F(x1,...,x5) of degree 3. Then M is not smooth
if one of the following three conditions is true:

(1) There exists 1 <i <5, such that for all 1 < j <5,2%z; ¢ F;

(2) There exists a pair (p,q),p # q, such that F' € (xp,z4);

(3) There exzist three distinct variables x;,x;,xg, such that F € (z;) + (zj,zx)?.

Let F € Clzy,...,xn+1] be a homogeneous polynomial of degree d. For any A = (a;;) €
GL(n +1,C), we denote by A(F') the homogeneous polynomial

n+1 n+1
F(Z A1iT4, - Z A (n41)iTi) -

Note that (AB)(F) = A(B(F)) for any A, B € GL(n + 1,C). Following [OY19], we recall
some definitions about liftability of group actions.

Definition 4.4. (1) Let A = (a;;) € GL(n+ 1,C). We say F is A-invariant if A(F) = F.
In this case, we also say A leaves F invariant, or F' is invariant by A. We say F' is A-semi-
invariant if A(F') = AF, for some A\ € C*.

(2) Let G be a finite subgroup of PGL(n + 1,C). We say F' is G-invariant if for all
g € G, there exists A; € GL(n + 1,C) such that g = [4y] and A4(F) = F, equivalently F'
is G-invariant if F' is A-semi-invariant for any A € GL(n + 1, C) such that [4] € G.

(3) Let @ be a finite subgroup of PGL(n + 1,C). We say a subgroup G < GL(n + 1,C)
is a lifting of G if G and G are isomorphic via the natural projection 7 : GL(n 4+ 1,C) —
PGL(n + 1,C). We call G liftable if G admits a lifting.

Definition 4.5. (1) Let G be a finite subgroup of PGL(n + 1,C). We say G is F-liftable
if the following two conditions are satisfied:

1) G admits a lifting G < GL(n + 1,C); and

2) A(F) =F, for all Ain G.

In this case, we say G is an F-lifting of G.

We say G is F-semi-liftable if 2) is replaced by the following:

2) for all A in G, A(F) = Ay F, for some Ay € C* (depending on A).

(2) Let h be an element in PGL(n + 1,C) of finite order. As a special case, we say
H € GL(n + 1,C) is an F-lifting (resp. a lifting) of h if 7(H) = h and the subgroup
(H) < GL(n 4+ 1,C) is an F-lifting (resp. a lifting) of the subgroup (h) < PGL(n + 1,C).

Theorem 4.6 (J[OY19, Theorem 4.8]). Let G be a finite subgroup of PGL(n + 1,C). Let
F € Clz1,...,xnt1] be a nonzero homogeneous polynomial of degree p, where p is a prime
number. Suppose F' is G-invariant. Let G, be a Sylow p-subgroup. Then G is F-liftable if
the following two conditions are satisfied:

(1) G, is F-liftable; and

(2) either Gy, has no element of order p? or G has no normal subgroup of index p.
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In the rest of this section, let X C P be a smooth cubic threefold defined by an irreducible
homogeneous polynomial F' = F(x1,...,x5). Since Aut(X) = {f € Aut(P*)|f(X) = X} is
a finite group, we may and will view Aut(X) as a subgroup of PGL(5,C) via ¥ (see
in Section .

Proposition 4.7. Let G C Aut(X) be a subgroup. Suppose 3 t|G|. Then G has a unique
F-lifting.

Proof. Let k be |G|. Since 3 { k, by Theorem [4.6, G admits an F-lifting G ¢ GL(5,C).
Let g € G. Suppose A, B € GL(5 C) are two F- hftlngs of g. Then A = AB. By A(F) =
B(F) = F,we have )\3 = 1. By M; = AB~! and ord(A) = ord(B) = ord(g), we have
Aerd(9) = 1. Then A¥ = 1. Since 3 and k are coprime, it follows that A = 1. Thus, G has a
unique F-lifting G. U

Lemma 4.8. Let g € Aut(X) of order 3. If A is a lifting of g, then A is an F-lifting of g.
In particular, g admits an F-lifting.

Proof. Note that any finite order element of PGL(5, C) admits a lifting. Let A be a lifting
of g. Then g = [4], ord(A) = ord(g) = 3, and A(F) = AF for some A € C*. Our goal is
to show A = 1. Since F = A3(F) = A3F, it follows that A> = 1. For any i € {0, 1,2} and
any j € {1,2}, &L A7 is a lifting of ¢/, and (¢A7)(F) = (&)3NMF = M F. Thus, ¢&{A7 is an
F-lifting of ¢/ if and only if A is an F-lifting of g. Then, by linear change of coordinates
and replacing the pair (4, g) by (€547, ¢7) for suitable i € {0,1,2} and j € {1,2}, we may
assume A is one of the following four cases: (a) diag(1,1,1,1,&3), (b) diag(1,1,1,&3,£3),
(C) dlag(lv L1, 537 53)7 (d) dlag(lv 1, 537 537 532,)

Case (a): A = diag(1,1,1,1,&3). Since F is irreducible it follows that F' ¢ (x5) C
Clz1, ..., x5] and there exists a monomial z] :Ug%g 2% € F, where all d; > 0 and dy + dy +
ds + d4 = 3. Then, by A(F) = AF and A(azl x4 xgz’xff“) = xcllla:?xg“xg“, we have A = 1.

Case (b): A = diag(1,1,1,&3,£2). Since X is Smooth by Proposition (2), F ¢
(x4,25) C Clz1,...,x5] and there exists a monomlal x] mg%g?’ € F, where all d; > 0 and
dy +dg +d3z = 3. Then, by A(F) = AF and A(zz} xg3) = x’flxgzx?, we have A = 1.

Case (c): A =diag(1,1,1,£3,&3). Similar to case (b), we have A=1.

Case (d): A = diag(1,1,&3,&3,£2). Suppose A = &3. Let 951 x4 $g3$i4$g5 € F where
all d; > 0 and dy + ... +ds = 3. By A(F) = A\F = &F and A(z{'a82d2{ab) =
§d3+d4+2d5 d g%g‘*xj“xgs, We have & = §g3+d4+2d5. Thus, either ds > 0, or d5 = 0
and d; + d2 = 2. Then zj xg2xd3xff4:vg5 € (w5) + (z1,72)® C Clay,...,x5). Thus, F €
(w5) + (21, 72)%, by Proposition (3), a contradiction to smoothness of X. So A = &3
is impossible. Similarly, A = &3 is also impossible (otherwise, F € (x5) + (73,74)%, a
contradiction). Thus, we conclude A = 1. (]

Lemma 4.9. Let g € Aut(X) of order 3%, k > 1.Then g admits an F-lifting.
Proof. If k = 1, then, by Lemma .8 ¢ admits an F-lifting.

From now on, we may assume k > 2. Let A be a lifting of g. Then ord(A) = ord(g) = 3*,
and A(F) = \F for some A € C*. Note that 43" is a lifting of ¢3°~'. Since ord(¢3" ") = 3,
by Lemma [1.8 A3 is an Folifting of ¢ '. Then F = A3 '(F) = A" 'F. Thus,
A" = 1. Choose any a € C* such that o® = A~!. Then aA is an F-lifting of g. ([
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Proposition 4.10. Let g € Aut(X) of order 3*, k > 1.Then k < 2, and g admits a unique
F-lifting in SL(5,C).

Proof. First we show k < 2, and it suffices to show that there exists no g € Aut(X) of
order 27. Suppose g € Aut(X) is of order 27. By Lemma g admits an F-lifting, say
A. Since A is of finite order, up to linear change of coordinates, we may assume A is
diagonal. Replacing A by suitable power A7 where j and 3 are coprime, we may assume
A = diag(€ar, €53, 652,£52,€54). By A(F) = F and A(23) = &,23 # 23, we have 23 ¢ F.
Then, by Proposition (1), 23z; € F for some j € {2,3,4,5}. Thus, by suitable linear
change of coordinates, we may assume j = 2 and z3z2 € F. Then by A(F) = F and
wiry = A(x}rs) = E35a3xy, we have A = diag(€ar, €57, €52, 652, €54). Repeating the
process above, we can show that, up to linear change of coordinates, we may assume s,
w323, 23x4, 2305 € F, and A = diag(ar, &7, €57, &0, €39). Then, for any i € {1,2,3,4,5},
A(z¢z;) # iz, and, by A(F) = F, 22x; ¢ F, contradicting to smoothness of X (by
Proposition (1)). Thus, k < 2.

Next we show that g admits an F-lifting in SL(5,C). Suppose k = 1. By Lemma g
admits an F-lifting, say A. Since ord(A) = ord(g) = 3, it follows that det(A) = &5 for some
a € {0,1,2}. Choose any b € Z such that 5b + a = 0 (mod 3). Then A, := ¢}A € SL(5,C)
is an F-lifting of g.

Suppose k = 2. Note that g admits an F-lifting in SL(5,C) if and only if ¢/ admits an
F-lifting in SL(5,C). Thus, if necessary, we may replacing g by a suitable power g/ where
3t j. Choose any F-lifting, say A, of g. Then, as in the proof of Lemma and as in
the argument above to ruling out k£ = 3 (roughly speaking, if necessary, replacing the pair
(A, g) by a suitable power (A7, ¢/),using linear change of coordinates and Proposition
repeatedly), we may assume A = diag(§9,§g2,§§,§gl, %) where 0 < ap < a; < 8. Then,
by smoothness of X and using case by case check with the help of computer algebra (e.g.,
Mathematica), one can conclude that (a;,as) = (0,0), (3,0), (3,3), (6,0), (6,3), or (6,6).
Then (det(A))? = 1. Thus, for suitable i € {0,1,2}, £&£A4 is in SL(5,C) and & A is an
F-lifting of g.

Finally we show uniqueness. Let A, Ay € SL(5,C) be two F-lifting of g. Then A; = AAs
for some A\ € C* such that \> = 1. Since ord(A;) = ord(Ay) = 3, it follows that A3 =1,
Thus, A =1 and A; = As. This completes the proof of the proposition. O

The following theorem will be frequently used in the later sections.

Theorem 4.11. Let G C Aut(X) be a subgroup. Then G admits an F-lifting.

Proof. Suppose |G| = ?)l‘/’p’f1 --pkn where p; # 3 are distinct prime numbers, k > 0, k; > 0,
for all 1 < ¢ < n. For any i € {1,...,n}, by Theorem a Sylow p;-subgroup G, of G
admits an F-lifting, say H;. For a Sylow 3-subgroup G35 of G, let

Hy = {Ay|lg € G3 and A, is the unique F-lifting of g in SL(5,C)}.
Note that Hy is well-defined by Proposition Let G =< Hy, Hy,--- ,H, >< GL(5,C).
Next we show G is an F-lifting of G. By definition of G, we have A(F) = F for any

A € G. Recall that 7 : GL(5,C) — PGL(5,C) is the natural quotient map. Clearly
m(G) = G. Let A € (Ker(m) NG). Then A = A5 for some A € C*. By A(F) = F and
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F is of degree 3, we have A = 5%]5 for some j € {0,1,2}. Then we have det(A4) = gj.
On the other hand A = BYBR ... Bl where B; € (HUH,U---UH,) and I; € Z.

Then det(A) = det(By)" - - - det(B,,)" and det(A)plfl"'pﬁn = 1. Thus, ( gj)pllvl"'pin =1 and
A = I5. Then Ker(n) NG = {I5} and G is an F-lifting of G. This completes the proof of
the theorem. O

Remark 4.12. Unlike a smooth cubic threefold, the automorphism group of a smooth
quintic threefold does not necessarily have an F-lifting (see [OY19, Section 4]).

5. ABELIAN SUBGROUPS

Notation: In Sections[3]8, X is a smooth cubic threefold defined by an irreducible homo-
geneous polynomial F'.

In this section, we classify abelian groups which can faithfully act on smooth cubic
threefolds (Theorem [5.4)).

Proposition 5.1. Let g € Aut(X) be of primary order. Then ord(g) = 22,3%5, or 11,
where a,b > 0. In particular, if a prime number p divides |Aut(X)|, then p € {2,3,5,11}.

Proof. Consider the numbers (1 —3)! — 1, for 1 < < 5. These five numbers are —3, 3, —9,
15, —33. Thus, by [GLI3, Theorem 1.3] (see also [OY19, Theorem 5.1]), ord(g) is 22,35
or 11. U

Theorem 5.2. If 5 divides |Aut(X)|, then a Sylow 5-subgroup of Aut(X) is isomorphic to
Cs.

Proof. Any finite p-group of order p* contains a subgroup of order p' for any I € {0, 1, ..., k}.
Thus, in order to prove the theorem, it suffices to show that Aut(X) contains no subgroup
of order 25. Suppose a subgroup G C Aut(X) is of order 25. By Proposition G is
not isomorphic to Cos. Then G = C2. Suppose G = (g1, g2) where ord(g;) = ord(gs) = 5
and g1g2 = gog1. By Theorem G admits an F-lifting, say G. Let A; € G be F-
lifting of ¢;, ¢ = 1,2. Since A1 As = AsA;, under suitable linear change of coordinates,
we may assume both A; are diagonal matrices. Then A; = diag(&:™,...,§5), i = 1,2. As
in the proof of Proposition by smoothness of X and A;(F) = F, we may assume
A = diag(£5,§g2,£§,§§,£§15) and 2?1y, ¥373, 2324 € F. Then, replacing Ay by A]As
for suitable j, we may assume ag; = 0. Then by Ay(F) = F and .7}%.%2,.%%333,33%.%‘4 e F,
we have Ay = diag(1,1,1,1,£). Since ord(As) = 5, it follows that {5*° # 1. Then
Ag(ziz;) # a2x; for any i € {1,..,5}. Thus, by As(F) = F, z2x; ¢ F for any i, a
contradiction to Proposition (1). O

Theorem 5.3 ([Ro09, Proposition 1.1], see also [GL11, Theorem 2.10]). If 11 divides
|Aut(X)|, then X is isomorphic to Klein cubic threefold (in particular, Aut(X) = PSL(2,11)
[AdT7S]).

Theorem 5.4. Let G C Aut(X) be an abelian subgroup. Then G is isomorphic to one of
the followz'ng 25 groups: CQ, Cg, C4, 022, C5, C@, Cs, C4 X Cz, Cg, Cg, 011, 012, Cﬁ X CQ,
015, 016, 018, 06 X 03, 024, Clg X CQ, Cg X Cg, Cg, Clg X Cg, Cg, C()‘ X Cg, Cgl. MOT’EOU@T,
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up to linear change of coordinates (equivalently, up to conjugation in GL(5,C)), one of the
H in the Table@ s an F-lifting of G.

Proof. The idea of the proof is the following: firstly, by Theorem G admits an F-
lifting, say G secondly, since G and G C GL(5,C) are abelian groups, we may assume G
consists of diagonal matrices; lastly, we use smoothness of X and Proposition to find
an explicit G (resp. to rule out G) if G is in the list of the 25 groups in the theorem (resp.
if G is not in the list). We give the details of the proof for two groups: Cy, C?, and we
leave the details for other groups to the readers (note that by consideration of subgroups,
we only need to rule out finitely many abelian groups, and hence we can do case by case
check).

Suppose G = Cy. Then G admits an F-lifting G. Let A € G be a generator. We
may assume A is a diagonal matrix and A = diag(gg,ﬁg,ﬁg,fg,fg) where 0 < a,b,c¢,d < 8.
By smoothness of X and Proposition (see proof of Proposition , we may assume
22x9,23r3 € F and @ = 7, b = 4. Then, without loss of generality, we may assume
A = diag (&, &5, 3, &5, €4) where 0 < ¢ < d < 8. Then by considering all the 45 possibilities
for the pair (c,d) via direct computation, smoothness of X implies (¢,d) = (0,0), (0,3),
(0,6), (3,3), (3,6), or (6,6). Thus, G is one of the groups H C GL(5,C) in case No.
12 of Table Then A% = diag(&3,€3,&3,1,1). Thus, for any monomial m = 3:111:13?
of degree 3, A3(m) = m if and only if either iy = io = i3 = 0 or iy = i5 = 0. Then
F = R(x1,x2,23) + S(x4,x5) where R and S are homogeneous polynomial of degree 3.
Since X is smooth, by Jacobian test, the hypersurface defined by R (resp. by S) in P?
(resp. P') is a smooth cubic plane curve (resp. three distinct points). Thus, up to linear
change of coordinates, S(x4,x5) is the same as a3 + x3. Since A(F) = F, it follows that
A(R) = R. Then

R = qu%afg + a2$%$3 + Odg&?%.%‘l,
where all «; are nonzero complex numbers. Then we may assume all a; = 1 and
F = 22xy + 2523 + 2z + 23 + 23

Therefore, we have proved the following: any smooth cubic threefold admitting an order 9
automorphism is isomorphic to the smooth cubic threefold defined by z%xs + x323 + 23z1 +
r3+x3. On the other hand, the Fermat cubic threefold X admits an order 9 automorphism.
Thus, X = X;. In fact, let

528 5?@ fgg 0o 0
1 |¢&s —Ss &Gy 000
0 0

B=—=|¢s —&s —&s
V9| 0 0 V9 0
0 0 0 0 9

Then B(x3ze + x3x3 + 2321 + 23 + 23) = 23 + 23 + 23 + 23 + 3.

Next suppose G = C7. Then we may assume an F-lifting G of G is generated by A; =
diag(&s, —1,1,1,1) and Ag = diag(1,1,1,&4, —1), and z3x9, 2323, 2375 € F (cf. the proof of
Theorem [5.2). Then A;(F) = Ay(F) = F implies F € (x3) + (v1,24)?, a contradiction to
smoothness of X by Proposition (3). Thus, G = C? is impossible. O
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TABLE 1. Character table of Qg

la | 4a | 4b | 2a | 4c
x1| 1|1 1 1 1
x2| 1 [-1]1 1 |-1
x3| 1|1 |-1|1]|-1
xa| 1 |-1|-1]1 1
xs| 210 0|-2]0

6. SYLOW P-SUBGROUPS, p = 2,3

In this section, we classify p-groups in Aut(X) for p = 2,3 (Theorems .

Let G be the set of the following 7 groups: Cs, CYy, C’22, Cs, Cy x Oy, Dg, C1g. One can
verify that a 2-group G is, as an abstract group, isomorphic to a subgroup of one of the 6
groups in Theorem if and only if G € Gs.

Theorem 6.1. Let G C Aut(X) be a 2-group. Then G € Go. In particular, |G| < 24

Before we start the proof of Theorem [6.1, we explain the main ideas of the proof (i.e.,
how to exclude all other 2-groups which are not in Gs).

We will exclude groups inductively (from smaller orders to larger orders). Our strategies
to exclude groups consist of two steps:

Step one: Let G be a 2-group of order 2. If Theorem has been proved for 2-groups
of orders strictly less than 2" and G contains a proper subgroup which is not in Gs, then
the group G is excluded. In this section and later sections, we call this method of excluding
groups as sub-test. We frequently use GAP to do sub-test. The detailed GAP codes can be
found on the second author’s personal website [Yu].

Step two: If G survives after sub-test and G ¢ Go, then we just do case by case
consideration to rule out G.

We now start to prove Theorem

Proof of Theorem [6.1. By sub-test, it suffices to rule out the following 2-groups: Qs, C3,
CZ, C4 X 04 (GAP 1D: [16,4}), Cg X 02, Cg X CQ ([16, 6]), Dlﬁ, 032. Then by Theorem
we only need to rule out 4 groups: Qs, Cy x Cy ([16,4]), Cs x Cs ([16,6]), and Dis. The
ideas of our proof for these 4 groups G are the same: using Table [2] and character table of
G, one can prove that none of 5-dimensional faithful linear representations of G' can be an
F-lifting of G. We give detailed proof for the case G = g, and leave the details for the
other cases to the readers.

Suppose Qg = G C Aut(X). By Theorem G admits an F-lifting G. Since G C
GL(5,C), G is a 5-dimensional faithful linear representation of Qg. Consider the character
table (Table (1)) of Qs.

The group (g has exactly 5 conjugacy classes the order of representative of which are 1,
2,4, 4, 4. In the table, we use la, 2a, 4a, 4b, 4c to denote these conjugacy classes. x1, ..., X5
are the characters of the five irreducible representations of (Jg.
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We denote by x the character of Qg corresponding to the representation G. Since the
representation is faithful, it follows that a) x = x5+ Xi + X + X&, where ¢, 7,k € {1,2,3,4};
or b) x = 2xs5 + xi, where 4,5,k € {1,2,3,4}.

Case a): x = x5+ xi +X;j + X Then by classification of F-liftings of order 4 elements in
Aut(X) (see Table 2] No.4), —1 must be an eigenvalue of any order 4 element in G. Thus,
by Table [, x = x5+ x2 + X3+ Xks X = X5+ X2 + X4 + Xk, OF X = X5 + X3 + x4 + X where
k€ {1,2,3,4}. Then one of the three traces tr(4a), tr(4b), or tr(4c) (by abuse of notation,
we use tr(4a) etc. to denote the trace of a representative of a conjugacy class) must be —1
or —3, a contradiction to Table [2 No. 4. Thus, case a) is impossible.

Case b): x = 2x5 + x;- Then tr(2a) = —3, a contradiction to Table |2 No. 1. Thus, this
case is impossible.

Therefore, Qg is not a subgroup of Aut(X). O

Next, similar to 2-groups, we classify 3-groups in Aut(X). Let G3 be the set of the
following 12 groups: Cs, Cy, C3, Co x Cs, C3 x C5 ([27,3]), Cy x C3 ([27,4]), C3, C3 x1 C3
([81,7]), C3 x (C3 x Cs3) ([81,12]), C5 x (Cy x C3) ([81,13]), C%, C3 x (C3 x C3) ([243, 51]).
Note that a 3-group G is isomorphic to a subgroup of one of the 6 groups in Theorem
if and only if G € Gs.

Lemma 6.2. Let G C Aut(X) be a 3-group. If G contains either Co or C§, then G is iso-
morphic to a subgroup of the automorphism group of Fermat cubic threefold (in particular,

Gegg).

Proof. 1t is well known that the automorphism group of Fermat cubic threefold X7 is
isomorphic to C§ x S5 (see Section [3|for explicit description of generators of Aut(X1)). On
the other hand, if G contains either Cy or C’§‘, then, by Table (see also the proof of Theorem
, X is isomorphic to X7 and hence G is isomorphic to a subgroup of Aut(Xy). ([l

Theorem 6.3. Let G C Aut(X) be a 3-group. Then G € G3. In particular, |G| < 3°.

Proof. As in the proof of Theorem [6.1] by sub-test, it sufffices to rule out the following 14 3-
groups: 027, 092, (CgXCg)XICg ([81,3]), CQXICQ ([81,4]), (CgXCg)XCg ([81,8]), (CgXCg))ng
([81,9]), C3.(C2 x C3) ([81,10]), Cy x C2, (Cy x C3) x Cs ([81,14]), C§ x C3 ([243,37)),
(C % (Co 4 Cs)) % Cs ([243,56]), CF x (C3 x C) ([243,62]), (C x (CF % Cy)) x C (243,65,
C3. By Theorem now we only need to ruling out the 10 non-abelian 3-groups in the
list above. It turns out that all the 10 non-abelian 3-groups G except (C3 x (C3 x C3)) x C3
([243,65]) satisfy both of the following two properties: i) G' contains either Cy or C3, i) G
is not isomorphic to any subgroup of Aut(X;). Thus, by Lemma we are reduced to
rule out (C3 x (C2 x C3)) x Cs ([243,65]). It turns out the group (Cs x (C3 x C3)) x C3
([243,65]) has no 5-dimensional faithful linear representation. Thus, by Theorem it
cannot be a subgroup of Aut(X) (since otherwise, its F-lifting would be a 5-dimensional
faithful linear representation of it). O

Proposition 6.4. Let G C Aut(X) be a subgroup of order 3°k for some positive integer k.
Then G is isomorphic to a subgroup of Aut(Xy).

Proof. By Theorem a Sylow 3-subgroup G3 of G must be isomorphic to C3 x (Cg’ x Cs).
Then Cgl is a subgroup of G. Then by Table |2 No. 33, X =2 X;. Thus, G is isomorphic to
a subgroup of Aut(X;). This completes the proof of the proposition. O
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7. SOLVABLE SUBGROUPS OF ORDER 2%305¢

Theorem 7.1. Let G C Aut(X) be a solvable group of order 2*3°5¢ < 2000, where a,b,c >
0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(X;) for some i €

{1,...,6}.

Proof. By Theorems [6.1], [6.3] a <4,b <5, ¢ <1 Moreover, we may assume at
least two of a,b,c are not zero. Then, by |G| = 2%3°5¢ < 2000, |G| has the following 41
possibilities: 6, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 48, 54, 60, 72, 80, 90, 108, 120, 135,
144, 162, 180, 216, 240, 270, 324, 360, 405, 432, 486, 540, 648, 720, 810, 972, 1080, 1215,
1296, 1620, 1944. When |G| € {486,972,1215,1944}, Theorem is just a consequence of
Proposition Thus, we only need to consider the remaining 37 possibilities for |G|. By
sub-test and Theorem|[5.4] we are reduced to ruling out the following 24 non-abelian groups:
Dig, C3 1 Cy, Day, Co X (Cg X 04), D3, Cg xCy ([36,1]), 022 x Cy ([36,3]), Cg x Cy ([36,7]),
Co x (Cg x C2) ([36,13]), C3 x Cig, (C§ x C3) x Cy ([54,5]), Cg’ x Cy ([54,14]), Ci5 x Cy
([60, 7]), C2 x Ds, C2 x Cs ([72,39]), (C5 x Ay) x Cs ([72,43]), (C2 x C3) x Cy ([108,11]),
Cy x (C3 x C3) ([108,13]), CZ x C5 ([108,22]), C3 x (C3 x C3) ([108,30]), C3 x (C3 x Cy),
C3 x A4, Cg x (C3 x C3) ([162, 48]), C2 x (C3 x Cy) ([324, 161]). Then by considering
character tables of these groups and by using Table 2| one can rule out these 24 non-
abelian groups (see the proof of Theorems and , and we leave the details to the
readers. O

In the proof of Theorem [7.3] we will need the following known result in group theory:

Theorem 7.2 (See, for example, [Su86, Chapter 4, Theorem 5.6]). Let G be a finite solvable
group. We can write

|G| =mn (m,n)=1.

Then, the following propositions hold.

(i) There are subgroups of order m.

(ii) Any two subgroups of order m are conjugate.

(iii) Any subgroup whose order divides m is contained in a subgroup of order m.

Theorem 7.3. Let G C Aut(X) be a solvable group of order 2*3°5¢ > 2000, where a,b,c >
0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(X;) for some i €

{,..,6}.

Proof. By Theorems a < 4,b <5 ¢ <1 Moreover, we may assume at
least two of a,b,c are not zero. Then, by |G| = 223b5¢ > 2000, |G| has the following 8
possibilities: 2160, 2430, 3240, 3888, 4860, 6480, 9720, 19440.

When |G| € {2430, 3888, 4860, 9720, 19440}, Theorem [7.3|is just a consequence of Propo-
sition Thus, we only need to consider the remaining 3 possibilities for |G|: 2160 = 24335,
3240 = 23345, 6480 = 243%5. If |G| € {2160, 3240, 6480}, then, by Theorem G contains
a subgroup of order 235 or 245, a contradiction to Theorem [7.1| (note that, for any 1 <4 < 6,
Aut(X;) contains no subgroup of order 235 or 245). O
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8. NON-SOLVABLE SUBGROUPS OF ORDER 2¢3b5¢

Theorem 8.1. Let G C Aut(X) be a non-solvable group of order 2°35¢ < 2000, where
a,b,c > 0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(X;) for some
i€{l,..,6}.

Proof. By Theorems a<4,b<5 ¢<1. A finite group with cyclic Sylow 2-
subgroups is solvable (see [OY19, Proposition 8.31]). By Burnside theorem, a finite group of
order p®¢? is solvable, where p, ¢ are two distinct prime numbers and «, 8 are non-negative
integers. Thus, we may assume a € {2,3}, b € {1,2,3,4,5}, ¢ = 1. By Proposition
we may assume b < 5. Thus, we only need to consider the following cases for |G|: 60, 120,
180, 360, 540, 1080, 1620. Then, by sub-test, we are reduced to ruling out the following
two non-solvable groups: Ag, C3.46 ([1080,260]). Then by considering character tables of
these two groups and by using Table |2 one can rule out these 2 groups (see the proof of
Theorems and , and we leave the details to the readers. O

Theorem 8.2. Let G C Aut(X) be a non-solvable group of order 243°5¢ > 2000, where
a,b,c > 0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(X;) for some
ie{l,..,6}.

Proof. As in the proof of Theorem [8.1} we may assume a € {2,3}, b € {1,2,3,4}, ¢ = 1.
Then, by |G| > 2000, we only need to consider the case |G| = 233*5 = 3240. Suppose
|G| = 3240. Let N be a maximal proper normal subgroup of G. Consider the following
exact sequence

l1—N—-G—M—1.

By choice of N, M is a finite simple group. By classification of finite simple groups, M = (5,
Cs, Cs, A, or Ag.

Suppose M = Cy (resp. M = (C3). Then N C Aut(X) is non-solvable and |N| = 1620
(resp. |N| = 1080), a contradiction to Theorem (in fact, for any 1 < i < 6, Aut(X;)
does not contain a non-solvable subgroup of order 1620 (resp. 1080)).

Suppose M = C5. Then |[N| = 233% and N is solvable. Then G is solvable, a contradic-
tion.

Suppose M = As. Then |[N| = 2-33. Since Cj is a subgroup of M, it follows that G
contains a (solvable) subgroup of order 2 - 335 = 270, a contradiction to Theorem

Suppose M = Ag. Then |[N| = 32. Since Aj is a subgroup of M, it follows that G
contains a (non-solvable) subgroup of order 22335 = 540, a contradiction to Theorem

This completes the proof of the theorem. O

9. PROOF OF MAIN THEOREM

In this section, we prove our main Theorem (Theorem .
Let G C Aut(X) be a subgroup, where X is a smooth cubic threefold. Then, by Propo-

sition and Theorems it follows that
|G| = 202305951 111

where 0 < a9 <4,0<a3<5,0<a5<1,0<a; <1.
If a1 is not zero, by Theorem G is isomorphic to a subgroup of Aut(Xs).
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If a11 = 0, then, by Theorems G is isomorphic to a subgroup of Aut(X;)
for some 1 < i < 6. This completes the proof of Theorem

APPENDIX A. COMPUTER PROGRAM GAP

In this paper, we extensively use the mathematical software GAP ([GAP2014]). In
GAP library, groups of order < 2000 (except 1024) are stored. All the information we
need (structure descriptions, lists of subgroups, character tables, etc.) of these groups are
included in GAP.

A terminology used in GAP: SmallGroup(a,b):= the b-th group of order a (here a <
2000 and a # 1024). For example, by classification, up to isomorphism, there are exactly
five different groups of order 8: Cg,Cy x Co, Dg, Qs,C3. In GAP, these five groups are
stored in a specific order. In fact, SmallGroup(8,1) = Cg, SmallGroup(8,2) = Cy x Cy,
SmallGroup(8, 3) & Dg, SmallGroup(8,4) = Qg, SmallGroup(8,5) = C5.

Throughout this paper, if no confuse causes, we use the following convention: Let 0 <
a < 2000 and a # 1024. Suppose, up to isomorphism, there are k, many different finite
groups of order a. Let 0 < b < k,. Then we denote by [a,b] a group isomorphic to
SmallGroup(a, b). In fact, in GAP, [a, b] is regarded as the “ID” of SmallGroup(a,b). We
also call [a,b] the “GAP ID” of groups isomorphic to SmallGroup(a, b). For example, the
group [8, 3] is isomorphic to the dihedral group Dg. When the group structure is clear from
the structure description of a group (e.g., C3), we often omit its GAP ID.

APPENDIX B. THE TABLE OF ABELIAN SUBGROUPS

In the last column of Table 2 blank means we do not address uniqueness of X ( so could
be either unique or not unique).

When Sylow 3-subgroup Hj is not trivial, H may admit several F-liftings (even up to
conjugation in GL(5,C)). However, if Ky and Ks are two F-liftings of H, then (K1, &315) =
(Ko,&315) € GL(5,C). Thus, a cubic monomial is invariant by K if and only if it is
invariant by Ks. Because of this reason, for simplicity, in Table [2|, when Hj3 is not a trivial
group, we do not give all possible F-liftings of H (but, at least one F-lifting of H is given).

Note that one can determine fixed point loci X# using ideas and results in the current
paper (cf. [YulT] ).
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TABLE 2. F-lifting of abelian subgroups of Aut(

X)

No. | H C Aut(X) generator(s) of an F-lifting H of H Uniqueness of X
1 Cy diag(-1,(-1)%,1,1,1) a = 0,1
2 Cs diag(1,1,1,§3,§3) a=0,1,2
3 Cs diag(1, 1,&3,3,3)
4 Cy diag(§4 -1,1,¢¢,1) a =0,2,3
5 C3 diag(—1, (=1)%,1,1,1), diag(1, (-1)*, —1,1,1),a = 0,1
6 Cs diag(§57 gv’£§7 371)
7 Cy x C3 diag(—1,1,-1,1,1), diag(1,1,1,&s,1)
8 CoxCs | diag(—1,1,—1,1,1), diag(L, 1, &3, &3,65), a =0, 1,2
9 Co x C3 diag(—1,1,1,1,1), diag(1,1,£3,£5,£5),0<a < b < 2
10 Cs diag(&s, €5, —1,1,£2),a= 10,2
11 Cy x Cy diag(&4,—1,1,1,1), diag(1,1,1,—1,1)
12 Coy diag(&0,£5,65,65,85), 0<a<b<2 X=X
13 3 diag(1, &3, 1,€5, €3), diag(1,1,63,€5,€5), 0 < a < b < 2,
0<c<d<2
14 Cn diag(éll»f?hﬁhffh5?1) X =Xs5
15 CixCs | diag(€s,—1,1,1,1), diag(1,1,1,65,€5) a =0,1,2
16 Cs x C3 diag(§4, 1,1,1,— ), diag(l,l,l,fg,fg)
17 CixCs | diag(€s, —1,1,1,€9), diag(L, 1, 1, &3, 1)
18 CZxCs | diag(—1,1,1,1,1), diag(1,1,—1,1,1),
diag(l, 1, 3, 3,63)7 a = 0, 1,2
19 CZxCs | diag(—1,1,1,1,(—1)%), diag(1,1, -1, 1, (—1)%),
diag(1,1,1,£3,1), a = 0,1
20 Cs x Cs diag(§57§5,§57§57 ) diag(l, 1,1, 1,53) X = X
21 016 diag(§16,£16 75167 1 1) X=Xy
22 Cy x Co diag (&9, &5, €3, €5, £5), diag(1,1,1,-1,1), a = 0,1,2 X=X,
23 Cy x C3 diag(—1,1,1,1,1), diag(1,1,&3,1,1), diag(1,1,1,£3,£3), | X 2 Xj ifa=1
a=0,1,2
24 Cox C2 | diag(—1,1,1,1,1), diag(1, L, &, 1, €3), diag(L, 1, 1, &5,€5), | X 2 X; ifa =1
a=1,2
25 Cy x C3 diag(—1,1,1,1,-1), diag(1,1,&s,1,1), diag(1,1,1,&s,&3) X=X,
26 Cs x Cs3 diag(&s, €5, —1,1, 1), diag(1 ,1,1,1,53) X & X5
27 Cy x Oy x (3 diag(§47 -1,1,1, 1) dlag(L 1,1, — ) diag(L 1, 1753,53) X =2 Xy
28 Co x C5 diag(&o, &5, €0, 1,£5), diag(1,1,1 ,53,53) 0<a<2 b= XX,
0,2
29 Cg) diag(17£371717€g)7 diag(1717§3717£§)7 diag(171,17£37€§)7
0<a<b<c<2
30 Cix C2 | diag(és, —1,1,1,1), diag(L, 1, 1, &, 1), diag(L, 1, L, 1, £3) X=X,
31 C2 x C2 diag(—1,1,1,1,1),diag(1, —1,1,1,1), diag(1,&s,1,&3,1), X~ X,
diag(1,1,1,1,&3)
32 Cy x C3 diag(—1,1,1,1,1),diag(1,1,£3,1,1), diag(1,1,1,&3,1), X=X,
diag(1,1,1,1,&3)
33 C3 diag(1,¢s,1,1,1),diag(1,1,£&3,1,1), diag(1,1,1,&s,1), X=X,
diag(1,1,1,1,&3)
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