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Abstract
Let (n;)i>1 be a sequence of 1-mixing random variables. Let m = |[n®],0 < a < 1,k =
[n/(2m)], and Y; = 351, Nin(j—1)+i, 1 < j < k. Set Sp = ?:1Yj and [S%)), = Zle(}/;) - We

prove a Cramér type moderate deviation expansion for P(Sg/+1/[S°]x > ) as n — oco. Our result
is similar to the recent work of Chen et al. [Self-normalized Cramér-type moderate deviations
under dependence. Ann. Statist. 2016, 44(4): 1593-1617] where the authors established Cramér
type moderate deviation expansions for S-mixing sequences. Comparing to the result of Chen
et al., our results hold for mixing coefficients with polynomial decaying rate and wider ranges
of validity.
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relative error, continued fraction expansions
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1. Introduction

The study of the relative errors for Gaussian approximations can be traced back to Cramér
[6]. Let (X;);>1 be a sequence of independent and identically distributed (i.i.d.) centered real
random variables satisfying the condition E exp{cy|X1|} < oo for some constant ¢y > 0. Denote
o? =EX{ and S, = > | X;. Cramér established the following asymptotic moderate deviation
expansion on the tail probabilities of S,: For all 0 < x = o(n'/?),

P(S, > zoy/n) (14 xz)?
1 —®(x) vn

where ®(x) = \/LZ; J°__exp{—t?/2}dt is the standard normal distribution. In particular, in-
equality (1.1) implies that

In

=0(1) as n — 0o, (1.1)

P(S,, > zo\/n)

1—®(x)
uniformly for 0 < x = o(n'/%). Following the seminal work of Cramér, various moderate devia-
tion expansions for standardized sums have been obtained by many authors (see, for instance,

=14 o0(1) (1.2)
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Petrov [22, 23], Linnik [20], Saulis and Statulevic¢ius [26] and [11, 12]). See also Rackauskas
24, 25], Grama [16], Grama and Haeusler [17] and Fan, Grama and Liu [13] for martingales.

To establish moderate deviation expansions type of (1.2) for 0 < z = o(n®), « > 0, we should
assume that the random variables have finite moments of any order, see Linnik [20]. The last
assumption becomes too restrictive if we only have finite moments of order 2 + 4,0 € (0, 1].
Thought we still can obtain (1.2) via Berry-Esseen estimations, the range cannot wider than
lz] = O(vInn),n — oo. To overcome this shortcoming, a new type Cramér type moderate
deviations (CMD), called self-normalized CMD, has been developed by Shao [28]. Instead
of considering the moderate deviations for standardized sums S,/v/no?, Shao [28] considered
the moderate deviations for self-normalized sums W, = S,/\/> ., X?. Comparing to the
standardized counterpart, the range of Gaussian approximation for self-normalized CMD can
be much wider range than its counterpart for standardized sums under same finite moment
conditions. Moreover, in practice one usually does not known the variance of S,,. Even the
latter can be estimated, it is still advisable to use self-normalized CMD for more user-friendly.
Due to these significant advantages, the study of CMD for self-normalized sums attracts more
and more attentions. For more self-normalized CMD for independent random variables, we
refer to, for instance, Jing, Shao and Wang [18] and Liu, Shao and Wang [21]. We also refer
to de la Pena, Lai and Shao [9], Shao and Wang [30] and Shao [29] for recent developments
in this area. For closely related results, see also de la Pena [8] and Bercu and Touati [2] for
exponential inequalities for self-normalized martingales.

Thought self-normalized CMD for independent random variables has been well studied,
there are only a few of results for weakly dependent random variables. One of the main results
in this field is due to Chen et al. [4]. Let (n;);>1 be a (may be non-stationary) sequence of
random variables. Set a € (0,1). Let m = |n®| and k = [n/(2m)], where |x| denote the
integer part of z. Denote

Y; = ZTIQm(jfl)Jria 1<j<k.
i=1
Set
k k
Sp=>Y% and  [$ =) (¥))"
=1 j=1

Define the interlacing self-normalized sums as follows

We = 53/ V57T (13)

Let F; and F7Y, be o-fields generated respectively by (1:)i<; and (1;)i>j4x- The sequence of

random variables (1;);>; is called S-mizing if the mixing coefficient

B(n) == sup Esup{|P(A|F;) —P(4)|: Ae FX,} =0 as n — 00, (1.4)



see Doukhan [10]. Write
l+s

Sl,s = Z i

i=l+1

the block sums of (7;);>1 for [ +1 < i < [ + s. Throughout the paper, denote ¢, probably
supplied with some indices, a generic positive constant. Assume that (7;);>1 are centered, that
is

En; =0 for all i, (1.5)
and that there exists a constant v € (0, 1] such that
Bl < &+ (16)
and
ES%S >c?s foralll>0ands> 1. (1.7)

By Theorem 4.1 of Shao and Yu [27], it is known that condition (1.6) usually implies the
following condition: there exists a constant p € (0, 1] such that

E[S|*T" < sUHP2e24P for all 1 > 0 and s > 1, (1.8)

provided that the mixing coefficient has a polynomially decaying rate as n — oo. In (1.8),
it is usually that p < v. Assume conditions (1.5)-(1.7). Assume also that there exist positive
constants aq, as and 7 such that

B(n) < aje” ™.

Using m-dependent approximation, Chen et al. [4] proved that for any positive p < v,
S Cp <W (19)

uniform for 0 < z = o(min{n1=*)/2 no7/2}) where ¢, depends only on ¢, ¢, p, a1, a2 and 7. In
particular, it implies that

POV > )

I 1—®(x)

P(W? > x)
1 - (x)

uniformly for 0 < z = o(min{n1=®r/(4+20) nav/2}) Fquality (1.10) implies that the tail proba-
bilities of W can be uniformly approximated by the standard normal distribution for moderate
x’s. Such type of results play an important role in statistical inference of means, see Section 5
of Chen et al. [4] for applications. Inspiring the proof of Chen et al. [4], it is easy to see that
(1.9) remains valid when the conditions (1.5)-(1.7) are replaced by the slightly more general
conditions (1.5), (1.7) and (1.8).

=1+o0(1) (1.10)



In this paper, we are interested to extend the results of Chen et al. [4] to )-mixing sequences,
with conditions (1.5), (1.7) and (1.8). By Proposition 1 in Doukhan [10], it is known that
-mixing usually implies fS-mixing. However, the ranges of our results do not depend on
the mixing coefficients. Indeed, our ranges of validity for (1.9) and (1.10) are respectively
0<x=0m'"2)and 0 < x = o(n1=r/(4+20)) a5 n — 0o, which are the best possible even
(m;)i>1 are independent. Moreover, we show that (1.10) remains true if 1-mixing coefficient
1 (n) decays in a polynomial decaying rate, in contrast to S-mixing sequences which does not
share this property. For methodology, our approach is based on martingale approximation and
self-normalized Cramér type moderate deviations for martingales due to Fan et al. [15].

The paper is organized as follows. Our main results are stated and discussed in Section
2. Applications and simulation study are given in Section 3. Proofs of results are deferred to
Section 4.

2. Main results

Recall that F; and F35, be o-fields generated respectively by (1;)i<; and (7;)i>j k. We say
that (7;)i>1 is ¥-mizing if the mixing coefficient

Y(n) 1= sup sgp{|IP(A|]:j) —P(A)|/P(A): Ae FX,}—0 as n — 0o, (2.11)

see Doukhan [10]. It is known that continued fraction expansions of irrational numbers and
certain Gibbs-Markov dynamical systems are ¢-mixing, see Bazarova, Berkes and Horvéth [1]
and Denker and Kabluchko [7] respectively.

Our main result is the following self-normalized Cramér type moderate deviations for -
mixing sequences.

Theorem 2.1. Assume conditions (1.5), (1.7) and (1.8). Set o € (0,1). Let m = |n®] and
k= |n/(2m)]| be respectively the integers part of n® and n/(2m). Denote

02 = ma*(m) + ky(m)

and
Yo = K22 (m) 4 map(m).

Assume also that 0,7, — 0 as n — oo.
[i] If p € (0,1), then for all 0 < x = o(n{1~)/?),

1
a0 A/5(1 1 g @) ) )
(2.12)

‘1 P(Wg > )
170 ()

$2+p 5 o
< | —mapr T2 0+ L+ 2) (-

where ¢, depends only on cy,cy and p.



[ii] If p =1, then for all 0 < x = o(n(!=®)/2),

P(We > x)
1—®(x)

co 2P e L il 2.13
=S¢ n(lfa)/2+x nt( +x)(n(1fa)/8(1_|_$3/4)+n(17a)/2+/y”) , (2.13)

‘ln

where ¢ depends only on ¢y and cs.

Notice that in the ii.d.case, W? is a self-normalized sums of k i.i.d.random variables,
that is (Y;)1<i<k. According to the classical result of Jing, Shao and Wang [18], Cramér type
moderate deviations holds for 0 < 2 = o(k'/?). Since the last range is equivalent to the range
0 < 2 = o(n'=%/2)  the ranges of validity for (2.12) and (2.13) coincide with the case of i.i.d.,
and, therefore, it is the best possible.

The following MDP result is a consequence of the last theorem.

Corollary 2.1. Assume the conditions of Theorem 2.1. Let a,, be any sequence of real numbers
satisfying a, — oo and a,/n'=*/2 — 0 as n — co. Then for each Borel set B C R,

£L‘2

1 1

—imf L o< liminf—lnIP’(—W,f € B)
zeBo 2 n—oo a2 ap

1 1 2

< limsup—zlnIP’<—W,f € B> < — inf x—,

an, 2

n—oo Qp z€B
where B° and B denote the interior and the closure of B, respectively.

If ¥(n) = O~/ then §2 = o(n=1=%/2) and ~, = o(n~1=*#/2), The following
corollary is nonetheless worthy to state.

Corollary 2.2. Assume conditions (1.5), (1.7) and (1.8). Set a € (0,1). Assume also that
P(n) = O(n—(1+p)/a)
asn — oo.
[i] If p € (0,1), then for all 0 < x = o(n(1=9/2),

P(Wy = )
1—®(z)

In

ate 1+
>~ CP(TL(l—Oé),D/2 + n(l—a)p(Q—p)/S(l + x/’(2+0)/4))’ (214)
where ¢, depends only on ci,co and p.
[ii] If p=1, then for all 0 < x = o(n(1=%)/2),

P(We > x)
1—®(x)

‘ln

2 1 Inn
< C(m +(1+ $)(n(1—a)/8(1 I :L’3/4) + n(l—a)/2)>’ (2.15)

where ¢ depends only on c¢; and cs.



In particular, (2.14) and (2.15) together implies that for p € (0, 1],

P(W? > z)

0@ 1+ 0(1) (2.16)

uniformly for 0 < x = o(n(1=@)r/(4+20)),

Chen et al. [4] (see Section 3 therein) showed that if S-mixing coefficient S(n) decays only
polynomial slowly, then (2.16) is not valid at = (C'lnn)'/? for sufficiently large constant
C. However, Theorem 2.1 shows that the range of validity of (2.16) can be much wider when
[-mixing is replaced by -mixing.

Recall that in the i.i.d.case, W? is a self-normalized sums of k i.i.d.random variables. By
Remark 2 of Shao [28], the range of validity for (2.16) is also the best possible.

Remark 2.1. Notice that if (1;);>1 satisfies conditions (1.5), (1.7) and (1.8), then (—n;)i>1 also

satisfies the same conditions. Thus the assertions in Theorem 2.1 and Corollary 2.2 remain
P(Wy > x) P(Wy < —x)

lid when ————
valid when 1= 0 (1) b (=)

15 replaced by

3. Applications

3.1. Application to simultaneous confidence intervals

Consider the problem of constructing simultaneous confidence intervals for the mean value
w of the random variables ((;);>1. Assume that (¢; — p);>1 satisfies the conditions (1.5), (1.7)
and (1.8). Let

T — Zf=1<y3 — mj)
VI -T2
where m = |n®],k = [n/(2m) ], Y; = S0 G, 1 <5 <k and ¥y = k150, Y5,

Corollary 3.1. Let 9, € (0,1). Assume that
110 6,,| = o(n(1=P/ 4y, (3.17)

If (n) = O(n=0+9/%) 'n — oo, then

En ¥ 0002 Sy g

km km ,
7j=1

is 1 — 0, conservative simultaneous confidence intervals for p.



Proof. 1t is known that for all x > 0,

IP’(Tn 2m> _p

Sk (Y — mp) koY k /
e 2 ) () )

see Chung [5]. The last equality and (2.16) together implies that

P(T, > x)

T () =1+o0(1) (3.18)

uniformly for 0 < z = o(n=®/(4420)) " Clearly, the upper (8,/2)th quartile of a standard
normal distribution ®~*(1 — §,,/2) satisfies

31— 5,/2) = O(/|In o)),

which, by (3.17), is of order o(n('=®#/(4+20)) Then applying the last equality to T},, we complete
the proof of Corollary 3.1. O

Similar results in statistical inference for hight-dimensional time series can be found in Chen
et al. [4], where the authors have established simultaneous confidence intervals for functional
dependance sequences.

3.2. Application to continued fraction and simulation study

One of the well known example of {)-mixing sequences is called continued fraction expansions
of irrational numbers on (0, 1). For an irrational number z € (0, 1), let

aj(x) = |1/x], apy1(x) = ay(z o TT), n>1,

be the continued fraction expansion of z, where T is defined by T'(z) = 1/x — |1/x], that is
the fractional part of 1/x. It is easy to see that

1

- ai(x) + i
as(x) + —
(Ig(.T) + _

The sequence (a,(x)),>1 with respect to the uniform measure in (0,1) is ¢-mixing. Indeed,
Lévy [19] proved that

b(n) = Sup sup{[P(A]F5) = P(A)I/P(A) : A€ i} < Ce" (3.19)

with positive absolute constants C' and A\, where }"f and F7Y, be o-fields generated respectively
by (CLi(I))lgiS]‘ and (ai(x)),;zj+n. Denote by

1 1
G(F)=— d
() ln2[El+x “

7




the Gauss measure on the class of Borel subsets B of (0,1). It is known that (cf. Billingsley
[3]) T is an ergodic transformation preserving the Gauss measure and thus (a,(z)),>1 is a
stationary ergodic sequence with respect to the probability space ((0, 1), B,G). Clearly, the set
{ay = k} is the interval (1/(k + 1),1/k] and thus

— k) = — dr = — In{ 1+ -—=——= ).

Hence, by the ergodic theorem we have for any function /' : N — R, it holds

- (N 1
]\PL%ON;F(C%(:E)):E;F(])ln<1+j(j+2)> a.e. (3.20)

whenever the series on the right hand side converges absolutely. Recently, Bazarova, Berkes
and Horvath [1] gave a central limit theorem for (a,(x)),>1. Next, we give a self-normalized
Cramér type moderate deviations.

Letting E denote expectation with respect to G, by (3.20), we have Ea;(x) = oo and
E(ai(z))* < oo for any a € (0,1). Consider the self-normalized moderate deviation for the
random variables ((;)i>1, where ¢; = ¢/a;(z) for any 7. Then E¢™ < oo for any p € (0,1) and

 I— 1
=FG = — /310 (1 . 21
ni=EG 1n2;J n< +j(j+2)> (3:21)

Let
Z?:l(y} — mp)
Vb (Y = mp?

where m = |n®],k = |[n/(2m)], Y; = >, Gm-1)+i» 1 < j < k. By (2.16), we have the
following result.

Corollary 3.2. Set o € (0,1). Then for any p € (0,1),

P(W? > t)
1@ (1)

we =

n

?

=1+ o0(1) (3.22)

uniformly for 0 <t = O(n(lfa)p/(4+2p)>.

Next, we give a simulation study for the last corollary. We let n = 30, m = 1,2,3,4 and
consider 13 levels of t : t = 0,.1,.2,...,1.0,1.2,1.4. Let = be the discrete uniform distribu-
tion random variable, with possible values /10000, 27 /10000, ....., 31827 /10000. Since 7 is an
irrational number, = are irrational numbers. In W7, we take

300
1 s 1
a ln2],:1] Jj+2) (3:23)

8



Then P(W? > t) =~ #(W? : W2 > t)/3182. The following table shows the simulate rations
P(Wyg>t)
1-2(1)
has a better performance than self-normalized sums (that is m = 1) when x close to 0. When

x moves away from 0, the reverse is true.

. From the table, we see that the interlacing self-normalized sums (that is m = 2,3,4)

m t=0 .1 2 3 4 5 .6 7 8 9 1.0 1.2 14
1 111 113 1.15 1.16 1.17 1.16 1.11 1.08 1.03 096 0.90 0.75 0.53

2 1.01 1.02 1.02 1.02 1.02 1.01 1.00 099 094 0.88 0.78 0.57 0.42

3 100 103 1.04 107 106 1.06 1.04 1.01 098 092 0.85 0.67 0.48

4 1.01 1.00 099 096 094 089 0.82 0.74 0.67 056 046 0.29 0.13
4. Proofs

To shorten notations, for two real positive sequences (a,);>1 and (by);>1, write a, =< b, if
there exists a positive constant C' such that a,, < Cb,, holds for all large n, a,, > b, if b, < a,,
and a, < b, if a,, X b, and b,, < a,.

4.1. Preliminary lemmas
Let (Xia'/—:i)iZO
(Q, F,P). Set

» be a sequence of martingale differences defined on a probability space

k
So=0, Se=» X, k=1..n (4.24)
=1

.....

the following conditions:

(A1) There exists g, € [0, 1] such that

n-—mn?

IS B - B2 < 2B
=1

(A2) There exist p € (0,1] and 7, € (0, §] such that

E[| X7\ Fioa] < (raBo)? EIX7|Fica], 1<i<n.

In practice, we usually have ¢,, 7, — 0 as n — oo. In the case of sums of i.i.d. random variables
with finite (2 + p)th moments, then it holds B,, < /n, and thus conditions (A1) and (A2) are
satisfied with ¢, = 0 and 7, = O(1/y/n) as n — .

Define the self-normalized martingales

W, = — O (4.25)

VL X

9



The proof of Theorem 2.1 is based on the following technical lemma due to Fan et al. [15]
(see Corollary 2.3 therein), which gives a Cramér type moderate deviation expansion for self-
normalized martingales.

Lemma 4.1. Assume conditions (A1) and (A2). Denote

Tﬁ(Q_p)/ 4

To(, p) = T i (4.26)

[i] If p € (0,1), then for all 0 <z = o(7;}),

P(W, > )
1—®(x)

In

S%( 2ore 4 22 +(1+x)<§n+?n($vp)>)’

where ¢, depends only on p.
[ii] If p =1, then for all 0 < x = o(y, '),

P(W,, > x)
1—®(x)

In

< c(x%n + 2% 4 (1 + ) (cn + 7o In 7 | + T (2, 1))),

where ¢ is a constant.

The following lemma is useful in the proof of Theorem 2.1, see Theorem 2.2 of Fan et al.
[14]. Denote 27 = max{x,0} and x~ = (—x)" the positive and negative parts of z, respectively.

Lemma 4.2. Assume that E|X;|? < oo for a constant 3 € (1,2] and all i € [1,n]. Write

i:( )| Fima] + (Xf)5>, kel,n

=1

Then for all x,v > 0,

P (S, >z and Gy(B) <v” for some k € [1,n]) < exp {—O(ﬂ) <£>6/(ﬂ_1)} : (4.27)

v

where

CcB) =677 (1-57"). (4.28)

In the proof of Theorem 2.1, we also make use of the following lemma which can be found
in Theorem 3 of Doukhan [10].

10



Lemma 4.3. Suppose that X and Y are random variables which are F73, - and F;-measurable,
respectively, and that E|X| < oo, E|Y| < co. Then

‘EXY . EXEY‘ < ¢(n)E|X|E[Y].
Moreover, since E|X| < (E|X|*)Y/2, it holds
’]EXY . IEXEY‘ < ¢(n) (EX?)Y2 (BY?)V/?
provided that EX? < oo and EY? < co.

4.2. Proof of Theorem 2.1

We first prove Theorem 2.1 for p € (0,1). Denote by F; = o{n;,1 < i < 2ml —m}. Then
Y; is F;-measurable. Since En; = 0 for all 4, by the definition of mixing coefficient (2.11), it is
easy to see that for 1 < j <k,

)E[Yju—rﬂ‘ = ‘ f: <]E[n2m(jfl)+i|~/t.j—1] - En2m(jfl)+i>

—_

e

(m)E|N2m 1)+

< Z P(m) (E|T]2m(j_1)+,-|2+P)1/(2+p)
=1
< map(m)cs, (4.29)

where the last inequality follows by condition (1.8) with s = 1. Thus
k
’ ZE[Y}U’—]—l]’ < kmap(m)co < np(m)es.
j=1

By condition (1.8) and the inequality
(x+y)P <207 YaP +yP)  for z,y >0and p > 1,
we have

B[IY; — B F]P1 7] < 29PR[Y; 1 + [BY;IF ] F]
2RV ]
2770(1 + o (m)E[Y;[**

X2 (1 + p(m))m! /2 tP, (4.30)

VAN VAN VANVAN

11



The last inequality implies that

E[Y; — E[Yj|F;-a]l*|Fj-1]

VANVANRVAN

(E[]Y; — E[Y;|F;-

AR

2°(1+ ¢ (m))* P me

Similarly, by (1.8) and the assumption d,, — 0 as n — oo, it holds

E[1Y; — E[Yj|Fj-a]l*|Fj-1]

Combining (4.30)-(4.32), we deduce that

E[[Y; — E[Y;|Fj-a] "1 Fj

2*(1 4 (m))mcs. (4.31)
= E[Y2\F ] — B\

> (1 - (m)EYZ — (mp(m)e)?

= (1~ p(m)me (4.32)

< m/PE[Y; — E[Y;|Fj-a]l* Fj-al,

k
> ENY; — EY|F-]PIFm] = n
j=1

and, by Lemma 4.3 and (4.29),

\ZM E[Y;| ;-] F-1] — ES?

J—

M»

<]
1

<

M-

[EY2IF ] - BY?

1

J

< kY(m)EY] + k(mip(m)ca)” + 20 (m

< 2nap(m)ca + nmap?(m)

E[|Y; — E[Y;|F;1]*|Fj-1] — ZEYf

= ij [ELY; 175

m)cy + 21 (m

k
+ B2 - Y BV

J=1

) Eoj-1
233 e
7j=1 =1
k
ZZEIY\E|Y|

7j=1 I1=1
k

DN

7j=1 =1

=1

< 2nap(m)cs + nmap?(m)cs + 2nkip(m)c;
< ()3 + Anky(m) 3

Denote by

62 = mab*(m) + ki (m).

12



Taking X; = Y, — E[Y;|F;_1], we find that the conditions (Al) and (A2) are satisfied with
B? =ES? xn, ¢, <6, and 7, < \/m/n < n~1=%/2 Applying Lemma 4.1 to

Sk (Y — E[Y;|F))

W, = )
V(Y — B[ F )2

we have for all 0 < z = o(n1=%)/2),

‘l P(W, > )
"0 ()

x?e 2 ¢2 1
Scp(nu_mm2+ﬂn5n+(1+ﬁﬂ<nu_@mzmyq1+ﬁwm+mﬂ>+w%)>.(43&

Notice that, by Cauchy-Schwarz’s inequality,

k

> - EIF ) - Y

M;r

k
< 2) VE|F]l +

(E[Y;]Fj-])"

j=1 j=1 j=1
k k
< 2mp(m)es Y Y|+ ) (map(m)es)?
J=1 7j=1
k 1/2
< 2K map(m (ZY?) + km*y*(m)cs.  (4.34)

Jj=1

When Z?Zl Y7 > 1/4, both sides of the last inequality divided by Z?:l Y7, we get

'Z] L (Y — B F))°
> Y,

By assumption ,, — 0, we have niy)(m) — 0 which leads to k'/?ma)(m) — 0 as n — oo. Thus
(4.35) implies that

1‘ < 4k map(m) ey + 4km>? (m)cl. (4.35)

‘ Y Y,
o (Y; — E[Yj|F-))®

1‘ < Cok*map(m), (4.36)

where Cj is a positive constant. Hence, by the last inequality and the fact k'/ mip(m) — 0,
when Y7, ¥ > 1/4, it holds

W, —We| = (Y; — E[Y;|F;_1)) =1 >y,
‘ z] Y, Z TN X O - B 1) Z ]

k

k
(’ZY E[Y;|F;_]) - S Y| +
\/z]ﬂ A=
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+Col 2 (m)| (¥ - Emmln\)

j=1

k
S 1l
1D
VI v

Using Cauchy-Schwarz’s inequality, we have Zle Y;| < kY 2\/22’;1 Y7?. Thus, by (4.29) and
the last inequality,

+ CokY*map(m)

< 3" [B;|F-)

IN

‘Wn—wg

3kma(m)ey + Cokmap(m)
> (302 + Co)ﬂiﬂ(m)

N

Hence, when 2521 Yf > 1/4, we have

‘Wn —wel < e, (4.37)

where C is a positive constant and

en = np(m).
Clearly, by assumption v, — 0, we have ¢, — 0 as n — co. Without loss of generality, we
may assume that Z?Zl EY? = n; otherwise, we may consider (7;/ Z?Zl EY?/n)1<i<n instead
of (1;)1<i<n- Then it follows that

o(57<i) < =
o
o

Denote Z; = E[Y?|F;_1] — Y;?. Notice that

(v ~ BIVIF) < - SOBIAR )

1 j=1

E

<.
Il

E

(2~ BIVIF,-) < § - (1= w(m) Y BY?)

1

<.
Il

WE

1
YZ —E[Y?|Fj] < —§n>. (4.38)

J
1

<.
Il

Z; <E[YP|Fja] < (1= ¢p(m)EY] < m,
By an argument similar to the proof of (4.30), we have

E[|Z;]"*72| Fja] 2 mHer2,
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The last two inequalities implies that

k
Z (E[(Zi_)1+p/2|fi_1] i (Z;r)1+p/2> < Cokm'/2

i=1

where Cj is a positive constant. Applying Lemma 4.2 to (Z;)1<j<x with 8 =1+ p/2,2 =n/2
and v® = Cykm?®, we get, from (4.38),

P(iyﬁ<i) < P<i2j>%n>
B < exp{—C(p)nl_a}a (4.39)

where C/(p) is a positive constant. For the last inequality, we make use of the fact that m = [n®|,
k= |n/(2m)]| and

(a:>/3/(ﬁ—1) ( n/2 )6/(ﬁ—1) ( n >ﬁ/(5—1) o
- = — = (——— =n
v CVP i\ om n(—a)/Bpa

Using (4.37), we obtain the following upper bound for the relative error of normal approxima-
tion: for all 0 < z = o(n1=)/2),

PWe>z)  PWg>z, 30 Y2>1/4)+P(Wy >, >0 Y2 <1/4)

1-®(z) 1—®(x)
P(W, >z — Cien, > i Y2 > 1/4) + P30 Y2 < 1/4)
= 1—®(x)
P(W, >z —Cie,) 1 — ®(x — Ciep) ]P(Z;‘j’:l yj2 < 1/4)
T 1-0(z—Ciey) 1—®(x) 1—®(x) '

Using the inequality

1
1-®(z) > e /% forall z >0

T V2r(142)
(cf. (1.6) of [11]), we deduce that for all x > 0 and ¢, = o(1),
1—9 (.T — Cl&n) -1 4 frx—clen \/LZ?eitQ/th

1—®(x) B 1—®(x)

L —@=Crel/200
142

Var(lta) ¢

1+ Cy(1 4 z)g,efrn

eCr+o)en, (4.40)

IN

_x2/2

IA A
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By (4.33), (4.39) and (4.40), we have for all 0 < 2 = o(n(1=%)/2),

P(Wy = x)
1 - (x)
cepdo (S50 g ! 5
<P\ G| G 0+ (L4 2) (n(l—a>p(2—p>/8(1 oy T o 5”)
1
- - C 1—a}
o) eXp{ (p)m

1
n(l—a)p(Q—p)/S(]_ + xl)(2+P)/4) t 7n>) }’

m2+p
< exp {C” (ﬂ + 2262 + (1 +a:)<

where
Y = Op + En = K22 (m) + nap(m).

Similar, we have the following lower bound for the relative error of normal approximation: for
all 0 < x = o(n1=2)/2),

P(We > x)
1—@(x)

m2+p 1
’ 2¢2
> exp { - C, (m + 20, + (1 + ) (n(l—a)p(2—p)/8(1 + zP(2+p)/4) * 7”)) }

P(Wy>x)
1-®(x)

Combining the upper and lower bounds of together, we complete the proof of Theorem
2.1 for p € (0,1).

For the case p = 1, the assertion of Theorem 2.1 follows by a similar argument, but with ¢,
replaced by (1 272 —1—6 in (4.33) and accordingly in the subsequent statements. This completes

the proof of Theorem 2.1
4.8. Proof of Corollary 2.1
In the proof of Corollary 2.1, we will make use of the following well-known inequalities:
1
V2r(l+ )

First, we show that

1
e < —0(x) < ——e T2 >0 (4.41)

VAl + )

1 1
11msup—1n[P< Wy e B> < — inf T (4.42)

N—00 a? z€B

When B = (), the last inequality is obvious. So, we assume that B # (). For a given Borel set
B C R, let zg = infyep |2|. Clearly, we have zy > inf_ 5 |2|. Therefore, by Theorem 2.1,

1
P(—Wg e B) < IP’( W,| > anx())
a’TL

16



nTo ) 2+p

< 2(1 — ® (ayz0) ) exp {cp (W + (anzo)* 02

1
+(1 + ano) (n(la)p(2p)/8(1 + (anxo)P+0)/4) + 7”)) }

Using (4.41), we get

1 1 2 2
hmsup—lnP(—Ws € B> < % < —inf x—,
n—00 a% Qp, 2 z€B 2
which gives (4.42).
Next, we show that
1 1 .2
hmmf—lnP(—Ws € B> > — inf —. (4.43)
n—oo a2 an, z€B° 2
When B° = (), the last inequality is obvious. So, we assume that B° # (). For any given ¢, > 0,
there exists an xy € B°, such that
2
iIlf x— —+ 1.

2
e
-0 <
reB° 2

0<

Without loss of generality, we assume that xy > 0. For zy € B° and all small enough &5 € (0, z),
it holds (zg — €2, x¢ + 2] C B. Obviously, we have

1
P(—WyeB) = P(Wy e (an(eo—22), anleo +22)])
a,
= IP’(W,‘; > a,(zo — 52)) — IP’(W,‘L’ > a,(zo + 82)>.
By Theorem 2.1, it is easy to see that

P(W? > ap(xo + 52)>
lim

(
n—00 IP’(

=0.

We > an(wo — 82))
Then, by (4.41), it follows that

1 1 1
liminf—lnP(—Wg € B> > —§(x0 —&)%
an

Now, letting €5 — 0, we have

1 1 2 2
1iminf—1n19>(—wge B) e S Y
n—oo a2 an, 2 zeBe 2

Because €1 can be arbitrarily small, we get (4.43). Combining (4.42) and (4.43) together, we
complete the proof of Corollary 2.1.
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