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Abstract—Thanks to the development of deep Convolutional
Neural Network (CNN), face verification has achieved great
success rapidly. Specifically, Deep Distance Metric Learning
(DDML), as an emerging area, has achieved great improvements
in computer vision community. Softmax loss is widely used to
supervise the training of most available CNN models. Whereas,
feature normalization is often used to compute the pair similar-
ities when testing. In order to bridge the gap between training
and testing, we require that the intra-class cosine similarity of the
inner-product layer before softmax loss is larger than a margin
in the training step, accompanied by the supervision signal of
softmax loss. To enhance the discriminative power of the deeply
learned features, we extend the intra-class constraint to force
the intra-class cosine similarity larger than the mean of nearest
neighboring inter-class ones with a margin in the normalized
exponential feature projection space. Extensive experiments on
Labeled Face in the Wild (LFW) and Youtube Faces (YTF)
datasets demonstrate that the proposed approaches achieve
competitive performance for the open-set face verification task.

Index Terms—deep distance metric learning, cosine similarity,
face verification

I. INTRODUCTION

In the primitive face recognition methods, most of them
have achieved satisfying recognition performance under con-
trolled conditions. However, their performance drops heavily
when face images are captured in the wild because of the
large intra-class variations in this scenario. Face recognition
has long been one of the most challenging and attractive
areas in computer vision. Especially, feature extraction plays
a paramount role. Traditional feature extraction methods (such
as LBP [1], Gabor [2] and SIFT [3]) always work with
suitable metric distances (such as Euclidean distance and
cosine distance). However, these methods are not discrimi-
native enough to meet the demands for unconstrained face
recognition scenarios.

Deep Convolutional Neural Network (CNN), which emerges
as a powerful feature extraction method, has witnessed the
great success in computer vision community, such as object
detection, image segmentation and face recognition. A recent
trend towards deep learning with more discriminative features
is to reinforce CNN with better metric learning loss func-
tions, namely Deep Distance Metric Learning (DDML), such
that the intra-class compactness and inter-class separability
are simultaneously maximized. Owing to advanced network
architectures [4]-[9] and DDML approaches [10]-[14], the
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performance on face recognition has been dramatically boost-
ed to an unprecedented level [12], [15]-[19].

Face recognition can be classified into two tasks, namely
face identification and face verification. The former aims to
classify an input image to a specific identity, while the latter is
to determine whether two images belong to the same identity.
In terms of testing protocol, face recognition can be evaluated
under closed-set or open-set settings [18]. For closed-set
protocol, all testing identities have appeared in training set,
which can be well addressed as a classification problem.
For open-set protocol, we have to project the images into a
discriminative feature space, because the testing identities have
never appeared before. Thus it is essentially a metric learning
problem. This paper addresses the face verification problem
under the open-set protocol, as illustrated in Fig.1.
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Fig. 1. The open-set face verification pipeline in this paper.

For open-set face verification problem, the learned features
are expected to satisfy the criterion that the minimum inter-
class distance is larger than the maximum intra-class distance.
However, this criterion is difficult to satisfy, because of the
ubiquitously large intra-class variations and inter-class sim-
ilarities. Previous work [20] learn features via the softmax
loss, but softmax loss only learns separable features that are
not discriminative enough, as illustrated in Fig.2. In general
face verification training process, Euclidean distance or inner-
product without normalization is used to measure the similar-
ities between features. Whereas, the normalized inner-product
or cosine similarity is widely used in the testing process. As il-
lustrated in [17], [18], Euclidean distance or Euclidean margin-
based loss is not always suitable for learning discriminative
features. Inspired by these properties, we directly incorporate
the intra-class cosine similarity constraint between a feature
and its assigned class direction into the training process, and
force it to be larger than a given margin. Specifically, we define
the class direction as the weight vector of softmax function for
each class. Combined with the separability of softmax loss, our



original method achieves 0.7% improvement on Labeled Face
in the Wild (LFW) dataset and 1.7% improvement on Youtube
Faces (YTF) dataset.

Some existing DDML methods integrate available label
knowledge as the similarity a-priori, and each class is assumed
to be captured only by a shared structure. Whereafter, there
arise some works [21], [22] to incorporate the prior local
target neighbors into the loss function. However, these target
neighbors are achieved based on distances in the original input
space, and never update in the training process. This motivates
us to learn similarity metrics adapted to the locally updated
feature structures. Specifically, we improve the previous loss
function to a more powerful one, which forces the intra-class
cosine similarity larger than the mean of nearest neighboring
inter-class cosine similarities with a margin, and maintains the
norm of features and weight vectors fixed in each iteration at
the same time. Then, we show a variant of triplet loss as a
special case of the proposed approach, which is verified to
be more robust and effective than the original triplet loss.
Under a small training set of CASIA-WebFace, our results
are competitive with state-of-the-arts achieved by millions of
images and model ensemble, and superior over other metric
loss functions using the same network and training dataset.

II. THE PROPOSED APPROACH
A. Recalling Softmax Loss

N-way softmax function is often used to classify a image
into one of the NV candidate classes, and the final output is a
probability distribution. The original softmax loss is the cross
entropy of softmax function, which can be written as

Z log

where x; denotes the feature of the i-th sample, y; is the
corresponding class label, N is the number of classes, M
is the number of training samples, W and b are the weight
matrix and the bias vector of the last inner-product layer before
the softmax loss, W is the j-th column of W and b; is the
corresponding bias term. Understandingly, W; acts as the class
direction of the features in j-th class. If all features are well-
separated, the cosine similarities between the features in j-th
class and W; will approach 1.

We conducted a contrastive experiment on the MNIST
dataset [23] using two different networks, namely LeNet++
[12] and MNIST network [16], to visualize the effect of
softmax loss. Specifically, the final feature dimension is re-
duced to 2, and the resulting 2-D features of both training
and testing sets are plotted in Fig.2. One can clearly find that
there exists large intra-class separability in LeNet++, but the
features are not discriminative enough. This coincides with
the phenomenon elaborated in [17] that softmax loss always
encourages the features to have larger magnitudes.

Considering the large intra-class variation of softmax loss
and the commonly used cosine similarity in the testing process
of face verification, we come up with the following methods to
make the training coincide with the testing, in order to acquire
discriminative features.
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Fig. 2. Visualization of the deeply learned 2-D features on M-
NIST with (a) MNIST structure [16] and (b) LeNet++ structure
[12].

B. LMC Loss

We first propose the Large Margin Cosine (LMC) loss func-
tion, which enforces the intra-class cosine similarity between
a sample x; and the corresponding weight vector W, in the
last inner-product layer larger than a given margin. The LMC
loss function is formulated as follows:
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Specifically, the joint supervision of softmax loss and LMC
loss is necessary to train the CNNs for discriminative feature
learning. For simplicity, we omit the bias term of the softmax
loss in this work. The final loss function for training is
formulated as follows:
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where \ is a weighting parameter that is used for balancing

the two parts.

To eliminate the large intra-class variation of softmax loss,
only this cosine similarity constraint in the training process is
not enough, because the norm of features and weight vectors
are prone to enlarging and the ubiquitous inconsistency. We
continue to normalize the features and weight vectors of the
last inner-product layers before the softmax loss to a same
value s. Then, a joint supervision of intra-class and inter-class
constraints is imposed.



C. DLMC Loss

Base on LMC loss, we further propose the Discriminative
Large Margin Cosine (DLMC) loss to simultaneously maintain
the intra-class compactness and the inter-class separability in
the normalized feature space. The DLMC loss function is
formulated as follows:
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where s is the automatically learned feature or vector norm as
in [17], p is a predefined percentage, |InterClass(y;)| is the
number of different inter-class cosine similarities between a
sample in class y; and the class directions of other classes in a
min-batch, and these inter-class cosine similarities are sorted in
descending order, « is a predefined margin to discriminate the
intra-class and inter-class similarities. Specifically, the DLMC
loss attempts to enforce the intra-class cosine similarity larger
than the mean of p x |InterClass(y;)| largest inter-class
cosine similarities with a fixed margin in the exponential
feature space.

Note that the form of DLMC loss is similar to that of
softmax loss, and the hyper-parameter p is introduced to
control the number of valid inter-class cosine similarities. For
datasets with too many classes, most inter-class similarities are
useless, while the proposed neighborhood sampling strategy
can incorporate the most meaningful classes to relieve the
side-effects of other remote classes. Note that the DLMC
loss immediately reduces to a variant of triplet loss [11]
when p x |InterClass(y;)| = 1. We call it the Specialized
Discriminative Large Margin Cosine (SDLMC) loss.
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One can notice that the difference between SDLMC loss
and triplet loss is the cosine similarities between a sample
and the class directions instead of the original triple distances.
This property makes the SDLMC loss easy to implement in
the training process, without additional hard triplets mining
strategy in the triplet loss. In addition, we require this cosine
similarity constraint in the normalized feature space, rather
than the Euclidean distance constraint in the original feature
space. Empirical results in Section III validate that the S-
DLMC method can significantly improve the face verification
performance, and greatly alleviates the difficult convergence
and instability of triplet loss.

III. EXPERIMENT

The implementation details are given in subsection A.
Then we evaluate our approaches on two face recognition
benchmark datasets (LFW [24] and YTF [25]) in subsection
B.

TABLE I. The ResNet architecture used in this paper. Resblock
is the classical Residual unit consisting of two consecutive
convolutional layers and a unit mapping.

Model ResNet (32-layers)
[3x3,64] x 2
Resblock1 MaxP, [2 X 2], str2
[3 x 3, 64} <1
3 x 3,64
Resblock2 [3x3,128] x 1
MaxP, [2 x 2], str2
[3 x 3,128] <2
3% 3,128
Resblock 3 % 3. 2561
esblock3 [3x3,256] x 1
MaxP, [2 x 2], str2
[3 % 3,256] 5
3 x 3,256
Resblockd4 3 % 3. 5121
esbloc [3x3,512] x 1
MaxP, [2 x 2], str2
[3x 3,512 ]
Resblocks 3% 3,1512] 3
e 512

A. Implementation Details

Training Details. We use the publicly available CASIA-
WebFace [26] as the training set, which originally has 494,414
labeled face images from 10,575 individuals. All the faces in
images are detected by SeetaFace [27], and 5 facial landmarks
(two eyes, nose and mouth corners) are labeled to globally
align the faces by a similarity transformation. When the
detection fails, we simply discard the images for training, but
use the provided bounding boxes and landmarks for testing.
After removing the images failing to detect, the resulting
training dataset has only 437,633 images. We use the Caffe
library [28] to implement all the models in this section, and the
CNN structure is detailed in Table 1. The faces are cropped
to 112 x 96 RGB images, normalized by subtracting 127.5
and dividing by 128. The batch size is set to 256 in all
the experiments. The images are horizontally flipped for data
augmentation. Notice that the CASIA-WebFace is a small
scale training set, especially compared to some private datasets
used in DeepFace [29] (4M) and FaceNet [11] (200M). To
accelerate the convergence rate of training process, the joint
supervision of softmax loss and our proposed approaches is
necessary.

For LMC, we train the model from scratch. The initial
learning rate is set to 0.1, then divided by 10 at 16K, 20K
iterations. The complete training terminates at 28K iterations.
We set A = 0.01 and o« = 0.9. However, we fine-tune the
network of DLMC from the baseline softmax model and a
relatively small learning rate of 0.001 is applied. We set
A = 0.03,a = 0.01 and p = 40%. For other compared
metric loss functions, we train them to achieve their best
performance. The classical back-propagation algorithm and
mini-batch based SGD will work well for the training, and
the momentum and weight decay are set to 0.9 and 0.0005,
respectively.

Evaluation. The features are taken from the last inner-
product layer in Table.I. We extract the features from both
the frontal face and its flipped one to acquire the final repre-



sentation by element-wise summation. The score is computed
by cosine similarity of two representations after PCA, and
the threshold comparison is used afterwards for the final
verification accuracy. Not that we only use single model to
implement all the experiments.

B. Experiments on the LFW and YTF datasets

We evaluate our approaches for face verification on two
datasets in unconstrained environments, namely LFW and
YTF, which are the recognized benchmarks for face image
and video recognition, respectively.

LFW This dataset contains 13,233 face images of 5,749
different identities, with large variations in pose, expression
and illumination. We report mean face verification accuracies
on 6,000 given face pairs in LFW and their ROC curves,
following the standard protocol of unrestricted with labeled
outside data [24].

YTF This dataset consists of 3,425 videos from 1,595
different people, with an average of 2.15 videos for each
identity. Following the unrestricted with labeled outside data
protocol [25], we report the results on 5,000 video pairs. The
final score of each video pair is computed by the average of
the cosine similarities from 100 frame pairs.

TABLE II. Face verification performance (%) on LFW and
YTF datasets.

Method #Alig.  #Train  #Net  Acc. on LFW (%) Acc. on YTF (%)
High-dim LBP [30] 27 100K 95.17 -
DeepFace [29] 73 4M 3 97.35 91.40
Gaussian Face [31] - 20K 1 98.52 -
DeepID [10] 5 200K 1 97.45 -
DeepID-2+ [32] 18 300K 25 99.47 93.20
FaceNet [11] - 200M 1 99.63 95.10
DCNN ([33] 7 WebFace 1 97.45 -
CASIA-WebFace [26] 2 ‘WebFace 1 97.73 90.60
Softmax 5 430K 1 97.42 91.52
Triplet [11] 5 430K 1 98.20 92.16
L-Softmax [16] 5 430K 1 98.86 94.14
Center [12] 5 430K 1 98.91 93.80
NormFace [17] 5 430K 1 98.57 93.74
SphereFace [18] 5 430K 1 99.02 93.89
L-GM [13] 5 430K 1 99.10 94.12
LMC 5 430K 1 98.13 93.22
SDLMC 5 430K 1 99.03 94.00
DLMC 5 430K 1 99.07 94.16
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Fig. 3. ROC curves of compared metric loss functions on LFW
and YTF datasets.

Table II compares our approaches with some state-of-the-
art methods on LFW and YTF datasets. We list the settings of
each method as well as the verification accuracies in their
original papers. As can be observed, while using a single
model trained on the publicly available small dataset, our

methods still approach the top performance like FaceNet
and DeeplD2+, which are achieved by huge training data or
model ensemble. In addition, compared to the conventional
method (High-dim LBP) and the earlier deep learning methods
(DeepFace and DeeplD), our approaches show a significant
advantage, even under the same training set (DCNN and
CASIA-WebFace).

For a fair comparison, some typical metric loss functions are
also tested in our own setting. In Table II, one can find that
the proposed methods consistently outperform softmax loss
by a significant margin. Specifically, DLMC loss and L-GM
loss are comparatively on the top performance. Noticeably,
the accuracies of NormFace [17] and SphereFace [18] in our
setting are large margins worse than the results presented in the
original papers. The reason is that they fine-tune the network
from the pre-trained model by center loss [12], while we
just fine-tune the network from the softmax baseline model
which has removed the impact of center loss. Compared with
NormFace, the DLMC method clearly shows the advantages of
cosine similarity constraint in the training process. Similarly,
the performance of SDLMC loss overwhelms triplet loss by a
large margin. This convincingly demonstrates that the SDLMC
loss could effectively alleviate the difficult convergence and
big data dependence of triplet loss. The ROC curves of these
methods are compared in Fig.3, and the area under the curve
of DLMC is larger than that of other compared methods
in the same setting, which convincingly demonstrates the
effectiveness of our methods.

IV. CONCLUSION AND FURTHER WORK

In this paper, we introduce the cosine similarity constraint
into the training process to eliminate the large intra-class
variation of softmax loss. Based on this, two effective methods
named LMC and DLMC have been proposed to enhance the
discriminability of deeply learned features. Specifically, as a
specialized case of DLMC, SDLMC is shown to be a variant
of triplet loss and exhibits the intrinsic advantage on the face
verification problem. Extensive experiments on two public
face recognition benchmark datasets convincingly demonstrate
the effectiveness and robustness of the proposed methods,
even on a small training dataset. Noticeably, the intractable
hyper-parameter searching process is crucial for the successful
training. A self-adaptive margin updating strategy seems to
be a meaningful research direction. Furthermore, these loss
functions are not differentiable everywhere. We will explore
some smoothed versions in the future, and apply the proposed
methods on other metric leaning tasks, such as person re-
identification or image retrieval.
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