SEVERAL ¢-SERIES RELATED TO RAMANUJAN’S THETA
FUNCTIONS
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ABSTRACT. Quite recently, the first author investigated vanishing coefficients of the arith-
metic progressions in several g-series expansions. In this paper, we further study the signs
of coeflicients in two g-series expansions and establish some interlinked identities for several
g-series expansions by means of Ramanujan’s theta functions. We obtain the 5-dissections
of these two g¢-series and give combinatorial interpretations for these dissections. More-
over, we obtain four g-series identities involving the aforementioned g-series, two of which
were proved by Kim and Toh via modular forms.

1. INTRODUCTION

Quite recently, Hirschhorn [5] investigated vanishing coefficients of the arithmetic pro-
gressions in two g-series expansions. Motivated by the work of Hirschhorn, the first au-
thor [7] investigated vanishing coefficients of the arithmetic progressions in following g-series
expansions

o0

(0, —¢"1¢")%(q" . % ") = Y _ g1(n)q", (1.1)
n=0

(=% =% ") (@ % 0" = D ha(n)g". (1.2)
n=0

Here and in the sequel, we adopt the following standard g¢-series notation:
(a; @)oo == [ J(1 = ag™),
n=0

(a1, a2, ..., am; Qo = (13 @)oo (@25 @)oo+ (A3 @)oo, for [q| < 1.
In |7, Egs. (1.3) and (1.4)], the first author proved that for n > 0,
g1(bn+3) =hy(bn+1) =0. (1.3)

Moreover, the first author conjectured the signs of coefficients in ¢-series (1.2) are periodic
from some n. In this paper, we not only confirm this conjecture, but also establish 5-
dissections of (1.1) and (1.2) along with combinatorial interpretations for these dissections.
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Firstly, we obtain the following 5-dissections of (1.1) and (1.2).
Theorem 1.1. We have
(=0 =0"10")% (0", 4% 4'")e = Go(¢”) + 4G (@) + ¢*Ga(a”) + ¢ Gald?),

where
- 1
Go(q) = 91(5n)q" = , 1.4
ofa) ; 1(5n) (9,9% ¢°)%.(¢% 4% ¢'%) (14)
- 2
Gi(q) = g (bn+1)¢" = , 1.5
9) HZ:O 3 ) (¢, 0%, ¢, 0% ¢°)o (0%, 0% 4") o0 (15)
- 1
Gy(q) = g1 (5n +2)q" = , 1.6
3(4) ; 3 ) (4, 4% @°)3 (0", 4% 4") o (16)
- 1
Gy(q) = g1(bn+4)q" = ) 1.7
) HZ:O ! ) (0% @* ¢°)3 (", 6% ¢'%) o (1)
Theorem 1.2. We have
(=%, =% )2 (. 6% ") = Ho(¢") + *H2(¢°) + ¢* Hs(¢®) + ¢ Hu(q"),
where
- 1
Hy(q) = hi(bn)q" = , 1.8
ota) nZ:O 16n) (4, 90% ¢°)3(4*, 6% ¢"%) (18)
- 1
Hy(q) = hy(5n + 2)q¢" = , 1.9
2(0) ,; 1 ) (7% % ¢°)3 (4% 6% ¢'0) oo (1.9)
- 2
Hs(q) = hi(bn 4+ 3)q¢" = , 1.10
() nz_; 3 ) (¢, 4% &% 4% @°)oo (", 4% 4"0) o (1.10)
- -1
Hy(q) = hi(bn +4)q¢" = . 1.11
) ,; Ot D = P ) (110

Therefore we get the following combinatorial interpretations.

Corollary 1.3. g;(5n) is the number of partitions of n into parts which are +1, £2, +4
(mod 10), where parts £1 and +4 appear in two flavours,

g1(bn+1) is the twice of number of partitions of n into parts which are +1, £2, +3, +4
(mod 10), where parts £2 appear in two flavours,

g1(5n + 2) is the number of partitions of n into parts which are £1, £4 (mod 10), where
parts £1 parts appear in two flavours and +4 appear in three flavours,

91(5n + 4) is the number of partitions of n into parts which are £2, £3, £4 (mod 10),
where parts £2 and +3 appear in two flavours,
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hi(5n) is the number of partitions of n into parts which are £1, £2, £4 (mod 10), where
parts £1 and £4 appear in two flavours,

hi(5n+2) is the number of partitions of n into parts which are £2, £3 (mod 10), where
parts £3 parts appear in two flavours and +2 appear in three flavours,

hi(5n+ 3) is the twice of number of partitions of n into parts which are £1, £2, +£3, +4
(mod 10), where parts 4 appear in two flavours,

—hy(5n+4) is the number of partitions of n into parts which are £2, +3, £4 (mod 10),
where parts £2 and +3 appear in two flavours.

By Corollary 1.3, we obtain immediately the following inequalities.

Corollary 1.4. For any integer n > 0,

g1(5n) >0,
g1(5n+1) > 0,
g1(bn+2) > 0,
g1(5n+4) >0 (n#1).
Corollary 1.5. For any integer n > 0,
hy(5n) > 0,
hi(bn+2) >0 (n#1)
hy(5n + 3) >
hi(5n +4) < O (n#1).
Corollary 1.6. For any integer n > 0,
g1(5n) = hy(5n), (1.12)
g1(bn+4) = —hy(5n + 4). (1.13)

Moreover, the first author studied vanishing coefficients in following two general g-series
expansions:

(=" =45 020 %50 =Y Grsa(n)g™, (1.14)
n=0
(=", =050 )oo(@" 5 )2 =) hess(n)g" (1.15)

where t > 5 is a prime, r, s are positive integers and r < t, s # t.
Interestingly, we obtain the following identities of g-series expansions (1.14) and (1.15)
for ¢t = 5, which are parallel to (1.12) and (1.13).

Theorem 1.7. For any integer n > 0,
9125051 +1) = g245(5n +2), (1.16)
9125050 + 3) = —g2,4,5(5n + 4), (1.17)
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91,3,5(5n) = g2 (5n) (1.18)
hl A 5(5’/1 + 1) h272,5(5n), (122)
h174,5(5n + 2) = —h272’5(5n + ].) (123)
Finally, we define the following two g-series expansion
(¢4 ¢")%(q" ¢% ¢"° Zgz , (1.24)
(¢ ¢% @)% (d® ¢% " me - (1.25)

We also obtain several g-series identities involving (1.1), (1.2), (1.15), (1.24), and (1.25).
Theorem 1.8. We have
(=0, =% 0)% (0" 0" ¢ + (=¢*, =0 )2 (0", %1 0")

O 2(dd s 4 6 v

o (225 ¢%) oo (7; (]5)2( 4 =9:9)(0 030 ) (1.26)
(0,4"0")3%(a", 6% 0o + (% ¢ )3 (¢ 0% 4"

C 292" 4%,

(¢ Q)(q P4 2(—q, ¢ ¢")o(q", 6% 4%, (1.27)

(=4, =" ") oo(d", % ") — a(—*, = ) (%, 65 4"0)2
(0% ¢*)oo(@® °)%
= (q10-q10)3 (_q _q q ) (q q q ) (128>
(—=¢: —¢% ) (q*, % ¢")2 + a(— % =% ) o (@, 4% ¢"0)2

_ (@%6°)3(0% )5
T ()% (¢ ¢0)L (% 6% ") (% 6% 0" oo (1.29)

Remark 1.9. Very recently, Kim and Toh [0, Lemma 3.1| proved the following two g-series
identities via modular forms:

(=% =, ¢°;¢°)2 (0% 4" . (—¢.—¢" ¢

+ 7
(g% 4% ¢*%) (2,45 ¢*%)
_ 2=4=4" 4% 0o (0% 4o (07 4705 (1.30)
(42,45 ¢*°)3. (0% ¢°) o ’
(—¢* =% ¢°¢°)% (4" ¢") o +q(—q2,—q3,q5;q5)oo(q2;q2)oo(q1°;q1°)§o

(g%, 4% ¢'%) oo (¢, 4% ¢")3.(¢% ¢°) o
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_ (20, -0" 0" ) (0% 0*) e (0" 40)5 (1.31)
(4 4% 4')3 (0% ¢°) oo

Interestingly, (1.26) and (1.28) are equivalent to (1.30) and (1.31), respectively.

The rest of this paper is constructed as follows. In Sect. 2, we introduce some necessary
notation as well as identities involving theta functions ¢(q) and 1(q). In Sect. 3, we prove
Theorems 1.1 and 1.2. The proofs of Theorems 1.7 and 1.8 are given in Sect. 4. We conclude
in the last section with some remarks to motivate further investigation.

2. PRELIMINARY RESULTS

Ramanujan’s general theta function is defined by

fla,b) := Z an D 2pnn=D/2 - ghl < 1.

Basic properties enjoyed by f(a,b) proved in |2, p. 34, Entry 18| include
f(a,b) = f(b,a),
f(1,a) = 2f(a,a’). (2.1)

The function f(a,b) satisfies the well-known Jacobi triple product identity [2, p. 35, Entry
19]:

f(a,b) = (—a,—b, ab; ab) . (2.2)

Eq. (2.2) is used frequently and without mention in the sequel.
The two important special cases of (2.2) are [1, Egs. (1.5.4) and (1.5.5)]

% 2. 2\5
000 = 30 =
V() = fla.¢*) = ;qn(”“)/ P= —(iz Z;)j‘" (2:3)
Lemma 2.1. We have
() = @(q") + 2q0(q"), (24)
49(¢" 1) (0" 07) = 2(0)p(—0") — p(=a) (). (2.5)
Pro]of. Eq. (2.4) follows from |2, p. 40, Entry 25 (i), (ii)] and Eq. (2.5) appears in [2, p.
278|. U

The following lemma is the main ingredient for our proof.

Lemma 2.2. If ab = cd, then

f(a,b)f(c,d) = f(ac,bd)f(ad,bc) + af (Z, gabcd> f (g, %abcd) : (2.6)
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Proof. Equation (2.6) comes from [2, p. 45, Entry 29| and [3, p. 9, Theorem 0.6]. O
Finally, we need the following two identities involving ¢(q) and ©(q).

Lemma 2.3. We have
o(0) — o) = 2(]((147 0. g1, g1, g6 g2 q20)007 .
(6347, 6% 4", 4%, 475 %) oo
0(a?) — olg") = LT L e 2.8)
(6%, 6% 4", q", 4", "% ¢*°) oo
Proof. Egs. (2.7) and (2.8) are proved in |1, p. 311, Egs. (34.1.8) and (34.1.12)]. O

3. PROOFS OF THEOREMS 1.1 AND 1.2

To obtain (1.4)—(1.7), we first prove two necessary lemmas.
Let k > 0,1 > 0 be integers and let G(q) = > g(n)g™ be a formal power series. Define
n=0

an operator Hy; by

Hyi (G(q)) =) glkn+1)g* .

n=0
Lemma 3.1. Define
Mi(q) == (4", ¢®)? = ¢ F (%, ¢®)°,
Ni(q) == ¢’ (¢, &) F(¢* ¢*°) + ¢ F(d®, ¢*) f (¢, ™)
—qf (@, ¢*) ("%, ¢?) — #f(d° ¢*) f (¢, ¢*).

Then
p(q)Mi(q) + 2¢(¢*)Ni(q) = ¢(¢°)Mi(q) + 2q¢(¢"*) N1 (q). (3.1)
Proof. Putting (a,b, c,d) = (—q¢®%, —¢*?, —¢*°, —¢'°) in (2.6), we get
Mi(q) = f(@"®.a*)* = ¢ f(@*,¢%)* = f(=¢", ") f(=a"", —¢"). (3:2)
Similarly, taking (a,b, ¢, d) = (—q°, —q*, —q7, —¢*3) in (2.6),
af(a",a*)f(a"%,¢*) — ¢ F(&* a*) f(¢* a®) = ¢f (=", ") f(=q". —4").  (3.3)
Picking (a,b, ¢, d) = (—q¢, —¢'", —¢®, —¢*®) in (2.6),
Cf(@* ) F(¢%,6) = P F(@*,a®) (& d®) = @~ —d") (=’ —¢").  (34)

Finally, taking (a,b,c,d) = (q,¢°, —¢*, —¢°) in (2.6),
=0, =) f(=d", —a®) + af (=, =" f(—=¢*, —4") = fa, ") f(=a", ") (3.5)
Employing (3.3)—(3.5), we readily obtain
Ni(q) = —af(q,¢") f(=q", ). (3.6)
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Now, with the help of (2.7), (2.8), (3.2), and (3.6),
((a) = #(a”)) Mi(q) + 2 (¥(q*) — q(q™)) Mi(q)

s (¢* ¢ a", d". ¢"%, ¢*; *°)
=243 7 8 12 13 17. 420
(,47,¢% 4", 4", ¢"7; ¢*°) 0
_9 (¢:4°,4", 4" 4", ¢ ¢*) X (— 4 6 _ 9 10 _10. 10)
q(q2’q3’q7’q13,q17,q18;qQO)OO Q7q 7q ) q 7q 7q )q o0
:(q4, qﬁ7 q107 qm7 qlo; qm)oo - (q4, q6’ q107 q107 q10; qw)oo
(%,44") (23,47 4"

x (%4, ¢ ¢, ¢, ™)

=0,
as desired.
Lemma 3.2. We have
(a*)e(e”) — ap(@)¥(a") = (6 0)o(47: 0 )
Proof. Firstly, replacing ¢ by —¢° in (2.4), we find that
p(=a°) = 9(a®) = 2¢°U(q™).
Combining (2.4) and (3.8) yields

(@) e(—a°) = o(q*)e(a™) + 2q0(¢®)(¢*) — 2¢° (g (¢*) — 4¢°¥(¢®) v (¢™).

Replacing ¢ by —¢ in (3.9),

o(—q)e(q’) = e(q)e(d™) = 2q0(¢®)e(¢™°) + 2¢°0(q") ¥ (¢*) — 4¢°¢(¢®) (™).

By (3.9) and (3.10),
P(@)p(=a") = o(=a)o(a”) = 4q(a*)o(a™) — 4a°p(a") (™).
Finally, substituting (2.5) into (3.11) and replacing ¢ by ¢'/*, we obtain (3.7).

Now we turn to prove (1.4).
On one hand, according to |7], we find that

gp(q5) 4 2 6
th FPE (qlo;qw)m(sl — "8+ ¢*S5 — ¢°Sy)

2¢(q")
(2% ¢°)%(¢"; 1)

(qS5 — ¢S+ ¢ S7 — QSSS),

where

o0 o0
20m24-2m~+20n2+6n S, — 20m2+18m—+20n2+6n
q ) 2 — q )

m,n=—00 m,n=—00

o0 o0
_ 20m2+-2m~+20n2+14n _ 20m2+18m+20n2+14n
Sy = E q , Sy = q ;

m,n=—00 m,n=—00

OJ

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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o0 oo
_ Z 20m24+2m+20n2+4n _ 20m2+18m~+20n2+4n
S5 - q ) Sﬁ - q )
m,n=—00 m,n=—00
o0 (@)
_ 20m24+2m~+20n2+16n _ 20m24+18m+20n2+16n
S7 = § q , Sy = q :
m,n=—oo m,n=—0o0

In Sy, if 2m 4+ 6n = 0 (mod 5), then 2m +n = 0 (mod 5). Equivalently, m — 2n = 0

(mod 5). Assume 2m+n = 5r and m—2n = —5s, it follows that m = 2r—s and n = r+2s.
Therefore
Hs(S,) = Z qloor 24+10r+100s2+10s __ f(q q110) (3.13)

Similarly, we obtain

Hs0(q"S2) = ¢ f(¢"°, ¢"°) (P, ¢"1°), (3.14)
Hs0(q%S3) = ¢ f(¢"°,¢"°) f(¢”, ¢'17), (3.15)
Hs0(q°Ss) = ¢ f (4", ¢"°)*, (3.16)
H;s0(q55) = q25f(q607 ") (", 4", (3.17)
Hs0(q°Ss) = ¢"f (¢, ¢") f(¢™, ¢'"7), (3.18)
Hs0(q"S7) = ¢ f(q",¢") f(¢", ¢"), (3.19)
Hs0(¢°Ss) = 4" f(q",¢") f (¢, ¢'"°). (3.20)

Picking out the term involving ¢°" in (3.12), applying (3.13)—(3.20) and replacing ¢° by g,
we obtain

> aiBn)g" = (q,q)f((gg.ﬂ (f(d*, 6 = f(¢* ¢™)?)
n=0 7 1/00 ’ o0
2
G q;w((52.)q2) (@ F(@% ) (@0 + Ef (P a®) (P, )
—qf(d®, ) f(q",¢?) = F(d®.q*) [ ("%, ¢%)). (3.21)
On the other hand,
1 27 37 5; 5 C2)O 1 - m-+n m2 m n2 n
P = g = a2 (e

:( 1)2 ( Z q(5(r+s)2+(r+s))/2+(5(r—s)2+<r—s))/2
9)5 \,

,§=—00

Z q(5(r+s1)2+(r+s1))/2+(5(rs)2+(7‘s))/2)

r,8=—00
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1 oo oo
— E q5m2+m+5n2 _ § q5m2+5m+5n2+4n

m,n=—00 m,n=—00

5 0 2 10 0
(g m2am  2q°Y(q 2 4dm
_ () Zq52+_ ( )§:q52+4

(6935  —_ (935  ~—
5 (o] (e.)
()0 q m2 m m2 m
_ ( 2) Z q20 +2 +q4 Z q20 +18
<Q7 q>o° m=—00 m=—00
2¢ ql(J - m2+8m = m2+12m
_ ( 2) q2 Z q20 +8 4 q3 Z q20 +12 ) (322)
(q’ Q)oo m=—o00 m=—o00
Moreover,
1 4 .6 ,10. .10 o 1 0
—— _ (q 4 ;q Qaq ) = —— Z (_1)mq5m2+m
(4% 6% ¢") s (4% ¢%) oo o
1 - m2 m - m2 m
— <q2 q2) < Z q20 +2m q4 Z q20 +18 > ) (323)

Combining (3.22) and (3.23) yields
1
(4,4% ¢°)3(¢% 4% ¢'%)o0

_ 90(q5) - 20m2-+2m 4 - 20m2+18m
- (q;q)2 Z q +4q Z q

m=—0Q

_ V(g )<q2 Z q20m2+8m+q3 Z q20m2+12m>>

- )2
(Q7 q>°° m=—00 m=—00

1 - 20m2+42m 4 - 20m2+18m
X(qz;q2>w<zq —4q Zq

m=—00 m=—00

_ ©(q°) 18 22\2 8./ 2 382
(6 0)% (6% 6w (Fa™ %) — (@ a7))

10
VR Efﬂ)q?)m (1@ ) (@ 6) + 01 P (s )
—f(@% ) (@, ) = CF(, ) (S, 67)). (3.24)

Equation (1.4) follows from (3.1), (3.21), and (3.24).
Next we are ready to prove (1.5).




10 D. TANG AND E. X. W. XIA

Following the same line of proving (3.21), we obtain

Zgl Sn+ 10" = o q)%@(éq? 2 I a0 (@ 6%) = af (0. a*) (¢ )

2@11(612) 20 20 18 22 40 120 18 22
(DL P (F(@®™,q®)f(a".¢*) +2¢°f(q VF ('S, )

— ' f(@, ) (@, %) = 20" F (@™, ¢ F(@*, %))

290(Q) 20(q%)
(¢ q)é(QZ;qZ)ooMQ(Q) T GOL (P

Na(q), (3.25)
say.
Taking (a, b, c,d) = (—q*, —¢'%, —¢%, —¢**) in (2.6),
@) (@, 6) = a' (", ) [(¢* ) = f(=a", —¢"") F(=¢°, —¢"),
which yields
My(q) = —qf (—¢", —¢'*) f(—=¢°, —¢"). (3.26)
In view of (2.1) and (2.3),
No(q) =f (@, ) f(q'%, ¢*) = 26° (¢, ") f (%, ¢*°)
+2(] f( 40 120)f(q18 22) 4f( 20 20)f(q2 q38)
—f( 20 20)f<q18,q22) q f(l q40>f<q2 q38)

+°f(L,a) (@, ¢®) = a* f(a®, ¢*) f(a*, ¢). (3.27)
Similarly, putting (a,b,c,d) = (—¢°, —¢'!, —¢*', —¢°) in (2.6),
@) (", 6) = F (L) f(@*, ) = f(=¢°, —¢")". (3.28)
Picking (a,b, ¢, d) = (—q, —¢*?, —¢*, —q) in (2.6),
F@, ) (@ 6) — af (1,69 £(¢"%, %) = F(—q, —q™)%. (3.29)

Taking (a, b, c,d) = (—¢*, —4%, ¢°, ¢°) in (2.6),
f(=a",=a")? = ¢ f(=¢,~¢")* = f(&". ") f(=q", —=4°) = 0(@’) f(—q", =¢").  (3.30)
With the help of (3.27)—(3.30),
Na(q) = ¢(°) f (=", =¢"). (3.31)
Substituting (3.26) and (3.31) into (3.25),

¢, —q'"°) f(—¢°, —q"")

. n 20(P)e(@) (=" —d")  2qp(q)f(—

2 om0 = () (¢ P )

20(*)e(@®) f(=4*, —d°)  2q9(@)¥(¢") f (=", —¢°)
(¢ 9)%(4% ¢*) oo ()% (0% )

(3.32)
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On the other hand,
2 _2f(=@* =) f(=a. —a) f(=¢*, —¢°)
(4,4% 4% 4" 4°) (4, 4% 4"0) o (45 4)2%(4% ¢*) o
_ 2@ 9)=(0’¢")c f (=0, —4°)
(45 9)3 (0% %)
In light of (3.7), (3.32), and (3.33), we obtain (1.5).

The proofs of (1.6) and (1.7) are similar to that of (1.4).
The proof of Theorem 1.2 is similar to Theorem 1.1.

(3.33)

4. PROOFS OF THEOREMS 1.7 AND 1.8

We only prove (1.16), and (1.17)—(1.23) can be proved similarly.
From [7], we have the following representation for % > g1.25(n)¢™

S raa(n)g" = (7% ¢ (¢ ¢*)2 f(q, ¢*)
225 = (05 5 (620 62002 (07 4702 (70 702,

o0 o0
40n2+12n 4 40n2+28n
X E q —dq E q
n=—oo n=—oo

2(q10.q10)4 (q160’q160) f(qu) o 2 ogn o 2 lom
+ q14 Z q40 +28 _q10 Z q40 +12

(2% @°)3%(6%% %)% (¢ ¢*)

2((1  q ) f(q ¢ )f(q q4) <q i q40n2+2n_q10 i q40n2+38n

(0% °)2.(q"%; ¢'0)2,

+ q4 Z q4on2+22n_ q3 Z q40n2+18n)

n=—oo n=—oo

n=—oo n=—oo

_|_

n=—oo n=—0oo

206 ¢*)2f (", 4) f (. ¢ T d0n2438n 4002422
+ ) ( )( ) q15 Z q40 +38 _qg Z q40 2422

(0% °)2.(a'; ¢10)2,

n=—oo n=—oo

n=—0oo n=—oo

n2 n n2 n
+q8 Z q40 +18 _q6 Z q40 +2 ) (4.1)

With the aid of (3.22) and (3.23),

(—q2 ¢ q )2 _ (—¢*, =4, 4% q°)%
T (q5'q5)2

o0

(q ;g0 20m2+2m q <q10 - 20m2+18m
- ((q L) ( qzo q20 Z q 1 (g2 q20 Z q
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N 2¢%(¢*; ¢*°)2, i Fomssm | 2¢°(¢*; ¢%°)2, i om 12m
(q5;q5>2 IO-qIO)OO (q5;q5)2 (qIO;QIO)Oo

- o (4.2)

and

m m m2 m
(%, ¢% ') = (q10 qu ( Z 7% 242 — g Z q20m*+18 ) . (4.3)

m=—0oQ m=—0oQ

Combining (4.2) and (4.3) as well as following the similar strategy of proving (3.22), we
obtain

- n f(q2 q 20m2+2m 20m2+18m
G2.45(n)q" = q —q* q
,; (4% 6°) oo (0" )0 Z Z

(q10.q10)5 - 20m2+2n q (q ;g0 - 20n2+18n
- ((q ;0°)3. (%% %)% n_zooq " (4% ¢°)3. (¢ q2° n_zooq
n 2¢%(q*°; )%, Z q20n +8n 2¢°(¢*°; ¢%°)2, i q20n2+12n
(% 0°)3 (0" ¢")os = (¢°;q )?,o(qlo,q“’) =
B (4" ¢"0)4.(¢*; )2 (2, ¢°) Z A0n24an 8 f: 1002 36n
o (q5;q5)5 (q20;q20) (q40 q40 16D’q160 q q q
+ 2(q10§q10>§o(q1607q160 q18 i q40n +36n _q10 i q40n2+4n
(4% ¢°)3 (4% ¢*°)2( qSO q8° )so = S~

(2% @°)3,(¢"; )2,

n=—oo n=—oo

2(¢%% )2 £(¢*, ) £ (¢, ¢°) N on26m S~ Jon?30n
+ )) )( qZZqZLO +6_q92q40 +34

n? n n? n
+q3 Z q40 +14 _q6 Z q40 +26>

n=—oo n=—oo

+2(q ¢ ) f(q q" )f( (14 Z q40n +34n_q8 i q40n2+14n

(2% @°)2. ("% ¢*)2, B St

o o
+q11 Z q40n2+26n _ q7 Z q40n2+6n>'

n=—o0o n=-—00

Define

o0 [e.e]

n n n2 n
Wi=fq.q") > ¢ —q'fq.qh) D ¢

n=—oo n=—oo
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o0 o0

2
Wy = q14f(q,q4) Z q40n +28n __ 10f q q Z q40n +12n
n=—oo n=—oo
[e.9] o0
2
W3 — Qf(q, q4) Z q40n +2n IOf q q Z q40n +38n
n=—oo n=—oo
o0 o0
2 2
Wi=q"flg.q") > """ = flq.q") D ¢
n=—oo n=—0oo
o0 [e.9]
2
Ws = qlsf q q Z q40n +38n __ qgf(q,q4) Z q40n +22n’
n=—oo n=—oo
o0 o0
2 2
We = f(ag,q") > ¢ =g flq.q") D g,
n=—oo n=—oo
o0 [e.9]
2 2
T, = f(qZ,q?’) Z q40n +4n _ qsf(q2,q3) Z q40n +36n7
n=—oo n=—oo
[e.9] [e.9]
Ty = q18f q q Z q40n +36n 10f q q Z q40n +4n
n=—oo n=—oo
o0 (e 9]
2 2
Ty := q2f(q2,q3) Z q40n +6n _ qgf(q2,q3) Z q40n +34n7
n=—oo n=—oo
o0 o0
2 2
T, = qgf(qQ,q?’) Z q40n +14n __ q6f(q27q3) Z q40n +26n7
n=—oo n=—oo
e} oo
2
Ty = q14f q q Z q40n +34n q8f<q2’q3) Z q40n +14n’
n=-—oo n=—oo
[e.e] o)
2
TG o qllf q q Z q40n +26n q7f<q2;q3) Z q40n +6n.
n=—oo n=—oo

Next, we prove that

H571(Wi) = H572(T’Z‘) for 1 S 1 S 6.

13

We only prove the case Hj1(W;) = Hs2(11) here because the proofs of remaining cases are

similar.
Notice that

i q(5m2+m)/2

m=—00
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o [ee)
_ 10m24+m 2 10m2+9m
= E q +4q E q
m=—00 m=—00
0 o o oo
_ 40m2+2m 9 40m?4-38m 2 40m2+18m 3 40m2+4-22m
= E q +4q E q +4q q +4q q
m=—0oQ m=—0oQ m=—0o0 m=—0oQ
and
oo o0 o0 oo
4\ 40m2+6m 7 40m2+34m 40m2+14m 4 40m2+26m
fle,q") = E q +q E q +q q +q q :
m=—0o0 m=—0oQ m=—0oQ m=—0o0
Therefore,
Si=P+Po+P;+P,— P, — F; — P, — P,
Th=Q1+ Q2+ Q3+ Qs — Qs — Qs — Q7 — Qs,
where
o0 oo
_ 2 : 40m2+6m-+40n2+12n _ 7 40m2+-34m+40n2+12n
Pl — q ) P2 =4dq q )
m,n=—oo m,n=—0o0
o0 o0
_ 40m2414m+40n2+12n _ 4 40m24-26m+40n2+12n
Py =q E q , Pr=gq q )
m,n=—o0 m,n=—o0
(o) o0
4 40m24-6m—+40n2+28n _ 11 40m2+34m+40n2+28n
Ps=q E q , Po=¢q q ;
m,n=—0o0 m,n=—0o0
o o0
_ 5 40m4+14m+40n2428n _ 8 40m2+26m+40n2428n
Pr=gq § q , Br=q § q ;
m,n=—oo m,n=—0o0
o o0
_ 9 } : 40m2+38m+40n2+4n _ 40m24-2m~+40n2+4n
Ql =4dq q ) QQ - q 9
m,n=—oo m,n=—oo
o oo
2 40m2418m+40n2+4n _ 3 40m24-22m+40n2+4n
Q3 =q § q , Qu=gq q :
m,n=—oo m,n=—0o0
o 0
S 40m?4+-38m+40n2+36n _ 8 40m24+2m+40n24-36n
Qs =q § q , Qe =q q :
m,n=—o0 m,n=—o0
o oo
_ 10 40m2+18m+40n2+36n _ 11 40m2+4-22m+40n2+36n
Q7 =q § q , Qs =q q :
m,n=—oo m,n=—oo

Following the similar strategy of proving (3.13), we deduce that
H; 1 (P) = H52(Q;) for 1 <i<8.
This establishes (1.16).
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Finally, we are ready to prove (1.26)—(1.29).
It follows easily from (2.2) that

2s5+2t 28+2t>

f(_q257 _q2t) = (Q(qs+t7 Zs+t) f(qs’ qt)f(_qs7 _qt)’ s5,t € N-H (44)

(0% 4%)os (4% )2,
(¢ @)oo (" qlo) ’ (45)
(

fla.dYf(&,q°) =

f=, =) (=", —°) = (") >, ", %, 07, &%, 4% 40
_ ()@ ) 5 7
(@0 ) f(=a°,—q"), (4.6)
f=¢. =) (= —0%) = (" ")o(a. *. ¢*, ¢, &, @, 0" ¢ e
_ (0%6%)x(0"0°) i
= g0 g0 f(=q,—¢"). (4.7)

On one hand, according to (4.4) and (4.5), we obtain
(=0, =% 0")5 (0" 0" ) + (=¢*, 0" ") (0%, 6% 0")

! (f<q, V=~ + 1 VI~ —q8>)

(%)% (0 ¢

e @ ) (f<q, V) + F (g~ (. q3>)
_ (q23q2)oo ANpr 23 ! 2 3
e (Faa R )+ SO R)).
Taking (a, b, c,d) = (—q, —¢*, 4%, q 3) in (2.6),
f=a. =" (& &) = (=&, =) f(=d", —®) — af (—q, ") f (—¢*, —°). (4.9)

Picking (a,b, ¢, d) = (q,q*, —¢*, —¢?) in (2.6),
N, V(= =) = F(=¢*, =V (=4, ") + af (=4, =) [ (=¢*, —¢°). (410
Substituting (4.9) and (4.10) into (4.8),

(=4, —q"¢°)2(q", 4% ") + (—a*, =% ¢°) 2 (¢*. 6% ¢")
2(q yq )oo 3 7 4 6
U Q)oo(q5;q5)oo(q1°;q1°)oof(_q ) (=0 =),
On the other hand, with the help of (4.5) and (4.6),
2(q10.q10)3
(0% 0®) oo (@®: )%

2
N (q2; q2)oo(q5; q5)go f(Q> q4)f(—q4, _q6)3

(¢, =" ) oo(q*, ¢% ¢**)%,
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2064 )%
(0367075675
- 2(¢%¢%)so
(4 D)oo (0% 07) o0 (0% ¢'0) o0

This establishes (1.26).

According to (4.4)—(4.7) and (4.9),

( (@) F a2 ) (F=ah—a) f (=" —a) F(—d" —q6>)

f(=¢,—a") f(=q", —¢°).

(=0, —0" @)oo (q", 4% a2 — 4=, =% @)oo (@, 0% 0'0) 2
o (F0 =t~ = ar o)

1
(0% 4%)oo (0105 ¢10)3,

(@), (1q107q 02 f(qq)f(q2=q3><(f(—q2,—q3)f(—q4,—q6)) f(=q*,—¢°

—q(f(=¢,—¢") f(=¢*,—¢%)) f(—qQ,—q8)>

(6% ¢%)%(a% ¢°)
(q,Q) ("% ¢'°)
Also, using (4.4),

= I(=¢, ="V (% @)

o0

(q2;((§1>0i°q<f05);§)?’°(—q — )2 (%, 0% 4") o

2. .2
Zﬁf&ﬂ V(= =)

7 q(;] (qql)o O (Fle, ") 1@ 0) f(=a,—a") f(¢* &)

(6% ¢%)%(@% @)oo oy
(45 90)0 (g% ¢10)4, T f(=a, =) (& ).

This proves (1.28).

The proofs of (1.27) and (1.29) are similar to those of (1.26) and (1.28), respectively.

5. FINAL REMARKS

We close this paper with some remarks.

1) Following the same line of proving (1.16)—(1.19), we can also prove

a117(Tn+1) = azs7(Tn + 3),
a167(Tn 4+ 6) = —ag27(7n + 6),
ase11(11ln+5) = —as211(11n +4),

ase11(11n+7) = as211(11n + 6).

~~ N/~
N R
S— N N
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There are other identities similar to (5.1)—(5.4) for t = 11. Therefore it is natural to
ask whether or not there exist some identities between a, s ;(n) and b, s ;(n) for arbitrary
prime ¢, which parallel to (5.1)—(5.4).

2) Following the similar method of proving (1.3) in [7], we can also obtain
g2(bn+3) = hy(5n+1) =0, (5.5)
which is parallel to (1.3).
Egs. (1.27) and (5.5) imply

ho(5n+3) =0 (mod 2).

Furthermore, there are some results similar to (1.16)—(1.23) in another types of ¢-series
expansions. Relating to (1.15) and (1.26), define

(=4, =" ¢")%(q" 6% 4" (¢®, 6% ¢"°) Zgl "

(=% —¢* @)% (@, ¢% a")2(a", % ¢"°) Zhl

Following the similar strategy of proving (1.16), we can also obtain

Gi(5n) = I (5n),
Gi(bn+2) =h1(5n+1) =0,
Gi1(5n 4 3) = —h1(5n + 3).

Of course, we can also obtain similar results for (1.27)—(1.29).

3) We also learn from Nayandeep Deka Baruah and Mandeep Kaur [!] that they have
provided new proofs of (1.18)—(1.21). Their proofs rely highly on two known g-identities
[1, Egs. (40.1.1) and (41.1.5)] involving Ramanujan’s continued fractions.

4) Finally, with the help of computer, the signs of coefficients in ¢-series (1.24) and (1.25)
appear to be periodic.

Conjecture 5.1. For any integer n > 0,

92(5n) > (5.6)
g2(5m + 1) < (5.7)
g2(5m +2) > (5.8)
g2(5m +4) < (5.9)

ha(5n) > (5.10)
ho(5m +2) < (5.11)
ha(5n + 3) < (5.12)
ha(5n + 4) > (5.13)



18 D. TANG AND E. X. W. XIA
It would be interesting to find an elementary proof of (5.6)—(5.13).
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