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Abstract: Let A be a collection of partitions of a positive integer d of the form

(a1,-~-,ap),(b1,---,bq),(m1+1,1,---,1),~--,(m1—|—1,1,---,1),

where (my,---,my) is a partition of p+q—2 > 0. We prove that there exists a rational
function on the Riemann sphere C with branch data A if and only if
max (my, -, my) < d .
GCD(Q],"‘ )ap)b1>"' )bq)

As an application, we give a new class of branch data which can be realized by Belyi
functions on the Riemann sphere.
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1 Introduction

Let X and Y be two compact connected Riemann surfaces, and let f: X — Y be a holo-
morphic branched covering of degree d. For each point q in Y, there is a partition
A(q) = (ki,...,k;) of d associated to q such that, over a suitable neighborhood of q in
Y, f is equivalent to the map

1,.,1}xD =D, (jz)—2z%, where D:={zeC:|z|<1},
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with g corresponding to 0 in . For any partition A = (kq,kz,---,k;) of d, we define its
length Len(A) =r. We call the partition A of d non-trivial if Len(A) < d. For the branched
covering f: X — Y, We call a point q in Y a branch point of f if and only if A(q) is non-
trivial, and we call the set of branch points of f the branch set of f, denoted by Bs. The
collection A ={A(q) : q € B} (with repetitions allowed) is called the branch data of f and

Vi)=Y <d—Len(7\(q)))

qeB(f)

the total branching order of f. By the Riemann-Hurwitz theorem, we have that
v(f) =2g(X)—2— d(Zg(Y) —2)

where g(X) (resp. g(Y)) denotes the genus of X (resp. Y). Therefore, the total branching
order v(f) is an even non-negative integer.

The following problem was first proposed by Edmonds-Kulkarni-Stong [4] and we can
trace its history to Hurwitz [9].

Realizability Problem. Given a compact connected Riemann surface Y and a collection
A ={A1, -, A} of non-trivial partitions of a positive integer d, does there exist another
compact connected Riemann surface X together with a branched covering f: X — Y such
that A is its branch data? If it does, we call the collection A realizable or realized by a
branched covering.

See the classical [2} 4, 6], [7, 8] 10} 11}, 13} 14} 22} 23] and the more recent [1], 12, 15, 16
17,18, [19], 20, 21], 24] about this problem. Here we only review some necessary background
and a small part of known results which are closely related to our discussions in the sequel.

Recall that in order to be realizable, a collection A should satisfy the condition that
its total branching order

k
Zd Len(A

is even. We call such a collection compatzble. It is proved in [10, Theorem 9] and [4
Section 3] that a compatible collection is always realizable if g(Y) > 0. Hence, we always
assume that Y is the Riemann sphere C in the sequel. It turns out that a compatible
collection is not always realizable in this case. We call a compatible collection an ezception
if it is not realizable. Zheng [24] found by computer all the exceptions of degree < 22.
Pervova-Petronio [20, 21] used a variety of techniques to give some new infinite series
of exceptions, and they used dessins d’enfants to make a theoretical explanation of part
of the exceptions given by Zheng [24]. Besides constructing some exceptions, Edmonds-
Kulkarni-Stong [4] proposed the so-called prime degree conjecture, which says that each
compatible collection with prime degree is always realizable, and they reduced it in the
same paper to the collections with exactly three partitions. In [18] [19], Pascali-Petronio
proved some results which provide strong support to this conjecture.

Characterizing branch data of all rational functions is a very deep and difficult problem,
which seems far from being accessible nowadays. Hence, it is meaningful to find reasonably
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simple, sufficient conditions for a collection to be realizable. Besides the theorems in
[18] 19, 20, 21], some of the other known results are as follows: Thom [23] showed that
a compatible collection is realizable if one partition in it has length one. Edmonds-
Kulkarni-Stong [4, Theorem 5.4] proved that a compatible collection with degree d #4 is
realizable when its total branching order > 3(d—1). In addition, the exceptions with d =4
are precisely those with partitions (2,2),---,(2,2),(3,1). Moreover, Boccara [2] obtained
a complete determination of the realizability of the collection A which consists of the
following three partitions of d:

(a1)"' )ap)> (b1)"' )bq)) (m+])1) )1)
He proved that A is realizable if and only if it satisfies one of the following two conditions:

e v(A) > 2d is even.

d
ev(A)=2d—2and m < . Note that m =p+q—2 in this case.
() GCD(ar, -, ap b1, by) s

Generalizing the second part of Boccara’s result, we show the following

Theorem 1.1 (Main Theorem). Let d and | be two positive integers. Consider a
collection

/\:{(ah"')ap))(bh"')bq))(m1+1>]>"'a]))"')(ml+1)1a"’)1)}

consisting of 1+2 partitions of d such that (my,---,my) 28 a partition of p+q—2>0.
Then there erists a rational function on C with A as its branch data if and only if

d

< .
max(mh )ml) GCD(G],"',ap,b1,"‘,bq)

Remark 1.2. Recently, A. Eremenko [5] applied the main theorem to the investigation
of conformal metrics of positive constant curvature on C which have finitely many conical
singularities and co-axial holonomy. In particular, he characterized the conical angles
of such metrics and used the main theorem in the solution of Question 2, which is the
rational case of Question 1, namely the main problem in [5].

We call a rational function on a compact Riemann surface a Bely: function if it has
at most three branch points. As an application of the main theorem, we have:

Theorem 1.3. Let d and r be two positive integers, and
A:{(ah"’)a‘p)) (bh"')bq))(C1+])"')CT+])])"')])}

be a collection consisting of partitions of d such that (ci,---,cy) s a partition of

p+q—2>0. If
d

<
GCD(ah"' )ap)bh"' »bq)

max (1, ,Cr)
then the modified collection

/\::{(Tah”')rap))(Tbh"')rbq))(C1+1>"')CY+1)1>"‘)”}

of partitions of dr can be realized by a Belyi function on C.

3
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In the remaining of the article, we give proofs of the two theorems. At the very end,
we propose a conjecture concerning rational functions on a Riemann surface of positive
genus, which is a possible generalization of our main theorem.

2 Proof of the main theorem

In Subsection we prove the necessary part of the main theorem and observe that the
sufficient part can be reduced to the case of GCD(ay,---,ap,bs,---,bgq) = 1. Moreover, we
recall that by the Riemann existence theorem ([3, Theorem 2, p.49]) the sufficient part is
equivalent to the existence of certain permutations in the symmetry group Sq:=Sp1... q)
associated with the collection A. For completeness, we give in Subsection a proof in
our own strategy for the case l =1 of the main theorem which was also proved by Boccara
[2]. We prove Case 1 > 2 of the main theorem in Subsection

2.1 Riemann’s existence theorem
At first, we prove the necessary part of the main theorem.

Proof. Suppose that there exists a rational function f on C realizing the branch data A.
Using suitable Mobius transformations if necessary, we can assume that f has the form

f2) (z—21)% - (z—2,)% (1)

(2= wi)Pr (2= wg )P
where zq, -+, zp, W1, - -+, Wq are (p +q) distinct complex numbers. Let
k=GCD(ay, -, ap,by,---,bg).

Then we can write f as f = F* for some rational function on C. And F has branch data of
the form

{(a1/ky--yap/k), (b1/Ky -+, bg/K)y (my + 1,1, 1), (my + 1,1, T) )
Since F has degree d/k, we have max(m;,---,my) < d/k and complete the proof. O
On the other hand, we claim that if the collection
{lar1/ky---yap/k), (b1/k,---,bg/K), (my +1,1,--- 1), (my + 1,1, 1)}
1s realized by a rational function, then so 1s
{(ar,+,ap), (b1, bg)y (Mg +1,T, 1) (my+ 1,1, ]

Actually, by using Riemann’s existence theorem and some Mobius transformations, we
could assume that there exists a rational function

(Z—Z])m/k---(z—zp)“v/k

(Z_w])bl/k...(z_wq)bq/k’

F(z) =

4
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where z1, -+, zp, W1, -+, Wq are (p+q) distinct complex numbers, such that there exist
exactly 1 branch points of F lying in C\{0, oo}, say y1,---,yi, which satisfy that y¥,---,y¥
are mutually distinct and A(y;) = (m;+1,1,---,1) for 1 <j <1. Since the power function
y —y* on C does not branch on C\{0, oo}, the collection

{(al»"')ap))(bh"')bq)»(m1+])1)"')1))"')(ml+1»])"'»])}-

is realized by the rational function F.

Hence, in order to show the sufficient part of the main theorem, we may assume
GCD(ay,---,bq) =1. We need to prepare some notions before giving the proof.

Definition 2.1. Let m be a non-negative integer. A vector o = (a;, az, -+, ams2) in
7™+ is called a residue vector with (m+2) components if aj +a+---+ ami2 =0 and
ajay--- amy2 #0. Two residue vectors « = (ay, -+, ams2) and = (by,- -+, byz) are called
equivalent, denoted by o ~ 3, if there is a nonzero rational number p and a permutation
o in the symmetry group S;,42 such that

H-&= (Hah"' )Ham-&-Z) = U(B) = (bcﬂ))"' )bG(m+2))'

This is an equivalence relation in the set of residue vectors with (m+2) components. The
degree of the residue vector « is defined to be

Za,->0 a]
deg (Cl],"' >am+2) = GCD(G1 am+2).
) )

We call a residue vector o« = (ay, -+, amy2) primitive if GCD(aj, - ,am2) = 1. Clearly,
the degree of a primitive residue vector equals the sum of all its positive components. Ob-
serve also that the logarithmic differential d (log f) = % of a rational function f in has
residues aj, -+, ap,—by,- -+ ,—bg, which form a residue vector with degree d/GCD(ay,--,ap, b1, - ,bq).

Definition 2.2. Let A = (A, Az, ---, A}) be a partition of a positive integer n. The weight
of A is defined to be
wt(A) =max(Ay, -+ A

Use the notions in the main theorem and denote by A the partition (mq,---,my)
of m=p+q—2>0 and by « the residue vector (aj,---,ap,—bs,---,—bgy). Then the
condition in the theorem can be concisely re-expressed as

deg o > wt(A).

By the Riemann existence theorem [3| Theorem 2, p.49], the sufficient part of the main
theorem is equivalent to the following

Theorem 2.3. Under the assumptions of the main theorem, if degx > wt(A), then
there ezist (1+2) permutations T1,T2,01,:--,01 1n the symmetry group Sq =Sp .. )
of {1,2,---,d} such that



Rational functions with more than 3 branch points

e T1T2071---01=e, where e s the unit in Sy and permutations are multiplied from
right to left;

e T has the type of a}a}-~-a}],, T ofb}b}---b]q and oy of (1+my)'19™ for all
k=1,---,1,

e The subgroup (T1,72,01,---,01) of Sq acts transitively on {1,2,---,d}.

The following lemma will be useful later, which follows from the Riemann existence
theorem and the argument in the first three paragraphs of this subsection.

Lemma 2.4. For each m >0, proving Theorem 2.3 1s equivalent to proving its variant
where « is primitive. We call the latter the primitive version of Theorem [2.3

We shall prove Theorem and its primitive version simultaneously by induction
on m =p+q—2 in the sequel of this section. The proof will be divided into two parts
regarding l=1or 1> 1.

Without loss of generality, we may assume the residue vector satisfies the following
order assumption:

Order Assumption (OA) aj<a;<---<ap, by >--->bgand 1 <p<q.

2.2 Branch data with three partitions

For the completeness of the manuscript, we include in this subsection the proof of the well
known case where 1 =1 of Theorem [2.3| (see [2]), whose strategy we also use while proving
in Subsection the 1 > 1 case of the theorem.

Here we first make a recall of the case | =1 of Theorem 2.3l

Proposition 2.5 (Case 1 =1 of Theorem . Let o= (aj,---,ap,—by,---,—bg) be a
restdue vector and A = (m) be a partition of m=p+q—2>0 such that dego > wt(A) =
m. Then there erist three permutations 11,72, 01 tn Sq satisfying the following three
properties:

® T1Tp01 =¢€,
e T1 has the type of a}a}-~-a;, T, of b}b}mbl{ and oy of (1+m)l1d—m-1.
e The subgroup (T1,T2,01) of Sq acts transitively on {1,2,---,d}.

Lemma 2.6. Let o= (aj,---,ap,—b1,---,—bgy) be a residue vector with degax > m =
p+q—2. If m>0, we have a, > by.

P q
Proof. If a, < by, then it follows from the order assumption (OA) that } a; < ) bj,

i=1 j=1
contradicting the definition of residue vector. If a, —bq =0, then by OA and m=p+

q—2>0 we have p=q>2and a;="bj forall i=1,2,---,p and j =1,2,---,q. Since
p=degax >m=p+q—2=2p—2=2q—2, we obtain p =q =1, which contradicts
p+q>2. O



Rational functions with more than 3 branch points

To prove Proposition [2.5], we need to use the following lemma, where we propose a
new concept, called contraction of a residue vector.

Lemma 2.7. Under the assumptions of Proposition there exist ip € {1,2,---,p}
and jo €{1,2,---,q} such that

R —
X = <Cl],"’ )aiof])aio_bj()’aioJr])'” y Opy _b1)"' ’(_bjo))"' >_bq>

15 a residue vector with deg X > m—1, where a;, —bj, >0 and the hat over term
(—bj,) means that (—bj,) s removed. Note that the number of components of & is
one less than that of x. We call & a contraction of .

Proof. Without loss of generality, we assume « is primitive. If not, we may replace it by
a primitive residue vector equivalent to it.
By OA and Lemma 2.6, we have q > 2 and a, —bgq >0, and then we obtain another
residue vector
[31 = (a1,--- y Ap—T1, ap—bq, —b1,-~ ,—bqq)

with (m—1) components. We divide the proof into the following three steps.

Step 1. Assume q =2. Then m=p+q—2=p and degf3; > p, so (37 is a contraction of «.
We assume that q > 2 in the sequel of the proof.

Step 2. Suppose that ; is primitive. Then degf; > (m—1) = (p+q—3), so it gives a
contraction of «. Indeed, if not, then by OA we have

p q q—1
2q—2>p+q—2>degPr=-bg+) ai=—bg+) bj=) by
i=1 j=1 j=1

thus b;_1 =bgy =1 and by, <2. Moreover, if by, =2, then by =---=by , =2

Therefore
q-1 q p

m+1l=p+q—1>1 —|—ij :ij :Zai:degoc,
j=T1 j=1 i=1
which contradicts the assumption on the degree of «. We assume that (3; is not
primitive in the left part of the proof.

Step 3. IfdegP; > (m—1), then we are done. So without loss of generality, suppose deg 31 <
(m—1)=(p+q—3). Let D > 1 be the greatest common divisor of all components
of 1. Then, by OA and the definition of degree, we obtain that

—1 q—1
a,—b = q b;
2q—2>p+q—2>degh D + D ]E_1D

i=1

Hence by_1 =D, D|b; forall j=1,---,q—2, D|a; forall i=1,---,p—1, and D|(a, —
bg). Consequently, a, > by +D >D =by_; and we obtain another residue vector

B2:=(ar,"-+,ap_1, ap—bgq_1, —b1,--+,—bg_2, —by)

7
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with (m—1) components. If degf; > (m—1), then we are done. So suppose
degf, < (m—1). We divide our discussion into two cases: 3, is primitive and
otherwise.

(a) First, suppose that {3, is primitive. Since degf; < m, we find that by =1
and by, <2 by a same argument for 3; in step 2. As a result 2> by, >
bq-1=D>1, and thus by  =by 1 =D =2. By the same argument for 3;, we
deduce that by =---=bq 1 =D =2and aj,---,a, 1 are even. In particular,
a;—bg=a;—1>0. Hence

&:=(a;—bg,az--,ap, —by,--+,—bg1)

is a primitive residue vector with (m—1) components. Moreover, degx =
2q—2>p+q—2=m>m-—1 and thus « is a contraction of «.

(b) Second, if 3, is not primitive. A similar argument as in the (3; not primitive
case gives that by =E and by, =E or 2E, where E is the greatest common
divisor of the components of 3;. By OA, E=by<by 1. f D=by 1=bg=
E, then E[(a, —bg_1) implying that E divides all the components of «, this
contradicts the primitive property of «. Hence, E =bgq <bg ;1 <bg 2. Also
since by > =E or 2E, we have by =2E and 1 < by /by 1 <2. Recall that
bq—1 =D and Dfbgq_2, so D =by_1 =by_2 =2E =2b, and Ela,, which gives
the same contradiction as above.

O
We shall prove Proposition by induction on m. To this end, we need two lemmas.

Lemma 2.8. Let 0 and T be two permutations in Sq for some positive integer d such
that o 1s a cycle of length greater than 1 and T has form viv,---v,, where v;’s are
mutually disjoint cycles of length d; for i=1,2,---,7r and d1+dy+---+d, =d. We
call vi’s cycle factors of T. Then the following two conditions are equivalent:

(1) The subgroup (o,T) of Sq acts transitively on the set {1,2,---,d}.

(1) Each cycle factor vi of T intersects the cycle o in the sense that the subset of
{1,2,---,d} associated with v; intersects that associated with the cycle o.

Proof. (i) = (ii) We prove the intersection by contradiction. Suppose that there exists
a cycle factor v; of T not intersecting o. Then v; is a cycle factor of to. Therefore, the
subset associated with v; forms an orbit under the action of the subgroup (t,0) of S4 on
the set {1,2,---,d}. Since this action is transitive, the cycle v; has length d. Hence, v;
must intersect o, contradiction!

(ii) = (i) For each 1 <1i <, we choose a number x; lying in both v; and 0. Consider
the action of the subgroup (t,0) on the set {1,---,d}. Then x;,---,x, lie in the same orbit
of this action by assumption. Moreover, for each 1 <1i <, x; belongs to the same orbit
with any other numbers in the cycle v, and the numbers in vy,---,v, exhaust all the
numbers in {1,---,d}. Therefore, the action has a single orbit. O

8
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Remark 2.9. We consider a more general case of the part of (1)= (1) in the above

lemma by replacing o by 01,02,---,01, all of which are cycles in Sy of length greater
than 1. Suppose that the subgroup (07,02, --,01,T) of Sq acts transitively on the set
{1,2,---,d}. Then it follows from a similar argument as in the preceding proof that

each cycle factor of T must intersect some oy for 1 <k <1l. However, for 1 > 2, the
converse fails in general. For ezample, the subgroup of S4 generated by (12),(34) and
(12)(34) acts on the set {1,2,3,4} with the two orbits of {1,2} and {3,4}.

Lemma 2.10. Under the assumptions of Proposition suppose that there exist

permutations T1,T2,01 in Sq such that t11,01 =e and they have types of a} a}---cﬂ

'p)
b}b}---b]]I and (1+m)"19™ 1 respectively. Then the subgroup (T1,72,01) acts tran-
sitwely on the set {1,2,---,d} if and only if each cycle factor of Ty and T, intersects

the (m+1)-cycle o7.
Proof. Since 111,071 = e, the following three subgroups coincide with each other:
(T1,01) = (T1,72,01) = (T2, 07).
The result follows from Lemma O
Now we give the proof of Proposition 2.5

Proof. We argue by induction on m =p+q—2 > 0. It holds trivially as m =0, which is
equivalent to p=q =1. Assume p+ > 2 in what follows. By Lemma there exists a
contraction & of «. Without loss of generality, we assume that the contraction & has the
form

o= (04,--- ,apq,ap—bq, —b1,--~ ,—bq,]).

By the induction hypothesis, there exist in S4-p, a permutation T, =vqv;---vq; of type
b}b;mblH and a cycle oy of length (p+q—2) such that 1,01 =v1v2---v4_107 has type
of a} -‘-a;)q (ap —bq)1 and the subgroup generated by T, and oy acts transitively on the
set {1,2,---,d—Dbp}, where v; is a cycle factor of length b; of 1, for all j =1,2,---,q—1.

In addition, by the induction hypothesis, 1,07 has the form

V1V2:Vq-101 = K2 Hp

where p;’s are mutually disjoint cycles for 1 <i <p, the length of w, is (a, —bgy) and
has the length ay for 1 <k <p-—1.

By Lemma we can choose an integer 1 < x < (d —bg) lying in both p, and
07. Choose in S4 a cycle vq of length by such that v does not intersect v; for all
j=1,---,q—1, for example vq = (d,d—1,---,d —bgq+1) and pick an integer y in v,.
Then viv;---v4_1Vvq has type b}b} . -b]q and o7 :=07(x,y) is a cycle of length (p+q—1).
The subgroup (viv;---Vvq_1Vq,01) of Sq acts transitively on the set {1,2,---,d} by Lemma
We also observe that {i, :=vqup(x,y) is a cycle of length a, since v, does not
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intersect p, and x and y lie in w, and vq, respectively. Moreover, since vq does not
intersect p; for all 1 <i<p—1, i, does not intersect y; for all 1 <i<p—1. So we have

(Viva - vg1vq) 01 = Vg (Vivar - Vg101) (%, Y) = v (k2 1p) (%, Y)

= (k2 Bp—1) (Vahp (%, 1)) = Hip2 - Hp—1{ip.

Hence, we see that the three permutations (m M2 Hp—1 ﬁp)_1, V1V2--+Vgq—1Vq and o7 in
Sa satisfy the three properties listed in Proposition O

2.3 Branch data with more than three partitions

We prove Case | > 2 of Theorem[2.3] At first we deal with residue vectors with components
only £1.

Proposition 2.11. Let D be a positive integer. Assume oc=(1,1,---, 1, —1,—1,--- /—1).
N

D+1 D41
Then for each partition A = (my,my,---,my) of 2D such that wt(A\) <degax=D+1,

there exrist | permutations o1,---,01 in Spiq such that the following properties hold
e 01---0L=¢;
e 0j’s are cycles of length (m;+1);
e (01,---,01) acts transitively on the set {1,--- ,D+1}.

Proof. It is easy to see that 1 > 2. We divide the proof by considering three cases.

Case 1 If =2, we know that m; =m, =D since 2D = m; +m, and my, my < D. Then we
are done by choosing

01:(1)2)"')D+])7 0-2:0-1_]-

Case 2 If L =3. Since my, my, m3 <D and m; +m, +mz = 2D, We have m; +m, > D.
Choosing

o1 =(1,2,---,m;+1) and
op=1m+1,m,m—1,---;m+m3—D+2,m;+2,m;+3,---,D+1),

mi+my—D D—my
we obtain
(my+2,m;+3,---,D+1,2,3,--- my+m3—D+2), if m3<D,
010, = D—my my+m3—D+1
(mi+2,my+3,---,D+1,2,3,--- ,m;+1,1), if m3=D.
D—my my+1

Then the permutations 07,0, and (o 0'2)_] satisfy the three properties.

10
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Case 3 Suppose 1 > 3. Since my,---,my <D, we can choose 1 <r <1 such that m;+m,+
coe4me <Dand my+my+---4+m, > D.

Subcase 3.1 Suppose that r < 1. Choosing

01 :(])23"'>m1+]))

Gz:(m1—|—1,m1—|—2,---,m1—i—mz—H),

Or—1 :(m1+"'+mr72+])"'am1+"'+mr71+])a
we obtain
T :=0102--0p—1 = (1,2,3,-- ymy+---+my_y +1)

By Case 2, there exist two cycles 1, and 13 which have length 14+m, and m,,;+
--+4+my+1< D+1, respectively, such that tyt,t3 =e. As the construction of
01,-++,0r_1, we can find 0y41,0v42,+--,01 directly such that o; has the type of
(T+m))"1P~™ for r+1<j <1 and 0,41---01 =13. Therefore the 1 cycles of
01y " y0p_1, Oy := T2, Ops1,- ", 01 Satisfy the three properties.

Subcase 3.2 Suppose r =1> 3. Since m;+---+m =2D and max (my,---,m) <D,
we have m;+---4+m_; =m; = D. Then the problem can be reduced to Case 1 by
a similar argument as above.

O

To complete the proof of Theorem we need the following lemma and its two
corollaries.

Lemma 2.12. Let " be a subgroup of Sq =Sy ... ay for some integer d>1 and 0 €Sy a
cycle of length greater than 1. Assume that the subgroup G generated by I' and 0 acts
transitively on the set {1,2,---,d}. Then, for each number 1 <x < d not contained in
0, the I'-orbit Ix of x intersects 0.

Proof. We argue by contradiction. Suppose that the orbit I'x does not intersect 0. Take
an arbitrary permutation & in G. We can express it as

E=mmy T

where either 1; =0 or 7y € . Let &' be the permutation obtained from the product
T -+ -7 by removing all those 7;’s satisfying 7t; = 0. Then &’ € T'. Since each number
not contained in O is a fixed point of 0, by the hypothesis of the contradiction argument,
we find that &(x) = &’(x) is not contained in 0. Since & € G has been chosen arbitrarily, the
orbit Gx does not intersect 0, which contradicts that G acts transitively on {1,2,---,d}. O

As an application of the above lemma, we have

11
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Corollary 2.13. Let vy1,v2,--",Y1,0 be (L+1) permutations in Sq_1 for some integer
d>2 and 0= (x1,x2,---,Xn) @ cycle 1n Sq_1 of length n > 1. Suppose that the subgroup
(Y1,Y2," " yY1,0) acts transitively on the set {1,2,---,d—1}. Then so does the subgroup
(Y1,Y2y" " ,yl,5> on {1,2,---,d}, where 0:= (x1, -+ ,xn,d) 15 a cycle of length (n+1) in
Sq.

Proof. By Lemma [2.12] we can see that for each number 1 <x < d—1 not contained in
0, there exists vy € I':= (y1,---,y1) such that y(x) is contained in 0. Hence, the action of
(Y1,Y2,-*yY1,0) on {1,2--- /d} has only one orbit. O

Similarly, we obtain

Corollary 2.14. Let v1,v2,---,Y1,0 be permutations in Syq for some integer d >
2 and 0 = (x1,Xx2,--",Xn) a cycle of length 1 <n < d. Suppose that the subgroup
(Y1,Y2, -+ ,Y1,0) acts transitively on the set {1,2,---,d}. Then so does the subgroup

(Y1,Y2,-*,yY1,0) of Sq on the set{1,2,---,d}, where 0=(x1, - ,Xn,y) € Sq s a cycle of
length (n+1) with y €{1,2,---,d\{x1,- -+ ,xn}.

Now we arrive at proving the case 1 > 2 of Theorem

Proof. By Lemma 2.4we could also assume that the residue vector ac = (ay,--,ap,—b1,---,—by)
is primitive so that degx=d=a;+---+a, =by+---+bg.

Part I Suppose d > m+1=p+q—1. By Proposition there exist Ty,T, 0 such that
(1) im0 =e;
(2) T has type of aja)---a}, T, of bjb}-- by, o of (14+m)'14 ™,
(3) the subgroup (ty,T2,0) acts transitively on {1,2,---,d}.

Assume that 0 =(1,2,---,m+1) for simplicity of notion. We are done by choosing
071 :(1)2)"')m1+]))
oy=(m+1,m+2,---,my+my+1),

op=(mi+-+m+Im+-mg+2,0,my 4y 1),

Part II Suppose d =degax < m=p+q—2. We first reduce the problem to the two cases that
1 =2 and 1 =3, then we prove these two cases by using the contraction argument
and the induction argument similar as the proof of Proposition The details
given as follows form the left part of this section.

By OA, we have that d:Z].q:1 b; > q > 239, Since d =deg o >wt(A) =max (my,---,my),
the partition A of m = (p+ q—2) has at least two components, i.e. 1> 1.

At first we show that

CLaiMm 1: the problem can be reduced to the two cases where the partitions of
m have two and three components, respectively.

Proor or CLAIM 1

12
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Suppose that Part II holds for each partition of m which has three components and
has weight less than d. Then we shall prove that so does Part II for each partition
(my,---,my) of m such that 1> 3 and its weight is less than d. To this end, since
my,---,y < d, we can choose 1 < r <1 such that

my+---4+m_1<d and my+---4+m, >d.

We shall define a new partition, called A/, with three components as following.

e Suppose r < l. Then we consider the partition A’ := (mj,mj, m3) of m, where
mj,my, m; are defined by

mi=m+-+mey<d, myi=my<d, mi=myq+--+m.

Moreover, since d > 239, we observe that

p+q
——1<d-1.
2 <d

m;=p+q—2—(m+my) <(p+q—-d)—1<
e Suppose r =1> 3. Then we choose the partition A’ := (my +---+my_, m_j,my)
of m, which has weight less than d.

Since the partition A’ has weight less than d, and we have assumed the valid-
ity of Case 1 =3 for « and A’, we can find in S4 the following five permutations
T1,T2,07,0%,05 which satisfy the three properties. By a similar construction as
Case 3 in the proof of Proposition we know that the proposition holds for the
partition (my,---,m;). Therefore, we have justified the claim.

We always assume 1 =2 or 3 in the left part of the proof.

Recall that OA states that 1 <p <q,a1<a;<---<ap, by >by >--->by. Without

loss of generality, we further assume m; < m; <-.- < my for the partition A. We

call these two assumptions OA in the sequel by an abuse of notation.

By OA, we can see thatif ap =1,thenay=a;=---=a,=by=b;=---=bg=1and

we are done by Proposition We may assume that a, > 1 in the left part of the

q

proof. Since d <m, we have ) b <p+q—2<2q—2. Then, we have by_1=bgq=1.
=1

Since my <---<my and a, > 1, degx > wt(A) and 1 =2 or 3, we observe that m, is

always greater than 1 except when o« = (1,2,—1,—1,—1) and A = (1,1,1), for which

Part II holds trivially. We may assume that m; > 1 in the left part of the proof. In

order to do induction on m, we choose the partition

A= (Mg, g, (my—1)
of (m—1) and the residue vector
o= (0.],(12,"' aapfha‘p_bq)_bl)_bb"' )_bqf1)

with (p+q—1) = (m+1) components. Then, since bq_1 =by =1, & is primitive
and
degax = —1+deg .

13
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Then we make the following

CLAIM 2: wt()\) < deg®. Hence we may think of (&, A;) as a contraction of (&, A)
and we shall use the former to do induction argument.

Proor or CLAIM 2

1) Imy <---<my_g=my, then wt(Ay) =my_;=mpand 2my<m=p+q—2<
2q—2,i.e. my<q—1. Ifdeg x> q—1, then we are done. Assumedegax=q—1,
which implies that by =---=by =1 and p < q since a, > 1. Then 2m; <m =
P+q—2<2q—2and m; < q—1. Hence degx =q—1>m =wt(A).

(ii) If my_y <my, then wt(A;) =my—1=wt(A)—1 < deg «—1 =deg . The claim
is proved.

Then in the left part of the proof we use the induction on m to prove that Part II of
Theorem [2.3| holds provided that | equals either 2 or 3. We observe that the initial
case of m =2 holds trivially, where o« = (1,1,—1,—1) and A = (1,1).

— Suppose 1 =2. We recall our setting as follows. Take a primitive residue vector
xX= (Cl],"' )ap)_bh"' »_bq)

and a partition A = (my, my) of m=p+q—2 > 3 such that d =deg o« < m,
and « and A satisfy OA. Then we have 2<m, =wt(A) <d and by 1 =bg=1.

Then, by claim 2, we could take another primitive residue vector
o= (ahaZ)' ©yAp—1,0Qp _bq)_bh_bZ)' o a_bq—1)

and another partition A = (my, my; —1) such that wt(A;) <dega =d—1.
By the induction hypothesis, there exist in Sq 1 =Sj1, .. 41} a permutation
of type b] ~--b3171, called T,, and two cycles 07,0, of length (1+m;), my,
respectively, such that the subgroup (o7,02,7T2) of S4_1 acts transitively on

{1,2,---,d—1} and the permutation
T1 :=T20102

has the type of a} -~-a;)_](ap —bq)1. We re-express T1 by T1 = pj---pp such
that p;’s are its cycle factors and p; has length q; for 1 <j <p and p, has
length (a, —bg). Since by =1, we can think of T, as a permutation in S4
with the type of b} mb]q_1b3]. By Remark the cycle factor w, intersects
either o7 or 0. We shall divide the left part of the proof of Case | =2 into
the following two steps.

Step 2.1 Suppose that o, intersects u,. Then we pick a number x in both o, and
1y and define 0, := 0,(x,d) and W, := pp(x,d). Then, since by =1, 6, and
1y are cycles in Sq of length (14 m;) and a,,, respectively. Moreover, we
have

T20102 = K2 -~ Hp—1Hp-

14
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Step 2.2

Since (t13,071,072) acts transitively on the set {1,2,---,d — 1}, the action
of (15,07,02) on the set {1,2,---,d} has a single orbit by Corollary
Therefore, the following four permutations (- up_ﬂtp)_], T2, 07, 02
satisfy the three properties.

Suppose that o, does not intersect pu,. Then oy intersects w,. Choose a
number x in both o7 and p,. Then

10102(x,d) = p1 -+ pp(x, d)
=W "‘U-pfﬂj-p where g-p =Wy (x,d)

= ’F]

where T; has the type of a} --~a113. Meanwhile, since o, does not intersect
(x,d), we have

T) =T120102(x,d) =101 (x,d)0; =: T,0703,

where o} := 07 (x,d) is a cycle of length (my +2). Observe that o} inter-
sects 0. For, otherwise, 07 does not intersect o, and there are (m; +m,+
1) different numbers appearing in both o; and o3, lying in S4_;. Hence,
we have

(d—1D)>1T+mi+my=T14+m>1+d,

contradiction!

Take the smallest positive integer s such that y:= (o]) °(x) is contained
in ;. Since x is not contained in 03, by the minimal property of s, (07)(y)
is not contained in 0,. We can rewrite o} as

o1 = (x1,%2,- ,Xm;, 4,07 (y)) =01 (y,01(y))  with 7 := (x4, Xm;,Y).
Then we have
0102 =01(y,071(y))02 =016, where 6, := (y,07(y))o2,
and
T) =1T,0102 = T20702,

where T; and T, have types of a} a% and b} -~b]1_1b1 , respectively, and
the two cycles 07 and 0, have lengths of 1+ m; and 1+ m;, respectively.
Since (12,71,02) = (T12,07,02) acts transitively on the set {1,2,---,d} by
Corollary so does (12,T1,02) on the same set by Corollary
Therefore, the following four permutations (”?1)7],12, 01, 02 satisfy the
three properties.

— Suppose | =3. We may further assume that m;+m;, > d. Otherwise, replacing
A by A = (my +my, m3) and using the similar reduction argument as above,
we can reduce the problem to the known case of 1 =2.

15
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By the induction hypothesis, there exist in S4_; a permutation T, of type

b}--

-b]H and three cycles o7,07,03 of length 1+my,1+m;,, ms, respectively,

such that the subgroup (o4, 02, 03,T,) acts transitively on the set {1,2,---,d—1}

and

T2010203 =T1 = Wi Hp,

where T = ;- i has type aj---al_;(ap—bg)’, py’s are the cycle factors of Ty
and p; has length q; for 1 <j <p and u, has length (a, —bq) = (ap—1). Since
m;+my > d, by OA, any two of the three cycles 07,0;,03 in S4_7 intersect
since T+m;+m; >d>d—1for 1 <i#j <3 We divide the left part of the
proof into the following three steps.

Step 3.1
Step 3.2

Step 3.3

If w, intersects 03, we are done by a similar argument as in step 2.1.

If u, intersects o, but does not intersect o3, the proof goes through as
Step 2.2 since o, intersects o3.

Suppose that neither o, nor o3 intersects w,. Then, by Remark Wp
intersects o7 since (t7, 07, 02, 03) acts transitively on the set {1,2,---,d—
1}. Choosing a number x in both u, and o7 and denoting 1, := p,(x, d)
and o7 := 07(x, d), we obtain

/ ~ =
120710203 =T2010203(%, d) = Wy -+ pp_1Hp = T4

where o] is a cycle of length (m; +2), 1, is a cycle factor of T;, and T

has the type of a;---a} ;aj.

Step 3.3.A Suppose that o, contains a number which is not contained in o3.

Then we could find in Sy the three cycles of 07,0,,03 with length
14+my,1+my, 1+ ms, respectively, such that

12010203 =Ty
and (T,,T1,01,03) acts transitively on {1,2,---,d}. Indeed, rewrite o}
as

o1 =01(b1,z1)

where b lies in the intersection of oy and o, the number z; is con-
tained in o} but not in 07, and oy is a cycle of length (1+m;). Choose
0} = (b1,z1)0, and rewrite it as

0y = 02(b2,22),

where b lies in both 0} and o3, the number z, is contained in o’ but
not in 03, 07 is a (1+my)-cycle. Hence 03 := (by,z2)03 is a (1+m3)-
cycle and the equality 1,0710,03 = T; holds. Then all the following
subgroups

<T2>0-{»0-2»0—3> = <T2):E1>62>0-3>> <T2>%1>0-£»0-3> = <T2)%1>6—1>0-3>
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and (t1,,7T;,01,03) of Sy act transitively on {1,2,---,d} by Corollaries
and Therefore, the following permutations

(%1>7] y T2y 6:1) 6:2) 6:3

satisfy the three properties.

Step 3.3.B Suppose that every number in the cycle o, is contained in 3. Rewrite
o] as

o7 =07(b,z)

where 07 is a (14 my)-cycle, b lies in both o} and 03, z is not contained
in 03 and then it is not contained in o>, either.
e Suppose that b is not contained in o,. Then

T,070203 = 1207 (b, 2) 0,073
=T1,0102((b,z)03)

=1T2010203,

where 03 := (b,z)o3 is a (1+ms3)-cylce. By Corollary the sub-
group (T2,T1,02,03) acts transitively on the set {1,2,---,d} since the
subgroup (12,71, 02, 03) = (T2, 0}, 02, 03) has the same property. There-
fore, the following five permutations (%1)_], T,, 01, 02, 03 satisfy the
three properties.

e Suppose that b is contained in o;. Then we have

T,010203 = 1201((b, z)02)03 = T2010503 where o} := (b,z)0;.

Then applying a similar argument in Step 2.2 to o) and 03, we obtain
the two cycles 6, and 03 with length of (1+m;), (1+mg3), respectively,
such that

0‘£O‘3 = 6‘26‘3 and 12618263 :’?1.

Moreover, by Corollaries and [2.14}, the action of (1,,T;,07,03) on
the set {1,2,---,d} is transitive. Therefore, the following five permu-
tations (%1)71 , T2, 01, 02, 03 satisfy the three properties.

3 Proof of Theorem

We prove Theorem [I.3]in this subsection.

Proof. Consider the collection

/\*:{(ah"'aap))(bh"')bq)>(C1+])])"')1

—

>"'>(CY+])1>"‘)”}
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of degree d and with total branching order 2d —2. By Theorem and the Riemann
existence theorem, there exists a rational function f of degree d on the Riemann sphere
such that

(i) f branches over 0, oo, ¢, --+, (', where { =exp (2rty/—1/r).

(ii) The partitions of the above branch points coincide with (ay,---,ap), (b1,---,bq), (c1+
1,1,--,1),---,(cr+1,1,---,1), respectively.

Then f" is the Belyi function as desired. O

4 A conjecture

In order to generalize the first part of Boccara’s result, we make the following
Conjecture Let d, g and | be three positive integers. Suppose that the collection A
consists of 1+ 2 partitions of d and has form

/\:{(ah"')ap)»(bh"'>bq))(m1+]>1)"')1))"'7(ml+1)1)"'7])}>

where (my,---,m) s a partition of p+q—2+2g. Then there always ezists a rational
function on some compact Riemann surface of genus g with branch data A.
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