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ABSTRACT

For remaining useful lifetime (RUL) prediction with multi-
channel sensory data, long-term prediction has more uncer-
tainty than short-term prediction. In this paper, the ratio of
mean to variance was considered to measure the uncertainty
propagation rate (UPR) of RUL prediction over time. Further-
more, we use a recurrent neural network (RNN) as the linking
function for the mean of inverse Gaussian distributed RUL to
construct a two-stage hybrid model. Later the RNN and the
UPR are jointly trained with sensory data and failure records
via alternating minimization. Proposed algorithms are vali-
dated in a simulation test.

Index Terms— Remaining useful lifetime, uncertainty
propagation rate, recurrent neural network, linking function,
generalized linear model.

1. INTRODUCTION

Remaining useful lifetime (RUL) prediction plays an impor-
tant role in modern industrial systems. It is a key perfor-
mance indicator for factories to plan maintenance operations.
Moreover, in a production-oriented factory, the maintenance
on systems interrupts normal production, leading to the influ-
ence of RUL prediction on production planning and inventory
planning.

Sensory data are usually multi-dimensional, random time
series caused by system uncertainty. In such a setting, the
RUL prediction task involves two intrinsic needs: 1) feature
representation from the input of multi-dimensional data to the
scalar estimate of failure time, where a powerful feature ex-
tractor is needed; 2) uncertainty quantification for the updat-
ing RUL predictions over time, which are related to the same
observed failure time. Hence simply training with labeled
data ignores the intrinsic constraints on the dependence be-
tween predictions. Specifically the recurrent neural network
(RNN) will be considered through this paper.
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This paper considers the data-driven RUL prediction
problem that is the focus of reliability engineering [1]. To
benefit from the feature representation capacity of modern
machine learning and also the uncertainty quantification from
statistical modeling, two kinds of work are summarized in the
following.

Bayesian techniques of uncertainty management are
widely applied in RUL prediction since they can provide
a general rigorous framework for dynamic state estimation
problems. For example, relevance vector machine (RVM)
[2], which represents a generalized linear model of identical
functional form to the support vector machines (SVM) [3],
are used for model development [4]. The RVM approach
has achieved significant advantages over conventional RUL
estimation methods.

Deep neural networks including convolutional neural net-
work (CNN), RNN etc., are actively discussed in the litera-
ture due to their self-learning capacity for feature representa-
tion. Due to the sequential modeling capacity of RNN, re-
cently RNNs have been widely applied to RUL prediction
[5, 6, 7, 8]. Moreover, our work is done under the probabilis-
tic machine learning framework, which deals with uncertainty
in machine-learning tasks [9, 10].

The contribution of this paper is twofold.

• A two-stage hybrid model is presented to train a con-
ventional machine learning model, such that probabilis-
tic output can be supplied.

• Motivated by generalized linear model, the RNN is in-
troduced as the linking function to represent the mean
of inverse Gaussian distributed output.

The paper is organized as follows. Section 2 introduces
the probabilistic RUL prediction problem. In Section 3 the
solving methodology is presented based on the inverse Gaus-
sian distribution model and the RNN linking function. Train-
ing the proposed hybrid model will be explained using the
log-likelihood loss in Section 4. Proposed methods are vali-
dated in some empirical tests in Section 5. At the end, con-
clusive remarks are made.



2. PROBLEM STATEMENT

In this paper, an industrial system equipped m sensors is con-
sidered. These sensors provide time-stamped sensory data in
industrial systems. The RUL prediction task aims to predict
the time to failures based on the historical sensory data. Nota-
tions for the considered system are specified for later discus-
sions.

• The system with m sensors is inspected at intervals of
unit time. Hence inspection time-stamps are limited to
s ∈ N.

• The sensory data for an unspecified system at time s ∈
N is denoted by xs ∈ Rm, coming from the observation
of a hidden stochastic process Xs ∈ Rm, s ∈ N due to
different kinds of uncertainties [11].

• The historical inspection sequence in a period [s, k],
s ≤ k is denoted by xs:k := {xi}ki=s.

Under the above setting, the failure time T observed by
τ ∈ N for an unspecified system, is commonly defined as the
first entrance time for Xs to enter a failure-associated state set
A ⊂ Rm,

T = inf
s∈N
{Xs ∈ A}. (1)

Due to the uncertainty of Xs, the failure time T as a stopping
time is generally a random variable.

In the historical data, if the failure time has been observed
at time τ > 0, then at time s < t, the RUL is the realized
by rs := τ − s. With all sensory data before s denoted by
x0:s, the theoretical optimal RUL prediction (in the sense of
mean-square error) is the following conditional expectation

Rs := E(T − s|X0:s = x0:s, T ≥ s), s ≥ 0. (2)

Here the realization ofRs depends on pending observations in
[s, τ). Hence from the definition in (1), Rs is a discrete-state
random variable valued in N, and Rs + s,∀s ≥ 0 as updating
failure predictions are uniformly observed by T = τ .

As the optimal prediction Rs may not be derived explic-
itly due to unclear state transition mechanisms, in this pa-
per the continuous inverse Gaussian distribution will be intro-
duced to approximately describe Rs. Similar to the link func-
tion in the generalized linear model for the exponential fam-
ily, we will introduce a linking function ϕ to map observed
sensory data x0:s to the mean of Rs, say αs = E(Rs),

ϕ : R(s+1)×m → R, with ϕ(x0:s) = αs. (3)

ϕ is naturally a value-oriented RUL predictor.The distribution
model for Rs will be specified in the next section.

The foundation of prediction is the observed history.
Available data for training the predictor this paper are speci-
fied as follows.

• Inspection sequences on N identical and independent
systems exist for learning the predictor.

• Associated failure times are observed, say {τi}Ni=1.

• The inspection sequence for the ith system until time
s ∈ [0, τi] is denoted by x0:s

(i), i = 1, 2, · · · , N ; the
associated RUL at time s for the ith system is observed
by r(i)

s = τi − s.

• Systems may not be synchronized by a uniform cal-
endar time, such that different initial states {x0

(i)}Ni=1

may be observed leading to the uncertainty of X0.

3. UNCERTAINTY QUANTIFICATION WITH
RECURRENT NEURAL NETWORKS

The state uncertainty accumulates over time, leading to the
basic fact that the RUL prediction is more accurate when the
current time is closer to the failure.

Hence it is unreasonable to use time-irrelevant measures,
e.g. mean square error (MSE), to evaluate a RUL predic-
tor’s performance. To tolerate the uncertainty propagation in
related prediction tasks, the mean absolute percentage error
(MAPE) defined by the ratio of the absolute error to the true
are frequently considered [12, 13]. Especially in [13], the au-
thors realized that the prediction uncertainty may propagate
with different rates.

With the help of (2), the concept of uncertainty propaga-
tion rate is specified in this paper, which was implicitly used
in [14] in a more strict of drifted Wiener model setting. As-
suming the RUL prediction to be a random variable, the ratio
of mean to variance is introduced to measure the uncertainty
propagation rate. This moderate assumption is specified as
follows.

Assumption 3.1 The ratio of mean to variance for the RUL
prediction Rs given in (3) is assumed to be a time-invariant
constant c > 0, which is named as uncertainty propagation
rate (UPR), i.e.

E(Rs)

Var(Rs)
≡ c > 0, ∀s ≥ 0. (4)

Before the failure time, only deterministic systems can be
fully predicted without uncertainty, so the variance Var(Rs)
is always positive and the ratio (4) is well-defined.

The constant UPR is not enough to reveal the complete
probability law about the RUL prediction. To model the shape
of distribution functions for Rs, the inverse Gaussian distri-
bution is introduced as follows.

Assumption 3.2 As assumed in Assumption 3.1, the constant
UPR is denoted by c > 0. Then RUL prediction at time s,
Rs ∼ G(·;αs, c) is assumed to follow the inverse Gaussian



distribution with time-stamped parameters αs, c > 0 and the
probability density function:

G(x;αs, c) =

[
cα2

s

2πx3

]1/2

exp

{
−c(x− αs)2

2x

}
, x > 0.

(5)
The mean and variance of Rs are E(Rs) = αs,Var(Rs) =
αs/c.

It is noted that the expression of inverse Gaussian distribution
in (5) differs with normal definitions to emphasize the rela-
tion between mean and variance. Also the inverse Gaussian
assumption is considered due to its positiveness and its con-
nection with passage times [14].

Suppose a linking function ϕ(·; Θ) is given with the train-
able vector parameter Θ, the RUL prediction task is now con-
verted into a two-stage model according to Assumption 3.2:

g(x0:s; Θ, c) =

{
αs = ϕ(x0:s; Θ), s ≥ 0;

Rs ∼ G(·;αs, c).
(6)

The two-stage expression (6) transforms the original RUL
prediction task to finding the linking function ϕ(·) and the
parameter c respectively. It is believed that Rs, s ∈ N should
share some common parameters with the same type of dis-
tribution function. With Assumption 3.1, the connection is
specified by the UPR c > 0.

Furthermore, the RNN will be introduced as the link-
ing function for the two-stage predictor in (6). The RNN
can be written in a layer-wise, recurrent form for the triple
(x0:s, h0:s, αs), which represents the input, the hidden infor-
mation, and the output respectively. Given proper activation
functions σa, σh [15], the RNN and related variants can be
generally expressed by

ϕ(x0:s) =

{
hi = σg(hi−1,xi), i = 1, · · · , s;
αs = σa(hs).

4. TRAINING WITH LOG-LIKELIHOOD LOSS

With the inverse Gaussian assumption 3.2 and the linking
function ϕ(x0:s; Θ) = αs, the prediction Rs ∼ G(·;αs, c).
Hence for an unspecified system at time s with the observed
RUL rs = τ − s, the prediction loss is defined as the negative
log-likelihood for Rs to observe rs, i.e.

error(Rs, rs; Θ, c) = −2 log G(rs;αs, c)

= − log

[
cα2

s

2πr3
s

]
+
c(rs − αs)2

rs
. (7)

In this loss definition, the pending vector parameter Θ in the
linking function and the UPR c need be estimated. This esti-
mation will be processed based on the training data-set spec-
ified in Section 2.

Following the setting in Section 2, within the ith in-
spection sequence and associated RUL observations for
i = 1, ..., N , the data pair (x

(i)
0:j, r

(i)
j ) can be prepared for

an inspection time j ∈ [0, τi]. Suppose totally n data pairs
are prepared from N inspection sequences.

It is noted that (x
(i)
j−0:j, r

(i)
j ) is a one-to-one pair marked

with time, and not directly related to the sequence marker.
So randomly re-ordering n data pairs according to their times
leads to the uniform input-label expression for the training
data,

{(x0:sj , rsj )}nj=1. (8)

Here sj ≤ max{τi}Ni=1 and the same value may be repeated,
i.e. si = sj for i 6= j.

Based on the prepared training data pairs in (8), cor-
responding predictions from (6) are denoted by Rsj ∼
G(·;αsj , c) with αsj = ϕ(x0:sj). Hence the total loss be-
tween RUL predictions {Rsi}ni=1 and associated observations
{rsi}ni=1 is naturally defined as an average loss from (7). This
total loss depending on the training data-set is further treated
as a function L(Θ, c) regarding the pending linking RNN
ϕ(·; Θ) and the UPR parameter c

L(Θ, c) =
1

n

n∑
j=1

error(Rsj , rsj ; Θ, c)

=
1

n

n∑
j=1

{
− log

[
α2
sj

2πr3
sj

]
− log(c) +

c(rsj − αsj )2

rsj

}
.

(9)

The optimal parameters (Θ∗, c∗) come from the optimization
problem

(Θ∗, c∗) = arg min
Θ,c

L(Θ, c). (10)

The vector parameter Θ for the linking RNN ϕ(·; Θ) is usu-
ally optimized by back-propagation of local errors on mini-
batches, while the UPR parameter c is an uncertainty mea-
sure for the global prediction. Hence these two parameters
essentially cannot be optimized simultaneously, leading to the
alternating minimization training in the following.

The UPR parameter c remains unknown when searching
Θ with the total loss (9). However it is easy to verify the loss
function reaches its minimum from its partial derivative w.r.t.
c. Actually, the partial derivative w.r.t. c follows

∂L(Θ, c)

∂c
= −n

c
+

n∑
j=1

(rsj − αsj )2

rsj
. (11)

Let (11) be zero, the loss L(Θ, c) reaches its minimum
when c = c(Θ) regarding the pending ϕ(·; Θ),

c(Θ) =
n∑n

j=1[(rsj − αsj )2/rsj ]

=
n∑n

j=1[(rsj − ϕ(x0:sj ; Θ))2/rsj ]
. (12)



So if the optimal parameters Θ∗ and c∗ are found for a global
minimum of the total loss L(Θ∗, c∗), (12) reveals the fact
c∗ ≡ c(Θ∗). Moreover c(Θ) in (12) clearly measures the pre-
diction loss for the whole training data, leading to the sample-
based definition of uncertainty propagation rate instead of (4).

All the above leads to the alternating minimization train-
ing in Algorithm 1, where the UPR parameter c and RNN
vector parameter Θ are jointly trained. The algorithm starts
by initiating c = 1, then it iterates with two steps: the first
step is to optimize a RNN ϕ(·; Θ) by fixing c in the loss (9);
the second step is to optimize c by fixing the pre-estimated
Θ. The algorithm stops when Θ and c don’t update anymore
(according to a given tolerance level).

Algorithm 1 Alternating Minimization Training
Require: {(x0:sj , rsj )}nj=1; Tolerance level ε > 0.
Ensure: A RNN ϕ(·; Θ∗) and c∗ to minimize the mean log-

likelihood loss L(Θ, c).
1: Initiate i = 1, c1 = 1;
2: for i ≥ 1 do
3: Using the mini-batch gradient descent to get Θi for the

RNN using the loss L(Θ, ci);
4: With Θi, c(Θi)→ ci+1;
5: if |ci+1 − ci| ≤ ε then
6: return ci+1 → c∗, Θi+1 → Θ∗;
7: else
8: i+ 1→ i.
9: end if

10: end for

5. EMPIRICAL EVALUATION

The hybrid approach using RNN and statistical modeling was
proposed for RUL prediction in previous sections. In this sec-
tion, this approach will be tested in a simulation test.

The observation of a drifted Wiener process serves as the
sensory data and the first passage time to a preset threshold
serves as the failure time. Under this setting, theoretically the
optimal RUL prediction can be derived explicitly.

Suppose the sensory data xs, s ∈ N comes from the ob-
servation to a scalar drifted Wiener process [16, 17],

Xt = t+ 4Wt, t ≥ 0, (13)

where Wt is a standard Wiener process and Y0 = 0. Direct
calculation on E(Xt)/Var(Xt) shows the validity of Assump-
tion 3.1 for Xt, with UPR value c = 0.0625.

Monte-Carlo simulation is adopted to provide inspection
sequences. Using a small interval ∆ = 0.01, here the Euler-
Maruyama algorithm [18] is used for calculation,

X(i+1)∆ = X(i)∆ + ∆ + 4z∆, z∆ ∼ N (·; 0,∆), (14)

where N (·; 0,∆) is the normal distribution with mean 0 and
variance ∆. This simulation is repeated for N = 12, 000

Iteration 0 2000 4000 6000 8000 10000
UPR 1 0.0383 0.0654 0.0717 0.0696 0.0683

Table 1. Uncertainty propagation rate estimates over training
iterations.

Fig. 1. RUL prediction (blue dashed) for a selected trajectory
for a randomly selected trajectory after 0, 400, 1200, 2000,
4000, 6000, 8000, 10000, 12000 iterations.

times and each simulation ends when the sequence reaches
l = 150. The end-time is recorded as the failure time {τi}Ni=1.
In such a simulation test, the failure time is set to be the first
passage time ofXt to reach 150, i.e. T = inft≥0{Xt ≥ 150}.
Under this setting, the optimal probabilistic RUL prediction
equals inft≥0{Xt ≥ 150− xs} ∼ G(·; 150− xs, 0.0625).

Observations at integer times s ∈ N in above simulated
sequences are taken as the training data x0:τi . From the simu-
lated data, the RUL predictor using a long short-term structure
[19] with 128 hidden units is considered. Using a time-step of
50 and RMSprop optimizer (learning rate 0.001), the model is
learned with mini-batch training (batch size 200) over train-
ing iterations. The experiments are done in a workstation with
AMD 2950X and Nvidia 1080Ti, with the help of Keras and
Tensorflow. Results are illustrated in Fig. 1 and also the con-
vergence trend can be observed in Table 1. Due to the (mini-
batch) stochastic gradient descent is adopted, the convergence
trend is not strictly monotonic and a sudden increment is ob-
served and decreases to the true value 0.0625 later.

6. CONCLUSIONS

This paper provided a probabilistic learning framework for
RUL prediction with multi-channel sensory data. A two-stage
hybrid model is constructed by using RNN as the linking
function under the inverse Gaussian setting. By jointly train-
ing RNN and the UPR with sensory data and failure records
via alternating minimization, it achieved the uncertainty and
accuracy trade-off in a simulation test.
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