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Abstract

Community detection and community evolution tracking are two important
tasks in dynamic complex network analysis. Recently, a variety of models
and methods have been proposed for detecting the community structure and
analyzing their evolution. However, all these methods are only committed to
improving the performance of community detection or identifying evolutionary
events, ignoring the internal relevance between the structure of each snapshot of
the dynamic network and the evolution pattern of communities, especially the
structural features of nodes and their dynamic transition behavior. To cope with
this problem, we firstly conduct experiments on 15 real-world dynamic networks
to explore the transition behavior of nodes in dynamic networks, which is one
of the most influential evolutionary patterns in temporal community detection.
Firstly, we obtain the temporal community structure based on very successful
temporal community detection methods. Secondly, we extract features of nodes
based on the structure of the dynamic network, and take the community transi-
tion behavior of nodes as the binary classification problem. Finally, we use the
decision tree to find the node-level features that have a general impact on node
transition. Experiments indicate that the degree and average neighbor degree

of nodes have the most common indispensable impact on the node transition
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behavior, which are very helpful for modeling dynamic complex networks in
future.
Keywords: dynamic complex network, node transition, node-level feature,

binary classification, average neighbor degree

1. Introduction

Complex network analysis [1, 2] has received increasing attention from re-
searchers in different fields, including computer science, social science, and phys-
ical science [3, 4, 5]. Complex networks always consist of nodes and edges, which
represent the objects and the interactions between the objects, respectively. For
example, in a social network, nodes could be the social accounts and edges rep-
resent the following or followed relationships between accounts. As one of the
most important and powerful data structures, analyzing and modeling complex
networks can be used for many missions, such as social interaction pattern anal-
ysis, social recommendation and protein functional modules recognition. As the
most fundamental tasks in complex networks, node identification, link predic-
tion and information dissemination have been widely studied and concerned. In
addition, community detection is also one of the most significant tasks, which is
usually defined as identifying tightly linked subgraphs from complex networks
and benefiting from other tasks.

In general, detecting community structures can help us recognize meaningful
modules of a network. A variety of works for community detection have been
developed, such as modularity-based methods [6], model-based methods [7, §]
and random walk-based methods [9, 10, 11], where comprehensive surveys can
be seen in [12, 13]. However, all these methods assume that the target network
is static, that is, the network structure is invariant. Virtually, the network struc-
ture varies over time, i.e. dynamic networks. More specifically, in a dynamic
network, the nodes may birth or death with time and links between two nodes
may appear or disappear. For dynamic network modeling, we usually reply to

it as a series of snapshots or slices, each of which can be regarded as a static
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network. From the perspective of community detection, compared with static
networks, detecting the dynamic community poses new challenges [14], among
which, how to fuse consecutive snapshot networks to improve performance of
community detection and how to describe the evolution of communities are the
most important.

Take a co-author network as an example, just as shown in Fig. 1, we show
two snapshots of the dynamic network based on the DBLP data [15]. The nodes
and edges are the authors and their cooperative relationship, and nodes with
the same color represent the same community to which they belong. These
three communities are the authors from data mining, database and machine
learning, respectively. From the last snapshot to the next, a very important
phenomenon is that the research field of some nodes has changed, for example,
an author from the database joins into the data mining with the time going by
and varying of the network. This is a critical behavior of community detection
in dynamic networks, i.e. the transition behavior of nodes, which is the most
widely considered dynamic pattern and also is our concern in this paper.

In recent years, more and more attention has been paid to dynamic com-
munity detection and different methods have been proposed, including two-step
methods, evolutionary clustering methods and model-based methods. Two-step
based methods [16, 17] usually apply a static community detection algorithm
to each snapshot, and then perform community matching step at adjacent time
slices. This kind of methods is not accurate enough because data in the real
world is often noisy. Moreover, such a two-step process usually results in un-
stable community structures and consequentially, unwarranted community evo-
lution [15]. Evolutionary clustering is firstly devoted to clustering the stream
data and has been developed for dynamic community detection, the previous
or historical network or community information are integrated into the com-
munity detection in following subsequent network snapshots, such as the evo-
lutionary spectral clustering, dynamic non-negative matrix factorization and
multi-objective evolutionary clustering [18, 19], this type of methods is still the
most widely studied and used. The model-based methods [20, 21] usually define
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Figure 1: A co-author network with two snapshots. The left figure is the co-authorship of three
communities in the previous snapshot, corresponding to the data mining (green), database
(blue) and machine learning (orange), while the right figure shows the community assignment

changes in the next snapshot.

a series of network generation mechanisms to reconstruct the dynamic com-
plex network and analyze the evolution of communities, such as the dynamic
stochastic block model DSBM [15], which denoted the dynamic pattern based
on the classic SBM and transforming community detection and evolution into
the parameter estimation. On the whole, the model-based methods have very
high computational complexity.

As we all know, all the existing methods for dynamic community detection
are focusing on the performance of community detection and the evolutionary
patterns or events, while ignoring the internal relevance between the structure
varying of dynamic network and the evolution pattern of communities. There-
fore, we are interested in, how the structural information of nodes affects the
community transitions. In other words, community evolution is usually driven
by node transition, and the relationship between the transition behavior and
the local varying of nodes is our concern. Although some model-based methods
(e.g. [22, 23]) use the degree of nodes to improve the accuracy of community
detection, these methods only make the node distribution within a community

following the power law and do not reveal the relationship between nodes de-
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gree and community evolution. As we have discussed, what kind of nodes are
more likely to transfer their communities? Are there more statistical features
related to the transfer behavior of nodes? Which is the most important feature?
We believe that this could help us design more suitable models for community
discovery in dynamic networks.

Our motivation is to explore which local structure information or features of
the node has important impact on the transition behavior of nodes in dynamic
networks, and which structural feature has a larger influence and which one has
a small impact. So in this paper, for a given dynamic network, we firstly obtain
its community structure based on three very successful temporal community
detection methods. Then, we extract the ten features of nodes based on the
structure of the previous snapshot network, and take the community transition
behavior of nodes as the binary classification problem. In detail, we use the
decision tree as the classification model to find the node-level features that have
a general impact on node transition and analyze the community evolution on all
the snapshots of the dynamic network. We take the framework on 15 real-world
dynamic networks shows that the degree and average neighbor degree of nodes
are the most two important features impacting on the node transition behavior.
We believe that this is very helpful for modeling dynamic complex networks in

future. The specific contributions of this paper are as follows:

e As far as we know, this paper is the first exploration of the problem that
what kind of nodes is more likely to transfer its community, it is the most

important behavior in dynamic networks.

e We extract the community features of the nodes belonging and features
of the nodes themselves, and treat the node’s community transition as a
binary classification problem, then use these features to classify whether

the nodes are transferred or not.

e We find that the important common feature of the node’s community

transition is node’s average neighbor degree and node’s degree. And node’s
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average neighbor degree is even more important than node’s degree, which

is inconsistent with our previous understanding.

2. Related Work

Community detection is a fundamental task in complex network analysis,
which can offer insight into the network formation mechanism and prediction [13,
24].

There have been a variety of methods proposed for community detection,
including modularity optimization methods, spectral clustering methods and
model-based methods. For example, Liu et al. [25] proposed a modularity opti-
mization method using simulated annealing with a k-means iterative procedure
to realize the model selection, which outperforms most of the similarity methods.
Some other methods [26] detect clusters of networks by utilizing the spectral
properties of the graph, but when the network is sparse, the eigenvalues of
the community-related eigenvectors are not disparate, which may make spectral
clustering unstable. Krzakala et al. [27] proposed a spectral algorithm based
on a non-backtracking walk to solve this problem on directed networks. Karrer
et al. [7] proposed a model-based method called the degree corrected stochastic
block model, in which nodes in the same community can have heterogeneous
degrees. That is in line with real-world data. The detailed review can be seen
in [13]. However, all these methods are only designed for static networks without
considering the temporal information.

Dynamic community detection needs to solve two key sub-problems. One
is detecting community structure of each snapshot, and the other is matching
communities across consecutive time slices or tracking community evolution.
Most previous studies have addressed these two issues separately.

For the first problem, previous works can be divided into two-step methods,
evolutionary clustering and model-based methods. The two-step approaches
solve this problem by performing a static community detection method on each

snapshot and then matching communities between consecutive snapshots. Taje-
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una et al. [28] proposed a two-step method, which uses a similarity measure that
involves the global temporal aspect of the network under investigation to match
the communities in different time slices. Evolutionary clustering introduces the
community division information from previous snapshots when performing the
community detection approach to the current snapshot [19]. TILES [29] is a
state-of-the-art evolutionary clustering method, which dynamically recomputes
community membership of nodes whenever a new interaction takes place. This
strategy makes TILES fit for large networks and its accuracy is higher than
most existing algorithms. Model-based methods, like dynamic stochastic block
model [15], considering the dynamic network from the perspective of generat-
ing model, the mechanism of the network is constructed and the community
structures are obtained by parameter estimation [30, 31].

Meanwhile, for community evolution, this exciting work [32] summarizes
community evolution into identifying some events, and then uses these events
to carry out community and node evolution behavior. Palla et al. [16] is the first
to give the definition of six community evolution events, including birth, death,
merging, splitting, growth and contraction. They first used a clique percolation
method to detect communities in each snapshot, then matched community evo-
lution events and analyzed community evolutionary and node behavior predic-
tion in consecutive snapshots by defining an auto-correlation function. Greene
et al. [33] proposed a standard dynamic network data set based on community
evolution events, which has been widely used in dynamic community detection.
Asur et al. [34] not only define five community events, but also define four
node-level events, including appear, disappear, join and leave, to capture the
influence of the behavior of nodes on communities. But the dynamic behaviors
of different nodes are complex, and they have different effects on the community.
However, these works did not take into account that the evolutionary behaviors
of different nodes are distinguishing, and the impact on the community is also
different.

Some researchers have realized that the node behavior is the driving force

of community evolution, and community evolution plays a key role in temporal
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community detection. Therefore, some previous work has begun to use node
structural features to enhance dynamic community detection [33].

In addition, there are some researchers trying to use node embedding model
dynamic network [35]. They generally treat node embedding vectors as node
structural features and then use the node embedding vectors to enhance dynamic
community detection. However, this makes the node features unexplainable, as
a result, we cannot understand how node structural features affect community-
level evolution. Meanwhile, Yin et al. [36] used node average neighbor degree to
enhance link prediction, but they did not discuss the general influence of node

average neighbor degree on real-world data sets.

3. Proposed Framework

In this section, we introduce how to find the most critical structural features

that affect the transition behavior of nodes across the snapshots.
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Figure 2: Framework schematic

The proposed framework is depicted in Fig. 2, first of all, we use some
temporal community detection methods to detect node community membership
and node transition behaviors. Then, we extract the structural features of nodes
and use them as classification features. We assume that the node community

transition is only related to node structural features in the current snapshot,
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so we split snapshots in a network into adjacent snapshot pairs, and besides,
different snapshot pairs in the same network are independent. We then treat
the node community transition as a binary classification problem. For example,
if a node ¢ transfers its community membership between consecutive snapshots,
then it is labeled L; = 1. Finally, the most critical node structure features that
affect the node community transition are analyzed.

To show the consistency of our proposed framework and experimental re-
sults, we select three popular and successful approaches for dynamic community
detection: (1) TILES [29], which belongs to the evolutionary clustering frame-
work. It effectively uses the network structure at time ¢ and the community
structure at the previous moment to detect the community at time ¢, which
better community detection performance and lower computational complexity;
(2) GenLouvain [37], which is a fast algorithm of modularity optimization for
time-dependent networks. It generalizes the determination of community struc-
ture via quality functions to dynamic networks and could discover some impor-
tant dynamic patterns; (3) PisCES [38], which is a global community detection
method based on discovering persistent communities by eigenvector smoothing
and combining information across a series of snapshots. It is also data-driven

and can reveal dense communities that persist, merge, and diverge over time.

3.1. Notations and Definitions

We use G = (V,€) to denote a collection of the dynamic network, where V
is the set of nodes and & is the set of edges of the dynamic network. We fix the
number of nodes in the network. Therefore, the nodes of the dynamic network
do not change over time, which means that the size of the nodes collection
|[V| = N is a constant in the dynamic network. We use the changes in edges
to represent the changes in the network. Therefore, a new node joins in the
network can be treated as an isolated node with links to other nodes. Thus,
the size of edges changes over time. We use |€| to represent the size of edges in
the whole network and |£?| to represent the size of edges in the ¢-th snapshot.

Furthermore, we also use G = (G*,G?,---,G7T) to represent a dynamic network,
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where T representing the number of network snapshots and G* representing the
t-th snapshot in the network. We then use C* = (¢!, --,cl) to represent the
nodes community membership at snapshot ¢. More specifically, ¢! = k represents

node ¢ belong to community k at snapshot t.

3.2. Community Detection and Node Transition Detection

For the first step in our framework, we need to detect community structures
and node transition behaviors from network triplet data. We select the following

three methods, namely, TILES [29], GenLouvain [37] and PisCES [38].

e TILES [29] can solve both problems at the same time. TILES is a state-
of-the-art evolutionary community detection algorithm. It proceeds to
analyze an interactive stream: when a new link is generated, TILES uses
a label propagation procedure to diffuse the changes to the node sur-
roundings and adjust the neighborhood community membership. A node
in TILES can belong to a community with two levels, i.e. peripheral level
and core level. A node is a core node if it involves at least a triangle with
other nodes in the same community, and it is a peripheral node if it is a
one-hop neighbor of the core node. Only core nodes are allowed to spread

community membership to their neighbors.

e GenLouvain [37] proposes a multislice generalization of modularity in-
spired by the equivalence between the modularity quality function ( with
a resolution parameter) and stability of communities under Laplacian dy-
namics. It can be used for multiple scales, time-dependent and multiplex
networks. This metric can be effectively learned by any modularity opti-

mization method.

e PisCES [38] extends the spectral clustering for dynamic networks through
eigenvector smoothing, then it proposes an objective function based on
the series of eigenvectors across the snapshots, and finally, an iterative

algorithm is proposed for detecting the temporal communities.

10
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It should be noted that TILES generates overlapping communities. It be-
lieves that overlapping communities represent different spheres of the social
world of an individual. This brings us some troubles, because if a node belongs
to different communities at the same time slice, how can we determine that this
node changes its community membership in the next time slice? We believe that
a node will transfer its community membership when it joins a new community,
because a new community can represent a new social hub or new interest of
an individual. Feature selection has always been an active and widely accepted

method for enhancing the quality of data in machine learning and data mining.

Algorithm 1 Feature extraction

Input: A sequence of undirected graphs G = G',---,G” and the community
assignment C =C',---,CT
Output: Nodes feature set F' and nodes label set L

1: for every graph G where t # T do

2. for every community C} in C* do

3: Calculate community level features F.

4: for every node ¢ in community C/ do

5: Calculate node level features F,

6: Compose node i’s feature sequence ' = F, + F},
7: if node 4 changes its community in G'*! then
8: node 7’s label L; = 1

9: else

10: node i’s label L; = 0

11: end if

12: end for

13:  end for

14: end for

11
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3.8. Feature Selection and Extraction

Considering that the transfer behavior of a node is affected by the commu-
nity in which it belongs to, we also introduce several community-level features.
For example, if an online social group is not active enough, the members of the
group will be more likely to join other groups. So we need to take community-
level features into consideration, to verify its influence on the node community
transition for the empirical evidence. Thus, our node features contain commu-
nity structural features and node structural features in the network.

We use five community-level features to represent the state of the community
in which the node is located, including the number of community nodes, the
number of community edges, intra-community edges, inter-community edges
and community activities. These features can be considered as higher-level
local structural features of nodes. In addition, we use five node features to
capture the node lower-level local structural features, including node degree,
node average neighbor degree, node closeness centrality and node betweenness
centrality. The detailed description of node features is listed in Table 1.

The feature extraction algorithm is provided in Algorithm 1. To calculate
the node’s features effectively, we calculate community-level features before cal-
culating node features that are part of this community. And after splitting
snapshots of a network into snapshot pairs, our feature extraction algorithm
can run in parallel. This can make our algorithm suitable for a large scale

network.

3.4. Feature Importance Analysis

We use decision tree [39] to solve the binary classification problem. Because
a decision tree is a white-box algorithm, it can tell us which feature plays a
more important role in the classification mission. Different from artificial neural
networks and other black-box algorithms, it can output any information needed
during the classification process.

A decision tree is a solution support tool that uses a tree-like graph or

model of decisions. Each node of the decision tree is a “test” of the feature

12



Table 1: Notations and definitions

Symbol | Feature Description Definition
f1 Community Number of nodes within the community | nj
node number [ at time .
f2 Community Number of edges within the community | e}
edge number [ at time t.
f3 Intra  commu- | Ratio of the total number of edges be- "’ti—}")
nity edges tween the nodes inside the community
(ef(in)) to the number of nodes in the
community.
f4 Inter commu- | Ratio of the total number of edges of e"(%t)
nity edges nodes connected outside the commu-
nity (e}(out)) to the number of nodes
in the community.
f5 Community ac- | Ratio of the total number of connec- Z—l;
tivity tions made in the previous snapshot by
the nodes of the community (af) to the
number of nodes in the community.
f6 Community Ratio of the number of edges in the %
Conductance community to the sum of degrees of the
nodes in the community.
f7 Node degree Sum of links connected to node i at | ef
time ¢.
f8 Node average | Average degree of node i’s neighbors, W > JENG)! e?
neighbor degree | where N(i)! are the neighbors of node
i at time ¢ and eé is the degree of node
J which belongs to N (7).
f9 Node closeness | Measuring a node 4’s average path | > ject %
centrality length to other nodes in community,
where Clt,—i is a set of all nodes in com-
munity ! except ¢ at time ¢ and d(i, j)
is the distance between node ¢ and j.
f10 Node between- | Measuring a node i’s importance in its ZJ kect %f:)

ness centrality

community connectivity, where oj;, is
the total number of shortest paths from
node j to node k and 0 (7) is the num-

ber of those paths that pass through 4

13
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(e.g. whether a coin flip appears at the head or tail), each branch is the result
of the test (e.g. the head and the tail of a coin flip are two branches), and
each leaf node is a class label. The path from the root to the leaf represents
the classification rule. Decision tree is an efficient algorithm for classification
mission. The cost of using a tree is logarithmic, which makes it very fast in
large data sets.

We use Gini importance or Mean Decrease in Impurity (MDI) to calculate
each feature importance as the total decrease in node impurity [40]. Node
impurity like Gini impurity is a computationally efficient approximation to the
entropy, which can measure how well a potential split is separating the samples

in a decision tree node. Decrease Impurity is defined as below:
Ai(s,r) =i(r) — pri(ry) — pri(rg), (1)

where i(r) is some impurity measure like Gini index, r represents a decision
tree node, and r;, and rp are the children of r. Besides, p;, = N,, /N, and
pr = N;/N,, where N, is the number of samples go through node 7.

The normalized Ai(s,r) for each feature can give us a kind of importance

measure, and it is very computationally efficient for large scale data sets.
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Figure 3: The degree distributions of 15 dynamic networks.



295

300

305

4. Experiment

In this section, we first introduce the details of the 15 real-world data sets
used throughout this paper. Then we show the binary classification results in
15 data sets and our findings in feature importance experiment, that is, node
degree and node average neighbor degree are the two most important structural

features for node community transition.
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Figure 4: The importance of different node characteristics or features on the dynamic be-

havior of 15 real dynamic networks based on the TILES [29] method.

4.1. Real-World Data Sets

The data sets used in the experiment contain different types of networks, for
example, social networks with social account users as nodes and relationship as
links, friends cell phone call records networks with phone owners as nodes and
phone contacts as links, who-trust-whom networks with people as nodes and
trust relationships as links and tech-website answering questions networks with
website account as nodes and answering questions as links. The characteristics
of the data sets and their sources are given in Table 2. Figure 3 shows all of the

node distributions of our data sets follow a power law.

15
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Figure 5: The importance of different node characteristics or features on the dynamic be-

havior of 15 real dynamic networks based on the GenLouvain [37] method.
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Figure 6: The importance of different node characteristics or features on the dynamic behavior

of 15 real dynamic networks based on the PisCES [38] method.
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Table 2: Description of data sets

Name Description V| €]

Internet Internet [41] topology during 04/01/2004 — 04/04/2005. | 33936 104824

Facebook Facebook New Orleans networks [42] friends links during | 62306 905565
06/08,/2008 — 21/01/2009.

bitcoin Who-trusts-whom network of people who trade using Bit- | 5881 35592
coin on Bitcoin OTC [43] during 09/11/2010—19/01/2016.

Friend Call logs of members of a young-family residential liv- | 130 60518
ing community adjacent to a major research university in
North America [44] during 10/07/2010 — 16/07/2011.

fb-forum The Facebook-like Forum Network [45] during | 899 33720
15/05/2004 — 24/10/2004.

fb-messages The Facebook-like Social Network [45] from an online | 1897 61734
community for students at University of California dur-
ing 24/03/2004 — 22/10/2004.

ia-digg-reply A reply network of the social news website Digg [45] dur- | 30397 87627
ing 29/10/2008 — 13/11/2008.

ia-facebook- The Facebook friendship graph [45] during 15/05/2004 — | 44668 876993

wall-wosn-dir 24/10/2004.

ia-reality-call The MIT Reality mining a small set of human call logs | 6810 52050
data [45] during 24/09/2004 — 07/01/2005.

ia-slashdot- Reply network of technology website Slashdot [45] during | 51097 140778

reply-dir 01/12/2005 — 31/08/2006.

ia-stackexch- User answering question network of Stack Overflow [45] | 545196 1302439

user-marks-post | during 03/10/2008 — 25/11/2011.

ia-yahoo- The message network in Yahoo [45] with time presented | 99303 3179718

messages by link sequences.

soc-epinions- Epinion who-trusts-whom network [45] with time pre- | 131828 841373

trust-dir sented by link sequences.

soc-wiki-elec Wikipedia adminship election data [45] during | 8271 107071
14/09/2004 — 05/01/2008.

wiki The Wikipedia links data [41] during 20/02/2001 — | 329623 39953145

06/12/2002.

17
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4.2. Feature Importance

We use the decision tree to process the node binary classification mission
on 15 real-world data sets. As mentioned before, decision tree is an efficient
algorithm for classification, so it is a good choice to execute binary classification
in large data sets. Moreover, it allows us to calculate the feature importance in
classification mission.

Figures 4, 5 and 6 show the importance of different node characteristics
or features on the dynamic behavior of 15 real dynamic networks based on
the TILES [29], GenLouvain [37] and PisCES [38], respectively. The results
all show that node degree (f7) and node average neighbor degree (f8) are the
two generally important features for node community transition on dynamic
networks, which means that node degree and node average neighbor degree
affect almost all the real-world data sets in community transition. Furthermore,
node community activity plays an important role in slashdot reply data, but
this feature is not appliable to all other data sets, which means that it does
not have a general impact on community transition. Other community-level
features, such as the number of community node, have no obvious guarantee
against community transition. On the contrary, node-level features, such as
node closeness centrality and node betweenness centrality, have a few intense
on some data sets like internet, facebook and facebook messages. However, they
did not work well on digg reply data or slashdot reply data. It also proves that
the node closeness centrality and node betweenness centrality have no general
influence on community transition.

Figure 7 shows the bitmaps of node degree in different labels (1 represents
nodes who transferred their community, 0 otherwise) on 15 data sets. As we can
see, it shows an obvious pattern, that is, all nodes that transfer their commu-
nities have a higher degree than nodes that do not transfer their communities.
This pattern proves that degree-corrected models like [46, 47, 7] have to be in
conformity with the facts. Other features like node community activity, node
closeness centrality and node betweenness centrality may play important roles

in community transition in some data sets, but not all of them. Just as shown
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in Fig. 8, node closeness centrality does not show obvious pattern on all 15
data sets. Even in internet data, which shows the important instance of node
closeness centrality, node closeness centrality still does not show significant dif-
ferences between different labels. Furthermore, we find that the node average
neighbor degree also plays an important role, or in other words, it plays a more
important role than the node degree in almost all data sets we used. How-
ever, just as shown in Fig. 9, although the different labels on each data set are
different, the bitmaps do not show an obvious consistent pattern. Through a
case study on how the average neighbor degree of nodes affects the migration
of a node community, it is found that it is still useful for dynamic community
detection or community evolution.

Just as shown in Fig. 10(a), we chose three most representative data sets,
namely, stackoverflow (left two columns), Friend (middle two columns) and
facebook-wall-wosn (right two columns). The left column in every data set is
the degree of nodes to which the nodes of communities have changed. The nodes
that transferred their community have a larger degree than the nodes that did
not. And as shown in Fig. 10(b), we also chose three most representative data
sets, namely, facebook (left two columns), Friend (middle two columns) and
facebook-wall-wosn (right two columns). The left column in every data set is
the average neighbor degree of nodes that changed communities, which proves
that nodes that transferred their communities have a larger average neighbor
degree than the nodes that did not.

It is undoubtedly that the node degree can affect node community transition.
Obviously, the higher the degree of nodes, the more likely it is to encounter nodes
in other communities. And if the average neighbor degree of a node is larger,
then the node is more likely to be affected by its neighbors. We will show a

real-world case in the next section.
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Figure 7: Bitmaps of nodes degree on 15 data sets
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the bitmap of nodes transferring their communities, and 0 otherwise.
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5. Case Study

In this section, we use part of the DBLP data [15] to show the impact of
node degree and node average neighbor degree on node community transition.
DBLP is a well-studied data set in many research area, especially in complex
network analysis. Our data is extracted from DBLP, and it contains the co-
authorship information among the papers from 28 conferences over 10 years
(1997 — 2007). These conferences cover three main research areas, including
data mining, database and machine learning. Moreover, this data set has a
ground truth, so we can extract the community membership of nodes without
pre-processing this data.

Figure 11 shows the sample of DBLP data in year 2006 — 2007. The text
of a node means ‘average neighbor degree-author name’; e.g. ‘4.82- Shuicheng
Yang’ means this node represents an author Shuicheng Yang, and its average
neighbor degree is 4.82. And the scale of node represents node degree, i.e. a
big node has more friends than a small node. The top two pictures show the
influence of average neighbor degree. Jun Yan, Zheng Chen and Ning Liu are
working on the database at previous snapshot (top-left), and they all have large
average neighbor degree 9.33. They have a big degree friend Shuicheng Yang
who is working on machine learning. Influenced by Shuicheng Yang, in the next
snapshot (top-right) Jun Yan, Zheng Chen and Ning Liu change their research

interest to machine learning, i.e. they published a paper about machine learning
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Figure 11: Cases in DBLP shows the influence of node degree and average neighbor degree to

node’s community transition.

together in 2006. After investigation, we find that the above four authors jointly
published an article on TKDE in 2006'. And the two pictures at the bottom
show the influence of node degree. Marc Pollefey has a large degree, which
means that he has many friends with this network. Most of his friends are
working on data mining (bottom-left). Influenced by his friends, he changed
his research area to data mining (bottom-right) in the next snapshot. More
specifically, Marc Pollefey and one of his friends Jan-Michael Frahm published
a paper together on EDGE in 20062. Through these samples, we can intuitively
understand the influence of the node degree and the node average neighbor
degree on the transition of node community. However, more research on the
node average neighbor degree is still needed to explore its impact mechanism

on node community transition.

Yan, Jun, et al. “Effective and efficient dimensionality reduction for large-scale and
streaming data preprocessing.” IEEE transactions on Knowledge and Data Engineering 18.3

(2006): 320-333.
2Sinha, Sudipta N., et al. “GPU-based video feature tracking and matching.” EDGE,

workshop on edge computing using new commodity architectures. Vol. 278. 2006.
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6. Conclusion

In this paper, we first consider the node’s community transition as a binary
classification problem. Through the analysis of 15 real-world dynamic networks,
it is found that the degree and average neighbor degree of nodes are the two
significant features that affect the pattern of node’s community transition. In
fact, we observe that node average neighbor degree is more important than the
node degree, which is inconsistent with our previous understanding and also
corrects our previous cognition of node transition factors. It has important
reference meaning for the generation of dynamic networks and the detection of
community structure. We also conduct a case study to explain the insurance
against the node degree and node average neighbor degree to node community
transition.

Unfortunately, the influence mechanism of the node average neighbor degree
on the node community transition has not been found. This is the next step of
our work. At the same time, one of the main directions of our future research is
how to integrate our results with dynamic community detection methods, which

is also what we will do next.
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