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Abstract

Community detection and community evolution tracking are two important

tasks in dynamic complex network analysis. Recently, a variety of models

and methods have been proposed for detecting the community structure and

analyzing their evolution. However, all these methods are only committed to

improving the performance of community detection or identifying evolutionary

events, ignoring the internal relevance between the structure of each snapshot of

the dynamic network and the evolution pattern of communities, especially the

structural features of nodes and their dynamic transition behavior. To cope with

this problem, we firstly conduct experiments on 15 real-world dynamic networks

to explore the transition behavior of nodes in dynamic networks, which is one

of the most influential evolutionary patterns in temporal community detection.

Firstly, we obtain the temporal community structure based on very successful

temporal community detection methods. Secondly, we extract features of nodes

based on the structure of the dynamic network, and take the community transi-

tion behavior of nodes as the binary classification problem. Finally, we use the

decision tree to find the node-level features that have a general impact on node

transition. Experiments indicate that the degree and average neighbor degree

of nodes have the most common indispensable impact on the node transition
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behavior, which are very helpful for modeling dynamic complex networks in

future.

Keywords: dynamic complex network, node transition, node-level feature,

binary classification, average neighbor degree

1. Introduction

Complex network analysis [1, 2] has received increasing attention from re-

searchers in different fields, including computer science, social science, and phys-

ical science [3, 4, 5]. Complex networks always consist of nodes and edges, which

represent the objects and the interactions between the objects, respectively. For5

example, in a social network, nodes could be the social accounts and edges rep-

resent the following or followed relationships between accounts. As one of the

most important and powerful data structures, analyzing and modeling complex

networks can be used for many missions, such as social interaction pattern anal-

ysis, social recommendation and protein functional modules recognition. As the10

most fundamental tasks in complex networks, node identification, link predic-

tion and information dissemination have been widely studied and concerned. In

addition, community detection is also one of the most significant tasks, which is

usually defined as identifying tightly linked subgraphs from complex networks

and benefiting from other tasks.15

In general, detecting community structures can help us recognize meaningful

modules of a network. A variety of works for community detection have been

developed, such as modularity-based methods [6], model-based methods [7, 8]

and random walk-based methods [9, 10, 11], where comprehensive surveys can

be seen in [12, 13]. However, all these methods assume that the target network20

is static, that is, the network structure is invariant. Virtually, the network struc-

ture varies over time, i.e. dynamic networks. More specifically, in a dynamic

network, the nodes may birth or death with time and links between two nodes

may appear or disappear. For dynamic network modeling, we usually reply to

it as a series of snapshots or slices, each of which can be regarded as a static25
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network. From the perspective of community detection, compared with static

networks, detecting the dynamic community poses new challenges [14], among

which, how to fuse consecutive snapshot networks to improve performance of

community detection and how to describe the evolution of communities are the

most important.30

Take a co-author network as an example, just as shown in Fig. 1, we show

two snapshots of the dynamic network based on the DBLP data [15]. The nodes

and edges are the authors and their cooperative relationship, and nodes with

the same color represent the same community to which they belong. These

three communities are the authors from data mining, database and machine35

learning, respectively. From the last snapshot to the next, a very important

phenomenon is that the research field of some nodes has changed, for example,

an author from the database joins into the data mining with the time going by

and varying of the network. This is a critical behavior of community detection

in dynamic networks, i.e. the transition behavior of nodes, which is the most40

widely considered dynamic pattern and also is our concern in this paper.

In recent years, more and more attention has been paid to dynamic com-

munity detection and different methods have been proposed, including two-step

methods, evolutionary clustering methods and model-based methods. Two-step

based methods [16, 17] usually apply a static community detection algorithm45

to each snapshot, and then perform community matching step at adjacent time

slices. This kind of methods is not accurate enough because data in the real

world is often noisy. Moreover, such a two-step process usually results in un-

stable community structures and consequentially, unwarranted community evo-

lution [15]. Evolutionary clustering is firstly devoted to clustering the stream50

data and has been developed for dynamic community detection, the previous

or historical network or community information are integrated into the com-

munity detection in following subsequent network snapshots, such as the evo-

lutionary spectral clustering, dynamic non-negative matrix factorization and

multi-objective evolutionary clustering [18, 19], this type of methods is still the55

most widely studied and used. The model-based methods [20, 21] usually define
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Figure 1: A co-author network with two snapshots. The left figure is the co-authorship of three

communities in the previous snapshot, corresponding to the data mining (green), database

(blue) and machine learning (orange), while the right figure shows the community assignment

changes in the next snapshot.

a series of network generation mechanisms to reconstruct the dynamic com-

plex network and analyze the evolution of communities, such as the dynamic

stochastic block model DSBM [15], which denoted the dynamic pattern based

on the classic SBM and transforming community detection and evolution into60

the parameter estimation. On the whole, the model-based methods have very

high computational complexity.

As we all know, all the existing methods for dynamic community detection

are focusing on the performance of community detection and the evolutionary

patterns or events, while ignoring the internal relevance between the structure65

varying of dynamic network and the evolution pattern of communities. There-

fore, we are interested in, how the structural information of nodes affects the

community transitions. In other words, community evolution is usually driven

by node transition, and the relationship between the transition behavior and

the local varying of nodes is our concern. Although some model-based methods70

(e.g. [22, 23]) use the degree of nodes to improve the accuracy of community

detection, these methods only make the node distribution within a community

following the power law and do not reveal the relationship between nodes de-
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gree and community evolution. As we have discussed, what kind of nodes are

more likely to transfer their communities? Are there more statistical features75

related to the transfer behavior of nodes? Which is the most important feature?

We believe that this could help us design more suitable models for community

discovery in dynamic networks.

Our motivation is to explore which local structure information or features of

the node has important impact on the transition behavior of nodes in dynamic80

networks, and which structural feature has a larger influence and which one has

a small impact. So in this paper, for a given dynamic network, we firstly obtain

its community structure based on three very successful temporal community

detection methods. Then, we extract the ten features of nodes based on the

structure of the previous snapshot network, and take the community transition85

behavior of nodes as the binary classification problem. In detail, we use the

decision tree as the classification model to find the node-level features that have

a general impact on node transition and analyze the community evolution on all

the snapshots of the dynamic network. We take the framework on 15 real-world

dynamic networks shows that the degree and average neighbor degree of nodes90

are the most two important features impacting on the node transition behavior.

We believe that this is very helpful for modeling dynamic complex networks in

future. The specific contributions of this paper are as follows:

• As far as we know, this paper is the first exploration of the problem that

what kind of nodes is more likely to transfer its community, it is the most95

important behavior in dynamic networks.

• We extract the community features of the nodes belonging and features

of the nodes themselves, and treat the node’s community transition as a

binary classification problem, then use these features to classify whether

the nodes are transferred or not.100

• We find that the important common feature of the node’s community

transition is node’s average neighbor degree and node’s degree. And node’s
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average neighbor degree is even more important than node’s degree, which

is inconsistent with our previous understanding.

2. Related Work105

Community detection is a fundamental task in complex network analysis,

which can offer insight into the network formation mechanism and prediction [13,

24].

There have been a variety of methods proposed for community detection,

including modularity optimization methods, spectral clustering methods and110

model-based methods. For example, Liu et al. [25] proposed a modularity opti-

mization method using simulated annealing with a k-means iterative procedure

to realize the model selection, which outperforms most of the similarity methods.

Some other methods [26] detect clusters of networks by utilizing the spectral

properties of the graph, but when the network is sparse, the eigenvalues of115

the community-related eigenvectors are not disparate, which may make spectral

clustering unstable. Krzakala et al. [27] proposed a spectral algorithm based

on a non-backtracking walk to solve this problem on directed networks. Karrer

et al. [7] proposed a model-based method called the degree corrected stochastic

block model, in which nodes in the same community can have heterogeneous120

degrees. That is in line with real-world data. The detailed review can be seen

in [13]. However, all these methods are only designed for static networks without

considering the temporal information.

Dynamic community detection needs to solve two key sub-problems. One

is detecting community structure of each snapshot, and the other is matching125

communities across consecutive time slices or tracking community evolution.

Most previous studies have addressed these two issues separately.

For the first problem, previous works can be divided into two-step methods,

evolutionary clustering and model-based methods. The two-step approaches

solve this problem by performing a static community detection method on each130

snapshot and then matching communities between consecutive snapshots. Taje-
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una et al. [28] proposed a two-step method, which uses a similarity measure that

involves the global temporal aspect of the network under investigation to match

the communities in different time slices. Evolutionary clustering introduces the

community division information from previous snapshots when performing the135

community detection approach to the current snapshot [19]. TILES [29] is a

state-of-the-art evolutionary clustering method, which dynamically recomputes

community membership of nodes whenever a new interaction takes place. This

strategy makes TILES fit for large networks and its accuracy is higher than

most existing algorithms. Model-based methods, like dynamic stochastic block140

model [15], considering the dynamic network from the perspective of generat-

ing model, the mechanism of the network is constructed and the community

structures are obtained by parameter estimation [30, 31].

Meanwhile, for community evolution, this exciting work [32] summarizes

community evolution into identifying some events, and then uses these events145

to carry out community and node evolution behavior. Palla et al. [16] is the first

to give the definition of six community evolution events, including birth, death,

merging, splitting, growth and contraction. They first used a clique percolation

method to detect communities in each snapshot, then matched community evo-

lution events and analyzed community evolutionary and node behavior predic-150

tion in consecutive snapshots by defining an auto-correlation function. Greene

et al. [33] proposed a standard dynamic network data set based on community

evolution events, which has been widely used in dynamic community detection.

Asur et al. [34] not only define five community events, but also define four

node-level events, including appear, disappear, join and leave, to capture the155

influence of the behavior of nodes on communities. But the dynamic behaviors

of different nodes are complex, and they have different effects on the community.

However, these works did not take into account that the evolutionary behaviors

of different nodes are distinguishing, and the impact on the community is also

different.160

Some researchers have realized that the node behavior is the driving force

of community evolution, and community evolution plays a key role in temporal
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community detection. Therefore, some previous work has begun to use node

structural features to enhance dynamic community detection [33].

In addition, there are some researchers trying to use node embedding model165

dynamic network [35]. They generally treat node embedding vectors as node

structural features and then use the node embedding vectors to enhance dynamic

community detection. However, this makes the node features unexplainable, as

a result, we cannot understand how node structural features affect community-

level evolution. Meanwhile, Yin et al. [36] used node average neighbor degree to170

enhance link prediction, but they did not discuss the general influence of node

average neighbor degree on real-world data sets.

3. Proposed Framework

In this section, we introduce how to find the most critical structural features

that affect the transition behavior of nodes across the snapshots.

Figure 2: Framework schematic

175

The proposed framework is depicted in Fig. 2, first of all, we use some

temporal community detection methods to detect node community membership

and node transition behaviors. Then, we extract the structural features of nodes

and use them as classification features. We assume that the node community

transition is only related to node structural features in the current snapshot,180
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so we split snapshots in a network into adjacent snapshot pairs, and besides,

different snapshot pairs in the same network are independent. We then treat

the node community transition as a binary classification problem. For example,

if a node i transfers its community membership between consecutive snapshots,

then it is labeled Li = 1. Finally, the most critical node structure features that185

affect the node community transition are analyzed.

To show the consistency of our proposed framework and experimental re-

sults, we select three popular and successful approaches for dynamic community

detection: (1) TILES [29], which belongs to the evolutionary clustering frame-

work. It effectively uses the network structure at time t and the community190

structure at the previous moment to detect the community at time t, which

better community detection performance and lower computational complexity;

(2) GenLouvain [37], which is a fast algorithm of modularity optimization for

time-dependent networks. It generalizes the determination of community struc-

ture via quality functions to dynamic networks and could discover some impor-195

tant dynamic patterns; (3) PisCES [38], which is a global community detection

method based on discovering persistent communities by eigenvector smoothing

and combining information across a series of snapshots. It is also data-driven

and can reveal dense communities that persist, merge, and diverge over time.

3.1. Notations and Definitions200

We use G = (V, E) to denote a collection of the dynamic network, where V
is the set of nodes and E is the set of edges of the dynamic network. We fix the

number of nodes in the network. Therefore, the nodes of the dynamic network

do not change over time, which means that the size of the nodes collection

|V| = N is a constant in the dynamic network. We use the changes in edges205

to represent the changes in the network. Therefore, a new node joins in the

network can be treated as an isolated node with links to other nodes. Thus,

the size of edges changes over time. We use |E| to represent the size of edges in

the whole network and |Et| to represent the size of edges in the t-th snapshot.

Furthermore, we also use G = (G1,G2, · · · ,GT ) to represent a dynamic network,210

9



where T representing the number of network snapshots and Gt representing the

t-th snapshot in the network. We then use Ct = (ct1, · · · , ctN ) to represent the

nodes community membership at snapshot t. More specifically, cti = k represents

node i belong to community k at snapshot t.

3.2. Community Detection and Node Transition Detection215

For the first step in our framework, we need to detect community structures

and node transition behaviors from network triplet data. We select the following

three methods, namely, TILES [29], GenLouvain [37] and PisCES [38].

• TILES [29] can solve both problems at the same time. TILES is a state-

of-the-art evolutionary community detection algorithm. It proceeds to220

analyze an interactive stream: when a new link is generated, TILES uses

a label propagation procedure to diffuse the changes to the node sur-

roundings and adjust the neighborhood community membership. A node

in TILES can belong to a community with two levels, i.e. peripheral level

and core level. A node is a core node if it involves at least a triangle with225

other nodes in the same community, and it is a peripheral node if it is a

one-hop neighbor of the core node. Only core nodes are allowed to spread

community membership to their neighbors.

• GenLouvain [37] proposes a multislice generalization of modularity in-

spired by the equivalence between the modularity quality function ( with230

a resolution parameter) and stability of communities under Laplacian dy-

namics. It can be used for multiple scales, time-dependent and multiplex

networks. This metric can be effectively learned by any modularity opti-

mization method.

• PisCES [38] extends the spectral clustering for dynamic networks through235

eigenvector smoothing, then it proposes an objective function based on

the series of eigenvectors across the snapshots, and finally, an iterative

algorithm is proposed for detecting the temporal communities.
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It should be noted that TILES generates overlapping communities. It be-

lieves that overlapping communities represent different spheres of the social240

world of an individual. This brings us some troubles, because if a node belongs

to different communities at the same time slice, how can we determine that this

node changes its community membership in the next time slice? We believe that

a node will transfer its community membership when it joins a new community,

because a new community can represent a new social hub or new interest of245

an individual. Feature selection has always been an active and widely accepted

method for enhancing the quality of data in machine learning and data mining.

Algorithm 1 Feature extraction

Input: A sequence of undirected graphs G = G1, · · · ,GT and the community

assignment C = C1, · · · , CT

Output: Nodes feature set F and nodes label set L

1: for every graph Gt where t �= T do

2: for every community Ct
l in Ct do

3: Calculate community level features Fc

4: for every node i in community Ct
l do

5: Calculate node level features Fn

6: Compose node i’s feature sequence F = Fc + Fn

7: if node i changes its community in Gt+1 then

8: node i’s label Li = 1

9: else

10: node i’s label Li = 0

11: end if

12: end for

13: end for

14: end for
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3.3. Feature Selection and Extraction

Considering that the transfer behavior of a node is affected by the commu-250

nity in which it belongs to, we also introduce several community-level features.

For example, if an online social group is not active enough, the members of the

group will be more likely to join other groups. So we need to take community-

level features into consideration, to verify its influence on the node community

transition for the empirical evidence. Thus, our node features contain commu-255

nity structural features and node structural features in the network.

We use five community-level features to represent the state of the community

in which the node is located, including the number of community nodes, the

number of community edges, intra-community edges, inter-community edges

and community activities. These features can be considered as higher-level260

local structural features of nodes. In addition, we use five node features to

capture the node lower-level local structural features, including node degree,

node average neighbor degree, node closeness centrality and node betweenness

centrality. The detailed description of node features is listed in Table 1.

The feature extraction algorithm is provided in Algorithm 1. To calculate265

the node’s features effectively, we calculate community-level features before cal-

culating node features that are part of this community. And after splitting

snapshots of a network into snapshot pairs, our feature extraction algorithm

can run in parallel. This can make our algorithm suitable for a large scale

network.270

3.4. Feature Importance Analysis

We use decision tree [39] to solve the binary classification problem. Because

a decision tree is a white-box algorithm, it can tell us which feature plays a

more important role in the classification mission. Different from artificial neural

networks and other black-box algorithms, it can output any information needed275

during the classification process.

A decision tree is a solution support tool that uses a tree-like graph or

model of decisions. Each node of the decision tree is a “test” of the feature
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Table 1: Notations and definitions

Symbol Feature Description Definition

f1 Community

node number

Number of nodes within the community

l at time t.

nt
l

f2 Community

edge number

Number of edges within the community

l at time t.

etl

f3 Intra commu-

nity edges

Ratio of the total number of edges be-

tween the nodes inside the community

(etl(in)) to the number of nodes in the

community.

etl(in)
nt
l

f4 Inter commu-

nity edges

Ratio of the total number of edges of

nodes connected outside the commu-

nity (etl(out)) to the number of nodes

in the community.

etl(out)
nt
l

f5 Community ac-

tivity

Ratio of the total number of connec-

tions made in the previous snapshot by

the nodes of the community (atl) to the

number of nodes in the community.

at
l

nt
l

f6 Community

Conductance

Ratio of the number of edges in the

community to the sum of degrees of the

nodes in the community.

etl
dt
l

f7 Node degree Sum of links connected to node i at

time t.

eti

f8 Node average

neighbor degree

Average degree of node i’s neighbors,

where N(i)t are the neighbors of node

i at time t and etj is the degree of node

j which belongs to N(i)t.

1
|N(i)t|

∑
j∈N(i)t e

t
j

f9 Node closeness

centrality

Measuring a node i’s average path

length to other nodes in community,

where Ct
l,−i is a set of all nodes in com-

munity l except i at time t and d(i, j)

is the distance between node i and j.

∑
j∈Ct

l,−i

Ct
l

d(i,j)

f10 Node between-

ness centrality

Measuring a node i’s importance in its

community connectivity, where σjk is

the total number of shortest paths from

node j to node k and σjk(i) is the num-

ber of those paths that pass through i

∑
j,k∈Ct

l,−i

σjk(i)
σjk
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(e.g. whether a coin flip appears at the head or tail), each branch is the result

of the test (e.g. the head and the tail of a coin flip are two branches), and280

each leaf node is a class label. The path from the root to the leaf represents

the classification rule. Decision tree is an efficient algorithm for classification

mission. The cost of using a tree is logarithmic, which makes it very fast in

large data sets.

We use Gini importance or Mean Decrease in Impurity (MDI) to calculate285

each feature importance as the total decrease in node impurity [40]. Node

impurity like Gini impurity is a computationally efficient approximation to the

entropy, which can measure how well a potential split is separating the samples

in a decision tree node. Decrease Impurity is defined as below:

Δi(s, r) = i(r)− pLi(rL)− pRi(rR), (1)

where i(r) is some impurity measure like Gini index, r represents a decision290

tree node, and rL and rR are the children of r. Besides, pL = NrL/Nr and

pR = NrR/Nr, where Nr is the number of samples go through node r.

The normalized Δi(s, r) for each feature can give us a kind of importance

measure, and it is very computationally efficient for large scale data sets.
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Figure 3: The degree distributions of 15 dynamic networks.
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4. Experiment295

In this section, we first introduce the details of the 15 real-world data sets

used throughout this paper. Then we show the binary classification results in

15 data sets and our findings in feature importance experiment, that is, node

degree and node average neighbor degree are the two most important structural

features for node community transition.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

features

internet

facebook

bitcoin

Friend

fb_forum

fb_messages

ia_digg_reply

ia_facebook_wall_wosn_dir

ia_reality_call

ia_slashdot_reply_dir
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soc_epinions_trust_dir

soc_wiki_elec

wiki

d
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e
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Figure 4: The importance of different node characteristics or features on the dynamic be-

havior of 15 real dynamic networks based on the TILES [29] method.

300

4.1. Real-World Data Sets

The data sets used in the experiment contain different types of networks, for

example, social networks with social account users as nodes and relationship as

links, friends cell phone call records networks with phone owners as nodes and

phone contacts as links, who-trust-whom networks with people as nodes and305

trust relationships as links and tech-website answering questions networks with

website account as nodes and answering questions as links. The characteristics

of the data sets and their sources are given in Table 2. Figure 3 shows all of the

node distributions of our data sets follow a power law.
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Figure 5: The importance of different node characteristics or features on the dynamic be-

havior of 15 real dynamic networks based on the GenLouvain [37] method.

Figure 6: The importance of different node characteristics or features on the dynamic behavior

of 15 real dynamic networks based on the PisCES [38] method.
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Table 2: Description of data sets

Name Description |V| |E|
Internet Internet [41] topology during 04/01/2004− 04/04/2005. 33936 104824

Facebook Facebook New Orleans networks [42] friends links during

06/08/2008− 21/01/2009.

62306 905565

bitcoin Who-trusts-whom network of people who trade using Bit-

coin on Bitcoin OTC [43] during 09/11/2010−19/01/2016.

5881 35592

Friend Call logs of members of a young-family residential liv-

ing community adjacent to a major research university in

North America [44] during 10/07/2010− 16/07/2011.

130 60518

fb-forum The Facebook-like Forum Network [45] during

15/05/2004− 24/10/2004.

899 33720

fb-messages The Facebook-like Social Network [45] from an online

community for students at University of California dur-

ing 24/03/2004− 22/10/2004.

1897 61734

ia-digg-reply A reply network of the social news website Digg [45] dur-

ing 29/10/2008− 13/11/2008.

30397 87627

ia-facebook-

wall-wosn-dir

The Facebook friendship graph [45] during 15/05/2004−
24/10/2004.

44668 876993

ia-reality-call The MIT Reality mining a small set of human call logs

data [45] during 24/09/2004− 07/01/2005.

6810 52050

ia-slashdot-

reply-dir

Reply network of technology website Slashdot [45] during

01/12/2005− 31/08/2006.

51097 140778

ia-stackexch-

user-marks-post

User answering question network of Stack Overflow [45]

during 03/10/2008− 25/11/2011.

545196 1302439

ia-yahoo-

messages

The message network in Yahoo [45] with time presented

by link sequences.

99303 3179718

soc-epinions-

trust-dir

Epinion who-trusts-whom network [45] with time pre-

sented by link sequences.

131828 841373

soc-wiki-elec Wikipedia adminship election data [45] during

14/09/2004− 05/01/2008.

8271 107071

wiki The Wikipedia links data [41] during 20/02/2001 −
06/12/2002.

329623 39953145
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4.2. Feature Importance310

We use the decision tree to process the node binary classification mission

on 15 real-world data sets. As mentioned before, decision tree is an efficient

algorithm for classification, so it is a good choice to execute binary classification

in large data sets. Moreover, it allows us to calculate the feature importance in

classification mission.315

Figures 4, 5 and 6 show the importance of different node characteristics

or features on the dynamic behavior of 15 real dynamic networks based on

the TILES [29], GenLouvain [37] and PisCES [38], respectively. The results

all show that node degree (f7) and node average neighbor degree (f8) are the

two generally important features for node community transition on dynamic320

networks, which means that node degree and node average neighbor degree

affect almost all the real-world data sets in community transition. Furthermore,

node community activity plays an important role in slashdot reply data, but

this feature is not appliable to all other data sets, which means that it does

not have a general impact on community transition. Other community-level325

features, such as the number of community node, have no obvious guarantee

against community transition. On the contrary, node-level features, such as

node closeness centrality and node betweenness centrality, have a few intense

on some data sets like internet, facebook and facebook messages. However, they

did not work well on digg reply data or slashdot reply data. It also proves that330

the node closeness centrality and node betweenness centrality have no general

influence on community transition.

Figure 7 shows the bitmaps of node degree in different labels (1 represents

nodes who transferred their community, 0 otherwise) on 15 data sets. As we can

see, it shows an obvious pattern, that is, all nodes that transfer their commu-335

nities have a higher degree than nodes that do not transfer their communities.

This pattern proves that degree-corrected models like [46, 47, 7] have to be in

conformity with the facts. Other features like node community activity, node

closeness centrality and node betweenness centrality may play important roles

in community transition in some data sets, but not all of them. Just as shown340
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in Fig. 8, node closeness centrality does not show obvious pattern on all 15

data sets. Even in internet data, which shows the important instance of node

closeness centrality, node closeness centrality still does not show significant dif-

ferences between different labels. Furthermore, we find that the node average

neighbor degree also plays an important role, or in other words, it plays a more345

important role than the node degree in almost all data sets we used. How-

ever, just as shown in Fig. 9, although the different labels on each data set are

different, the bitmaps do not show an obvious consistent pattern. Through a

case study on how the average neighbor degree of nodes affects the migration

of a node community, it is found that it is still useful for dynamic community350

detection or community evolution.

Just as shown in Fig. 10(a), we chose three most representative data sets,

namely, stackoverflow (left two columns), Friend (middle two columns) and

facebook-wall-wosn (right two columns). The left column in every data set is

the degree of nodes to which the nodes of communities have changed. The nodes355

that transferred their community have a larger degree than the nodes that did

not. And as shown in Fig. 10(b), we also chose three most representative data

sets, namely, facebook (left two columns), Friend (middle two columns) and

facebook-wall-wosn (right two columns). The left column in every data set is

the average neighbor degree of nodes that changed communities, which proves360

that nodes that transferred their communities have a larger average neighbor

degree than the nodes that did not.

It is undoubtedly that the node degree can affect node community transition.

Obviously, the higher the degree of nodes, the more likely it is to encounter nodes

in other communities. And if the average neighbor degree of a node is larger,365

then the node is more likely to be affected by its neighbors. We will show a

real-world case in the next section.
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Figure 7: Bitmaps of nodes degree on 15 data sets
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Figure 8: Bitmaps of nodes closeness centrality on 15 data sets
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Figure 9: Bitmaps of nodes average neighbor degree on 15 data sets. 1 in x-axis represents

the bitmap of nodes transferring their communities, and 0 otherwise.
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Figure 10: Quartile map of node degree and node average neighbor degree in three data sets

5. Case Study

In this section, we use part of the DBLP data [15] to show the impact of

node degree and node average neighbor degree on node community transition.370

DBLP is a well-studied data set in many research area, especially in complex

network analysis. Our data is extracted from DBLP, and it contains the co-

authorship information among the papers from 28 conferences over 10 years

(1997 − 2007). These conferences cover three main research areas, including

data mining, database and machine learning. Moreover, this data set has a375

ground truth, so we can extract the community membership of nodes without

pre-processing this data.

Figure 11 shows the sample of DBLP data in year 2006 − 2007. The text

of a node means ‘average neighbor degree-author name’, e.g. ‘4.82- Shuicheng

Yang ’ means this node represents an author Shuicheng Yang, and its average380

neighbor degree is 4.82. And the scale of node represents node degree, i.e. a

big node has more friends than a small node. The top two pictures show the

influence of average neighbor degree. Jun Yan, Zheng Chen and Ning Liu are

working on the database at previous snapshot (top-left), and they all have large

average neighbor degree 9.33. They have a big degree friend Shuicheng Yang385

who is working on machine learning. Influenced by Shuicheng Yang, in the next

snapshot (top-right) Jun Yan, Zheng Chen and Ning Liu change their research

interest to machine learning, i.e. they published a paper about machine learning
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Figure 11: Cases in DBLP shows the influence of node degree and average neighbor degree to

node’s community transition.

together in 2006. After investigation, we find that the above four authors jointly

published an article on TKDE in 20061. And the two pictures at the bottom390

show the influence of node degree. Marc Pollefey has a large degree, which

means that he has many friends with this network. Most of his friends are

working on data mining (bottom-left). Influenced by his friends, he changed

his research area to data mining (bottom-right) in the next snapshot. More

specifically, Marc Pollefey and one of his friends Jan-Michael Frahm published395

a paper together on EDGE in 20062. Through these samples, we can intuitively

understand the influence of the node degree and the node average neighbor

degree on the transition of node community. However, more research on the

node average neighbor degree is still needed to explore its impact mechanism

on node community transition.400

1Yan, Jun, et al. “Effective and efficient dimensionality reduction for large-scale and

streaming data preprocessing.” IEEE transactions on Knowledge and Data Engineering 18.3

(2006): 320-333.
2Sinha, Sudipta N., et al. “GPU-based video feature tracking and matching.” EDGE,

workshop on edge computing using new commodity architectures. Vol. 278. 2006.
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6. Conclusion

In this paper, we first consider the node’s community transition as a binary

classification problem. Through the analysis of 15 real-world dynamic networks,

it is found that the degree and average neighbor degree of nodes are the two

significant features that affect the pattern of node’s community transition. In405

fact, we observe that node average neighbor degree is more important than the

node degree, which is inconsistent with our previous understanding and also

corrects our previous cognition of node transition factors. It has important

reference meaning for the generation of dynamic networks and the detection of

community structure. We also conduct a case study to explain the insurance410

against the node degree and node average neighbor degree to node community

transition.

Unfortunately, the influence mechanism of the node average neighbor degree

on the node community transition has not been found. This is the next step of

our work. At the same time, one of the main directions of our future research is415

how to integrate our results with dynamic community detection methods, which

is also what we will do next.
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[6] D. Džamić, D. Aloise, N. Mladenović, Ascent–descent variable neighbor-

hood decomposition search for community detection by modularity maxi-

mization, Annals of Operations Research 272 (1-2) (2019) 273–287.

[7] B. Karrer, M. E. Newman, Stochastic blockmodels and community struc-440

ture in networks, Physical review E 83 (1) (2011) 016107.

[8] Y.-M. Wen, L. Huang, C.-D. Wang, K.-Y. Lin, Direction recovery in undi-

rected social networks based on community structure and popularity, In-

formation Sciences 473 (2019) 31–43.

[9] D. He, Z. Feng, D. Jin, X. Wang, W. Zhang, Joint identification of network445

communities and semantics via integrative modeling of network topologies

and node contents, in: Thirty-First AAAI Conference on Artificial Intelli-

gence, 2017, pp. 116–124.

[10] E. M. Airoldi, D. M. Blei, S. E. Fienberg, E. P. Xing, Mixed membership

stochastic blockmodels, Journal of machine learning research 9 (Sep) (2008)450

1981–2014.

[11] M. Qiao, J. Yu, W. Bian, Q. Li, D. Tao, Improving stochastic block models

by incorporating power-law degree characteristic., in: IJCAI, 2017, pp.

2620–2626.

26



[12] S. Fortunato, Community detection in graphs, Physics reports 486 (3-5)455

(2010) 75–174.

[13] S. Fortunato, D. Hric, Community detection in networks: A user guide,

Physics reports 659 (2016) 1–44.

[14] H. Liao, M. S. Mariani, M. Medo, Y.-C. Zhang, M.-Y. Zhou, Ranking in

evolving complex networks, Physics Reports 689 (2017) 1–54.460

[15] T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, Detecting communities and

their evolutions in dynamic social networks—a bayesian approach, Machine

learning 82 (2) (2011) 157–189.

[16] G. Palla, A.-L. Barabási, T. Vicsek, Quantifying social group evolution,

Nature 446 (7136) (2007) 664.465

[17] Y. Sun, J. Tang, L. Pan, J. Li, Matrix based community evolution events

detection in online social networks, in: 2015 IEEE International Conference

on Smart City/SocialCom/SustainCom (SmartCity), IEEE, 2015, pp. 465–

470.

[18] M.-S. Kim, J. Han, A particle-and-density based evolutionary clustering470

method for dynamic networks, Proceedings of the VLDB Endowment 2 (1)

(2009) 622–633.

[19] D. Chakrabarti, R. Kumar, A. Tomkins, Evolutionary clustering, in: Pro-

ceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2006, pp. 554–560.475

[20] X. Fan, L. Cao, R. Y. Da Xu, Dynamic infinite mixed-membership stochas-

tic blockmodel, IEEE transactions on neural networks and learning systems

26 (9) (2014) 2072–2085.

[21] X. Tang, C. C. Yang, Detecting social media hidden communities using dy-

namic stochastic blockmodel with temporal dirichlet process, ACM Trans-480

actions on Intelligent Systems and Technology (TIST) 5 (2) (2014) 36.

27



[22] S. Sengupta, Y. Chen, A block model for node popularity in networks with

community structure, Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 80 (2) (2018) 365–386.

[23] L. Yu, W. H. Woodall, K.-L. Tsui, Detecting node propensity changes in485

the dynamic degree corrected stochastic block model, Social Networks 54

(2018) 209–227.

[24] L. Huang, C.-D. Wang, H.-Y. Chao, A harmonic motif modularity approach

for multi-layer network community detection, in: 2018 IEEE International

Conference on Data Mining (ICDM), IEEE, 2018, pp. 1043–1048.490

[25] J. Liu, T. Liu, Detecting community structure in complex networks us-

ing simulated annealing with k-means algorithms, Physica A: Statistical

Mechanics and its Applications 389 (11) (2010) 2300–2309.

[26] U. Von Luxburg, A tutorial on spectral clustering, Statistics and computing

17 (4) (2007) 395–416.495

[27] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová,
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