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Abstract: Let Λ be a collection of partitions of a positive integer d of the form

(a1, · · · ,ap), (b1, · · · ,bq), (m1+1,1, · · · ,1), · · · ,(ml+1,1, · · · ,1),

where (m1, · · · ,ml) is a partition of p+q− 2 > 0. We prove that there exists a rational

function on the Riemann sphere C with branch data Λ if and only if

max
(
m1, · · · ,ml

)
<

d

GCD(a1, · · · ,ap,b1, · · · ,bq)
.

As an application, we give a new class of branch data which can be realized by Belyi

functions on the Riemann sphere.
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theorem
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1 Introduction

Let X and Y be two compact connected Riemann surfaces, and let f : X→ Y be a holo-

morphic branched covering of degree d. For each point q in Y, there is a partition

λ(q) = (k1, ...,kr) of d associated to q such that, over a suitable neighborhood of q in

Y, f is equivalent to the map

{1, ..., r}×D→ D, (j,z) 7→ zkj , where D := {z ∈ C : |z|< 1},
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Rational functions with more than 3 branch points

with q corresponding to 0 in D. For any partition λ = (k1,k2, · · · ,kr) of d, we de�ne its

length Len(λ) = r. We call the partition λ of d non-trivial if Len(λ)<d. For the branched

covering f : X→ Y, We call a point q in Y a branch point of f if and only if λ(q) is non-

trivial, and we call the set of branch points of f the branch set of f, denoted by Bf. The

collection Λ= {λ(q) : q ∈ Bf} (with repetitions allowed) is called the branch data of f and

v(f) :=
∑
q∈B(f)

(
d−Len

(
λ(q)

))
the total branching order of f. By the Riemann-Hurwitz theorem, we have that

v(f) = 2g(X)−2−d
(
2g(Y)−2

)
where g(X) (resp. g(Y)) denotes the genus of X (resp. Y). Therefore, the total branching

order v(f) is an even non-negative integer.

The following problem was �rst proposed by Edmonds-Kulkarni-Stong [4] and we can

trace its history to Hurwitz [9].

Realizability Problem. Given a compact connected Riemann surface Y and a collection

Λ = {λ1, · · · ,λk} of non-trivial partitions of a positive integer d, does there exist another

compact connected Riemann surface X together with a branched covering f : X→ Y such

that Λ is its branch data? If it does, we call the collection Λ realizable or realized by a

branched covering.

See the classical [2, 4, 6, 7, 8, 10, 11, 13, 14, 22, 23] and the more recent [1, 12, 15, 16,

17, 18, 19, 20, 21, 24] about this problem. Here we only review some necessary background

and a small part of known results which are closely related to our discussions in the sequel.

Recall that in order to be realizable, a collection Λ should satisfy the condition that

its total branching order

v(Λ) :=

k∑
j=1

(
d−Len(λj)

)
is even. We call such a collection compatible. It is proved in [10, Theorem 9] and [4,

Section 3] that a compatible collection is always realizable if g(Y) > 0. Hence, we always

assume that Y is the Riemann sphere C in the sequel. It turns out that a compatible

collection is not always realizable in this case. We call a compatible collection an exception

if it is not realizable. Zheng [24] found by computer all the exceptions of degree ≤ 22.
Pervova-Petronio [20, 21] used a variety of techniques to give some new in�nite series

of exceptions, and they used dessins d'enfants to make a theoretical explanation of part

of the exceptions given by Zheng [24]. Besides constructing some exceptions, Edmonds-

Kulkarni-Stong [4] proposed the so-called prime degree conjecture, which says that each

compatible collection with prime degree is always realizable, and they reduced it in the

same paper to the collections with exactly three partitions. In [18, 19], Pascali-Petronio

proved some results which provide strong support to this conjecture.

Characterizing branch data of all rational functions is a very deep and di�cult problem,

which seems far from being accessible nowadays. Hence, it is meaningful to �nd reasonably
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Rational functions with more than 3 branch points

simple, su�cient conditions for a collection to be realizable. Besides the theorems in

[18, 19, 20, 21], some of the other known results are as follows: Thom [23] showed that

a compatible collection is realizable if one partition in it has length one. Edmonds-

Kulkarni-Stong [4, Theorem 5.4] proved that a compatible collection with degree d 6= 4 is
realizable when its total branching order ≥ 3(d−1). In addition, the exceptions with d= 4

are precisely those with partitions (2,2), · · · ,(2,2),(3,1). Moreover, Boccara [2] obtained

a complete determination of the realizability of the collection Λ which consists of the

following three partitions of d:

(a1, · · · ,ap), (b1, · · · ,bq), (m+1,1, · · · ,1).

He proved that Λ is realizable if and only if it satis�es one of the following two conditions:

• v(Λ)≥ 2d is even.

• v(Λ) = 2d−2 and m<
d

GCD(a1, · · · ,ap,b1, · · · ,bq)
. Note that m= p+q−2 in this case.

Generalizing the second part of Boccara's result, we show the following

Theorem 1.1 (Main Theorem). Let d and l be two positive integers. Consider a

collection

Λ= {(a1, · · · ,ap), (b1, · · · ,bq), (m1+1,1, · · · ,1), · · · ,(ml+1,1, · · · ,1)}

consisting of l+2 partitions of d such that (m1, · · · ,ml) is a partition of p+q−2 > 0.

Then there exists a rational function on C with Λ as its branch data if and only if

max
(
m1, · · · ,ml

)
<

d

GCD(a1, · · · ,ap,b1, · · · ,bq)
.

Remark 1.2. Recently, A. Eremenko [5] applied the main theorem to the investigation

of conformal metrics of positive constant curvature on C which have �nitely many conical

singularities and co-axial holonomy. In particular, he characterized the conical angles

of such metrics and used the main theorem in the solution of Question 2, which is the

rational case of Question 1, namely the main problem in [5].

We call a rational function on a compact Riemann surface a Belyi function if it has

at most three branch points. As an application of the main theorem, we have:

Theorem 1.3. Let d and r be two positive integers, and

Λ= {(a1, · · · ,ap), (b1, · · · ,bq), (c1+1, · · · ,cr+1,1, · · · ,1)}

be a collection consisting of partitions of d such that (c1, · · · ,cr) is a partition of

p+q−2 > 0. If

max
(
c1, · · · ,cr

)
<

d

GCD(a1, · · · ,ap,b1, · · · ,bq)
then the modi�ed collection

Λ̃ := {(ra1, · · · , rap), (rb1, · · · , rbq), (c1+1, · · · ,cr+1,1, · · · ,1)}

of partitions of dr can be realized by a Belyi function on C.
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In the remaining of the article, we give proofs of the two theorems. At the very end,

we propose a conjecture concerning rational functions on a Riemann surface of positive

genus, which is a possible generalization of our main theorem.

2 Proof of the main theorem

In Subsection 2.1 we prove the necessary part of the main theorem and observe that the

su�cient part can be reduced to the case of GCD(a1, · · · ,ap,b1, · · · ,bq) = 1. Moreover, we

recall that by the Riemann existence theorem ([3, Theorem 2, p.49]) the su�cient part is

equivalent to the existence of certain permutations in the symmetry group Sd := S{1,2,··· ,d}
associated with the collection Λ. For completeness, we give in Subsection 2.2 a proof in

our own strategy for the case l= 1 of the main theorem which was also proved by Boccara

[2]. We prove Case l≥ 2 of the main theorem in Subsection 2.3.

2.1 Riemann’s existence theorem

At �rst, we prove the necessary part of the main theorem.

Proof. Suppose that there exists a rational function f on C realizing the branch data Λ.

Using suitable M�obius transformations if necessary, we can assume that f has the form

f(z) =
(z−z1)

a1 · · ·(z−zp)ap
(z−w1)b1 · · ·(z−wq)bq

(1)

where z1, · · · , zp, w1, · · · , wq are (p+q) distinct complex numbers. Let

k=GCD(a1, · · · ,ap,b1, · · · ,bq).

Then we can write f as f= Fk for some rational function on C. And F has branch data of

the form

{(a1/k, · · · ,ap/k), (b1/k, · · · ,bq/k), (m1+1,1, · · · ,1), · · · ,(ml+1,1, · · · ,1)}.

Since F has degree d/k, we have max
(
m1, · · · ,ml

)
< d/k and complete the proof.

On the other hand, we claim that if the collection

{(a1/k, · · · ,ap/k), (b1/k, · · · ,bq/k), (m1+1,1, · · · ,1), · · · ,(ml+1,1, · · · ,1)}

is realized by a rational function, then so is

{(a1, · · · ,ap), (b1, · · · ,bq), (m1+1,1, · · · ,1), · · · ,(ml+1,1, · · · ,1)}.

Actually, by using Riemann's existence theorem and some M�obius transformations, we

could assume that there exists a rational function

F(z) =
(z−z1)

a1/k · · ·(z−zp)ap/k

(z−w1)b1/k · · ·(z−wq)bq/k
,
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where z1, · · · , zp, w1, · · · , wq are (p+q) distinct complex numbers, such that there exist

exactly l branch points of F lying in C\{0,∞}, say y1, · · · ,yl, which satisfy that yk1 , · · · ,ykl
are mutually distinct and λ(yj) = (mj+1,1, · · · ,1) for 1≤ j≤ l. Since the power function
y 7→ yk on C does not branch on C\{0,∞}, the collection

{(a1, · · · ,ap), (b1, · · · ,bq), (m1+1,1, · · · ,1), · · · ,(ml+1,1, · · · ,1)}.

is realized by the rational function Fk.

Hence, in order to show the su�cient part of the main theorem, we may assume

GCD(a1, · · · ,bq) = 1. We need to prepare some notions before giving the proof.

Definition 2.1. Let m be a non-negative integer. A vector α = (a1, a2, · · · , am+2) in

Zm+2 is called a residue vector with (m+ 2) components if a1+a2+ · · ·+am+2 = 0 and

a1a2 · · ·am+2 6= 0. Two residue vectors α= (a1, · · · ,am+2) and β= (b1, · · · ,bm+2) are called

equivalent, denoted by α ∼ β, if there is a nonzero rational number µ and a permutation

σ in the symmetry group Sm+2 such that

µ ·α= (µa1, · · · ,µam+2) = σ(β) :=
(
bσ(1), · · · ,bσ(m+2)

)
.

This is an equivalence relation in the set of residue vectors with (m+2) components. The

degree of the residue vector α is de�ned to be

deg
(
a1, · · · ,am+2

)
=

∑
aj>0

aj

GCD
(
a1, · · · ,am+2

) .
We call a residue vector α = (a1, · · · ,am+2) primitive if GCD(a1, · · · ,am+2) = 1. Clearly,

the degree of a primitive residue vector equals the sum of all its positive components. Ob-

serve also that the logarithmic di�erential d(log f) = df
f of a rational function f in (1) has

residues a1, · · · ,ap,−b1, · · · ,−bq, which form a residue vector with degree d/GCD
(
a1, · · · ,ap,b1, · · · ,bq

)
.

Definition 2.2. Let λ= (λ1, λ2, · · · , λl) be a partition of a positive integer n. The weight

of λ is de�ned to be

wt(λ) =max(λ1, · · · ,λl)

Use the notions in the main theorem and denote by λ the partition (m1, · · · ,ml)

of m = p+q− 2 > 0 and by α the residue vector (a1, · · · ,ap,−b1, · · · ,−bq). Then the

condition in the theorem can be concisely re-expressed as

degα > wt(λ).

By the Riemann existence theorem [3, Theorem 2, p.49], the su�cient part of the main

theorem is equivalent to the following

Theorem 2.3. Under the assumptions of the main theorem, if degα > wt(λ), then

there exist (l+ 2) permutations τ1,τ2,σ1, · · · ,σl in the symmetry group Sd = S{1,2,··· ,d}
of {1,2, · · · ,d} such that
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� τ1τ2σ1 · · ·σl = e, where e is the unit in Sd and permutations are multiplied from

right to left;

� τ1 has the type of a11a
1
2 · · ·a1p, τ2 of b11b12 · · ·b1q and σk of (1+mk)

11d−mk−1 for all

k= 1, · · · , l;

� The subgroup 〈τ1,τ2,σ1, · · · ,σl〉 of Sd acts transitively on {1,2, · · · ,d}.

The following lemma will be useful later, which follows from the Riemann existence

theorem and the argument in the �rst three paragraphs of this subsection.

Lemma 2.4. For each m≥ 0, proving Theorem 2.3 is equivalent to proving its variant

where α is primitive. We call the latter the primitive version of Theorem 2.3.

We shall prove Theorem 2.3 and its primitive version simultaneously by induction

on m = p+q− 2 in the sequel of this section. The proof will be divided into two parts

regarding l= 1 or l > 1.

Without loss of generality, we may assume the residue vector satis�es the following

order assumption:

Order Assumption (OA) a1 ≤ a2 ≤ ·· · ≤ ap, b1 ≥ ·· · ≥ bq and 1≤ p≤ q.

2.2 Branch data with three partitions

For the completeness of the manuscript, we include in this subsection the proof of the well

known case where l= 1 of Theorem 2.3 (see [2]), whose strategy we also use while proving

in Subsection 2.3 the l > 1 case of the theorem.

Here we �rst make a recall of the case l= 1 of Theorem 2.3.

Proposition 2.5 (Case l = 1 of Theorem 2.3). Let α = (a1, · · · ,ap,−b1, · · · ,−bq) be a

residue vector and λ= (m) be a partition of m= p+q−2> 0 such that degα>wt(λ) =

m. Then there exist three permutations τ1,τ2,σ1 in Sd satisfying the following three

properties:

� τ1τ2σ1 = e;

� τ1 has the type of a11a
1
2 · · ·a1p, τ2 of b11b12 · · ·b1q and σ1 of (1+m)11d−m−1;

� The subgroup 〈τ1,τ2,σ1〉 of Sd acts transitively on {1,2, · · · ,d}.

Lemma 2.6. Let α = (a1, · · · ,ap,−b1, · · · ,−bq) be a residue vector with degα > m =

p+q−2. If m> 0, we have ap > bq.

Proof. If ap < bq, then it follows from the order assumption (OA) that
p∑
i=1

ai <
q∑
j=1

bj,

contradicting the de�nition of residue vector. If ap−bq = 0, then by OA and m = p+

q− 2 > 0 we have p = q ≥ 2 and ai = bj for all i = 1,2, · · · ,p and j = 1,2, · · · ,q. Since

p = deg α > m = p+ q− 2 = 2p− 2 = 2q− 2, we obtain p = q = 1, which contradicts

p+q > 2.
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To prove Proposition 2.5, we need to use the following lemma, where we propose a

new concept, called contraction of a residue vector.

Lemma 2.7. Under the assumptions of Proposition 2.5, there exist i0 ∈ {1,2, · · · ,p}
and j0 ∈ {1,2, · · · ,q} such that

α̂=
(
a1, · · · ,ai0−1,ai0 −bj0 ,ai0+1, · · · ,ap, −b1, · · · , (̂−bj0), · · · ,−bq

)
is a residue vector with deg α̂ > m− 1, where ai0 −bj0 > 0 and the hat over term

(−bj0) means that (−bj0) is removed. Note that the number of components of α̂ is

one less than that of α. We call α̂ a contraction of α.

Proof. Without loss of generality, we assume α is primitive. If not, we may replace it by

a primitive residue vector equivalent to it.

By OA and Lemma 2.6, we have q ≥ 2 and ap−bq > 0, and then we obtain another

residue vector

β1 :=
(
a1, · · · ,ap−1, ap−bq, −b1, · · · ,−bq−1

)
with (m−1) components. We divide the proof into the following three steps.

Step 1. Assume q= 2. Then m= p+q−2= p and degβ1 ≥ p, so β1 is a contraction of α.

We assume that q > 2 in the sequel of the proof.

Step 2. Suppose that β1 is primitive. Then degβ1 > (m− 1) = (p+q− 3), so it gives a

contraction of α. Indeed, if not, then by OA we have

2q−2≥ p+q−2 > degβ1 =−bq+

p∑
i=1

ai =−bq+

q∑
j=1

bj =

q−1∑
j=1

bj.

thus bq−1 = bq = 1 and bq−2 ≤ 2. Moreover, if bq−2 = 2, then b1 = · · · = bq−2 = 2.
Therefore

m+1= p+q−1 > 1+

q−1∑
j=1

bj =

q∑
j=1

bj =

p∑
i=1

ai = degα,

which contradicts the assumption on the degree of α. We assume that β1 is not

primitive in the left part of the proof.

Step 3. If degβ1> (m−1), then we are done. So without loss of generality, suppose deg β1≤
(m−1) = (p+q−3). Let D> 1 be the greatest common divisor of all components

of β1. Then, by OA and the de�nition of degree, we obtain that

2q−2≥ p+q−2 > degβ1 =
ap−bq
D

+

p−1∑
i=1

ai
D

=

q−1∑
j=1

bj

D
.

Hence bq−1 =D, D|bj for all j= 1, · · · ,q−2, D|ai for all i= 1, · · · ,p−1, and D|(ap−

bq). Consequently, ap ≥ bq+D>D= bq−1 and we obtain another residue vector

β2 :=
(
a1, · · · ,ap−1, ap−bq−1, −b1, · · · ,−bq−2,−bq

)
7
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with (m− 1) components. If degβ2 > (m− 1), then we are done. So suppose

degβ2 ≤ (m− 1). We divide our discussion into two cases: β2 is primitive and

otherwise.

(a) First, suppose that β2 is primitive. Since degβ2 < m, we �nd that bq = 1

and bq−2 ≤ 2 by a same argument for β1 in step 2. As a result 2 ≥ bq−2 ≥
bq−1 =D>1, and thus bq−2 = bq−1 =D= 2. By the same argument for β1, we

deduce that b1 = · · · = bq−1 =D = 2 and a1, · · · ,ap−1 are even. In particular,

a1−bq = a1−1 > 0. Hence

α̂ :=
(
a1−bq,a2, · · · ,ap, −b1, · · · ,−bq−1

)
is a primitive residue vector with (m− 1) components. Moreover, deg α̂ =

2q−2≥ p+q−2=m>m−1 and thus α̂ is a contraction of α.

(b) Second, if β2 is not primitive. A similar argument as in the β1 not primitive

case gives that bq = E and bq−2 = E or 2E, where E is the greatest common

divisor of the components of β2. By OA, E = bq ≤ bq−1. If D = bq−1 = bq =

E, then E|(ap−bq−1) implying that E divides all the components of α, this

contradicts the primitive property of α. Hence, E = bq < bq−1 ≤ bq−2. Also

since bq−2 = E or 2E, we have bq−2 = 2E and 1 ≤ bq−2/bq−1 < 2. Recall that

bq−1 =D and D|bq−2, so D = bq−1 = bq−2 = 2E = 2bq and E|ap, which gives

the same contradiction as above.

We shall prove Proposition 2.5 by induction on m. To this end, we need two lemmas.

Lemma 2.8. Let σ and τ be two permutations in Sd for some positive integer d such

that σ is a cycle of length greater than 1 and τ has form ν1ν2 · · ·νr, where νi's are

mutually disjoint cycles of length di for i = 1,2, · · · , r and d1+d2+ · · ·+dr = d. We

call νj's cycle factors of τ. Then the following two conditions are equivalent:

(i) The subgroup 〈σ,τ〉 of Sd acts transitively on the set {1,2, · · · ,d}.

(ii) Each cycle factor νi of τ intersects the cycle σ in the sense that the subset of

{1,2, · · · ,d} associated with νi intersects that associated with the cycle σ.

Proof. (i) ⇒ (ii) We prove the intersection by contradiction. Suppose that there exists

a cycle factor νi of τ not intersecting σ. Then νi is a cycle factor of τσ. Therefore, the

subset associated with νi forms an orbit under the action of the subgroup 〈τ,σ〉 of Sd on

the set {1,2, · · · ,d}. Since this action is transitive, the cycle νi has length d. Hence, νi
must intersect σ, contradiction!

(ii) ⇒ (i) For each 1≤ i≤ r, we choose a number xi lying in both νi and σ. Consider

the action of the subgroup 〈τ,σ〉 on the set {1, · · · ,d}. Then x1, · · · ,xr lie in the same orbit

of this action by assumption. Moreover, for each 1 ≤ i ≤ r, xi belongs to the same orbit

with any other numbers in the cycle νi, and the numbers in ν1, · · · ,νr exhaust all the

numbers in {1, · · · ,d}. Therefore, the action has a single orbit.

8
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Remark 2.9. We consider a more general case of the part of (i)⇒(ii) in the above

lemma by replacing σ by σ1,σ2, · · · ,σl, all of which are cycles in Sd of length greater

than 1. Suppose that the subgroup 〈σ1,σ2, · · · ,σl,τ〉 of Sd acts transitively on the set

{1,2, · · · ,d}. Then it follows from a similar argument as in the preceding proof that

each cycle factor of τ must intersect some σk for 1 ≤ k ≤ l. However, for l ≥ 2, the
converse fails in general. For example, the subgroup of S4 generated by (12),(34) and

(12)(34) acts on the set {1,2,3,4} with the two orbits of {1,2} and {3,4}.

Lemma 2.10. Under the assumptions of Proposition 2.5, suppose that there exist

permutations τ1,τ2,σ1 in Sd such that τ1τ2σ1 = e and they have types of a11a
1
2 · · ·a1p,

b11b
1
2 · · ·b1q and (1+m)11d−m−1, respectively. Then the subgroup 〈τ1,τ2,σ1〉 acts tran-

sitively on the set {1,2, · · · ,d} if and only if each cycle factor of τ1 and τ2 intersects

the (m+1)-cycle σ1.

Proof. Since τ1τ2σ1 = e, the following three subgroups coincide with each other:

〈τ1,σ1〉= 〈τ1,τ2,σ1〉= 〈τ2,σ1〉.

The result follows from Lemma 2.8.

Now we give the proof of Proposition 2.5.

Proof. We argue by induction on m= p+q−2≥ 0. It holds trivially as m= 0, which is

equivalent to p= q= 1. Assume p+q > 2 in what follows. By Lemma 2.7, there exists a

contraction α̂ of α. Without loss of generality, we assume that the contraction α̂ has the

form

α̂=
(
a1, · · · ,ap−1,ap−bq, −b1, · · · ,−bq−1

)
.

By the induction hypothesis, there exist in Sd−bq a permutation τ2 = ν1ν2 · · ·νq−1 of type
b11b

1
2 · · ·b1q−1 and a cycle σ1 of length (p+q−2) such that τ2σ1 = ν1ν2 · · ·νq−1σ1 has type

of a11 · · ·a1p−1(ap−bq)1 and the subgroup generated by τ2 and σ1 acts transitively on the

set {1,2, · · · ,d−bp}, where νj is a cycle factor of length bj of τ2 for all j = 1,2, · · · ,q− 1.
In addition, by the induction hypothesis, τ2σ1 has the form

ν1ν2 · · ·νq−1σ1 = µ1µ2 · · ·µp

where µi's are mutually disjoint cycles for 1≤ i≤ p, the length of µp is (ap−bq) and µk
has the length ak for 1≤ k≤ p−1.

By Lemma 2.10, we can choose an integer 1 ≤ x ≤ (d− bq) lying in both µp and

σ1. Choose in Sd a cycle νq of length bq such that νq does not intersect νj for all

j = 1, · · · ,q− 1, for example νq = (d,d− 1, · · · ,d−bq+ 1) and pick an integer y in νq.

Then ν1ν2 · · ·νq−1νq has type b11b12 · · ·b1q and σ̃1 := σ1(x,y) is a cycle of length (p+q−1).

The subgroup 〈ν1ν2 · · ·νq−1νq, σ̃1〉 of Sd acts transitively on the set {1,2, · · · ,d} by Lemma

2.10. We also observe that ~µp := νqµp (x,y) is a cycle of length ap since νq does not

9
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intersect µp and x and y lie in µp and νq, respectively. Moreover, since νq does not

intersect µi for all 1≤ i≤ p−1, ~µp does not intersect µi for all 1≤ i≤ p−1. So we have(
ν1ν2 · · ·νq−1νq

)
σ̃1 = νq

(
ν1ν2 · · ·νq−1σ1

)
(x,y) = νq

(
µ1µ2 · · ·µp

)
(x,y)

=
(
µ1µ2 · · ·µp−1

)(
νqµp(x,y)

)
= µ1µ2 · · ·µp−1~µp.

Hence, we see that the three permutations
(
µ1µ2 · · ·µp−1~µp

)−1
, ν1ν2 · · ·νq−1νq and σ̃1 in

Sd satisfy the three properties listed in Proposition 2.5.

2.3 Branch data with more than three partitions

We prove Case l≥ 2 of Theorem 2.3. At �rst we deal with residue vectors with components

only ±1.

Proposition 2.11. Let D be a positive integer. Assume α= (1,1, · · · ,1︸ ︷︷ ︸
D+1

,−1,−1, · · · ,−1︸ ︷︷ ︸
D+1

).

Then for each partition λ = (m1,m2, · · · ,ml) of 2D such that wt(λ) < deg α = D+ 1,

there exist l permutations σ1, · · · ,σl in SD+1 such that the following properties hold

� σ1 · · ·σl = e;

� σj's are cycles of length (mj+1);

� 〈σ1, · · · ,σl〉 acts transitively on the set {1, · · · ,D+1}.

Proof. It is easy to see that l≥ 2. We divide the proof by considering three cases.

Case 1 If l= 2, we know that m1 =m2 =D since 2D=m1+m2 and m1, m2 ≤D. Then we

are done by choosing

σ1 = (1,2, · · · ,D+1), σ2 = σ
−1
1 .

Case 2 If l = 3. Since m1, m2, m3 ≤ D and m1+m2+m3 = 2D, We have m1+m2 ≥ D.
Choosing

σ1 = (1,2, · · · ,m1+1) and

σ2 = (1,m1+1,m1,m1−1, · · · ,m1+m3−D+2︸ ︷︷ ︸
m1+m2−D

,m1+2,m1+3, · · · ,D+1︸ ︷︷ ︸
D−m1

),

we obtain

σ1σ2 =


(m1+2,m1+3, · · · ,D+1︸ ︷︷ ︸

D−m1

,2,3, · · · ,m1+m3−D+2︸ ︷︷ ︸
m1+m3−D+1

), if m3 <D,

(m1+2,m1+3, · · · ,D+1︸ ︷︷ ︸
D−m1

,2,3, · · · ,m1+1,1︸ ︷︷ ︸
m1+1

), if m3 =D.

Then the permutations σ1,σ2 and
(
σ1σ2

)−1
satisfy the three properties.

10



Rational functions with more than 3 branch points

Case 3 Suppose l > 3. Since m1, · · · ,ml ≤D, we can choose 1 < r≤ l such that m1+m2+

· · ·+mr−1 ≤D and m1+m2+ · · ·+mr >D.

Subcase 3.1 Suppose that r < l. Choosing

σ1 = (1,2, · · · ,m1+1),

σ2 = (m1+1,m1+2, · · · ,m1+m2+1),

· · ·
σr−1 = (m1+ · · ·+mr−2+1, · · · ,m1+ · · ·+mr−1+1),

we obtain

τ1 := σ1σ2 · · ·σr−1 = (1,2,3, · · · ,m1+ · · ·+mr−1+1)

By Case 2, there exist two cycles τ2 and τ3 which have length 1+mr and mr+1+

· · ·+ml + 1 < D+ 1, respectively, such that τ1τ2τ3 = e. As the construction of

σ1, · · · ,σr−1, we can �nd σr+1,σr+2, · · · ,σl directly such that σj has the type of

(1+mj)
11D−mj for r+ 1 ≤ j ≤ l and σr+1 · · ·σl = τ3. Therefore the l cycles of

σ1, · · · ,σr−1, σr := τ2, σr+1, · · · ,σl satisfy the three properties.

Subcase 3.2 Suppose r= l > 3. Since m1+ · · ·+ml = 2D and max
(
m1, · · · ,ml

)
≤D,

we have m1+ · · ·+ml−1 =ml =D. Then the problem can be reduced to Case 1 by

a similar argument as above.

To complete the proof of Theorem 2.3, we need the following lemma and its two

corollaries.

Lemma 2.12. Let Γ be a subgroup of Sd = S{1,2,··· ,d} for some integer d> 1 and θ∈ Sd a
cycle of length greater than 1. Assume that the subgroup G generated by Γ and θ acts

transitively on the set {1,2, · · · ,d}. Then, for each number 1≤ x≤ d not contained in

θ, the Γ-orbit Γx of x intersects θ.

Proof. We argue by contradiction. Suppose that the orbit Γx does not intersect θ. Take

an arbitrary permutation ξ in G. We can express it as

ξ= π1π2 · · ·πs

where either πi = θ or πi ∈ Γ . Let ξ ′ be the permutation obtained from the product

π1π2 · · ·πs by removing all those πi's satisfying πi = θ. Then ξ ′ ∈ Γ . Since each number

not contained in θ is a �xed point of θ, by the hypothesis of the contradiction argument,

we �nd that ξ(x) = ξ ′(x) is not contained in θ. Since ξ∈G has been chosen arbitrarily, the

orbit Gx does not intersect θ, which contradicts that G acts transitively on {1,2, · · · ,d}.

As an application of the above lemma, we have

11
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Corollary 2.13. Let γ1,γ2, · · · ,γl,θ be (l+1) permutations in Sd−1 for some integer

d> 2 and θ= (x1,x2, · · · ,xn) a cycle in Sd−1 of length n> 1. Suppose that the subgroup

〈γ1,γ2, · · · ,γl,θ〉 acts transitively on the set {1,2, · · · ,d−1}. Then so does the subgroup

〈γ1,γ2, · · · ,γl, θ̃〉 on {1,2, · · · ,d}, where θ̃ := (x1, · · · ,xn,d) is a cycle of length (n+1) in

Sd.

Proof. By Lemma 2.12, we can see that for each number 1 ≤ x ≤ d−1 not contained in

θ, there exists γ ∈ Γ := 〈γ1, · · · ,γl〉 such that γ(x) is contained in θ. Hence, the action of

〈γ1,γ2, · · · ,γl, θ̃〉 on {1,2 · · · ,d} has only one orbit.

Similarly, we obtain

Corollary 2.14. Let γ1,γ2, · · · ,γl,θ be permutations in Sd for some integer d >

2 and θ = (x1,x2, · · · ,xn) a cycle of length 1 < n < d. Suppose that the subgroup

〈γ1,γ2, · · · ,γl,θ〉 acts transitively on the set {1,2, · · · ,d}. Then so does the subgroup

〈γ1,γ2, · · · ,γl, θ̃〉 of Sd on the set {1,2, · · · ,d}, where θ̃= (x1, · · · ,xn,y) ∈ Sd is a cycle of

length (n+1) with y ∈ {1,2, · · · ,d}\{x1, · · · ,xn}.

Now we arrive at proving the case l≥ 2 of Theorem 2.3.

Proof. By Lemma 2.4 we could also assume that the residue vector α=(a1, · · · ,ap,−b1, · · · ,−bq)
is primitive so that deg α= d= a1+ · · ·+ap = b1+ · · ·+bq.

Part I Suppose d≥m+1= p+q−1. By Proposition 2.5 there exist τ1,τ2, σ such that

(1) τ1τ2σ= e;

(2) τ1 has type of a
1
1a
1
2 · · ·a1p, τ2 of b11b12 · · ·b1q, σ of (1+m)11d−m−1;

(3) the subgroup 〈τ1,τ2,σ〉 acts transitively on {1,2, · · · ,d}.
Assume that σ= (1,2, · · · ,m+1) for simplicity of notion. We are done by choosing

σ1 = (1,2, · · · ,m1+1),

σ2 = (m1+1,m1+2, · · · ,m1+m2+1),

· · · · · ·
σl = (m1+ · · ·+ml−1+1,m1+ · · ·+ml−1+2, · · · ,m1+ · · ·+ml+1),

Part II Suppose d= degα≤m= p+q−2. We �rst reduce the problem to the two cases that

l = 2 and l = 3, then we prove these two cases by using the contraction argument

and the induction argument similar as the proof of Proposition 2.5. The details

given as follows form the left part of this section.

By OA, we have that d=
∑q
j=1bj≥q≥

p+q
2 . Since d=degα>wt(λ)=max

(
m1, · · · ,ml),

the partition λ of m= (p+q−2) has at least two components, i.e. l > 1.

At �rst we show that

Claim 1: the problem can be reduced to the two cases where the partitions of

m have two and three components, respectively.

Proof of Claim 1
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Suppose that Part II holds for each partition of m which has three components and

has weight less than d. Then we shall prove that so does Part II for each partition

(m1, · · · ,ml) of m such that l > 3 and its weight is less than d. To this end, since

m1, · · · ,ml < d, we can choose 1 < r≤ l such that

m1+ · · ·+mr−1 < d and m1+ · · ·+mr ≥ d.

We shall de�ne a new partition, called λ ′, with three components as following.

• Suppose r < l. Then we consider the partition λ ′ := (m ′1,m
′
2,m

′
3) of m, where

m ′1,m
′
2,m

′
3 are de�ned by

m ′1 :=m1+ · · ·+mr−1 < d, m ′2 :=mr < d, m ′3 :=mr+1+ · · ·+ml.

Moreover, since d≥ p+q
2 , we observe that

m ′3 = p+q−2−(m ′1+m
′
2)< (p+q−d)−1≤ p+q

2
−1≤ d−1.

• Suppose r= l > 3. Then we choose the partition λ ′ :=
(
m1+ · · ·+ml−2,ml−1,ml

)
of m, which has weight less than d.

Since the partition λ ′ has weight less than d, and we have assumed the valid-

ity of Case l = 3 for α and λ ′, we can �nd in Sd the following �ve permutations

τ1,τ2,σ
′
1,σ

′
2,σ

′
3 which satisfy the three properties. By a similar construction as

Case 3 in the proof of Proposition 2.11, we know that the proposition holds for the

partition (m1, · · · ,ml). Therefore, we have justi�ed the claim.

We always assume l= 2 or 3 in the left part of the proof.

Recall that OA states that 1≤ p≤ q,a1 ≤ a2 ≤ ·· · ≤ ap, b1 ≥ b2 ≥ ·· · ≥ bq. Without

loss of generality, we further assume m1 ≤m2 ≤ ·· · ≤ml for the partition λ. We

call these two assumptions OA in the sequel by an abuse of notation.

By OA, we can see that if ap = 1, then a1 = a2 = · · ·= ap = b1 = b2 = · · ·= bq = 1 and
we are done by Proposition 2.11. We may assume that ap > 1 in the left part of the

proof. Since d≤m, we have
q∑
j=1

bj≤ p+q−2≤ 2q−2. Then, we have bq−1 = bq = 1.

Since m1 ≤ ·· · ≤ml and ap > 1, degα>wt(λ) and l= 2 or 3, we observe that ml is

always greater than 1 except when α= (1,2,−1,−1,−1) and λ= (1,1,1), for which

Part II holds trivially. We may assume that ml > 1 in the left part of the proof. In

order to do induction on m, we choose the partition

λ1 :=
(
m1, · · · ,ml−1,(ml−1)

)
of (m−1) and the residue vector

α̂=
(
a1,a2, · · · ,ap−1,ap−bq,−b1,−b2, · · · ,−bq−1

)
with (p+q− 1) = (m+ 1) components. Then, since bq−1 = bq = 1, α̂ is primitive

and

deg α̂=−1+deg α.

13
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Then we make the following

Claim 2: wt(λ1) < deg α̂. Hence we may think of
(
α̂, λ1

)
as a contraction of

(
α, λ

)
and we shall use the former to do induction argument.

Proof of Claim 2

(i) If m1 ≤ ·· · ≤ml−1 =ml, then wt(λ1) =ml−1 =ml and 2ml ≤m= p+q−2≤
2q−2, i.e. ml≤q−1. If deg α̂ >q−1, then we are done. Assume deg α̂=q−1,

which implies that b1 = · · ·= bq = 1 and p < q since ap > 1. Then 2ml ≤m=

p+q−2 < 2q−2 and ml < q−1. Hence deg α̂= q−1 >ml = wt(λ1).

(ii) If ml−1 <ml, then wt(λ1) =ml−1=wt(λ)−1 < deg α−1= deg α̂. The claim

is proved.

Then in the left part of the proof we use the induction on m to prove that Part II of

Theorem 2.3 holds provided that l equals either 2 or 3. We observe that the initial

case of m= 2 holds trivially, where α= (1,1,−1,−1) and λ= (1,1).

– Suppose l= 2. We recall our setting as follows. Take a primitive residue vector

α= (a1, · · · ,ap,−b1, · · · ,−bq)

and a partition λ = (m1, m2) of m = p+q− 2 ≥ 3 such that d = deg α ≤m,

and α and λ satisfy OA. Then we have 2≤m2 =wt(λ)< d and bq−1 = bq = 1.

Then, by claim 2, we could take another primitive residue vector

α̂= (a1,a2, · · · ,ap−1,ap−bq,−b1,−b2, · · · ,−bq−1)

and another partition λ1 = (m1, m2 − 1) such that wt(λ1) < deg α̂ = d− 1.

By the induction hypothesis, there exist in Sd−1 = S{1,2,··· ,d−1} a permutation

of type b11 · · ·b1q−1, called τ2, and two cycles σ1,σ2 of length (1+m1), m2,

respectively, such that the subgroup 〈σ1,σ2,τ2〉 of Sd−1 acts transitively on

{1,2, · · · ,d−1} and the permutation

τ1 := τ2σ1σ2

has the type of a11 · · ·a1p−1(ap−bq)1. We re-express τ1 by τ1 = µ1 · · ·µp such

that µj's are its cycle factors and µj has length aj for 1 ≤ j < p and µp has

length (ap−bq). Since bq = 1, we can think of τ2 as a permutation in Sd
with the type of b11 · · ·b1q−1b1q. By Remark 2.9, the cycle factor µp intersects

either σ1 or σ2. We shall divide the left part of the proof of Case l = 2 into

the following two steps.

Step 2.1 Suppose that σ2 intersects µp. Then we pick a number x in both σ2 and

µp and de�ne σ̃2 := σ2(x,d) and µ̃p := µp(x,d). Then, since bq = 1, σ̃2 and

µ̃p are cycles in Sd of length (1+m2) and ap, respectively. Moreover, we

have

τ2σ1σ̃2 = µ1µ2 · · ·µp−1µ̃p.
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Since 〈τ2,σ1,σ2〉 acts transitively on the set {1,2, · · · ,d− 1}, the action

of 〈τ2,σ1, σ̃2〉 on the set {1,2, · · · ,d} has a single orbit by Corollary 2.13.

Therefore, the following four permutations
(
µ1µ2 · · ·µp−1µ̃p

)−1
, τ2, σ1, σ̃2

satisfy the three properties.

Step 2.2 Suppose that σ2 does not intersect µp. Then σ1 intersects µp. Choose a

number x in both σ1 and µp. Then

τ2σ1σ2(x,d) = µ1 · · ·µp(x,d)
= µ1 · · ·µp−1µ̃p where µ̃p := µp (x,d)

=: τ̃1

where τ̃1 has the type of a
1
1 · · ·a1p. Meanwhile, since σ2 does not intersect

(x,d), we have

τ̃1 = τ2σ1σ2(x,d) = τ2σ1(x,d)σ2 =: τ2σ
′
1σ2,

where σ ′1 := σ1 (x,d) is a cycle of length (m1+2). Observe that σ
′
1 inter-

sects σ2. For, otherwise, σ1 does not intersect σ2 and there are (m1+m2+

1) di�erent numbers appearing in both σ1 and σ2, lying in Sd−1. Hence,

we have

(d−1)≥ 1+m1+m2 = 1+m≥ 1+d,

contradiction!

Take the smallest positive integer s such that y :=
(
σ ′1
)−s

(x) is contained

in σ2. Since x is not contained in σ2, by the minimal property of s,
(
σ ′1
)
(y)

is not contained in σ2. We can rewrite σ ′1 as

σ ′1 = (x1,x2, · · · ,xm1
,y,σ ′1(y)) = σ̃1

(
y,σ ′1(y)

)
with σ̃1 := (x1, · · · ,xm1

,y).

Then we have

σ ′1σ2 = σ̃1
(
y,σ ′1(y)

)
σ2 = σ̃1σ̃2 where σ̃2 :=

(
y,σ ′1(y)

)
σ2,

and

τ̃1 = τ2σ
′
1σ2 = τ2σ̃1σ̃2,

where τ̃1 and τ2 have types of a
1
1 · · ·a1p and b11 · · ·b1q−1b1q, respectively, and

the two cycles σ̃1 and σ̃2 have lengths of 1+m1 and 1+m2, respectively.

Since 〈τ2, τ̃1,σ2〉 = 〈τ2,σ ′1,σ2〉 acts transitively on the set {1,2, · · · ,d} by
Corollary 2.13, so does 〈τ2, τ̃1, σ̃2〉 on the same set by Corollary 2.14.

Therefore, the following four permutations
(
τ̃1
)−1
, τ2, σ̃1, σ̃2 satisfy the

three properties.

– Suppose l= 3. We may further assume thatm1+m2≥d. Otherwise, replacing
λ by λ ′ = (m1+m2, m3) and using the similar reduction argument as above,

we can reduce the problem to the known case of l= 2.
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By the induction hypothesis, there exist in Sd−1 a permutation τ2 of type

b11 · · ·b1q−1 and three cycles σ1,σ2,σ3 of length 1+m1,1+m2,m3, respectively,

such that the subgroup 〈σ1,σ2,σ3,τ2〉 acts transitively on the set {1,2, · · · ,d−1}
and

τ2σ1σ2σ3 = τ1 = µ1 · · ·µp,

where τ1=µ1 · · ·µp has type a11 · · ·a1p−1(ap−bq)1, µj's are the cycle factors of τ1
and µj has length aj for 1≤ j < p and µp has length (ap−bq) = (ap−1). Since

m1+m2 ≥ d, by OA, any two of the three cycles σ1,σ2,σ3 in Sd−1 intersect

since 1+mi+mj > d > d−1 for 1 ≤ i 6= j ≤ 3. We divide the left part of the

proof into the following three steps.

Step 3.1 If µp intersects σ3, we are done by a similar argument as in step 2.1.

Step 3.2 If µp intersects σ2 but does not intersect σ3, the proof goes through as

Step 2.2 since σ2 intersects σ3.

Step 3.3 Suppose that neither σ2 nor σ3 intersects µp. Then, by Remark 2.9, µp
intersects σ1 since 〈τ1, σ1, σ2, σ3〉 acts transitively on the set {1,2, · · · ,d−
1}. Choosing a number x in both µp and σ1 and denoting µ̃p := µp(x, d)

and σ ′1 := σ1(x, d), we obtain

τ2σ
′
1σ2σ3 = τ2σ1σ2σ3(x, d) = µ1 · · ·µp−1µ̃p =: τ̃1

where σ ′1 is a cycle of length (m1+ 2), µ̃p is a cycle factor of τ̃1, and τ̃1
has the type of a11 · · ·a1p−1a1p.

Step 3.3.A Suppose that σ2 contains a number which is not contained in σ3.

Then we could �nd in Sd the three cycles of σ̃1, σ̃2, σ̃3 with length

1+m1,1+m2,1+m3, respectively, such that

τ2σ̃1σ̃2σ̃3 = τ̃1

and 〈τ2, τ̃1, σ̃1, σ̃3〉 acts transitively on {1,2, · · · ,d}. Indeed, rewrite σ ′1
as

σ ′1 = σ̃1(b1,z1)

where b1 lies in the intersection of σ1 and σ2, the number z1 is con-

tained in σ ′1 but not in σ2, and σ̃1 is a cycle of length (1+m1). Choose

σ ′2 := (b1,z1)σ2 and rewrite it as

σ ′2 = σ̃2(b2,z2),

where b2 lies in both σ ′2 and σ3, the number z2 is contained in σ ′2 but

not in σ3, σ̃2 is a (1+m2)-cycle. Hence σ̃3 := (b2,z2)σ3 is a (1+m3)-

cycle and the equality τ2σ̃1σ̃2σ̃3 = τ̃1 holds. Then all the following

subgroups

〈τ2,σ ′1,σ2,σ3〉= 〈τ2, τ̃1,σ2,σ3〉, 〈τ2, τ̃1,σ ′2,σ3〉= 〈τ2, τ̃1, σ̃1,σ3〉
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and 〈τ2, τ̃1, σ̃1, σ̃3〉 of Sd act transitively on {1,2, · · · ,d} by Corollaries

2.13 and 2.14. Therefore, the following permutations(
τ̃1
)−1
, τ2, σ̃1, σ̃2, σ̃3

satisfy the three properties.

Step 3.3.B Suppose that every number in the cycle σ2 is contained in σ3. Rewrite

σ ′1 as

σ ′1 = σ̃1(b,z)

where σ̃1 is a (1+m1)-cycle, b lies in both σ
′
1 and σ3, z is not contained

in σ3 and then it is not contained in σ2, either.

• Suppose that b is not contained in σ2. Then

τ2σ
′
1σ2σ3 = τ2σ̃1(b, z)σ2σ3

= τ2σ̃1σ2((b,z)σ3)

= τ2σ̃1σ2σ̃3,

where σ̃3 := (b,z)σ3 is a (1+m3)-cylce. By Corollary 2.14, the sub-

group 〈τ2, τ̃1,σ2, σ̃3〉 acts transitively on the set {1,2, · · · ,d} since the
subgroup 〈τ2, τ̃1,σ2,σ3〉= 〈τ2,σ ′1,σ2,σ3〉 has the same property. There-

fore, the following �ve permutations
(
τ̃1
)−1
, τ2, σ̃1, σ2, σ̃3 satisfy the

three properties.

• Suppose that b is contained in σ2. Then we have

τ2σ
′
1σ2σ3 = τ2σ̃1((b, z)σ2)σ3 = τ2σ̃1σ

′
2σ3 where σ ′2 := (b,z)σ2.

Then applying a similar argument in Step 2.2 to σ ′2 and σ3, we obtain

the two cycles σ̃2 and σ̃3 with length of (1+m2),(1+m3), respectively,

such that

σ ′2σ3 = σ̃2σ̃3 and τ2σ̃1σ̃2σ̃3 = τ̃1.

Moreover, by Corollaries 2.13 and 2.14, the action of 〈τ2, τ̃1, σ̃1, σ̃3〉 on
the set {1,2, · · · ,d} is transitive. Therefore, the following �ve permu-

tations
(
τ̃1
)−1
, τ2, σ̃1, σ̃2, σ̃3 satisfy the three properties.

3 Proof of Theorem 1.3

We prove Theorem 1.3 in this subsection.

Proof. Consider the collection

Λ∗ = {(a1, · · · ,ap), (b1, · · · ,bq), (c1+1,1, · · · ,1), · · · ,(cr+1,1, · · · ,1)}
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of degree d and with total branching order 2d− 2. By Theorem 2.3 and the Riemann

existence theorem, there exists a rational function f of degree d on the Riemann sphere

such that

(i) f branches over 0, ∞, ζ, · · · , ζr, where ζ= exp
(
2π
√
−1/r

)
.

(ii) The partitions of the above branch points coincide with (a1, · · · ,ap), (b1, · · · ,bq), (c1+
1,1, · · · ,1), · · · ,(cr+1,1, · · · ,1), respectively.

Then fr is the Belyi function as desired.

4 A conjecture

In order to generalize the �rst part of Boccara's result, we make the following

Conjecture Let d, g and l be three positive integers. Suppose that the collection Λ

consists of l+2 partitions of d and has form

Λ= {(a1, · · · ,ap), (b1, · · · ,bq), (m1+1,1, · · · ,1), · · · ,(ml+1,1, · · · ,1)},

where (m1, · · · ,ml) is a partition of p+q−2+2g. Then there always exists a rational

function on some compact Riemann surface of genus g with branch data Λ.
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