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Abstract

Natural images are usually composed of multiple objects at different scales in flat and slanted re-
gions. Traditional labeling/segmentation approaches based on total variation minimization may
produce staircase results with discontinuities and rough boundaries. In this paper, we propose a
novel weighted variational model for image labeling/segmentation in the space of functions of
bounded Hessian, the weights of which are automatically estimated based on edge information
of the observed images. Especially, by minimizing the combined first and second-order regu-
larizer, our model can overcome the shortage of total variation and provide more meaningful
results. The efficient alternating direction method of multipliers based algorithm is established,
all subproblems of which can be solved by either the fast Fourier transform or closed-form
solution. We further introduce the weighted bounded Hessian regularizer into the two-stage
segmentation framework for dealing with noisy and blurry image segmentation problems. Nu-
merous experiments are conducted on both two-phase and multi-phase labeling/segmentation
problems. By comparing with several state-of-the-art methods both qualitatively and quantita-
tively, it demonstrates that the proposed models can prominently improve the accuracy of image
labeling and segmentation.

Keywords: Image labeling, segmentation, bounded Hessian, spatially adaptive weights,
ADMM

1. Introduction

Image labeling and segmentation are fundamental tasks in image processing and computer
vision, which aim to find a partition of an image domain into disjoint regions (phases or classes)
according to some optimization rules. Various variational and Partial Differential Equations
(PDEs)-based methods have been proposed for image labeling and segmentation problems.
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Mumford and Shah [1] proposed an energy minimization problem which approximates the
true solution by finding optimal piecewise smooth approximations. Let Q C R? be a bounded
open connected set, ' be a compact curve in Q and 7 : Q — R be a given image. The Mumford-
Shah (MS) model can be formulated as the minimization of the following energy functional

A
min = (1—u)2dx+ﬁ/ \Vul?dx + T, (1)
ul 2 Jo Q\l

where A, 3 are positive parameters and u : Q — R is continuous or even differentiable in Q\I"
but may be discontinuous across I'. Since the Mumford-Shah functional is non-convex and
the integral regions of the last two terms are discontinuous, it is very challenging to find its
minimizer.

Chan and Vese introduced the method of active contour without edges (ACWE) by restrict-
ing Vu =0 on Q\T for two-phase and multi-phase segmentation problems in [2, 3], respectively.
The ACWE model used the piecewise constant solutions to approximate the Mumford-Shah
model such as

A
min —(/ —a) 2dx—|—/ 1) de +|r| 2)
cr,e 2

where ¢, ¢, € R are the average values of the pixels inside and outside I for the two-phase seg-
mentation. When the intensity values redcy, ¢, are known in advance, the ACWE model turns
to be the continuous Potts model, which has intensively studied for image labeling problems.
However, the minimization of both the ACWE model and Potts model are still non-convex due
to the non-convex binary constraint of the labeling function, which may be stuck into the local
minimum and are sensitive to the initializations.

Chan, Esedoglu and Nikolova [4] reformulated the ACWE model into a convex minimiza-
tion by relaxing the binary constraint into a convex one. The authors proved that thresholding
the solution of the relaxed convex problem by any value in [0,1] can yield a globally optimal
labeling solution. Since then, fast and reliable convex optimization-based algorithms have been
developed and applied to image labeling and segmentation problems [5, 6, 7]. Bresson et al. [8]
pursued a global minimizer of active contour model (GMAC), which minimized the following
energy functional for image labeling

min A (fl 13 udx+/ x)|Vu|dx, 3)
uel0,1]

where g : Q — R™ contains boundary information of objects. The usual choice of g is an
edge indicator function vanishing at object boundaries such as g(/) = W with ¥ being a

positive parameter, which can precisely identify the boundaries of the objects. Lellmann et al.
[9] applied the Douglas-Rachford splitting to the convex formulation of the Potts model for
multi-class image labeling problems. Pock et al. [10] proposed a convex relaxation approach
for computing the minimal partitions based on Potts model, which was solved by the primal-
dual algorithm. The Chambolle dual algorithms have been proposed to solve the Potts model
for the continuous multi-partitioning problem in [11, 12]. Yuan et al. [13, 14] developed the
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continuous max-flow model for the two-phase and multi-phase labeling problems, which gives
another dual formulation of the Potts model.

In general, noise and blur may be contained in the observed images. Therefore, it is rea-
sonable to restore the clean image and then perform the segmentation based on the restoration
image. Cai, Chan and Zeng [15] proposed a two-stage segmentation method, which is a convex
variant of the Mumford-Shah model. In the first stage, a smooth solution u is estimated from
the given image / by minimizing the following functional

A
min —/(I—Ku)2dx+ﬁ/ \Vu]zdx+/ \Vuldx, (4)
u 2 Jo Q Q

where K can be the identify operator or a blurring operator. In the second stage, a thresholding
step is applied to realize the segmentation. Since then, the two-stage framework has been widely
used for image labeling/segmentation. Chan, Yang and Zeng [16] used the two-stage method for
segmenting blurry images in the presence of Poisson or multiplicative Gamma noise. Duan et
al. [17] proposed a ¢ regularized Mumford-Shah model based on the two-stage segmentation
framework, which was further modified using the high-order regularizer for medical image
segmentation in [18]. Duan et al. [19] solved the Euler’s elastica regularized Mumford-Shah
model in a two-stage segmentation framework. Liu et al. [20] presented a two-stage weighted
variational model for selective image segmentation. Chen, Li and Zeng [21] used the two-stage
segmentation method to solve the Rician noise corrupted images. Cai et al. [22] restudied the
linkage between the piecewise constant Mumford-Shah model and ROF model, and proposed
the thresholded-ROF model to illustrate the virtue of managing image segmentation through
image restoration techniques.

Due to the great success of the deep learning approaches in digit recognition, categorizing
and detecting objects in images, the convolutional neural networks (CNNs) have also been ap-
plied to pixel-wise labeling and segmentation [23, 24, 25, 26]. Although CNNs have shown
their advantages in the semantic segmentation tasks, it is still difficult for a CNN model to
discriminate pixels belonging to similar receptive fields around the object boundaries. There-
fore, traditional techniques have been further introduced into deep networks to produce uniform
segmentation results. For example, Hu ef al. [27] proposed a deep level set network to drive
the network to learn a level set function for salient objects, which can output more accurate
boundaries and compact saliency maps. Duan et al. [28] used a fully convolutional network
to learn the probability maps, which were incorporated in a single nested level set optimization
framework for multi-region segmentation with high efficiency. Besides, the annotated training
set may not be large enough to contain all shapes and apparent variations of the target objects,
for which the level set-based methods can be used to regularize the results of deep networks to
produce good generalization [29].

1.1. Motivation and our contributions

The main drawback of the aforementioned total variation-based labeling/segmentation meth-
ods is their limitation in processing natural images, which contain not only flat regions and



jumps, but also some slanted regions. The total variation minimization will introduce the so-
called staircase effect in the piecewise smooth regions and result in the discontinuous segmen-
tation results. High-order regularities can be used to overcome the shortage of TV term. The
bounded Hessian regularizer was first proposed by Chambolle and Lions in [30] by means of
an inf-convolution of two convex regularizers. Le and Vese [31] introduced the inf-convolution
for piecewise smooth segmentation problem by decomposing # = v+ w and minimizing

min A Q((fl—W)z—(fz—W)z)vdx+l31/Q|Vw|dx+/32/9|V2w\dx—|—/Q|Vv|dx, (5)

VW
where V2w denotes the Hessian operator of w over image domain Q, i.e.,

P
2. ox? xdy
Viw = %w 2w |

dydx  0y?

and v is a piecewise constant component to capture edges and discontinuities, w is a smooth
component to capture global inhomogeneity. Note that the infimal convolution of the image
function u = v+ w with v € BV(Q) and w € BH(Q), still gives a function u such that u €
BV(Q). In order to obtain a more regular solution, Papafitsoros and Schonlieb [32] considered
the combined first and second-order variational approach for image restoration

1
min —/(I—u)zdx+a/ |Vu|dx+/3/ \V2u|dx, (6)
u 2Jo Q Q

the minimizer of which is in BH(Q) as a whole. The simple and convex high-order extension
of total variation regularizer can provide faithful restoration result with good continuation by
reducing the staircase effect. Such combined first and second-order regularizer has been further
studied for image inpainting [33] and speckle noise removal [34], both of which achieved state-
of-the-art performance.

In this paper, our first contribution is to propose a weighted bounded Hessian variational
model for image labeling and segmentation. Unlike existing high-order regularization segmen-
tation models such as Euler’s elastica [35] and mean curvature [36], which are nonconvex,
nonsmooth and nonlinear, the proposed model is coercive, lower semi-continuous and convex
with the theoretical guarantee of the existence of a solution. Thus, numerous fast algorithms for
convex minimization can be used to solve the proposed model. We develop an efficient alter-
nating direction method of multipliers (ADMM) based algorithm and discuss the convergence
under certain conditions.

Another important contribution of our work is that we investigate an automatic method to
estimate the weight functions for the first and second-order regularizer accordingly. Observed
from the Mumford-Shah model, the smooth regularizer should be applied to homogeneous ar-
eas, while the piecewise constant regularizer should be acted on the edge sets. Therefore, we
use the edge detector function and the total variation of the edge detector function as the weight
functions for the smooth regularizer and piecewise constant regularizer, respectively. Numeri-
cal results demonstrate that the proposed model outperforms state-of-the-art variational models
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Figure 1: Overall flowchart of the proposed models, where the weighted bounded Hessian regularization is used
for two-phase and multi-phase segmentation.

on various image labeling/segmentation problems, which can smooth out unimportant details in
homogeneous regions and preserve characteristic structures such as edges, sharp corners, etc.
In the end, we extend the weighted bounded Hessian variational model for multi-phase segmen-
tation in a two-stage framework for noisy and blurry image segmentation. The processing flow
is outlined in Figure 1, where two models are considered in our work.

The rest of the paper is organized as follows. In Section 2, we propose the hybrid weighted
bounded Hessian variational model and establish the existence of a solution. Section 3 presents
the ADMM-based numerical algorithm and provides the convergence analysis for the ADMM
algorithm under certain conditions. The implementation details and evaluation criteria are dis-
cussed in Section 4 and the comprehensive numerical results are conducted on image labeling
and segmentation problems in Section 5. Section 6 attempts to evaluate the performance of
weighted bounded Hessian variational model in the two-stage segmentation framework with
numerical tests. Finally, conclusion and future work are discussed in Section 7.



2. Weighted Bounded Hessian Variational Model

2.1. Preliminaries and notations

Letting X C R” be a measurable space and f : X — R be a measurable function, we define
LPX)={f | Ifllp <o, 1 < p <o},

where || f|l, = (Jx |f|”dx)1l’ with 1 < p < oo, and || f||ec = sup,ex | f(x)]. If p =2, we denote
|| £1l :== |l f||2- The inner product of two functions f and g is given by (f,g) = [y f(x)g(x)dx.
We further define the Sobolev space on Q as

WP (Q) = {u eLP(Q):Vue LP(Q)},

where Vu is the weak gradient of u. More precisely, we define
| Vul|y ::/ \Vu|dx = sup{/ udivodx; ¢ € 65°(Q,R"), |9 < 1},
Q Q

where divg =Y, %(x), %y (Q,R") is the space of continuous differentiable functions with
compact support in Q, and ||@ || = sup , /¥ ¢l-2 (x). The space of functions of bounded variation
X i

is denoted by BV(Q), which is a Banach space equipped with the norm [|ul|gy(q) = ||ul[1 +
||Vul|1. We refer the readers to [37] for more detailed introduction of BV space.

Following [32] and [38], we introduce the space of functions of bounded Hessian BH(Q)
(also denoted as BVZ(€)). It consists of all functions u € W1 (Q) whose distributional Hessian
can be represented by an R” x R"-valued finite Radon measure, i.e.,

BH(Q) = {u e W' (Q) : |VZul|; < oo},

with
V24|, ;:/ yv2u|dx=sup{/ udi?d; ¢ € 6 (QR™), 9] < 1},
Q Q

Therefore, it is immediate that W>!(Q) ¢ BH(Q) and BH(Q) is a Banach space equipped with
norm ||ul|gp(q) = [|ull1 + || Vul|1 +[|V?ul|1. In the following, we summarize the main properties
of BH(Q) with more details in [32].

— (Embedding) If Q has a Lipschitz boundary and it is connected, it can be shown that there
exist positive constants C; and C; such that

/\vuuxgc]/ |V2u|dx—|—C2/ uldx, Vu € BH(Q),
Q Q Q

and BH(Q) is continuously embedded in L?>(Q) when n = 2.



— (Weak* Convergence in BH(Q)) Let {u; }ren and u belong to BH(Q). We say {uy }ren
converges to u weakly™ in BH(Q) if

||uk—u||1 —>O, HVuk—Vqu —>0,

and
/ wediv: ¢dx — / udiv?gdx, Vo € 65°(Q,R™™).
Q Q

— (Compactness in BH(Q)) Suppose that the sequence {uy }ren is bounded in BH(Q). Then
there exists a subsequence {u, }scn and a function u € BH(Q) such that {u, }sen con-
verges to u weakly* in BH(Q).

— (Lower semi-continuity) The semi-norm ||V2u/||; is lower semi-continuous endowed with
strong topology of W!!1(Q). More precisely, if ||uy —u||; — 0, ||Vug — Vul|; — 0, then

/ \V2u|dx < liminf / V2| dx.

Q koo JQ

In particular, for {u }reny € W1(Q), if lilzninffQ |V2uy|dx < oo, there is u € BH(Q).
—>00

2.2. Weighted bounded Hessian variational model

Considering the limitation of the TV regularizer in dealing with smooth image labeling, we
introduce the bounded Hessian variational model by minimizing the following energy functional

E@yzéamwmufémwwww+gém—ﬁma, 7

subject to the box constraint u € [0, 1]. Because the images are comprised of multiple objects
at different scales, it is more reasonable to choose o and 3 as spatially adaptive values rather
than constants. Therefore, we define a¢(x), B(x) : Q — R to be the spatial varying weight func-
tions for the first and second-order regularizer, respectively, both of which can be estimated in
advance according to certain rules and will be discussed later.

It is easy to check that the functional E () in (7) is in W' (Q). By extending the functional
into a larger Banach space BH(Q) and using the properties of BH(Q), we can establish the
existence of a solution for minimizing the energy functional (7) as follows.

Theorem 2.1. If ot(x), B (x) € C(Q) and a(x) > 0, B(x) > 0 for all x € Q. Then, for a fixed
A > 0, the spatially adaptive bounded Hessian variational model (7) is convex and there exists
a minimizer u* in BH(Q).

Proof. Let {u;}ren in BH(Q) be a minimizing sequence of (7), and let M > 0 be an upper
bound for E (uy)xen such that

/a@WMWSMl/MMWMMSMJM&/M—ﬁMMSM. @®)
Q Q Q
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By the conditions a(x) > 0 and B(x) > 0 for all x € Q, we have the boundness of &(x) and

B(x). We suppose
o < or(x) < o and By < B(x) < i, Vx € Q, )

where o, &1, By and By are some positive constants.
According to (8) and (9), it follows that

M M
/ |Vuy|dx < — and / (V2| dx < =
o [0 Q Po
Moreover, on account of (8) with the fixed parameters c| and ¢y, it can be obtained that

/ (fi— fo)urdx < %,
Q

that is

M
Jo <

Therefore, the sequence {uy} e is uniformly bounded in L' (Q).
Based on the Minkowski’s inequality and the boundedness of sequence {uy } ke, there exists
a constant C such that

i) = lluglls + | Vugll1 + [1V2uel[1 < C, Wk € N. (10)

Hence, according to the compactness theorem, there is a subsequence in {uy}ren, denoted
{ug, }ren, such that converges to u* weakly* in BH(Q). By the lower semi-continuity of E(u)
and Fatou’s lemma, we have

/ (fi— fou"dx < liminf/ (f1 — fo)ug,dx,
Q L= JQ
/ |Vu*|dx < liminf/ |V, |dx,
Q l—e JO '

/ |V2u*|dx < liminf / IV2uy,|dx.
Q =00 JQ

It follows that
E(u") SligninfE(uké), (11)
—yo0

i.e., u* is a minimizer of (7).



(a) Input image (b) () (© B()

Figure 2: Spatially adaptive weights a(Z) and (/) of the image ‘Cameraman’ in the proposed model (7), where
the step size of finite difference is & = 5.

2.3. Automatic estimation of the hybrid weights

The spatially adaptive weights have been discussed for the first and second-order regularizer
separately in the literature. As mentioned, the GMAC model (3) used the edge detection func-
tion as the weight for total variation. Duan et al. [39] introduced the edge diffusivity function
as the weight function for the second-order regularization term. To the best of our knowledge,
there is no such study on the combined first and second-order regularizer considered in this
work. We define the hybrid weights for the proposed model such that a(x) and B (x) are func-
tions of the given image / to fully capture the edge information

S (12)

1
a(l):‘v\/ﬁ‘ and B(I) WiENiEa

On one hand, the function B (/) is the edge indicator function acting as the weight for the smooth
regularizer, whereas (1) is large in homogenous regions to smooth out some unnecessary de-
tails and textures, and small cross edges to sharpen image edges. On the other hand, the function
o(I) is the variation of the edge detector function used as the weight for the first order regular-
izer such that a(7) is large in edge regions to enhance the first order regularizer for preserving
the main edges. In this way, the values of o/(7) and (1) ideally coincide with the requirements
of the regularization terms for labeling and segmentation tasks. Figure 2 gives an example of
o(I) and B(I) obtained on the image ‘Cameraman’, which illustrates () automatically stops
at the edges and o (/) promotes at the edges as we expected.

3. Numerical Algorithm

3.1. Constrained optimization and ADMM

The alternating direction method of multipliers (ADMM) [40, 41] is applied to solve the
proposed spatially adaptive minimization model (7). The ADMM has received great success in
solving image processing models such as the classical Rudin-Osher-Fatemi (ROF) model and
some high-order variational models, which involve either non-differentiable or higher-order
terms.



At the first place, we introduce three auxiliary variables v, w and z to rewrite the original
minimization problem into a constrained one such as

min /Qa(I)\w\dx—l—/Qﬁ(I)|z|dx+/l/Q(fl — fo)vdx

U,v,W,2

st. w=Vu, z=V2u, v=u, uc|0,1].

(13)

Based on the well-known augmented Lagrangian method, we can reformulate (13) into the
following Lagrangian functional

Lzl da) = [ alwids+ [ 3(1)|z|dx+/1/ (i —fz)vdx (14)
1 v v _
—|—2 (w— u+r1)d+2/g( u—i— d—|— u—i— dx+59()
where 2 = [0, 1], and 84 (v) is the characteristic function defined on the set

0, ifve 2,
dg(v) = { +o0, otherwise.

In (14), A1, A2 and A3 represent the Lagrange multipliers, and ry, r, and r3 denote the posi-
tive penalty parameters acting as the weights of the penalty terms. In each iteration, we tend
to sequentially minimize over the variables u,v,w,z by keeping the reminder variables fixed,
and then update the Lagrange multipliers A, A5, A3 using the gradient ascent. The procedure
will be repeated until convergence, which means a saddle-point of the augmented Lagrangian
functional is obtained.

3.2. Numerical solution to the sub-minimization problems
Given the fixed variables V¢, wk, z& and A%, Af, lé‘, we discuss the solutions to the sub-
minimization problems with respect to the variable u, v, w,z in the (k+ 1)-th iteration.

3.2.1. The u-subproblem

The sub-minimization problem with respect to u is formulated as follows
2k 2 Ak\2 Aky2
mln—/ Vu—w ——1> dx—i—r—2 (Vzu—zk——> dx —|— (u—vk——> dx, (15)
r 2 r 2 r3

the Euler-Lagrange equation of which gives us the following linear PDE
(=1 V-V4+rV2- V24 r)u=—V-(rnwk + A5 + V2. (n + A5 + vk 4+ A5

Therefore, we can apply the fast Fourier transform (FFT) to solve the above equation, which
gives

= gl (y (V- (row* +20) + V2 (2" + A7) +r3v"+7t§>> (16)

r3f—r1ﬁ(V-V)ﬁ_' +r2}’(V2-V2)§—‘

with .# being the identity operator, .% and .% ! representing the commonly-used forward and
inverse FFT operation, respectively.
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3.2.2. The v-subproblem
The sub-minimization problem associated with the variable v can be described as follows

0Tne 2/ uth ) dx+)t/ (f1 = f2)vdx+64(v), (17)

the first-order optimality condition of which is

Ak
r3<vk+1 — ! +r—3> +A(fi—f2) =0
3
subject to the box constraint v € [0, 1]. Thus, we have

e M A=) fz)

Vi =u
r3 r3

In the subsequent step, we perform a one-step projection of v**! to take the constraint 0 <v < 1
into account such that

k -
St :min(max <uk+1_)'_3_M,0>71>, (18)
r3 r3

3.2.3. The (w,z)-subproblems
The sub-minimization problem of w is a typical L' minimization problem with a spatial
varying parameter, i.e.,

Af\2
min/ o(I)|w|dx+ — / w— Vit 2L ) dx. (19)
woJQ r
Similarly, the sub-minimization problem of the variable z gives
k2
min/ ﬁ(1)|z|dx-|—r—2/ (Z—Vzuk+l+£> dx. (20)
7z Jo 2 Jo )

Both w and z can be easily computed based on the closed-form solution such as

Viktt — 2k (1
Wit :shrinkage(rl - et )), Q1)
ry rl
and 2 k+1 k
\% —A 1
A= shrinkage<r2 - 2 Bl >>, (22)
r )

where the shrinkage operator is defined as
shrinkage(a,b) = max{|a| — b,0} o |a_|
a

with o denoting the point-wise multiplication.

11



3.2.4. Lagrange multipliers (A1, A2, A3)
In the end, we update the Lagrange multipliers (41,4, A3) by gradient ascent as follows

Alk—H _ )V{C-i-rl (wk—H —Vuk+1),
Aéﬁ-] _ Aak‘f‘FZ(Zk—‘r] _Vzuk-i-])7 (23)
AéC-H _ ;Léc_*_r:z’(vk-i-l _uk—i—l).

To sum up, the efficient ADMM-based algorithm is proposed to deal with the weighted
bounded Hessian variational model (7); see Algorithm 1.

Algorithm 1 The ADMM-based algorithm for the weighted bounded Hessian model

: Input: Input image /, regularization parameter A, positive constants c,c;, penalty param-
eters ry, ry, r3, maximum iteration Kmax, and stopping threshold &;

2: Initialize: u® =0 =w0 =70 = AO lo 7LO 0, set k = 0;

3: while (not converged and k < Kmax) do

4:  Compute w1 with fixed V5, wk, 2K, Ak, 7%‘ and 13{‘ according to (16);

5: Compute Vv ! with fixed u**! and A¥ according to (18);

6

7

8

9

[

Compute w*+! with fixed u**! and 7le according to (21);
Compute 7! with fixed "1 and A¥ according to (22);
Update ;L{‘H, lé‘“ and l3k+1 according to (23);
. Check the convergence condition: ||u*™! —u*||; < e||u¥||;
10: end while

3.3. Convergence analysis

The convergence of the ADMM-based algorithm for solving the convex composite problems
has been studied in [42, 43]. Here, we discuss the convergence of Algorithm 1 for image
labeling problems.

Theorem 3.1. Suppose u"™' —uk — 0, AFT1 -2k — 0, 151 -2k 0 and 7Lk+1 X —0as
k — o0 in ADMM-based Algorithm 1. Then the generated sequence {(u Ve w zk Af, /'Lk A e
converges to a limit point {(u*,v*,w*,2*;A{",A;,A3)} that satisfies the ﬁrst order optlmallty
conditions, i.e.,

(VA =V2 25— =

A +A(fi—f)=0
o()s*+ A =0, s* € Iw*|,
Bp*+A; =0, p* € 9|7,

(W' =Vu", F = V2ur, v =u*.

Proof. The proof'is sketched in the appendix.
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4. Implementation and Evaluation

In this section, we present the numerical experiments of the proposed spatially adaptive
variational model (7) on various image labeling and segmentation applications. To demonstrate
the effectiveness and superiority of our proposal, we compare it with several advanced methods
on both synthetic and real images. To set up the experimental comparison as fair as possible, the
parameters of the comparative methods are selected as suggested in the corresponding papers.
All numerical experiments are performed in a Matlab R2016a environment on a desktop with
3.20GHz Intel(R) Core(TM) i7-8700 CPU and 16GB RAM.

In the experiments, we monitor the relative residuals in order to check whether our algorithm
converges to a saddle point, which are defined as

(R, R3,R5) = ﬁ(llw" = V|1, [l = V2, [ = ) (24)
with || - ||; denoting the L' norm on Q and |Q| being the area of image domain. To check the
convergence of the iteration process, we also examine the relative errors of Lagrange multipli-
ers:

)= (A= 1A= =) o)
1)482,483) — _ ) _ 9 _ )
125 1245 1A
and the relative error in u*:
i =
FO =T 0

In addition, the numerical energy is calculated by

E(uk):/Qa(1)|Vuk\dx+/Qﬁ(l)|V2uk|dx+7L/Q(fl—fz)ukdx. @7)

4.1. Evaluation criteria

In numerical experiments, the accuracy of segmentation is measured by Segmentation Accu-
racy (SA), F1-Score, Kappa coefficient (k) and Jaccard Similarity (JS), which can be estimated
by the stand confusion matrix as shown in Table 1. Generally speaking, the closer these values
are to 1, the better the segmentation is.

Table 1: Confusion matrix

. . True
Confusion matrix — -
Positive | Negative
. Positive TP FP
Predict I Qevative | FN ™
@ Segmentation Accuracy (SA):
- TP+ TN
~ TP+TN+FP+FN’
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@ F1-Score:

2PR . TP TP
F1-Score= —— with P=—— R=——,
P+R TP + FP TP +FN

where P denotes Precision and R represents Recall.

@ Kappa coefficient (x):

. SA — P, with P. — (TP+FN)(TP+FP) + (FP+TN)(FN + TN)
~ 1-P, c (TP+ TN+ FP+FN)? '
@ Jaccard Similarity (JS):
|Sl ﬂ52|
IS(S1,8,) =

where S| is the region segmented by the Algorithm 1 and S, is the corresponding region
of the ground truth.

4.2. Parameters discussion

Throughout all numerical experiments, the termination parameters are set as Kpyax = 400
and £ = 10> for all comparative algorithms. The experience-dependent penalty parameters r/,
ro in our model are fixed as r{ = 1 and r, = 2, and the grid size is set as & = 1 for the differential
operators in the first and second-order regularizers and & = 5 for the differential operators in
o(I) and B (1) to smooth out the small edges and structures in all experiments. The parameters
A and r3 in our model are chosen empirically in each experiment, which play important roles in
smoothing and regularizing the results.

On the other hand, the parameters including the regularization parameter A, penalty pa-
rameter r and time step 6 of the comparison algorithms are all adjusted to achieve accurate
segmentation results, which are provided as follows:

@ The active contour without edges (ACWE) model [2]: the regularization parameter is
chosen from A € [0.1, 1], the time step is set as 6 € [0.1,0.5] and the ACWE model is also
quite sensitive to the position of the initial contour.

@ The fast global minimization of the active contour/snake (GMAC) model [8]: the regu-
larization parameter A is selected as [0.01,1] and the penalty parameter r is adjusted in
the range [0.1,10].

@ The continuous max-flow (CMF) method [13]: the regularization parameter is chosen as
A €[0.1,0.5] and the time step of gradient projection is selected from & € [0.1,0.15].

@ The smoothed-dual (GMD) algorithm [11]: the regularization parameter is chosen from
A €[0.01,0.5] and the time step is selected from & € [0.001,0.01].

® The efficient iterative thresholding (ICTM) method [5]: the regularization parameter is
setas A € [0.001,0.025] and the time step is & € [0.01,0.05].
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(a) ACWE (b) GMAC (c) CMF (d) GMD  (e) ICTM (f) EMTV (g) T-ROF (h) Proposal

Figure 3: Labeling comparisons on images ‘Liver’ (Row 1), ‘Abdomina’ (Row 2) and ‘Ultrasound’ (Row 3). From
left to right: (a)-(g) labeling results of ACWE, GMAC, CMF, GMD, ICTM, EMTV and T-ROF respectively; (h)
our labeling result with the parameters A = 3, r3 = 10 for ‘Liver’, A =3, r3 = 0.5 for ‘Abdomina’ and A = 3.5,
r3 = 10 for ‘Ultrasound’, respectively.

® The dual expectation-maximization TV (EMTYV) algorithm [44]: the regularization pa-
rameter is A € [1,50], penalty parameter is r € [1,100] and time step is § € [0.01,0.5].

@ The thresholded-ROF (T-ROF) method [22]: the regularization parameter is chosen from
A €[0.01,0.5] and the time step is selected from & € [0.01,0.03].

4.3. Numerical discretization

Without loss of generality, our images are 2-dimensional matrices of size M x N. Let Q =
{(i,)) : 0 <i<M,0 < j <N} be the discretized image domain and u(i, j) denote an element
of Euclidean space RY*N, We first introduce the discrete forward and backward differential
operators with the grid size 4 under periodic boundary condition as follows

(w(i+1,))—u(i,j))/h, ifl1<i<M,
(u(17j)_u(ivj))/h7 ifi=M,

<

o uli,j) = {

i+ 1) —uli, )b 1< <N,
ulif) = {(u(z'?l) —uli )b =N,

) —ui=1 ) i1 <i< M,
et ) {<u<,-,,->_u<M,,->>/h, i1,
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(e) ICTM (f) EMTV (g) T-ROF (h) Our proposal

Figure 4: Segmentation comparison on image ‘Butterfly’. From left to right: (a)-(g) segmentation results of
ACWE, GMAC, CMF, GMD, ICTM, EMTYV and T-ROF, respectively; (h) our segmentation result with the param-
eters A = 3 and r3 = 70.

. (u(i, j) —u(i,j—1))/h, if1<j<N,
o, u(i,j) =
b i) {(u(i,J')—u(i,N))/h, =1

Therefore, the discrete gradient operator V : RM*N — (RM*N)2 i5 denoted as
Vu(i, j) = (9, u(i, /), 9 u(i, ),

and the discrete divergence operator V- : (RM*N)2 — RMXN for p = (py, ps) € (RM*N)2 s
defined by

\% p(la.]) = ax_pl(i>.j) + ay_pZ(i7j)a
and the discrete Laplacian operator A is defined based on the discrete gradient and divergence

operator as
AN=V.-V=0,d'+9, 9.

4.4. Computational complexity

In this subsection, we analyze the computational complexity of Algorithm 1. The main
computational costs are spent on the calculation of {u,v,w,z}-subproblems, which are solved
by the FFT and shrinkage operator. It is well-known the computational complexity of FFT
and shrinkage operator are &[MNlog(MN)] and & (MN), respectively. Therefore, the total
computational complexity of Algorithm 1 can be approximately given as &[MNlog(MN)]| per
iteration.
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(a) ACWE (b) GMAC (c) CMF (d) GMD (&) ICTM

o

~ _ﬁ'&‘

() EMTV (g) T-ROF (h) Our proposal 1) o(I () B()

Figure 5: Segmentation comparison on image ‘Aircraft’. From left to right: (a)-(g) segmentation results of ACWE,
GMAC, CMF, GMD, ICTM, EMTV and T-ROF, respectively; (h) our segmentation result with the parameters

A =3 and r3 = 30; (i)-(j) our segmentation results with (/) = 0 and (1) = 0, respectively.
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Figure 6: The JS and k of ‘Butterfly’ and ‘Aircraft’ by different parameters A and r3. From left to right: (a)
Butterfly (JS); (b) Butterfly (x); (c) Aircraft (JS); (d) Aircraft (k).

5. Numerical Results

5.1. Image labeling experiments

In the first place, we compare the performance of our proposal (7) with other methods
including the ACWE, GMAC, CMF, GMD, ICTM, EMTV and T-ROF models on two-phase
labeling problems. We choose three medical images as examples, for which the values ¢y, c>
are predefined by the K-means algorithm. As shown in Figure 3, all the advanced methods
outperform the ACWE model by providing labeling results with fewer outliers. Moreover,
among these approaches, our method produces more consistent results. As can be observed,
both the CMF and GMD models fail to identify the boundaries at the bottom part of the image
‘Liver’, which have similar intensity values as the liver. Moreover, the results of the GMD
and T-ROF models contain too much meaningless scattered structures for the two ultrasound
images, while the edges of the segmentation results from the GMAC and ICTM models are
broken for the first ultrasound image. Although the EMTYV and our model provide visually
similar results, the boundaries of our results are smoother than the ones of the EMTV model.
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Figure 7: Evaluation and comparison on natural images downloaded from the Weizmann segmentation dataset.

5.2. Image segmentation

We also test the proposed model (7) on image segmentation applications, where f and f;
are defined as

fi=(I—c))? and fo=(I—c2)?

with ¢y and ¢; being updated iteratively from

nkd I(1—vh)d
c’f:‘[ﬂ‘;xan cngg( ‘;{)x_
Jo vEdx Jo (1 —v&)dx

We first apply all segmentation methods on two real images, ‘Butterfly’! and ‘Aircraft’?.
The results of ‘Butterfly’ in Figure 4 demonstrate that the ACWE, CMF and ICTM methods can
not smooth out some unwanted details, e.g., the chinks in the background, while the butterfly
produced by the GMAC, GMD, EMTYV, and T-ROF methods also present incorrect boundaries.
As observed, our model gives the best segmentation result without redundant details and rough
edges.

The image ‘Aircraft’ is a typical smooth image. As shown in Figure 5, only our model can
accurately segment the aircraft from the background, while all comparison methods contain
some undesired structures. Concretely, the ACWE, GMAC, CMF, GMD and EMTV methods
segment the cloud into the phase of airplane, while the ICTM and T-ROF models fail to identify
the entire plane tail. Also, we evaluate the performance of our model using only the spatially
adaptive first-order regularizer and the second-order regularizer. By setting o(/) = 0, our model
reduces to a weighted high-order segmentation model, which can still produce reasonable seg-
mentation results. However, letting (/) = 0, the model becomes a weighted ACWE model,
which results in some superfluous details and non-smoothed boundaries in the result. And the
best segmentation results are still the ones achieved by our combined first and second-order
regularization model.

'The image was downloaded from http://www.wisdom.weizmann.ac.il/~vision/Seg_
Evaluation_DB/

>The image was downloaded from https://www2.eecs.berkeley.edu/Research/Projects/
CS/vision/bsds/
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(a) Given image (b) ACWE (c) GMAC (d) CMF (e) GMD
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() ICTM (g) EMTV (h) T-ROF (1) Our proposal (j) Ground truth

Figure 8: Segmentation comparison on image ‘#11°. From left to right: (a) Given 300 x 247 image; (b)-(h)
segmentation results of the ACWE, GMAC, CMF, GMD, ICTM, EMTYV and T-ROF models, respectively; (i) our
segmentation result with the parameters A = 10 and r3 = 30; (j) Ground truth.

5.3. Impact of parameters

There are two important parameters in our model, i.e., the regularization parameter A and
penalty parameter r3. We track the values of JS and x on ‘Butterfly’ and ‘Aircraft’ to illustrate
the segmentation accuracy concerning different parameters. Figure 6 shows the JS and k values
of the two images with different combinations of A and r3, where A and r3 are selected from
(A,r3) € {271,20,-.. 2131 x {27120 ... 2131 Tt is obvious that both A and r3 affect the
segmentation results. On one hand, A is used to balance the contributions of the data fitting
term and the regularization term. For large A, the foreground contains many small structures
and the boundaries are not neat enough, while for small A, the model can not identify the
boundaries of objects correctly. On the other hand, for the fixed regularization parameter A,
when the penalty parameter r3 increases, the segmentation results tend to lose more details.
Although it is necessary to manually tune these two parameters for different images, we can
start from moderate values such as A = 3 and r3 = 30 and fine tune the results according to the
above observations.
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(a) Given image (b) ACWE (c) GMAC (d) CMF (e) GMD

() ICTM (g) EMTV (h) T-ROF (1) Our proposal () Ground truth

Figure 9: Segmentation comparison on image ‘#12’. From left to right: (a) Given 300 x 225 image; (b)-(h)
segmentation results of the ACWE, GMAC, CMF, GMD, ICTM, EMTYV and T-ROF models, respectively; (i) our
segmentation result with the parameters A = 10 and r3 = 30; (j) Ground truth.

5.4. Segmentation on more natural images

To further verify the effectiveness and superiority of the proposed model, we test the meth-
ods on twelve natural images downloaded from the Weizmann segmentation dataset®. We select
suitable parameters for each algorithm and fix them for these twelve images. Table 2 records
the values of JS, SA, F1-Score and « of each algorithm on every image. It can be seen that our
proposal provides the highest mean and lowest variance compared to other approaches. Thus,
our model is more reliable and stable with different images. The segmentation results of two ex-
amples from these twelve images (i.e., ‘#11° and ‘#12) are displayed in Figure 8 and Figure 9.
We observe that our proposal can not only identify the correct boundaries of the chains but also
distinguish the sharps and corners correctly. The GMAC, CMF, and GMD methods segment
the incorrect boundaries of coconut trees in Figure 9, while ACWE, ICTM, and EMTYV provide
too much undesired scattered structures in the results. Besides, the results of the image ‘#11°
illustrate that the ICTM model is more sensitive to parameters compared to other methods.

3nttp://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB
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Figure 10: The plots of relative residuals, relative errors in Lagrange multipliers, relative error in #*, and numerical
energy of image ‘Liver’ and ‘#11°.
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Table 2: The JS, SA, FI-Score and x values on twelve natural images of the ACWE, GMAC, CMF, GMD, ICTM,
EMTYV, T-ROF and our proposal.

Criteria JS SA

Tmages % ACWE | GMAC | CMF_| GMD | ICIM | EMTV | TROF | OUR % ACWE | GMAC | CMF_| GMD | ICIM | EMTV | TROF | OUR
#1 0.7167 0.9457 0.9450 0.9668 0.9481 0.9500 0.9426 0.9571 0.9528 0.9933 0.9933 0.9960 0.9937 0.9939 0.9929 0.9947
#2 0.9890 0.9895 0.9855 0.9857 0.9894 0.9910 0.9900 0.9897 0.9938 0.9942 0.9919 0.9920 0.9941 0.9950 0.9944 0.9943
#3 0.9551 0.9498 0.9476 0.9502 0.9538 0.9342 0.9506 0.9545 0.9939 0.9932 0.9928 0.9932 0.9937 0.9911 0.9933 0.9938
#4 0.8803 0.9066 0.9047 0.8993 0.8942 0.9072 0.9009 0.9001 0.9925 0.9941 0.9939 0.9936 0.9933 0.9940 0.9937 0.9937
#5 0.8284 0.8416 0.8179 0.8267 0.8356 0.8560 0.8293 0.8398 0.9763 0.9781 0.9748 0.9760 0.9773 0.9800 0.9762 0.9778
#6 0.8881 0.9216 0.9124 0.9179 0.9157 0.8625 0.9076 0.9098 0.9453 0.9611 0.9560 0.9592 0.9585 0.9327 0.9545 0.9556
#7 0.9934 0.9935 0.9878 0.9928 0.9936 0.9854 0.9849 0.9929 0.9981 0.9981 0.9965 0.9980 0.9982 0.9958 0.9957 0.9980
#3 0.9700 0.9725 0.9708 0.9717 0.9735 0.9713 0.9692 0.9718 0.9917 0.9924 0.9919 0.9922 0.9927 0.9920 0.9914 0.9922
#9 0.9508 0.9671 0.9612 0.9638 0.9643 0.9821 0.9657 0.9645 0.9904 0.9936 0.9924 0.9929 0.9930 0.9965 0.9933 0.9931
#10 0.9257 0.9303 0.9370 0.9222 0.9285 0.9451 0.9214 0.9271 0.9969 0.9971 0.9974 0.9967 0.9970 0.9977 0.9967 0.9969
#11 0.7960 0.8371 0.8065 0.8443 0.3116 0.7702 0.8196 0.8184 0.9699 0.9760 0.9715 0.9770 0.6913 0.9661 0.9734 0.9732
#12 0.6763 0.3288 0.4017 0.3393 0.6907 0.6836 0.7505 0.7541 0.9600 0.7713 0.8352 0.7957 0.9617 0.9610 0.9691 0.9696
Mean__| 08308 | 0.8820 | 08815 | 0.8817 | 0.8666 | 00032 | 00110 | 0.9150 | 09801 | 09702 | 0.0740 | 0.0719 | 00620 | 0.830 | 0.0854 | 0.9861

Variance | 00112 | 00329 | 00263 | 00320 | 00376 | 00091 | 0.0056 | 0.0056 | 0.0004 | 0.0040 | 0.0021 | 00032 | 0.0075 | 00004 | 0.0002 | 0.0002
Criteria__ | F1-Score [ K

Tmages | ACWE | GMAC | CMF_| GMD | ICTM | EMIV | TROF | OUR | ACWE | GMAC | CMF | GMD | ICIM | EMIV | TROF | OUR
#1 0.8350 0.9721 0.9717 0.9831 0.9734 0.9744 0.9705 0.9781 0.8082 0.9683 0.9680 0.9808 0.9698 0.9709 0.9665 0.9751
#2 0.9944 0.9947 0.9927 0.9928 0.9947 0.9955 0.9950 0.9948 0.9875 0.9882 0.9836 0.9839 0.9880 0.9898 0.9887 0.9884
#3 0.9770 0.9743 0.9731 0.9744 0.9764 0.9660 0.9747 0.9767 0.9735 0.9703 0.9689 0.9705 0.9727 0.9609 0.9708 0.9732
#4 0.9364 0.9510 0.9499 0.9470 0.9441 0.9513 0.9479 0.9474 0.9324 0.9478 0.9467 0.9436 0.9406 0.9481 0.9445 0.9441
#5 0.9062 0.9140 0.8998 0.9051 0.9104 0.9224 0.9067 0.9129 0.8927 0.9015 0.8855 0.8915 0.8975 0.9110 0.8931 0.9003
#6 0.9407 0.9592 0.9542 0.9572 0.9560 0.9262 0.9516 0.9528 0.8902 0.9220 09119 0.9182 0.9169 0.8648 0.9087 0.9110
#7 0.9967 0.9967 0.9939 0.9964 0.9968 0.9926 0.9924 0.9964 0.9953 0.9955 0.9914 0.9950 0.9955 0.9897 0.9894 0.9950
#3 0.9848 0.9861 0.9852 0.9856 0.9866 0.9854 0.9843 0.9857 0.9791 0.9808 0.9796 0.9802 0.9815 0.9800 0.9785 0.9803
#9 0.9748 0.9833 0.9802 0.9816 0.9818 0.9910 0.9826 0.9820 0.9689 0.9793 0.9755 0.9772 0.9775 0.9888 0.9784 0.9777
#10 0.9614 0.9639 0.9675 0.9595 0.9629 0.9718 0.9591 0.9622 0.9598 0.9624 0.9661 0.9578 0.9614 0.9706 0.9574 0.9606
#11 0.8864 09113 0.8929 0.9156 0.4752 0.8702 0.9009 0.9002 0.8693 0.8975 0.8767 0.9024 0.3266 0.8511 0.8856 0.8849
#12 0.8069 0.4948 0.5732 0.5067 0.8171 0.8121 0.8575 0.8598 0.7854 0.3846 0.4872 0.4035 0.7965 0.7911 0.8405 0.8431

Mean | 09334 | 09251 | 09279 | 09254 | 09146 | 0.9466 | 0.9519 | 0.9541 | 0.9202 | 0.9082 | 09118 | 0.9087 | 0.8937 | 09347 | 09418 | 0.9445

Variance | 0.0040 | 00191 | 00136 | 0.0182 | 0.0216 | 00032 | 0.0018 | 0.0018 | 0.0050 | 0.0283 | 0.0194 | 0.0265 | 0.0349 | 0.0043 | 0.0023 | 0.0023

5.5. Numerical convergence

To check whether the iteration of the ADMM-based algorithm converges to a saddle-point
of the augmented Lagrangian functional, we track the decay of relative residuals (24), relative
errors of the Lagrange multipliers (25), the relative error of the iterative R(uk ) (26) and the nu-
merical energy E (u¥) (27). In Figure 10, we present the plots of these quantities versus iterations
on the image ‘Liver’ and ‘#11’ in the log-scale. We observe that: 1) the plots demonstrate the
convergence of the iterative process and show that the iterations converge to certain saddle-point
numerically; 2) the plots also verify the efficiency and stability of the ADMM-based algorithm,
which converges fast with a few hundred of iterations for both images.

6. Extension to Two-stage Image Segmentation Framework

In this section, we further apply the weighted bounded Hessian variational model in the two-
stage segmentation formulation to deal with multi-phase segmentation problems. The two-stage
segmentation method can provide a good understanding of the link between image segmentation
and image restoration. In first stage, we find a smooth image u from the blurry and noisy image
I to facilitate the segmentation by solving the following restoration problem

| A
min /Q ()| Viuldx + /Q B V2uldx+ 5 /Q (Ku—1)2dx. (28)
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Because the observed image is noisy and blurry, inaccurate boundaries may be located by esti-
mating &(x) and (x) using (12). Thus, we define o/(x) and 3(x) as functions of u to boost the
restoration result, i.e.,

1 1
() = )VW‘ and Bi) =~

which are updated dynamically in the iterative process. As the quality of u becomes better and
better, a(u) and (u) can locate the boundaries more accurately.

Similarly, the minimization problem (28) can be solved by the efficient ADMM-based algo-
rithm. By introducing two auxiliary variables v and w, we reformulate (28) into an equivalent
constrained minimization problem as follows

min / a(u)|v|dx+/B(u)|w|dx+&/(Ku—I)2dx
uy,w Jo Q 2 Jo

(29)
s.t. v=Vu, w=Vu.

Thus, the associated augmented Lagrangian functional for the constrained optimization problem
can be defined as

L(u,v,w; A1, Ap) :/Qa(u)|v\dx+/gl3(u)|w|dx—|—%/Q(Ku—l)zdx

+r_1/ (\/—Vu—kﬁ)zdx—l—r—2 (W—Vzu—k&)zdx, (30)
2 Ja r 2 Ja r

where A, A, are the Lagrange multipliers, and rj,r, denote the positive penalty parameters.
During each iteration, we tend to sequentially minimize over variables u,v,w and update the
Lagrange multipliers A1, A, through a standard dual-ascent rule. Since each subproblem can be
solved in a similar way as previous, we omit the details and simply present the subproblems in
Algorithm 2.

Once the smooth solution u is obtained, the segmentation can be realized using proper
thresholds p. We can select the thresholds using automatic clustering algorithms such as K-
means [45] and a more advanced fuzzy c-means method [46]. Alternatively, users can try
different values of thresholds to get satisfactory results. Note that one merit of the two-stage
segmentation framework is there is no need to recompute the image u when we change the
thresholds. One can just use the new thresholds to obtain the segmentation result.

6.1. Experimental results

In this subsection, we evaluate the performance of our two-stage weighted Hessian model by
comparing it with other established two-stage segmentation methods. To guarantee the fairness
of experimental comparison, the parameters are chosen by trials to obtain the best results for
the respective methods. We first give the following two remarks concerning the parameters and
stopping criteria:
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Algorithm 2 The ADMM-based algorithm for the two-stage bounded Hessian model

1: Input: Degraded image I, regularization parameter A, penalty factor ry,r,, maximum iter-
ation Kpax, and stopping threshold &

2: Initialize: u° =7, and vV’ = 1) = 1) =0, set k=0
3 /% Stage | */
4: while (not converged and k < Kpy,x) do
5:  Compute u**1 with fixed v¥, w* and Af, A¥ from:
Af Af A
W1 = argmin r—l/ (Vu—vF—=1)2dx +2 (V2u—wk— 2)2dx + —/ (Ku—1I)?dx,
u 2 Jo r 2 Q ) 2 Jo

which can be solved by FFT.

6: Update a(u**1) and B (u**1) using the latest **! from
Ca) 1

a(ut) = ’

/1+ |Vuk+1|2‘ /1+ |Vuk+1|2'
7: Compute V¥ with fixed #* ™!, ar(**1) and Af from:

A—{{)de

L :argmin/ a(uk+1)]v]dx+r—l/ (V—VukH—I—
v Jo 2 Jo 8

which can be solved by the shrinkage operator.
8 Compute wE™! with fixed #* 1, B (u**1) and A¥ from:

k 1 2,1 4 A5 \2
—argmm/ﬁ D wldx+ = / — VAt rz) dx,
2

which can be solved by the shrinkage operator.
9: Update A1 A5+ with w1, vk and w ! from:

AT 2 2 (KT - Wk,

Y ) Y )

10:  Check the convergence condition:
It — ||y < el

11: end while
12: /* Stage 11 */
13: Use the K-means to choose the thresholds and obtain the segmentation result.
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(a) Given image (b) TSMS (c) TSEE (d) T-ROF (e) p=0.4036 ) pV =02 (g) pV=05

Figure 11: Comparison of the kidney vascular system segmentation. (a) Given 255 x 255 image; (b)-(d) segmenta-
tions of TSMS, TSEE and T-ROF; (e)-(g) our segmentation using A = 0.01 and thresholds p = 0.4036, pU =0.2
and 0.5, respectively.

@ We use the K-means to estimate the thresholds p for the two-stage Mumford-Shah (TSMS)
model in [15], two-stage Euler’s elastica (TSEE) model in [19], thresholded-ROF (T-
ROF) model in [22] and our proposal. In numerical experiments, the penalty parameters
are fixed as r| = 1, r, = 2 and the mesh size is set as & = 5 for all examples. The regular-
ization parameter A is chosen empirically to guarantee segmentation performance.

@ The iteration of all the two-stage segmentation methods are terminated using the same
criterion such that either the relative error satisfies
B ||uk+1 _”kH

1
R(uk—H) _ W <e

with € = 10~* or the maximum iteration number (i.e., Kmax = 400) is reached.

In Figure 11, we use an example to discuss the influences of the thresholds to final segmen-
tation results. Figure 11(a) is a given magnetic resonance angiography kidney image. Figure
11(b)-(d) are the results of the TSMS, TSEE, and T-ROF models, while Figure 11(e)-(g) are our
segmentation results with the threshold obtained by the K-means method (p = 0.4036) and the
thresholds chosen by users (0¥ = 0.2 and 0.5). As shown, visually similar segmentation results
are obtained by these four two-stage segmentation methods with the threshold automatically
computed by the K-means. The segmentation results in Figure 11(f) and (g) illustrate that too
large threshold may lead to discontinuous segmentation results with important structures miss-
ing, and too small threshold results in retaining unnecessary details and segmenting incorrect
boundaries. Besides, we can observe that the two-stage method can reveal different meaningful
features in the image by choosing different thresholds, which can be done without recomputing
the first stage. In the following, we use the K-means to estimate the thresholds automatically,
which usually can provide moderate satisfactory results.

We generate the test images using two different kinds of blurring such that Figure 12 (a) and
Figure 13 (a) are degraded by motion blur kernel [fspecial (‘motion’, [90,15])] and Gaussian
blur kernel [fspecial (‘gaussian’, [15,15], 15)], respectively. Both images are introduced with
the Gaussian noise with a mean 0 and a standard deviation of ¢ = 10. As shown in Figure 12,
both the TSMS and T-ROF models erroneously segment the rectangles into the same phase,
which results in bad evaluation values (e.g., JS, Fl-score and k) as shown in Table 3. Although
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(a) Degraded image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 12: Comparison of the four-phase synthetic image segmentation. (a) Given degraded image (184 x 234);
(b)-(d) segmentation of the TSMS, TSEE and T-ROF model; (e) our segmentation result with A = 0.05; (f) ground
truth.

(a) Degraded image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 13: Comparison of the four-phase synthetic image segmentation. (a) Given degraded image (256 x 256);
(b)-(d) segmentation result of the TSMS, TSEE and T-ROF model; (e) our segmentation result with A = 0.1; (f)
ground truth.

Table 3: Evaluation results of the comparative methods in Figure 12 and Figure 13.

] First-phase Second-phase Third-phase
Images Methods 7S SA Fl-Score X 7S SA FI-Score X 7S SA FI-Score X

TSMS 01683 | 09214 | 02882 | 02601 | 0.1337 | 09294 | 02359 | 02194 | 09727 | 09751 0982 | 08618

Figure 12 TSEE 08743 | 09887 | 009329 | 09267 | 0.6752 | 09961 08082 | 0.8063 | 09876 | 0.9886 | 09937 | 09328
T-ROF 0.1937 | 09143 | 03246 | 02849 | 0.1383 | 09352 | 02430 | 02269 | 09598 | 09633 | 09795 | 0.8069

Our proposal | 0.8915 | 0.9904 | 0.9426 | 0.9374 | 0.7642 | 0.9971 | 0.8663 | 0.8649 | 0.9888 | 0.9897 | 0.9943 | 0.9389

TSMS 00487 | 09945 | 009737 | 09706 | 09756 | 09977 | 09877 | 09864 | 09670 | 09852 | 09832 | 09700

Figure 13 TSEE 00542 | 09951 | 00765 | 09738 | 09777 | 09978 | 00887 | 09875 | 09675 | 09854 | 09835 | 09704
T-ROF 09013 | 09891 | 0.9481 00420 | 09535 | 09954 | 009762 | 09737 | 09548 | 09797 | 09769 | 0.9588

Our proposal | 0.9552 | 0.9952 | 0.9771 | 0.9744 | 0.9840 | 0.9985 | 0.9919 | 0.9911 | 0.9682 | 0.9858 | 0.9839 | 0.9711

the TSEE model provides visually satisfactory four-phase segmentation results, there presents
some unexpected artifacts on the boundaries. Due to the spatially adaptive weights, our proposal
can identify the boundaries more accurately, which is further convinced by the indexes in Table
3. Similar segmentation results are achieved on the other four-phase image in Figure 13. As
shown, our model produces better segmentation result with more accurate boundaries than the
competing methods. Moreover, the evaluation indexes recorded in Table 3 also demonstrate the
effectiveness and superiority of our proposal.

Finally, we test our two-stage model on two brain MRI images from the BrainWeb dataset®.
Figure 14 (a) is contaminated by the Gaussian noise with a mean 0 and a standard deviation of
o = 10, and Figure 15 (a) is degraded by the Gaussian blur kernel [fspecial (‘gaussian’, [3,3],
3)] and the Gaussian noise with a mean 0 and a standard deviation of ¢ = 5. We display the

*https://brainweb.bic.mni.mcgill.ca/
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(a) Noisy image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 14: Comparison on four-phase brain MRI image segmentation. (a) Given noisy image (217 x 181); (b)-(d)
segmentations of TSMS, TSEE and T-ROF; (e) our segmentation with A = 0.05; (f) ground truth.

. i
. ___l- - __l-

(a) Blurry image (b) TSMS (c) TSEE (d) T-ROF (e) Our proposal (f) Ground truth

Figure 15: Comparison on four-phase brain MRI image segmentation. (a) Given noisy and blurry image (217 x
181); (b)-(d) segmentations of TSMS, TSEE and T-ROF; (e) our segmentation with A = 0.2; (f) ground truth.

Table 4: Evaluation results of the comparative methods in Figure 14 and Figure 15.

Images Methods cF oM WM
JS SA F1-Score K JS SA F1-Score K JS SA F1-Score K
TSMS 0.8315 0.9561 0.9080 0.8791 0.8616 0.9705 0.9257 0.9073 0.8348 0.9856 0.9100 0.9022
Figure 14 TSEE 0.8403 0.9587 0.9132 0.8862 0.8719 0.9729 0.9316 0.9147 0.8353 0.9855 0.9103 0.9024
T-ROF 0.8420 0.9583 0.9142 0.8867 0.8827 0.9756 0.9377 0.9225 0.7789 0.9807 0.8757 0.8652
Our proposal 0.8625 0.9647 0.9262 0.9030 0.8927 0.9775 0.9433 0.9293 0.8435 0.9865 0.9151 0.9078
TSMS 0.8339 0.9694 0.9094 0.8910 0.9359 0.9843 0.9669 0.9566 0.7969 0.9855 0.8870 0.8792
Figure 15 TSEE 0.8328 0.9691 0.9088 0.8902 0.9324 0.9835 0.9650 0.9542 0.8016 0.9859 0.8899 0.8824
N T-ROF 0.7912 0.9601 0.8834 0.8593 0.9169 0.9795 0.9566 0.9432 0.7266 0.9803 0.8417 0.8312
Our proposal 0.8462 0.9719 0.9167 0.8998 0.9363 0.9844 0.9671 0.9569 0.8050 0.9863 0.8920 0.8847

segmentation results of the TSMS, TSEE, T-ROF, and our model in Figures 14 and 15, where
our model produces more accurate results than the others, especially the regions inside the red,
green and blue box. We also compare the results in terms of JS, SA, F1-Score and k in Table
4. As can be observed, our model gives the best segmentation results for all three tissues, i.e.,
cerebrospinal fluid (CF), gray matter (GM) and white matter (WM).

7. Conclusions

In this paper, we proposed a variational model in the space of functions of bounded Hes-
sian to overcome the shortage of TV regularizer in segmenting natural images containing both
flat regions and slanted regions. Instead of using constant parameters, we estimated the spatial
varying parameters in advance according to the edge information of images. The resulting non-
smooth optimization problem was efficiently solved by the ADMM-based algorithm. Because
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of the convexity, our model performed more stable concerning parameters and initializations.
Numerical experiments implemented on natural images demonstrated the efficacious and accu-
rate performance of our proposed method by comparing with several advanced segmentation
methods. We also extended the weighted bounded Hessian regularizer to the two-stage seg-
mentation framework to deal with noisy and blurry images, which also achieved state-of-the-art
results.

As far as future work is concerned, an automatic way to select A in the proposed model
would be useful. We may use the bi-level learning scheme to estimate the value of A from the
dataset [47] or use the parameter-free fitting term in [48]. Moreover, we would like to investigate
the performance of the weighted bounded Hessian regularizer on other image processing tasks
such as super-resolution imaging, Retinex, etc.
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Appendix

Proof of Theorem 3.1

Proof. According to Algorithm 1, we have

((—r V- V+rV?. V2 +r3)uk‘H =-V. (rlwk—i—/'L{‘) + V2. (rzzk —|—7le) +r3vk—|—/'\/§,
(VT MY A+ A (- ) 20,
a(D)s (W = Vit 1 Ak 5 0, s5T e 9wkt
B(I)pkH +r2(zk+l _Vzuk—i-l)_'_)/é( 3 0’ pk-H c 8’Zk+1|, (31)
A = A (W vk,
M = 2k (T R,

(

\ )L«§+] :k3k-|—l”3 vk—H —I/tk+]).

Based on the assumption /llkH — l{{ — 0 as k — oo, we have ]}im (wk —Vuk) — 0. Moreover,
—>00

we can obtain Wkt — wk = w1 — vkl L vyt vk £ vk — wh and deduce klim (wht! —
—o0

wh) — 0 by ukH! —uk — 0. Similarly, there is ]}im ( — V2uk) — 0 with the assumption A —
—»00
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A% — 0 as k — oo, which immediately gives ]}im (1 —ZK) = 0. Due to 2,3k+l — AKX — 0 and
—o0

k+1

Ukt — 4k — 0 as k — oo, we also have hm (vk —uk) — 0, which deduces that lim (V1 —F) —

k—yoo
0. Thus, the sequence {(u vk wk, 2K lk 7Lk M) Yeen is uniformly bounded in Q.

Moreover, let (u*,v*,w*,z* 7L*, ),3 ) be a cluster point of the generated sequence { (u* V*,
ko7 ;/llk,)»k,?té‘)}keN by the ADMM based Algorithm 1. Thus, there exists a weakly conver-
gent subsequence denoted by {(ukt vk wke ke lf ‘ 7sz” , l;” ) }eery converging to the limite point
(v, w* 25 A0, A5, AY). Analogously, due to wkt — w*, 2% — 7% ae. in Q as { — o and
skt € d|lwhe|, pht € dl|,
weakly to s* € d|w*
The subsequence { (u*t vkt wke 7k )le ‘ 7sz‘ , 7L§ )} een satisfies the first-order optimality con-
ditions (31), i.e.,

kY jen that converges

( (—r1V- V+rV2. V24 r3)ukhLl =-V. (rlwkf —|—llk‘) +V2. (rzzk“ +7L§‘) + ke —|—l3k‘,
(K kY LK LA (fi - £2) 20,

a(l)skg—i-l +r (Wk;+1 o Vukﬁ-l) +;le4 50,

B(I)pkwrl +r2(zkg+l . Vzuk,;+1> _i_)sz[ 50,

MU= A n (e e,

/Iéczﬂ _ /If‘ _|_r2(zk[+1 _VZng—H)’

ko+1 k
/13[ — 131 —|—r3(vk’+1 —uk”+1).

\

Taking the limit from the convergent subsequence, i.e., letting { — oo, we obtain

(VA =V2 A5 -2 =0
AM+A(fi—f)=0
o(l)s*+ A =0, s* € d|w"|,
B)p™+24; =0, p* € d["],

wht = VM*, Z* — VZM*7 V¢ = I/t*,

for almost every point in Q. This lmplles that the sequence { (u*, v, w25 MK A% A8) Y ien con-

verges to the limit point (u*,v*,w*,z*; A, A, A7) and satisfies theﬁrst order opttmallry condi-
tions.
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