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Abstract

Natural images are usually composed of multiple objects at different scales in flat and slanted re-

gions. Traditional labeling/segmentation approaches based on total variation minimization may

produce staircase results with discontinuities and rough boundaries. In this paper, we propose a

novel weighted variational model for image labeling/segmentation in the space of functions of

bounded Hessian, the weights of which are automatically estimated based on edge information

of the observed images. Especially, by minimizing the combined first and second-order regu-

larizer, our model can overcome the shortage of total variation and provide more meaningful

results. The efficient alternating direction method of multipliers based algorithm is established,

all subproblems of which can be solved by either the fast Fourier transform or closed-form

solution. We further introduce the weighted bounded Hessian regularizer into the two-stage

segmentation framework for dealing with noisy and blurry image segmentation problems. Nu-

merous experiments are conducted on both two-phase and multi-phase labeling/segmentation

problems. By comparing with several state-of-the-art methods both qualitatively and quantita-

tively, it demonstrates that the proposed models can prominently improve the accuracy of image

labeling and segmentation.

Keywords: Image labeling, segmentation, bounded Hessian, spatially adaptive weights,

ADMM

1. Introduction

Image labeling and segmentation are fundamental tasks in image processing and computer

vision, which aim to find a partition of an image domain into disjoint regions (phases or classes)

according to some optimization rules. Various variational and Partial Differential Equations

(PDEs)-based methods have been proposed for image labeling and segmentation problems.
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Mumford and Shah [1] proposed an energy minimization problem which approximates the

true solution by finding optimal piecewise smooth approximations. Let Ω ⊂ R
2 be a bounded

open connected set, Γ be a compact curve in Ω and I : Ω →R be a given image. The Mumford-

Shah (MS) model can be formulated as the minimization of the following energy functional

min
u,Γ

λ
2

∫
Ω
(I −u)2dx+β

∫
Ω\Γ

|∇u|2dx+ |Γ|, (1)

where λ , β are positive parameters and u : Ω → R is continuous or even differentiable in Ω\Γ
but may be discontinuous across Γ. Since the Mumford-Shah functional is non-convex and

the integral regions of the last two terms are discontinuous, it is very challenging to find its

minimizer.

Chan and Vese introduced the method of active contour without edges (ACWE) by restrict-

ing ∇u≡ 0 on Ω\Γ for two-phase and multi-phase segmentation problems in [2, 3], respectively.

The ACWE model used the piecewise constant solutions to approximate the Mumford-Shah

model such as

min
c1,c2,Γ

λ
2

(∫
Σ
(I − c1)

2dx+
∫

Ω\Σ
(I − c2)

2dx
)
+ |Γ|, (2)

where c1,c2 ∈R are the average values of the pixels inside and outside Γ for the two-phase seg-

mentation. When the intensity values redc1,c2 are known in advance, the ACWE model turns

to be the continuous Potts model, which has intensively studied for image labeling problems.

However, the minimization of both the ACWE model and Potts model are still non-convex due

to the non-convex binary constraint of the labeling function, which may be stuck into the local

minimum and are sensitive to the initializations.

Chan, Esedoglu and Nikolova [4] reformulated the ACWE model into a convex minimiza-

tion by relaxing the binary constraint into a convex one. The authors proved that thresholding

the solution of the relaxed convex problem by any value in [0,1] can yield a globally optimal

labeling solution. Since then, fast and reliable convex optimization-based algorithms have been

developed and applied to image labeling and segmentation problems [5, 6, 7]. Bresson et al. [8]

pursued a global minimizer of active contour model (GMAC), which minimized the following

energy functional for image labeling

min
u∈[0,1]

λ
∫

Ω
( f 2

1 − f 2
2 )udx+

∫
Ω

g(x)|∇u|dx, (3)

where g : Ω → R
+ contains boundary information of objects. The usual choice of g is an

edge indicator function vanishing at object boundaries such as g(I) = 1
1+γ|∇I|2 with γ being a

positive parameter, which can precisely identify the boundaries of the objects. Lellmann et al.
[9] applied the Douglas-Rachford splitting to the convex formulation of the Potts model for

multi-class image labeling problems. Pock et al. [10] proposed a convex relaxation approach

for computing the minimal partitions based on Potts model, which was solved by the primal-

dual algorithm. The Chambolle dual algorithms have been proposed to solve the Potts model

for the continuous multi-partitioning problem in [11, 12]. Yuan et al. [13, 14] developed the
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continuous max-flow model for the two-phase and multi-phase labeling problems, which gives

another dual formulation of the Potts model.

In general, noise and blur may be contained in the observed images. Therefore, it is rea-

sonable to restore the clean image and then perform the segmentation based on the restoration

image. Cai, Chan and Zeng [15] proposed a two-stage segmentation method, which is a convex

variant of the Mumford-Shah model. In the first stage, a smooth solution u is estimated from

the given image I by minimizing the following functional

min
u

λ
2

∫
Ω
(I −Ku)2dx+β

∫
Ω
|∇u|2dx+

∫
Ω
|∇u|dx, (4)

where K can be the identify operator or a blurring operator. In the second stage, a thresholding

step is applied to realize the segmentation. Since then, the two-stage framework has been widely

used for image labeling/segmentation. Chan, Yang and Zeng [16] used the two-stage method for

segmenting blurry images in the presence of Poisson or multiplicative Gamma noise. Duan et
al. [17] proposed a �0 regularized Mumford-Shah model based on the two-stage segmentation

framework, which was further modified using the high-order regularizer for medical image

segmentation in [18]. Duan et al. [19] solved the Euler’s elastica regularized Mumford-Shah

model in a two-stage segmentation framework. Liu et al. [20] presented a two-stage weighted

variational model for selective image segmentation. Chen, Li and Zeng [21] used the two-stage

segmentation method to solve the Rician noise corrupted images. Cai et al. [22] restudied the

linkage between the piecewise constant Mumford-Shah model and ROF model, and proposed

the thresholded-ROF model to illustrate the virtue of managing image segmentation through

image restoration techniques.

Due to the great success of the deep learning approaches in digit recognition, categorizing

and detecting objects in images, the convolutional neural networks (CNNs) have also been ap-

plied to pixel-wise labeling and segmentation [23, 24, 25, 26]. Although CNNs have shown

their advantages in the semantic segmentation tasks, it is still difficult for a CNN model to

discriminate pixels belonging to similar receptive fields around the object boundaries. There-

fore, traditional techniques have been further introduced into deep networks to produce uniform

segmentation results. For example, Hu et al. [27] proposed a deep level set network to drive

the network to learn a level set function for salient objects, which can output more accurate

boundaries and compact saliency maps. Duan et al. [28] used a fully convolutional network

to learn the probability maps, which were incorporated in a single nested level set optimization

framework for multi-region segmentation with high efficiency. Besides, the annotated training

set may not be large enough to contain all shapes and apparent variations of the target objects,

for which the level set-based methods can be used to regularize the results of deep networks to

produce good generalization [29].

1.1. Motivation and our contributions
The main drawback of the aforementioned total variation-based labeling/segmentation meth-

ods is their limitation in processing natural images, which contain not only flat regions and

3



jumps, but also some slanted regions. The total variation minimization will introduce the so-

called staircase effect in the piecewise smooth regions and result in the discontinuous segmen-

tation results. High-order regularities can be used to overcome the shortage of TV term. The

bounded Hessian regularizer was first proposed by Chambolle and Lions in [30] by means of

an inf-convolution of two convex regularizers. Le and Vese [31] introduced the inf-convolution

for piecewise smooth segmentation problem by decomposing u = v+w and minimizing

min
v,w

λ
∫

Ω

(
( f1 −w)2 − ( f2 −w)2

)
vdx+β1

∫
Ω
|∇w|dx+β2

∫
Ω
|∇2w|dx+

∫
Ω
|∇v|dx, (5)

where ∇2w denotes the Hessian operator of w over image domain Ω, i.e.,

∇2w =

(
∂ 2w
∂x2

∂ 2w
∂x∂y

∂ 2w
∂y∂x

∂ 2w
∂y2

)
,

and v is a piecewise constant component to capture edges and discontinuities, w is a smooth

component to capture global inhomogeneity. Note that the infimal convolution of the image

function u = v+w with v ∈ BV(Ω) and w ∈ BH(Ω), still gives a function u such that u ∈
BV(Ω). In order to obtain a more regular solution, Papafitsoros and Schönlieb [32] considered

the combined first and second-order variational approach for image restoration

min
u

1

2

∫
Ω
(I −u)2dx+α

∫
Ω
|∇u|dx+β

∫
Ω
|∇2u|dx, (6)

the minimizer of which is in BH(Ω) as a whole. The simple and convex high-order extension

of total variation regularizer can provide faithful restoration result with good continuation by

reducing the staircase effect. Such combined first and second-order regularizer has been further

studied for image inpainting [33] and speckle noise removal [34], both of which achieved state-

of-the-art performance.

In this paper, our first contribution is to propose a weighted bounded Hessian variational

model for image labeling and segmentation. Unlike existing high-order regularization segmen-

tation models such as Euler’s elastica [35] and mean curvature [36], which are nonconvex,

nonsmooth and nonlinear, the proposed model is coercive, lower semi-continuous and convex

with the theoretical guarantee of the existence of a solution. Thus, numerous fast algorithms for

convex minimization can be used to solve the proposed model. We develop an efficient alter-

nating direction method of multipliers (ADMM) based algorithm and discuss the convergence

under certain conditions.

Another important contribution of our work is that we investigate an automatic method to

estimate the weight functions for the first and second-order regularizer accordingly. Observed

from the Mumford-Shah model, the smooth regularizer should be applied to homogeneous ar-

eas, while the piecewise constant regularizer should be acted on the edge sets. Therefore, we

use the edge detector function and the total variation of the edge detector function as the weight

functions for the smooth regularizer and piecewise constant regularizer, respectively. Numeri-

cal results demonstrate that the proposed model outperforms state-of-the-art variational models
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Figure 1: Overall flowchart of the proposed models, where the weighted bounded Hessian regularization is used

for two-phase and multi-phase segmentation.

on various image labeling/segmentation problems, which can smooth out unimportant details in

homogeneous regions and preserve characteristic structures such as edges, sharp corners, etc.

In the end, we extend the weighted bounded Hessian variational model for multi-phase segmen-

tation in a two-stage framework for noisy and blurry image segmentation. The processing flow

is outlined in Figure 1, where two models are considered in our work.

The rest of the paper is organized as follows. In Section 2, we propose the hybrid weighted

bounded Hessian variational model and establish the existence of a solution. Section 3 presents

the ADMM-based numerical algorithm and provides the convergence analysis for the ADMM

algorithm under certain conditions. The implementation details and evaluation criteria are dis-

cussed in Section 4 and the comprehensive numerical results are conducted on image labeling

and segmentation problems in Section 5. Section 6 attempts to evaluate the performance of

weighted bounded Hessian variational model in the two-stage segmentation framework with

numerical tests. Finally, conclusion and future work are discussed in Section 7.
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2. Weighted Bounded Hessian Variational Model

2.1. Preliminaries and notations
Letting X ⊂ R

n be a measurable space and f : X → R be a measurable function, we define

Lp(X) = { f
∣∣ ‖ f‖p < ∞, 1 ≤ p ≤ ∞},

where ‖ f‖p = (
∫

X | f |pdx)
1
p with 1 ≤ p < ∞, and ‖ f‖∞ = supx∈X | f (x)|. If p = 2, we denote

‖ f‖ := ‖ f‖2. The inner product of two functions f and g is given by 〈 f ,g〉= ∫
X f (x)g(x)dx.

We further define the Sobolev space on Ω as

W 1,p(Ω) =
{

u ∈ Lp(Ω) : ∇u ∈ Lp(Ω)
}
,

where ∇u is the weak gradient of u. More precisely, we define

‖∇u‖1 :=
∫

Ω
|∇u|dx = sup

{∫
Ω

udivφdx;φ ∈ C ∞
0 (Ω,Rn),‖φ‖∞ ≤ 1

}
,

where divφ = ∑n
i=1

∂φi
∂xi

(x), C ∞
0 (Ω,Rn) is the space of continuous differentiable functions with

compact support in Ω, and ‖φ‖∞ = sup
x

√
∑
i

φ 2
i (x). The space of functions of bounded variation

is denoted by BV(Ω), which is a Banach space equipped with the norm ‖u‖BV(Ω) = ‖u‖1 +
‖∇u‖1. We refer the readers to [37] for more detailed introduction of BV space.

Following [32] and [38], we introduce the space of functions of bounded Hessian BH(Ω)
(also denoted as BV2(Ω)). It consists of all functions u ∈W 1,1(Ω) whose distributional Hessian

can be represented by an R
n ×R

n-valued finite Radon measure, i.e.,

BH(Ω) =
{

u ∈W 1,1(Ω) : ‖∇2u‖1 < ∞
}
,

with

‖∇2u‖1 :=
∫

Ω
|∇2u|dx = sup

{∫
Ω

udiv2φdx;φ ∈ C ∞
0 (Ω,Rn×n),‖φ‖∞ ≤ 1

}
.

Therefore, it is immediate that W 2,1(Ω)⊂ BH(Ω) and BH(Ω) is a Banach space equipped with

norm ‖u‖BH(Ω) = ‖u‖1+‖∇u‖1+‖∇2u‖1. In the following, we summarize the main properties

of BH(Ω) with more details in [32].

– (Embedding) If Ω has a Lipschitz boundary and it is connected, it can be shown that there

exist positive constants C1 and C2 such that∫
Ω
|∇u|dx ≤C1

∫
Ω
|∇2u|dx+C2

∫
Ω
|u|dx, ∀u ∈ BH(Ω),

and BH(Ω) is continuously embedded in L2(Ω) when n = 2.
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– (Weak∗ Convergence in BH(Ω)) Let {uk}k∈N and u belong to BH(Ω). We say {uk}k∈N
converges to u weakly∗ in BH(Ω) if

‖uk −u‖1 → 0, ‖∇uk −∇u‖1 → 0,

and ∫
Ω

ukdiv2φdx →
∫

Ω
udiv2φdx, ∀φ ∈ C ∞

0 (Ω,Rn×n).

– (Compactness in BH(Ω)) Suppose that the sequence {uk}k∈N is bounded in BH(Ω). Then

there exists a subsequence {uk�}�∈N and a function u ∈ BH(Ω) such that {uk�}�∈N con-

verges to u weakly∗ in BH(Ω).

– (Lower semi-continuity) The semi-norm ‖∇2u‖1 is lower semi-continuous endowed with

strong topology of W 1,1(Ω). More precisely, if ‖uk −u‖1 → 0, ‖∇uk −∇u‖1 → 0, then∫
Ω
|∇2u|dx ≤ liminf

k→∞

∫
Ω
|∇2uk|dx.

In particular, for {uk}k∈N ∈W 1,1(Ω), if liminf
k→∞

∫
Ω |∇2uk|dx < ∞, there is u ∈ BH(Ω).

2.2. Weighted bounded Hessian variational model
Considering the limitation of the TV regularizer in dealing with smooth image labeling, we

introduce the bounded Hessian variational model by minimizing the following energy functional

E(u) :=
∫

Ω
α(x)|∇u|dx+

∫
Ω

β (x)|∇2u|dx+λ
∫

Ω
( f1 − f2)udx, (7)

subject to the box constraint u ∈ [0,1]. Because the images are comprised of multiple objects

at different scales, it is more reasonable to choose α and β as spatially adaptive values rather

than constants. Therefore, we define α(x),β (x) : Ω → R to be the spatial varying weight func-

tions for the first and second-order regularizer, respectively, both of which can be estimated in

advance according to certain rules and will be discussed later.

It is easy to check that the functional E(u) in (7) is in W 2,1(Ω). By extending the functional

into a larger Banach space BH(Ω) and using the properties of BH(Ω), we can establish the

existence of a solution for minimizing the energy functional (7) as follows.

Theorem 2.1. If α(x),β (x) ∈ C(Ω̄) and α(x) > 0, β (x) > 0 for all x ∈ Ω̄. Then, for a fixed
λ > 0, the spatially adaptive bounded Hessian variational model (7) is convex and there exists
a minimizer u∗ in BH(Ω).

Proof. Let {uk}k∈N in BH(Ω) be a minimizing sequence of (7), and let M > 0 be an upper
bound for E(uk)k∈N such that∫

Ω
α(x)|∇uk|dx ≤ M,

∫
Ω

β (x)|∇2uk|dx ≤ M, and λ
∫

Ω
( f1 − f2)ukdx ≤ M. (8)
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By the conditions α(x)> 0 and β (x)> 0 for all x ∈ Ω̄, we have the boundness of α(x) and
β (x). We suppose

α0 ≤ α(x)≤ α1 and β0 ≤ β (x)≤ β1, ∀x ∈ Ω̄, (9)

where α0, α1, β0 and β1 are some positive constants.
According to (8) and (9), it follows that

∫
Ω
|∇uk|dx ≤ M

α0
and

∫
Ω
|∇2uk|dx ≤ M

β0
.

Moreover, on account of (8) with the fixed parameters c1 and c2, it can be obtained that
∫

Ω
( f1 − f2)ukdx ≤ M

λ
,

that is ∫
Ω

ukdx ≤ M
λ‖ f1 − f2‖ .

Therefore, the sequence {uk}k∈N is uniformly bounded in L1(Ω).
Based on the Minkowski’s inequality and the boundedness of sequence {uk}k∈N, there exists

a constant C such that

‖uk‖BH(Ω) = ‖uk‖1 +‖∇uk‖1 +‖∇2uk‖1 ≤C, ∀k ∈ N. (10)

Hence, according to the compactness theorem, there is a subsequence in {uk}k∈N, denoted
{uk�}�∈N, such that converges to u∗ weakly∗ in BH(Ω). By the lower semi-continuity of E(u)
and Fatou’s lemma, we have∫

Ω
( f1 − f2)u∗dx ≤ liminf

�→∞

∫
Ω
( f1 − f2)uk�dx,

∫
Ω
|∇u∗|dx ≤ liminf

�→∞

∫
Ω
|∇uk� |dx,

∫
Ω
|∇2u∗|dx ≤ liminf

�→∞

∫
Ω
|∇2uk� |dx.

It follows that
E(u∗)≤ liminf

�→∞
E(uk�), (11)

i.e., u∗ is a minimizer of (7).
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(a) Input image
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Figure 2: Spatially adaptive weights α(I) and β (I) of the image ‘Cameraman’ in the proposed model (7), where

the step size of finite difference is h = 5.

2.3. Automatic estimation of the hybrid weights
The spatially adaptive weights have been discussed for the first and second-order regularizer

separately in the literature. As mentioned, the GMAC model (3) used the edge detection func-

tion as the weight for total variation. Duan et al. [39] introduced the edge diffusivity function

as the weight function for the second-order regularization term. To the best of our knowledge,

there is no such study on the combined first and second-order regularizer considered in this

work. We define the hybrid weights for the proposed model such that α(x) and β (x) are func-

tions of the given image I to fully capture the edge information

α(I) =
∣∣∣∇ 1√

1+ |∇I|2
∣∣∣ and β (I) =

1√
1+ |∇I|2 . (12)

On one hand, the function β (I) is the edge indicator function acting as the weight for the smooth

regularizer, whereas β (I) is large in homogenous regions to smooth out some unnecessary de-

tails and textures, and small cross edges to sharpen image edges. On the other hand, the function

α(I) is the variation of the edge detector function used as the weight for the first order regular-

izer such that α(I) is large in edge regions to enhance the first order regularizer for preserving

the main edges. In this way, the values of α(I) and β (I) ideally coincide with the requirements

of the regularization terms for labeling and segmentation tasks. Figure 2 gives an example of

α(I) and β (I) obtained on the image ‘Cameraman’, which illustrates β (I) automatically stops

at the edges and α(I) promotes at the edges as we expected.

3. Numerical Algorithm

3.1. Constrained optimization and ADMM
The alternating direction method of multipliers (ADMM) [40, 41] is applied to solve the

proposed spatially adaptive minimization model (7). The ADMM has received great success in

solving image processing models such as the classical Rudin-Osher-Fatemi (ROF) model and

some high-order variational models, which involve either non-differentiable or higher-order

terms.
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At the first place, we introduce three auxiliary variables v, w and z to rewrite the original

minimization problem into a constrained one such as

min
u,v,w,z

∫
Ω

α(I)|w|dx+
∫

Ω
β (I)|z|dx+λ

∫
Ω
( f1 − f2)vdx

s.t. w = ∇u, z = ∇2u, v = u, u ∈ [0,1].
(13)

Based on the well-known augmented Lagrangian method, we can reformulate (13) into the

following Lagrangian functional

L (u,v,w,z;λ1,λ2,λ3) =
∫

Ω
α(I)|w|dx+

∫
Ω

β (I)|z|dx+λ
∫

Ω
( f1 − f2)vdx (14)

+
r1

2

∫
Ω

(
w−∇u+

λ1

r1

)2dx+
r2

2

∫
Ω

(
z−∇2u+

λ2

r2

)2dx+
r3

2

∫
Ω

(
v−u+

λ3

r3

)2dx+δD(v),

where D = [0,1], and δD(v) is the characteristic function defined on the set D

δD(v) =
{

0, if v ∈ D ;

+∞, otherwise.

In (14), λ1, λ2 and λ3 represent the Lagrange multipliers, and r1, r2 and r3 denote the posi-

tive penalty parameters acting as the weights of the penalty terms. In each iteration, we tend

to sequentially minimize over the variables u,v,w,z by keeping the reminder variables fixed,

and then update the Lagrange multipliers λ1,λ2,λ3 using the gradient ascent. The procedure

will be repeated until convergence, which means a saddle-point of the augmented Lagrangian

functional is obtained.

3.2. Numerical solution to the sub-minimization problems
Given the fixed variables vk, wk, zk and λ k

1 , λ k
2 , λ k

3 , we discuss the solutions to the sub-

minimization problems with respect to the variable u,v,w,z in the (k+1)-th iteration.

3.2.1. The u-subproblem
The sub-minimization problem with respect to u is formulated as follows

min
u

r1

2

∫
Ω

(
∇u−wk − λ k

1

r1

)2
dx+

r2

2

∫
Ω

(
∇2u− zk − λ k

2

r2

)2
dx+

r3

2

∫
Ω

(
u− vk − λ k

3

r3

)2
dx, (15)

the Euler-Lagrange equation of which gives us the following linear PDE

(−r1∇ ·∇+ r2∇2 ·∇2 + r3)u =−∇ · (r1wk +λ k
1 )+∇2 · (r2zk +λ k

2 )+ r3vk +λ k
3 .

Therefore, we can apply the fast Fourier transform (FFT) to solve the above equation, which

gives

uk+1 = F−1

(
F (−∇ · (r1wk +λ k

1 )+∇2 · (r2zk +λ k
2 )+ r3vk +λ k

3 )

r3I − r1F (∇ ·∇)F−1 + r2F (∇2 ·∇2)F−1

)
(16)

with I being the identity operator, F and F−1 representing the commonly-used forward and

inverse FFT operation, respectively.
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3.2.2. The v-subproblem
The sub-minimization problem associated with the variable v can be described as follows

min
0≤v≤1

r3

2

∫
Ω

(
v−uk+1 +

λ k
3

r3

)2
dx+λ

∫
Ω
( f1 − f2)vdx+δD(v), (17)

the first-order optimality condition of which is

r3

(
vk+1 −uk+1 +

λ k
3

r3

)
+λ

(
f1 − f2) = 0

subject to the box constraint v ∈ [0,1]. Thus, we have

vk+1 = uk+1 − λ k
3

r3
− λ ( f1 − f2)

r3
.

In the subsequent step, we perform a one-step projection of vk+1 to take the constraint 0 ≤ v ≤ 1

into account such that

vk+1 = min

(
max

(
uk+1 − λ k

3

r3
− λ ( f1 − f2)

r3
,0

)
,1

)
. (18)

3.2.3. The (w,z)-subproblems
The sub-minimization problem of w is a typical L1 minimization problem with a spatial

varying parameter, i.e.,

min
w

∫
Ω

α(I)|w|dx+
r1

2

∫
Ω

(
w−∇uk+1 +

λ k
1

r1

)2
dx. (19)

Similarly, the sub-minimization problem of the variable z gives

min
z

∫
Ω

β (I)|z|dx+
r2

2

∫
Ω

(
z−∇2uk+1 +

λ k
2

r2

)2
dx. (20)

Both w and z can be easily computed based on the closed-form solution such as

wk+1 = shrinkage

(
r1∇uk+1 −λ k

1

r1
,
α(I)

r1

)
, (21)

and

zk+1 = shrinkage

(
r2∇2uk+1 −λ k

2

r2
,
β (I)

r2

)
, (22)

where the shrinkage operator is defined as

shrinkage(a,b) = max{|a|−b,0}◦ a
|a|

with ◦ denoting the point-wise multiplication.
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3.2.4. Lagrange multipliers (λ1,λ2,λ3)

In the end, we update the Lagrange multipliers (λ1,λ2,λ3) by gradient ascent as follows

⎧⎪⎨
⎪⎩

λ k+1
1 = λ k

1 + r1(wk+1 −∇uk+1),

λ k+1
2 = λ k

2 + r2(zk+1 −∇2uk+1),

λ k+1
3 = λ k

3 + r3(vk+1 −uk+1).

(23)

To sum up, the efficient ADMM-based algorithm is proposed to deal with the weighted

bounded Hessian variational model (7); see Algorithm 1.

Algorithm 1 The ADMM-based algorithm for the weighted bounded Hessian model

1: Input: Input image I, regularization parameter λ , positive constants c1,c2, penalty param-

eters r1,r2,r3, maximum iteration Kmax, and stopping threshold ε;

2: Initialize: u0 = v0 = w0 = z0 = λ 0
1 = λ 0

2 = λ 0
3 = 0, set k = 0;

3: while (not converged and k ≤ Kmax) do
4: Compute uk+1 with fixed vk, wk, zk, λ k

1 , λ k
2 and λ k

3 according to (16);

5: Compute vk+1 with fixed uk+1 and λ k
3 according to (18);

6: Compute wk+1 with fixed uk+1 and λ k
1 according to (21);

7: Compute zk+1 with fixed uk+1 and λ k
2 according to (22);

8: Update λ k+1
1 , λ k+1

2 and λ k+1
3 according to (23);

9: Check the convergence condition: ‖uk+1 −uk‖1 ≤ ε‖uk‖1;

10: end while

3.3. Convergence analysis
The convergence of the ADMM-based algorithm for solving the convex composite problems

has been studied in [42, 43]. Here, we discuss the convergence of Algorithm 1 for image

labeling problems.

Theorem 3.1. Suppose uk+1 −uk → 0, λ k+1
1 −λ k

1 → 0, λ k+1
2 −λ k

2 → 0 and λ k+1
3 −λ k

3 → 0 as
k→∞ in ADMM-based Algorithm 1. Then the generated sequence {(uk,vk,wk,zk;λ k

1 ,λ
k
2 ,λ

k
3 )}k∈N

converges to a limit point {(u∗,v∗,w∗,z∗;λ ∗
1 ,λ

∗
2 ,λ

∗
3 )} that satisfies the first-order optimality

conditions, i.e., ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ·λ ∗
1 −∇2 ·λ ∗

2 −λ ∗
3 = 0,

λ ∗
3 +λ ( f1 − f2) = 0,

α(I)s∗+λ ∗
1 = 0, s∗ ∈ ∂ |w∗|,

β (I)p∗+λ ∗
2 = 0, p∗ ∈ ∂ |z∗|,

w∗ = ∇u∗, z∗ = ∇2u∗, v∗ = u∗.

Proof. The proof is sketched in the appendix.
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4. Implementation and Evaluation

In this section, we present the numerical experiments of the proposed spatially adaptive

variational model (7) on various image labeling and segmentation applications. To demonstrate

the effectiveness and superiority of our proposal, we compare it with several advanced methods

on both synthetic and real images. To set up the experimental comparison as fair as possible, the

parameters of the comparative methods are selected as suggested in the corresponding papers.

All numerical experiments are performed in a Matlab R2016a environment on a desktop with

3.20GHz Intel(R) Core(TM) i7-8700 CPU and 16GB RAM.

In the experiments, we monitor the relative residuals in order to check whether our algorithm

converges to a saddle point, which are defined as

(Rk
1,R

k
2,R

k
3) =

1

|Ω|(‖wk −∇uk‖1,‖zk −∇2uk‖1,‖vk −uk‖1) (24)

with ‖ · ‖1 denoting the L1 norm on Ω and |Ω| being the area of image domain. To check the

convergence of the iteration process, we also examine the relative errors of Lagrange multipli-

ers:

(Lk
1,L

k
2,L

k
3) =

(‖λ k
1 −λ k−1

1 ‖1

‖λ k−1
1 ‖1

,
‖λ k

2 −λ k−1
2 ‖1

‖λ k−1
2 ‖1

,
‖λ k

3 −λ k−1
3 ‖1

‖λ k−1
3 ‖1

)
, (25)

and the relative error in uk:

R(uk) =
‖uk −uk−1‖1

‖uk−1‖1
. (26)

In addition, the numerical energy is calculated by

E(uk) =
∫

Ω
α(I)|∇uk|dx+

∫
Ω

β (I)|∇2uk|dx+λ
∫

Ω
( f1 − f2)ukdx. (27)

4.1. Evaluation criteria
In numerical experiments, the accuracy of segmentation is measured by Segmentation Accu-

racy (SA), F1-Score, Kappa coefficient (κ) and Jaccard Similarity (JS), which can be estimated

by the stand confusion matrix as shown in Table 1. Generally speaking, the closer these values

are to 1, the better the segmentation is.

Table 1: Confusion matrix

Confusion matrix
True

Positive Negative

Predict
Positive TP FP

Negative FN TN

� Segmentation Accuracy (SA):

SA =
TP+TN

TP+TN+FP+FN
.
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� F1-Score:

F1-Score =
2PR

P+R
with P =

TP

TP+FP
, R =

TP

TP+FN
,

where P denotes Precision and R represents Recall.

� Kappa coefficient (κ):

κ =
SA−Pe

1−Pe
with Pe =

(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

(TP+TN+FP+FN)2
.

� Jaccard Similarity (JS):

JS(S1,S2) =
|S1 ∩S2|
|S1 ∪S2| ,

where S1 is the region segmented by the Algorithm 1 and S2 is the corresponding region

of the ground truth.

4.2. Parameters discussion
Throughout all numerical experiments, the termination parameters are set as Kmax = 400

and ε = 10−5 for all comparative algorithms. The experience-dependent penalty parameters r1,

r2 in our model are fixed as r1 = 1 and r2 = 2, and the grid size is set as h = 1 for the differential

operators in the first and second-order regularizers and h = 5 for the differential operators in

α(I) and β (I) to smooth out the small edges and structures in all experiments. The parameters

λ and r3 in our model are chosen empirically in each experiment, which play important roles in

smoothing and regularizing the results.

On the other hand, the parameters including the regularization parameter λ , penalty pa-

rameter r and time step δ of the comparison algorithms are all adjusted to achieve accurate

segmentation results, which are provided as follows:

� The active contour without edges (ACWE) model [2]: the regularization parameter is

chosen from λ ∈ [0.1,1], the time step is set as δ ∈ [0.1,0.5] and the ACWE model is also

quite sensitive to the position of the initial contour.

� The fast global minimization of the active contour/snake (GMAC) model [8]: the regu-

larization parameter λ is selected as [0.01,1] and the penalty parameter r is adjusted in

the range [0.1,10].

� The continuous max-flow (CMF) method [13]: the regularization parameter is chosen as

λ ∈ [0.1,0.5] and the time step of gradient projection is selected from δ ∈ [0.1,0.15].

� The smoothed-dual (GMD) algorithm [11]: the regularization parameter is chosen from

λ ∈ [0.01,0.5] and the time step is selected from δ ∈ [0.001,0.01].

� The efficient iterative thresholding (ICTM) method [5]: the regularization parameter is

set as λ ∈ [0.001,0.025] and the time step is δ ∈ [0.01,0.05].
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(a) ACWE (b) GMAC (c) CMF (d) GMD (e) ICTM (f) EMTV (g) T-ROF (h) Proposal

Figure 3: Labeling comparisons on images ‘Liver’ (Row 1), ‘Abdomina’ (Row 2) and ‘Ultrasound’ (Row 3). From

left to right: (a)-(g) labeling results of ACWE, GMAC, CMF, GMD, ICTM, EMTV and T-ROF respectively; (h)

our labeling result with the parameters λ = 3, r3 = 10 for ‘Liver’, λ = 3, r3 = 0.5 for ‘Abdomina’ and λ = 3.5,

r3 = 10 for ‘Ultrasound’, respectively.

� The dual expectation-maximization TV (EMTV) algorithm [44]: the regularization pa-

rameter is λ ∈ [1,50], penalty parameter is r ∈ [1,100] and time step is δ ∈ [0.01,0.5].

� The thresholded-ROF (T-ROF) method [22]: the regularization parameter is chosen from

λ ∈ [0.01,0.5] and the time step is selected from δ ∈ [0.01,0.03].

4.3. Numerical discretization
Without loss of generality, our images are 2-dimensional matrices of size M ×N. Let Ω =

{(i, j) : 0 ≤ i ≤ M,0 ≤ j ≤ N} be the discretized image domain and u(i, j) denote an element

of Euclidean space R
M×N . We first introduce the discrete forward and backward differential

operators with the grid size h under periodic boundary condition as follows

∂+
x u(i, j) =

{
(u(i+1, j)−u(i, j))/h, if 1 ≤ i < M,

(u(1, j)−u(i, j))/h, if i = M,

∂+
y u(i, j) =

{
(u(i, j+1)−u(i, j))/h, if 1 ≤ j < N,

(u(i,1)−u(i, j))/h, if j = N,

∂−
x u(i, j) =

{
(u(i, j)−u(i−1, j))/h, if 1 < i ≤ M,

(u(i, j)−u(M, j))/h, if i = 1,
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(a) ACWE (b) GMAC (c) CMF (d) GMD

(e) ICTM (f) EMTV (g) T-ROF (h) Our proposal

Figure 4: Segmentation comparison on image ‘Butterfly’. From left to right: (a)-(g) segmentation results of

ACWE, GMAC, CMF, GMD, ICTM, EMTV and T-ROF, respectively; (h) our segmentation result with the param-

eters λ = 3 and r3 = 70.

∂−
y u(i, j) =

{
(u(i, j)−u(i, j−1))/h, if 1 < j ≤ N,

(u(i, j)−u(i,N))/h, if j = 1.

Therefore, the discrete gradient operator ∇ : RM×N → (RM×N)2 is denoted as

∇u(i, j) =
(
∂+

x u(i, j),∂+
y u(i, j)

)
,

and the discrete divergence operator ∇· : (RM×N)2 → R
M×N for p = (p1, p2) ∈ (RM×N)2 is

defined by

∇ · p(i, j) = ∂−
x p1(i, j)+∂−

y p2(i, j),

and the discrete Laplacian operator � is defined based on the discrete gradient and divergence

operator as

�= ∇ ·∇ = ∂−
x ∂+

x +∂−
y ∂+

y .

4.4. Computational complexity
In this subsection, we analyze the computational complexity of Algorithm 1. The main

computational costs are spent on the calculation of {u,v,w,z}-subproblems, which are solved

by the FFT and shrinkage operator. It is well-known the computational complexity of FFT

and shrinkage operator are O[MN log(MN)] and O(MN), respectively. Therefore, the total

computational complexity of Algorithm 1 can be approximately given as O[MN log(MN)] per

iteration.
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(a) ACWE (b) GMAC (c) CMF (d) GMD (e) ICTM

(f) EMTV (g) T-ROF (h) Our proposal (i) α(I) = 0 (j) β (I) = 0

Figure 5: Segmentation comparison on image ‘Aircraft’. From left to right: (a)-(g) segmentation results of ACWE,

GMAC, CMF, GMD, ICTM, EMTV and T-ROF, respectively; (h) our segmentation result with the parameters

λ = 3 and r3 = 30; (i)-(j) our segmentation results with α(I) = 0 and β (I) = 0, respectively.
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Figure 6: The JS and κ of ‘Butterfly’ and ‘Aircraft’ by different parameters λ and r3. From left to right: (a)

Butterfly (JS); (b) Butterfly (κ); (c) Aircraft (JS); (d) Aircraft (κ).

5. Numerical Results

5.1. Image labeling experiments
In the first place, we compare the performance of our proposal (7) with other methods

including the ACWE, GMAC, CMF, GMD, ICTM, EMTV and T-ROF models on two-phase

labeling problems. We choose three medical images as examples, for which the values c1,c2

are predefined by the K-means algorithm. As shown in Figure 3, all the advanced methods

outperform the ACWE model by providing labeling results with fewer outliers. Moreover,

among these approaches, our method produces more consistent results. As can be observed,

both the CMF and GMD models fail to identify the boundaries at the bottom part of the image

‘Liver’, which have similar intensity values as the liver. Moreover, the results of the GMD

and T-ROF models contain too much meaningless scattered structures for the two ultrasound

images, while the edges of the segmentation results from the GMAC and ICTM models are

broken for the first ultrasound image. Although the EMTV and our model provide visually

similar results, the boundaries of our results are smoother than the ones of the EMTV model.
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Figure 7: Evaluation and comparison on natural images downloaded from the Weizmann segmentation dataset.

5.2. Image segmentation
We also test the proposed model (7) on image segmentation applications, where f1 and f2

are defined as

f1 = (I − c1)
2 and f2 = (I − c2)

2

with c1 and c2 being updated iteratively from

ck
1 =

∫
Ω Ivkdx∫
Ω vkdx

and ck
2 =

∫
Ω I(1− vk)dx∫
Ω(1− vk)dx

.

We first apply all segmentation methods on two real images, ‘Butterfly’1 and ‘Aircraft’2.

The results of ‘Butterfly’ in Figure 4 demonstrate that the ACWE, CMF and ICTM methods can

not smooth out some unwanted details, e.g., the chinks in the background, while the butterfly

produced by the GMAC, GMD, EMTV, and T-ROF methods also present incorrect boundaries.

As observed, our model gives the best segmentation result without redundant details and rough

edges.

The image ‘Aircraft’ is a typical smooth image. As shown in Figure 5, only our model can

accurately segment the aircraft from the background, while all comparison methods contain

some undesired structures. Concretely, the ACWE, GMAC, CMF, GMD and EMTV methods

segment the cloud into the phase of airplane, while the ICTM and T-ROF models fail to identify

the entire plane tail. Also, we evaluate the performance of our model using only the spatially

adaptive first-order regularizer and the second-order regularizer. By setting α(I) = 0, our model

reduces to a weighted high-order segmentation model, which can still produce reasonable seg-

mentation results. However, letting β (I) = 0, the model becomes a weighted ACWE model,

which results in some superfluous details and non-smoothed boundaries in the result. And the

best segmentation results are still the ones achieved by our combined first and second-order

regularization model.

1The image was downloaded from http://www.wisdom.weizmann.ac.il/˜vision/Seg_
Evaluation_DB/

2The image was downloaded from https://www2.eecs.berkeley.edu/Research/Projects/
CS/vision/bsds/
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(a) Given image (b) ACWE (c) GMAC (d) CMF (e) GMD

(f) ICTM (g) EMTV (h) T-ROF (i) Our proposal (j) Ground truth

Figure 8: Segmentation comparison on image ‘#11’. From left to right: (a) Given 300 × 247 image; (b)-(h)

segmentation results of the ACWE, GMAC, CMF, GMD, ICTM, EMTV and T-ROF models, respectively; (i) our

segmentation result with the parameters λ = 10 and r3 = 30; (j) Ground truth.

5.3. Impact of parameters
There are two important parameters in our model, i.e., the regularization parameter λ and

penalty parameter r3. We track the values of JS and κ on ‘Butterfly’ and ‘Aircraft’ to illustrate

the segmentation accuracy concerning different parameters. Figure 6 shows the JS and κ values

of the two images with different combinations of λ and r3, where λ and r3 are selected from

(λ ,r3) ∈ {2−1,20, · · · ,213}× {2−1,20, · · · ,213}. It is obvious that both λ and r3 affect the

segmentation results. On one hand, λ is used to balance the contributions of the data fitting

term and the regularization term. For large λ , the foreground contains many small structures

and the boundaries are not neat enough, while for small λ , the model can not identify the

boundaries of objects correctly. On the other hand, for the fixed regularization parameter λ ,

when the penalty parameter r3 increases, the segmentation results tend to lose more details.

Although it is necessary to manually tune these two parameters for different images, we can

start from moderate values such as λ = 3 and r3 = 30 and fine tune the results according to the

above observations.
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(a) Given image (b) ACWE (c) GMAC (d) CMF (e) GMD

(f) ICTM (g) EMTV (h) T-ROF (i) Our proposal (j) Ground truth

Figure 9: Segmentation comparison on image ‘#12’. From left to right: (a) Given 300 × 225 image; (b)-(h)

segmentation results of the ACWE, GMAC, CMF, GMD, ICTM, EMTV and T-ROF models, respectively; (i) our

segmentation result with the parameters λ = 10 and r3 = 30; (j) Ground truth.

5.4. Segmentation on more natural images
To further verify the effectiveness and superiority of the proposed model, we test the meth-

ods on twelve natural images downloaded from the Weizmann segmentation dataset3. We select

suitable parameters for each algorithm and fix them for these twelve images. Table 2 records

the values of JS, SA, F1-Score and κ of each algorithm on every image. It can be seen that our

proposal provides the highest mean and lowest variance compared to other approaches. Thus,

our model is more reliable and stable with different images. The segmentation results of two ex-

amples from these twelve images (i.e., ‘#11’ and ‘#12’) are displayed in Figure 8 and Figure 9.

We observe that our proposal can not only identify the correct boundaries of the chains but also

distinguish the sharps and corners correctly. The GMAC, CMF, and GMD methods segment

the incorrect boundaries of coconut trees in Figure 9, while ACWE, ICTM, and EMTV provide

too much undesired scattered structures in the results. Besides, the results of the image ‘#11’

illustrate that the ICTM model is more sensitive to parameters compared to other methods.

3http://www.wisdom.weizmann.ac.il/˜vision/Seg_Evaluation_DB
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Figure 10: The plots of relative residuals, relative errors in Lagrange multipliers, relative error in uk, and numerical

energy of image ‘Liver’ and ‘#11’.
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Table 2: The JS, SA, F1-Score and κ values on twelve natural images of the ACWE, GMAC, CMF, GMD, ICTM,

EMTV, T-ROF and our proposal.
Criteria JS SA

Images ACWE GMAC CMF GMD ICTM EMTV T-ROF OUR ACWE GMAC CMF GMD ICTM EMTV T-ROF OUR

#1 0.7167 0.9457 0.9450 0.9668 0.9481 0.9500 0.9426 0.9571 0.9528 0.9933 0.9933 0.9960 0.9937 0.9939 0.9929 0.9947

#2 0.9890 0.9895 0.9855 0.9857 0.9894 0.9910 0.9900 0.9897 0.9938 0.9942 0.9919 0.9920 0.9941 0.9950 0.9944 0.9943

#3 0.9551 0.9498 0.9476 0.9502 0.9538 0.9342 0.9506 0.9545 0.9939 0.9932 0.9928 0.9932 0.9937 0.9911 0.9933 0.9938

#4 0.8803 0.9066 0.9047 0.8993 0.8942 0.9072 0.9009 0.9001 0.9925 0.9941 0.9939 0.9936 0.9933 0.9940 0.9937 0.9937

#5 0.8284 0.8416 0.8179 0.8267 0.8356 0.8560 0.8293 0.8398 0.9763 0.9781 0.9748 0.9760 0.9773 0.9800 0.9762 0.9778

#6 0.8881 0.9216 0.9124 0.9179 0.9157 0.8625 0.9076 0.9098 0.9453 0.9611 0.9560 0.9592 0.9585 0.9327 0.9545 0.9556

#7 0.9934 0.9935 0.9878 0.9928 0.9936 0.9854 0.9849 0.9929 0.9981 0.9981 0.9965 0.9980 0.9982 0.9958 0.9957 0.9980

#8 0.9700 0.9725 0.9708 0.9717 0.9735 0.9713 0.9692 0.9718 0.9917 0.9924 0.9919 0.9922 0.9927 0.9920 0.9914 0.9922

#9 0.9508 0.9671 0.9612 0.9638 0.9643 0.9821 0.9657 0.9645 0.9904 0.9936 0.9924 0.9929 0.9930 0.9965 0.9933 0.9931

#10 0.9257 0.9303 0.9370 0.9222 0.9285 0.9451 0.9214 0.9271 0.9969 0.9971 0.9974 0.9967 0.9970 0.9977 0.9967 0.9969

#11 0.7960 0.8371 0.8065 0.8443 0.3116 0.7702 0.8196 0.8184 0.9699 0.9760 0.9715 0.9770 0.6913 0.9661 0.9734 0.9732

#12 0.6763 0.3288 0.4017 0.3393 0.6907 0.6836 0.7505 0.7541 0.9600 0.7713 0.8352 0.7957 0.9617 0.9610 0.9691 0.9696

Mean 0.8808 0.8820 0.8815 0.8817 0.8666 0.9032 0.9110 0.9150 0.9801 0.9702 0.9740 0.9719 0.9620 0.9830 0.9854 0.9861
Variance 0.0112 0.0329 0.0263 0.0320 0.0376 0.0091 0.0056 0.0056 0.0004 0.0040 0.0021 0.0032 0.0075 0.0004 0.0002 0.0002
Criteria F1-Score κ
Images ACWE GMAC CMF GMD ICTM EMTV T-ROF OUR ACWE GMAC CMF GMD ICTM EMTV T-ROF OUR

#1 0.8350 0.9721 0.9717 0.9831 0.9734 0.9744 0.9705 0.9781 0.8082 0.9683 0.9680 0.9808 0.9698 0.9709 0.9665 0.9751

#2 0.9944 0.9947 0.9927 0.9928 0.9947 0.9955 0.9950 0.9948 0.9875 0.9882 0.9836 0.9839 0.9880 0.9898 0.9887 0.9884

#3 0.9770 0.9743 0.9731 0.9744 0.9764 0.9660 0.9747 0.9767 0.9735 0.9703 0.9689 0.9705 0.9727 0.9609 0.9708 0.9732

#4 0.9364 0.9510 0.9499 0.9470 0.9441 0.9513 0.9479 0.9474 0.9324 0.9478 0.9467 0.9436 0.9406 0.9481 0.9445 0.9441

#5 0.9062 0.9140 0.8998 0.9051 0.9104 0.9224 0.9067 0.9129 0.8927 0.9015 0.8855 0.8915 0.8975 0.9110 0.8931 0.9003

#6 0.9407 0.9592 0.9542 0.9572 0.9560 0.9262 0.9516 0.9528 0.8902 0.9220 0.9119 0.9182 0.9169 0.8648 0.9087 0.9110

#7 0.9967 0.9967 0.9939 0.9964 0.9968 0.9926 0.9924 0.9964 0.9953 0.9955 0.9914 0.9950 0.9955 0.9897 0.9894 0.9950

#8 0.9848 0.9861 0.9852 0.9856 0.9866 0.9854 0.9843 0.9857 0.9791 0.9808 0.9796 0.9802 0.9815 0.9800 0.9785 0.9803

#9 0.9748 0.9833 0.9802 0.9816 0.9818 0.9910 0.9826 0.9820 0.9689 0.9793 0.9755 0.9772 0.9775 0.9888 0.9784 0.9777

#10 0.9614 0.9639 0.9675 0.9595 0.9629 0.9718 0.9591 0.9622 0.9598 0.9624 0.9661 0.9578 0.9614 0.9706 0.9574 0.9606

#11 0.8864 0.9113 0.8929 0.9156 0.4752 0.8702 0.9009 0.9002 0.8693 0.8975 0.8767 0.9024 0.3266 0.8511 0.8856 0.8849

#12 0.8069 0.4948 0.5732 0.5067 0.8171 0.8121 0.8575 0.8598 0.7854 0.3846 0.4872 0.4035 0.7965 0.7911 0.8405 0.8431

Mean 0.9334 0.9251 0.9279 0.9254 0.9146 0.9466 0.9519 0.9541 0.9202 0.9082 0.9118 0.9087 0.8937 0.9347 0.9418 0.9445
Variance 0.0040 0.0191 0.0136 0.0182 0.0216 0.0032 0.0018 0.0018 0.0050 0.0283 0.0194 0.0265 0.0349 0.0043 0.0023 0.0023

5.5. Numerical convergence
To check whether the iteration of the ADMM-based algorithm converges to a saddle-point

of the augmented Lagrangian functional, we track the decay of relative residuals (24), relative

errors of the Lagrange multipliers (25), the relative error of the iterative R(uk) (26) and the nu-

merical energy E(uk) (27). In Figure 10, we present the plots of these quantities versus iterations

on the image ‘Liver’ and ‘#11’ in the log-scale. We observe that: 1) the plots demonstrate the

convergence of the iterative process and show that the iterations converge to certain saddle-point

numerically; 2) the plots also verify the efficiency and stability of the ADMM-based algorithm,

which converges fast with a few hundred of iterations for both images.

6. Extension to Two-stage Image Segmentation Framework

In this section, we further apply the weighted bounded Hessian variational model in the two-

stage segmentation formulation to deal with multi-phase segmentation problems. The two-stage

segmentation method can provide a good understanding of the link between image segmentation

and image restoration. In first stage, we find a smooth image u from the blurry and noisy image

I to facilitate the segmentation by solving the following restoration problem

min
u

∫
Ω

α(x)|∇u|dx+
∫

Ω
β (x)|∇2u|dx+

λ
2

∫
Ω
(Ku− I)2dx. (28)
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Because the observed image is noisy and blurry, inaccurate boundaries may be located by esti-

mating α(x) and β (x) using (12). Thus, we define α(x) and β (x) as functions of u to boost the

restoration result, i.e.,

α(u) =
∣∣∣∇ 1√

1+ |∇u|2
∣∣∣ and β (u) =

1√
1+ |∇u|2 ,

which are updated dynamically in the iterative process. As the quality of u becomes better and

better, α(u) and β (u) can locate the boundaries more accurately.

Similarly, the minimization problem (28) can be solved by the efficient ADMM-based algo-

rithm. By introducing two auxiliary variables v and w, we reformulate (28) into an equivalent

constrained minimization problem as follows

min
u,v,w

∫
Ω

α(u)|v|dx+
∫

Ω
β (u)|w|dx+

λ
2

∫
Ω
(Ku− I)2dx

s.t. v = ∇u, w = ∇2u.
(29)

Thus, the associated augmented Lagrangian functional for the constrained optimization problem

can be defined as

L (u,v,w;Λ1,Λ2) =
∫

Ω
α(u)|v|dx+

∫
Ω

β (u)|w|dx+
λ
2

∫
Ω
(Ku− I)2dx

+
r1

2

∫
Ω

(
v−∇u+

λ1

r1

)2dx+
r2

2

∫
Ω

(
w−∇2u+

λ2

r2

)2dx, (30)

where λ1,λ2 are the Lagrange multipliers, and r1,r2 denote the positive penalty parameters.

During each iteration, we tend to sequentially minimize over variables u,v,w and update the

Lagrange multipliers λ1,λ2 through a standard dual-ascent rule. Since each subproblem can be

solved in a similar way as previous, we omit the details and simply present the subproblems in

Algorithm 2.

Once the smooth solution u is obtained, the segmentation can be realized using proper

thresholds ρ . We can select the thresholds using automatic clustering algorithms such as K-

means [45] and a more advanced fuzzy c-means method [46]. Alternatively, users can try

different values of thresholds to get satisfactory results. Note that one merit of the two-stage

segmentation framework is there is no need to recompute the image u when we change the

thresholds. One can just use the new thresholds to obtain the segmentation result.

6.1. Experimental results
In this subsection, we evaluate the performance of our two-stage weighted Hessian model by

comparing it with other established two-stage segmentation methods. To guarantee the fairness

of experimental comparison, the parameters are chosen by trials to obtain the best results for

the respective methods. We first give the following two remarks concerning the parameters and

stopping criteria:
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Algorithm 2 The ADMM-based algorithm for the two-stage bounded Hessian model

1: Input: Degraded image I, regularization parameter λ , penalty factor r1,r2, maximum iter-

ation Kmax, and stopping threshold ε
2: Initialize: u0 = I, and v0 = λ 0

1 = λ 0
2 = 0, set k = 0

3: /* Stage I */

4: while (not converged and k ≤ Kmax) do
5: Compute uk+1 with fixed vk, wk and λ k

1 ,λ
k
2 from:

uk+1 = argmin
u

r1

2

∫
Ω
(∇u− vk − λ k

1

r1
)2dx+

r2

2

∫
Ω
(∇2u−wk − λ k

2

r2
)2dx+

λ
2

∫
Ω
(Ku− I)2dx,

which can be solved by FFT.

6: Update α(uk+1) and β (uk+1) using the latest uk+1 from

α(uk+1) =
∣∣∣∇ 1√

1+ |∇uk+1|2
∣∣∣ and β (uk+1) =

1√
1+ |∇uk+1|2 .

7: Compute vk+1 with fixed uk+1, α(uk+1) and λ k
1 from:

vk+1 = argmin
v

∫
Ω

α(uk+1)|v|dx+
r1

2

∫
Ω

(
v−∇uk+1 +

λ k
1

r1

)2dx,

which can be solved by the shrinkage operator.

8: Compute wk+1 with fixed uk+1, β (uk+1) and λ k
2 from:

wk+1 = argmin
w

∫
Ω

β (uk+1)|w|dx+
r2

2

∫
Ω

(
w−∇2uk+1 +

λ k
2

r2

)2dx,

which can be solved by the shrinkage operator.

9: Update λ k+1
1 ,λ k+1

2 with uk+1, vk+1 and wk+1 from:

λ k+1
1 = λ k

1 + r1(vk+1 −∇uk+1),

λ k+1
2 = λ k

2 + r2(wk+1 −∇2uk+1).

10: Check the convergence condition:

‖uk+1 −uk‖1 ≤ ε‖uk‖1.

11: end while
12: /* Stage II */

13: Use the K-means to choose the thresholds and obtain the segmentation result.
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(a) Given image (b) TSMS (c) TSEE (d) T-ROF (e) ρ = 0.4036 (f) ρU = 0.2 (g) ρU = 0.5

Figure 11: Comparison of the kidney vascular system segmentation. (a) Given 255×255 image; (b)-(d) segmenta-

tions of TSMS, TSEE and T-ROF; (e)-(g) our segmentation using λ = 0.01 and thresholds ρ = 0.4036, ρU = 0.2
and 0.5, respectively.

� We use the K-means to estimate the thresholds ρ for the two-stage Mumford-Shah (TSMS)

model in [15], two-stage Euler’s elastica (TSEE) model in [19], thresholded-ROF (T-

ROF) model in [22] and our proposal. In numerical experiments, the penalty parameters

are fixed as r1 = 1, r2 = 2 and the mesh size is set as h = 5 for all examples. The regular-

ization parameter λ is chosen empirically to guarantee segmentation performance.

� The iteration of all the two-stage segmentation methods are terminated using the same

criterion such that either the relative error satisfies

R(uk+1) =
‖uk+1 −uk‖1

‖uk‖1
≤ ε

with ε = 10−4 or the maximum iteration number (i.e., Kmax = 400) is reached.

In Figure 11, we use an example to discuss the influences of the thresholds to final segmen-

tation results. Figure 11(a) is a given magnetic resonance angiography kidney image. Figure

11(b)-(d) are the results of the TSMS, TSEE, and T-ROF models, while Figure 11(e)-(g) are our

segmentation results with the threshold obtained by the K-means method (ρ = 0.4036) and the

thresholds chosen by users (ρU = 0.2 and 0.5). As shown, visually similar segmentation results

are obtained by these four two-stage segmentation methods with the threshold automatically

computed by the K-means. The segmentation results in Figure 11(f) and (g) illustrate that too

large threshold may lead to discontinuous segmentation results with important structures miss-

ing, and too small threshold results in retaining unnecessary details and segmenting incorrect

boundaries. Besides, we can observe that the two-stage method can reveal different meaningful

features in the image by choosing different thresholds, which can be done without recomputing

the first stage. In the following, we use the K-means to estimate the thresholds automatically,

which usually can provide moderate satisfactory results.

We generate the test images using two different kinds of blurring such that Figure 12 (a) and

Figure 13 (a) are degraded by motion blur kernel [fspecial (‘motion’, [90,15])] and Gaussian

blur kernel [fspecial (‘gaussian’, [15,15], 15)], respectively. Both images are introduced with

the Gaussian noise with a mean 0 and a standard deviation of σ = 10. As shown in Figure 12,

both the TSMS and T-ROF models erroneously segment the rectangles into the same phase,

which results in bad evaluation values (e.g., JS, F1-score and κ) as shown in Table 3. Although
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(a) Degraded image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 12: Comparison of the four-phase synthetic image segmentation. (a) Given degraded image (184× 234);

(b)-(d) segmentation of the TSMS, TSEE and T-ROF model; (e) our segmentation result with λ = 0.05; (f) ground

truth.

(a) Degraded image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 13: Comparison of the four-phase synthetic image segmentation. (a) Given degraded image (256× 256);

(b)-(d) segmentation result of the TSMS, TSEE and T-ROF model; (e) our segmentation result with λ = 0.1; (f)

ground truth.

Table 3: Evaluation results of the comparative methods in Figure 12 and Figure 13.

Images Methods
First-phase Second-phase Third-phase

JS SA F1-Score κ JS SA F1-Score κ JS SA F1-Score κ

Figure 12

TSMS 0.1683 0.9214 0.2882 0.2601 0.1337 0.9294 0.2359 0.2194 0.9727 0.9751 0.9862 0.8618
TSEE 0.8743 0.9887 0.9329 0.9267 0.6782 0.9961 0.8082 0.8063 0.9876 0.9886 0.9937 0.9328
T-ROF 0.1937 0.9143 0.3246 0.2849 0.1383 0.9352 0.2430 0.2269 0.9598 0.9633 0.9795 0.8069

Our proposal 0.8915 0.9904 0.9426 0.9374 0.7642 0.9971 0.8663 0.8649 0.9888 0.9897 0.9943 0.9389

Figure 13

TSMS 0.9487 0.9945 0.9737 0.9706 0.9756 0.9977 0.9877 0.9864 0.9670 0.9852 0.9832 0.9700
TSEE 0.9542 0.9951 0.9765 0.9738 0.9777 0.9978 0.9887 0.9875 0.9675 0.9854 0.9835 0.9704
T-ROF 0.9013 0.9891 0.9481 0.9420 0.9535 0.9954 0.9762 0.9737 0.9548 0.9797 0.9769 0.9588

Our proposal 0.9552 0.9952 0.9771 0.9744 0.9840 0.9985 0.9919 0.9911 0.9682 0.9858 0.9839 0.9711

the TSEE model provides visually satisfactory four-phase segmentation results, there presents

some unexpected artifacts on the boundaries. Due to the spatially adaptive weights, our proposal

can identify the boundaries more accurately, which is further convinced by the indexes in Table

3. Similar segmentation results are achieved on the other four-phase image in Figure 13. As

shown, our model produces better segmentation result with more accurate boundaries than the

competing methods. Moreover, the evaluation indexes recorded in Table 3 also demonstrate the

effectiveness and superiority of our proposal.

Finally, we test our two-stage model on two brain MRI images from the BrainWeb dataset4.

Figure 14 (a) is contaminated by the Gaussian noise with a mean 0 and a standard deviation of

σ = 10, and Figure 15 (a) is degraded by the Gaussian blur kernel [fspecial (‘gaussian’, [3,3],

3)] and the Gaussian noise with a mean 0 and a standard deviation of σ = 5. We display the

4https://brainweb.bic.mni.mcgill.ca/
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(a) Noisy image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 14: Comparison on four-phase brain MRI image segmentation. (a) Given noisy image (217×181); (b)-(d)

segmentations of TSMS, TSEE and T-ROF; (e) our segmentation with λ = 0.05; (f) ground truth.

(a) Blurry image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 15: Comparison on four-phase brain MRI image segmentation. (a) Given noisy and blurry image (217×
181); (b)-(d) segmentations of TSMS, TSEE and T-ROF; (e) our segmentation with λ = 0.2; (f) ground truth.

Table 4: Evaluation results of the comparative methods in Figure 14 and Figure 15.

Images Methods
CF GM WM

JS SA F1-Score κ JS SA F1-Score κ JS SA F1-Score κ

Figure 14

TSMS 0.8315 0.9561 0.9080 0.8791 0.8616 0.9705 0.9257 0.9073 0.8348 0.9856 0.9100 0.9022
TSEE 0.8403 0.9587 0.9132 0.8862 0.8719 0.9729 0.9316 0.9147 0.8353 0.9855 0.9103 0.9024
T-ROF 0.8420 0.9583 0.9142 0.8867 0.8827 0.9756 0.9377 0.9225 0.7789 0.9807 0.8757 0.8652

Our proposal 0.8625 0.9647 0.9262 0.9030 0.8927 0.9775 0.9433 0.9293 0.8435 0.9865 0.9151 0.9078

Figure 15

TSMS 0.8339 0.9694 0.9094 0.8910 0.9359 0.9843 0.9669 0.9566 0.7969 0.9855 0.8870 0.8792
TSEE 0.8328 0.9691 0.9088 0.8902 0.9324 0.9835 0.9650 0.9542 0.8016 0.9859 0.8899 0.8824
T-ROF 0.7912 0.9601 0.8834 0.8593 0.9169 0.9795 0.9566 0.9432 0.7266 0.9803 0.8417 0.8312

Our proposal 0.8462 0.9719 0.9167 0.8998 0.9363 0.9844 0.9671 0.9569 0.8050 0.9863 0.8920 0.8847

segmentation results of the TSMS, TSEE, T-ROF, and our model in Figures 14 and 15, where

our model produces more accurate results than the others, especially the regions inside the red,

green and blue box. We also compare the results in terms of JS, SA, F1-Score and κ in Table

4. As can be observed, our model gives the best segmentation results for all three tissues, i.e.,

cerebrospinal fluid (CF), gray matter (GM) and white matter (WM).

7. Conclusions

In this paper, we proposed a variational model in the space of functions of bounded Hes-

sian to overcome the shortage of TV regularizer in segmenting natural images containing both

flat regions and slanted regions. Instead of using constant parameters, we estimated the spatial

varying parameters in advance according to the edge information of images. The resulting non-

smooth optimization problem was efficiently solved by the ADMM-based algorithm. Because
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of the convexity, our model performed more stable concerning parameters and initializations.

Numerical experiments implemented on natural images demonstrated the efficacious and accu-

rate performance of our proposed method by comparing with several advanced segmentation

methods. We also extended the weighted bounded Hessian regularizer to the two-stage seg-

mentation framework to deal with noisy and blurry images, which also achieved state-of-the-art

results.

As far as future work is concerned, an automatic way to select λ in the proposed model

would be useful. We may use the bi-level learning scheme to estimate the value of λ from the

dataset [47] or use the parameter-free fitting term in [48]. Moreover, we would like to investigate

the performance of the weighted bounded Hessian regularizer on other image processing tasks

such as super-resolution imaging, Retinex, etc.

Acknowledgements

The authors would like to thank Dr. Gu and Prof. Cai for sharing the MATLAB code of

image segmentation and the reviewers for providing us numerous valuable suggestions to re-

vise this paper. The work is partially supported by the National Natural Science Foundation

of China No. 11701418, Major Science and Technology Project of Tianjin 18ZXRHSY00160,

and Recruitment Program of Global Young Expert. T. Zeng is supported by the National Sci-

ence Foundation of China No. 11671002, CUHK start-up and CUHK DAG 4053342, RGC

14300219, and NSFC/RGC N CUHK 415/19.

Appendix

Proof of Theorem 3.1

Proof. According to Algorithm 1, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−r1∇ ·∇+ r2∇2 ·∇2 + r3)uk+1 =−∇ · (r1wk +λ k
1 )+∇2 · (r2zk +λ k

2 )+ r3vk +λ k
3 ,

r3(vk+1 −uk+1)+λ k
3 +λ ( f1 − f2) � 0,

α(I)sk+1 + r1(wk+1 −∇uk+1)+λ k
1 � 0, sk+1 ∈ ∂ |wk+1|,

β (I)pk+1 + r2(zk+1 −∇2uk+1)+λ k
2 � 0, pk+1 ∈ ∂ |zk+1|,

λ k+1
1 = λ k

1 + r1(wk+1 −∇uk+1),

λ k+1
2 = λ k

2 + r2(zk+1 −∇2uk+1),

λ k+1
3 = λ k

3 + r3(vk+1 −uk+1).

(31)

Based on the assumption λ k+1
1 −λ k

1 → 0 as k → ∞, we have lim
k→∞

(wk−∇uk)→ 0. Moreover,

we can obtain wk+1 −wk = wk+1 −∇uk+1 +∇uk+1 −∇uk +∇uk −wk and deduce lim
k→∞

(wk+1 −
wk)→ 0 by uk+1 −uk → 0. Similarly, there is lim

k→∞
(zk −∇2uk)→ 0 with the assumption λ k+1

2 −

28



λ k
2 → 0 as k → ∞, which immediately gives lim

k→∞
(zk+1 − zk) → 0. Due to λ k+1

3 −λ k
3 → 0 and

uk+1−uk → 0 as k → ∞, we also have lim
k→∞

(vk−uk)→ 0, which deduces that lim
k→∞

(vk+1−vk)→
0. Thus, the sequence {(uk,vk,wk,zk;λ k

1 ,λ
k
2 ,λ

k
3 )}k∈N is uniformly bounded in Ω.

Moreover, let (u∗,v∗,w∗,z∗;λ ∗
1 ,λ

∗
2 ,λ

∗
3 ) be a cluster point of the generated sequence {(uk,vk,

wk,zk;λ k
1 ,λ

k
2 ,λ

k
3 )}k∈N by the ADMM-based Algorithm 1. Thus, there exists a weakly conver-

gent subsequence denoted by {(uk� ,vk� ,wk� ,zk�;λ k�
1 ,λ k�

2 ,λ k�
3 )}�∈N converging to the limite point

(u∗,v∗,w∗,z∗;λ ∗
1 ,λ

∗
2 ,λ

∗
3 ). Analogously, due to wk� → w∗, zk� → z∗ a.e. in Ω as � → ∞ and

sk� ∈ ∂ |wk� |, pk� ∈ ∂ |zk� |, there exists a subsequence of {sk�}�∈N and {pk�}�∈N that converges
weakly to s∗ ∈ ∂ |w∗| and p∗ ∈ ∂ |z∗|, respectively.

The subsequence {(uk� ,vk� ,wk� ,zk�;λ k�
1 ,λ k�

2 ,λ k�
3 )}�∈N satisfies the first-order optimality con-

ditions (31), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−r1∇ ·∇+ r2∇2 ·∇2 + r3)uk�+1 =−∇ · (r1wk� +λ k�
1 )+∇2 · (r2zk� +λ k�

2 )+ r3vk� +λ k�
3 ,

r3(vk�+1 −uk�+1)+λ k�
3 +λ ( f1 − f2) � 0,

α(I)sk�+1 + r1(wk�+1 −∇uk�+1)+λ k�
1 � 0,

β (I)pk�+1 + r2(zk�+1 −∇2uk�+1)+λ k�
2 � 0,

λ k�+1
1 = λ k�

1 + r1(wk�+1 −∇uk�+1),

λ k�+1
2 = λ k�

2 + r2(zk�+1 −∇2uk�+1),

λ k�+1
3 = λ k�

3 + r3(vk�+1 −uk�+1).

Taking the limit from the convergent subsequence, i.e., letting �→ ∞, we obtain⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ·λ ∗
1 −∇2 ·λ ∗

2 −λ ∗
3 = 0,

λ ∗
3 +λ ( f1 − f2) = 0,

α(I)s∗+λ ∗
1 = 0, s∗ ∈ ∂ |w∗|,

β (I)p∗+λ ∗
2 = 0, p∗ ∈ ∂ |z∗|,

w∗ = ∇u∗, z∗ = ∇2u∗, v∗ = u∗,

for almost every point in Ω. This implies that the sequence {(uk,vk,wk,zk;λ k
1 ,λ

k
2 ,λ

k
3 )}k∈N con-

verges to the limit point (u∗,v∗,w∗,z∗;λ ∗
1 ,λ

∗
2 ,λ

∗
3 ) and satisfies the first-order optimality condi-

tions.
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