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Abstract. Quite recently, the first author investigated vanishing coefficients of the arith-
metic progressions in several q-series expansions. In this paper, we further study the signs
of coefficients in two q-series expansions and establish some interlinked identities for several
q-series expansions by means of Ramanujan’s theta functions. We obtain the 5-dissections
of these two q-series and give combinatorial interpretations for these dissections. More-
over, we obtain four q-series identities involving the aforementioned q-series, two of which
were proved by Kim and Toh via modular forms.

1. Introduction

Quite recently, Hirschhorn [5] investigated vanishing coefficients of the arithmetic pro-
gressions in two q-series expansions. Motivated by the work of Hirschhorn, the first au-
thor [7] investigated vanishing coefficients of the arithmetic progressions in following q-series
expansions

(−q,−q4; q5)2∞(q4, q6; q10)∞ =
∞∑
n=0

g1(n)q
n, (1.1)

(−q2,−q3; q5)2∞(q2, q8; q10)∞ =
∞∑
n=0

h1(n)q
n. (1.2)

Here and in the sequel, we adopt the following standard q-series notation:

(a; q)∞ :=
∞∏
n=0

(1− aqn),

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞, for |q| < 1.

In [7, Eqs. (1.3) and (1.4)], the first author proved that for n ≥ 0,

g1(5n+ 3) = h1(5n+ 1) = 0. (1.3)

Moreover, the first author conjectured the signs of coefficients in q-series (1.2) are periodic
from some n. In this paper, we not only confirm this conjecture, but also establish 5-
dissections of (1.1) and (1.2) along with combinatorial interpretations for these dissections.
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Firstly, we obtain the following 5-dissections of (1.1) and (1.2).

Theorem 1.1. We have

(−q,−q4; q5)2∞(q4, q6; q10)∞ = G0(q
5) + qG1(q

5) + q2G2(q
5) + q4G4(q

5),

where

G0(q) =
∞∑
n=0

g1(5n)q
n =

1

(q, q4; q5)2∞(q
2, q8; q10)∞

, (1.4)

G1(q) =
∞∑
n=0

g1(5n+ 1)qn =
2

(q, q2, q3, q4; q5)∞(q2, q8; q10)∞
, (1.5)

G2(q) =
∞∑
n=0

g1(5n+ 2)qn =
1

(q, q4; q5)2∞(q
4, q6; q10)∞

, (1.6)

G4(q) =
∞∑
n=0

g1(5n+ 4)qn =
1

(q2, q3; q5)2∞(q
4, q6; q10)∞

. (1.7)

Theorem 1.2. We have

(−q2,−q3; q5)2∞(q2, q8; q10)∞ = H0(q
5) + q2H2(q

5) + q3H3(q
5) + q4H4(q

5),

where

H0(q) =
∞∑
n=0

h1(5n)q
n =

1

(q, q4; q5)2∞(q
2, q8; q10)∞

, (1.8)

H2(q) =
∞∑
n=0

h1(5n+ 2)qn =
1

(q2, q3; q5)2∞(q
2, q8; q10)∞

, (1.9)

H3(q) =
∞∑
n=0

h1(5n+ 3)qn =
2

(q, q2, q3, q4; q5)∞(q4, q6; q10)∞
, (1.10)

H4(q) =
∞∑
n=0

h1(5n+ 4)qn =
−1

(q2, q3; q5)2∞(q
4, q6; q10)∞

. (1.11)

Therefore we get the following combinatorial interpretations.

Corollary 1.3. g1(5n) is the number of partitions of n into parts which are ±1, ±2, ±4
(mod 10), where parts ±1 and ±4 appear in two flavours,
g1(5n+1) is the twice of number of partitions of n into parts which are ±1, ±2, ±3, ±4

(mod 10), where parts ±2 appear in two flavours,
g1(5n+2) is the number of partitions of n into parts which are ±1, ±4 (mod 10), where

parts ±1 parts appear in two flavours and ±4 appear in three flavours,
g1(5n + 4) is the number of partitions of n into parts which are ±2, ±3, ±4 (mod 10),

where parts ±2 and ±3 appear in two flavours,
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h1(5n) is the number of partitions of n into parts which are ±1, ±2, ±4 (mod 10), where
parts ±1 and ±4 appear in two flavours,
h1(5n+2) is the number of partitions of n into parts which are ±2, ±3 (mod 10), where

parts ±3 parts appear in two flavours and ±2 appear in three flavours,
h1(5n+3) is the twice of number of partitions of n into parts which are ±1, ±2, ±3, ±4

(mod 10), where parts ±4 appear in two flavours,
−h1(5n+4) is the number of partitions of n into parts which are ±2, ±3, ±4 (mod 10),

where parts ±2 and ±3 appear in two flavours.

By Corollary 1.3, we obtain immediately the following inequalities.

Corollary 1.4. For any integer n ≥ 0,

g1(5n) > 0,

g1(5n+ 1) > 0,

g1(5n+ 2) > 0,

g1(5n+ 4) > 0 (n 6= 1).

Corollary 1.5. For any integer n ≥ 0,

h1(5n) > 0,

h1(5n+ 2) > 0 (n 6= 1),

h1(5n+ 3) > 0,

h1(5n+ 4) < 0 (n 6= 1).

Corollary 1.6. For any integer n ≥ 0,

g1(5n) = h1(5n), (1.12)
g1(5n+ 4) = −h1(5n+ 4). (1.13)

Moreover, the first author studied vanishing coefficients in following two general q-series
expansions:

(−qr,−qt−r; qt)3∞(qs, q2t−s; q2t)∞ :=
∞∑
n=0

gr,s,t(n)q
n, (1.14)

(−qr,−qt−r; qt)∞(qs, q2t−s; q2t)3∞ :=
∞∑
n=0

hr,s,t(n)q
n (1.15)

where t ≥ 5 is a prime, r, s are positive integers and r < t, s 6= t.
Interestingly, we obtain the following identities of q-series expansions (1.14) and (1.15)

for t = 5, which are parallel to (1.12) and (1.13).

Theorem 1.7. For any integer n ≥ 0,

g1,2,5(5n+ 1) = g2,4,5(5n+ 2), (1.16)
g1,2,5(5n+ 3) = −g2,4,5(5n+ 4), (1.17)
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g1,3,5(5n) = g2,1,5(5n), (1.18)
g1,3,5(5n+ 2) = g2,1,5(5n+ 2). (1.19)

h1,1,5(5n) = h2,3,5(5n+ 2), (1.20)
h1,1,5(5n+ 1) = h2,3,5(5n+ 3), (1.21)
h1,4,5(5n+ 1) = h2,2,5(5n), (1.22)
h1,4,5(5n+ 2) = −h2,2,5(5n+ 1). (1.23)

Finally, we define the following two q-series expansion

(q, q4; q5)2∞(q
4, q6; q10)∞ =

∞∑
n=0

g2(n)q
n, (1.24)

(q2, q3; q5)2∞(q
2, q8; q10)∞ =

∞∑
n=0

h2(n)q
n. (1.25)

We also obtain several q-series identities involving (1.1), (1.2), (1.15), (1.24), and (1.25).

Theorem 1.8. We have

(−q,−q4; q5)2∞(q4, q6; q10)∞ + (−q2,−q3; q5)2∞(q2, q8; q10)∞

=
2(q10; q10)3∞

(q2; q2)∞(q5; q5)2∞
(−q,−q4; q5)∞(q4, q6; q10)3∞, (1.26)

(q, q4; q5)2∞(q
4, q6; q10)∞ + (q2, q3; q5)2∞(q

2, q8; q10)∞

=
2(q; q)2∞(q

10; q10)4∞
(q2; q2)2∞(q

5; q5)4∞
(−q,−q4; q5)∞(q4, q6; q10)3∞, (1.27)

(−q,−q4; q5)∞(q4, q6; q10)3∞ − q(−q2,−q3; q5)∞(q2, q8; q10)3∞

=
(q2; q2)∞(q

5; q5)2∞
(q10; q10)3∞

(−q2,−q3; q5)2∞(q2, q8; q10)∞, (1.28)

(−q,−q4; q5)∞(q4, q6; q10)3∞ + q(−q2,−q3; q5)∞(q2, q8; q10)3∞

=
(q2; q2)2∞(q

5; q5)4∞
(q; q)2∞(q

10; q10)4∞
(q2, q3; q5)2∞(q

2, q8; q10)∞. (1.29)

Remark 1.9. Very recently, Kim and Toh [6, Lemma 3.1] proved the following two q-series
identities via modular forms:

(−q2,−q3, q5; q5)2∞(q10; q10)∞
(q4, q6; q10)∞

+
(−q,−q4, q5; q5)2∞(q10; q10)∞

(q2, q8; q10)∞

=
2(−q,−q4, q5; q5)∞(q2; q2)∞(q10; q10)2∞

(q2, q8; q10)3∞(q
5; q5)∞

, (1.30)

(−q2,−q3, q5; q5)2∞(q10; q10)∞
(q4, q6; q10)∞

+ q
(−q2,−q3, q5; q5)∞(q2; q2)∞(q10; q10)2∞

(q4, q6; q10)3∞(q
5; q5)∞
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=
(−q,−q4, q5; q5)∞(q2; q2)∞(q10; q10)2∞

(q2, q8; q10)3∞(q
5; q5)∞

. (1.31)

Interestingly, (1.26) and (1.28) are equivalent to (1.30) and (1.31), respectively.

The rest of this paper is constructed as follows. In Sect. 2, we introduce some necessary
notation as well as identities involving theta functions ϕ(q) and ψ(q). In Sect. 3, we prove
Theorems 1.1 and 1.2. The proofs of Theorems 1.7 and 1.8 are given in Sect. 4. We conclude
in the last section with some remarks to motivate further investigation.

2. Preliminary results

Ramanujan’s general theta function is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

Basic properties enjoyed by f(a, b) proved in [2, p. 34, Entry 18] include

f(a, b) = f(b, a),

f(1, a) = 2f(a, a3). (2.1)

The function f(a, b) satisfies the well-known Jacobi triple product identity [2, p. 35, Entry
19]:

f(a, b) = (−a,−b, ab; ab)∞. (2.2)

Eq. (2.2) is used frequently and without mention in the sequel.
The two important special cases of (2.2) are [4, Eqs. (1.5.4) and (1.5.5)]

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
(q2; q2)5∞

(q; q)2∞(q
4; q4)2∞

,

ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)2∞
(q; q)∞

. (2.3)

Lemma 2.1. We have

ϕ(q) = ϕ(q4) + 2qψ(q8), (2.4)

4q(q4; q4)∞(q
20; q20)∞ = ϕ(q)ϕ(−q5)− ϕ(−q)ϕ(q5). (2.5)

Proof. Eq. (2.4) follows from [2, p. 40, Entry 25 (i), (ii)] and Eq. (2.5) appears in [2, p.
278]. �

The following lemma is the main ingredient for our proof.

Lemma 2.2. If ab = cd, then

f(a, b)f(c, d) = f(ac, bd)f(ad, bc) + af

(
b

c
,
c

b
abcd

)
f

(
b

d
,
d

b
abcd

)
. (2.6)
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Proof. Equation (2.6) comes from [2, p. 45, Entry 29] and [3, p. 9, Theorem 0.6]. �

Finally, we need the following two identities involving ϕ(q) and ψ(q).

Lemma 2.3. We have

ϕ(q)− ϕ(q5) = 2q
(q4, q6, q10, q14, q16, q20; q20)∞
(q3, q7, q8, q12, q13, q17; q20)∞

, (2.7)

ψ(q2)− qψ(q10) = (q, q9, q10, q11, q19, q20; q20)∞
(q2, q3, q7, q13, q17, q18; q20)∞

. (2.8)

Proof. Eqs. (2.7) and (2.8) are proved in [4, p. 311, Eqs. (34.1.8) and (34.1.12)]. �

3. Proofs of Theorems 1.1 and 1.2

To obtain (1.4)–(1.7), we first prove two necessary lemmas.

Let k > 0, l ≥ 0 be integers and let G(q) =
∞∑
n=0

g(n)qn be a formal power series. Define

an operator Hk,l by

Hk,l (G(q)) :=
∞∑
n=0

g(kn+ l)qkn+l.

Lemma 3.1. Define

M1(q) := f(q18, q22)2 − q8f(q2, q38)2,
N1(q) := q5f(q12, q28)f(q2, q48) + q6f(q8, q32)f(q2, q48)

− qf(q12, q28)f(q18, q22)− q2f(q8, q32)f(q18, q22).
Then

ϕ(q)M1(q) + 2ψ(q2)N1(q) = ϕ(q5)M1(q) + 2qψ(q10)N1(q). (3.1)

Proof. Putting (a, b, c, d) = (−q8,−q12,−q10,−q10) in (2.6), we get

M1(q) = f(q18, q22)2 − q8f(q2, q38)2 = f(−q8,−q12)f(−q10,−q10). (3.2)

Similarly, taking (a, b, c, d) = (−q5,−q15,−q7,−q13) in (2.6),

qf(q12, q28)f(q18, q22)− q6f(q8, q32)f(q2, q48) = qf(−q5,−q15)f(−q7,−q13). (3.3)

Picking (a, b, c, d) = (−q3,−q17,−q5,−q15) in (2.6),

q2f(q8, q32)f(q18, q22)− q5f(q8, q32)f(q2, q48) = q2f(−q3,−q17)f(−q5,−q15). (3.4)

Finally, taking (a, b, c, d) = (q, q9,−q4,−q6) in (2.6),

f(−q5,−q15)f(−q7,−q13) + qf(−q3,−q17)f(−q5,−q15) = f(q, q9)f(−q4,−q6). (3.5)

Employing (3.3)–(3.5), we readily obtain

N1(q) = −qf(q, q9)f(−q4,−q6). (3.6)
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Now, with the help of (2.7), (2.8), (3.2), and (3.6),(
ϕ(q)− ϕ(q5)

)
M1(q) + 2

(
ψ(q2)− qψ(q10)

)
N1(q)

=2q
(q4, q6, q10, q14, q16, q20; q20)∞
(q3, q7, q8, q12, q13, q17; q20)∞

× (q8, q10, q10, q12, q20, q20; q20)∞

− 2q
(q, q9, q10, q11, q19, q20; q20)∞
(q2, q3, q7, q13, q17, q18; q20)∞

× (−q, q4, q6,−q9, q10, q10; q10)∞

=
(q4, q6, q10, q10, q10; q10)∞

(q3, q7; q10)∞
− (q4, q6, q10, q10, q10; q10)∞

(q3, q7; q10)∞
=0,

as desired. �

Lemma 3.2. We have

ψ(q2)ϕ(q5)− qϕ(q)ψ(q10) = (q; q)∞(q
5; q5)∞. (3.7)

Proof. Firstly, replacing q by −q5 in (2.4), we find that

ϕ(−q5) = ϕ(q20)− 2q5ψ(q40). (3.8)

Combining (2.4) and (3.8) yields

ϕ(q)ϕ(−q5) = ϕ(q4)ϕ(q20) + 2qψ(q8)ϕ(q20)− 2q5ϕ(q4)ψ(q40)− 4q6ψ(q8)ψ(q40). (3.9)

Replacing q by −q in (3.9),

ϕ(−q)ϕ(q5) = ϕ(q4)ϕ(q20)− 2qψ(q8)ϕ(q20) + 2q5ϕ(q4)ψ(q40)− 4q6ψ(q8)ψ(q40). (3.10)

By (3.9) and (3.10),

ϕ(q)ϕ(−q5)− ϕ(−q)ϕ(q5) = 4qψ(q8)ϕ(q20)− 4q5ϕ(q4)ψ(q40). (3.11)

Finally, substituting (2.5) into (3.11) and replacing q by q1/4, we obtain (3.7). �

Now we turn to prove (1.4).
On one hand, according to [7], we find that

∞∑
n=0

g1(n)q
n =

ϕ(q5)

(q5; q5)2∞(q
10; q10)∞

(
S1 − q4S2 + q2S3 − q6S4

)
+

2ψ(q10)

(q5; q5)2∞(q
10; q10)∞

(
qS5 − q5S6 + q4S7 − q8S8

)
, (3.12)

where

S1 =
∞∑

m,n=−∞

q20m
2+2m+20n2+6n, S2 =

∞∑
m,n=−∞

q20m
2+18m+20n2+6n,

S3 =
∞∑

m,n=−∞

q20m
2+2m+20n2+14n, S4 =

∞∑
m,n=−∞

q20m
2+18m+20n2+14n,
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S5 =
∞∑

m,n=−∞

q20m
2+2m+20n2+4n, S6 =

∞∑
m,n=−∞

q20m
2+18m+20n2+4n,

S7 =
∞∑

m,n=−∞

q20m
2+2m+20n2+16n, S8 =

∞∑
m,n=−∞

q20m
2+18m+20n2+16n.

In S1, if 2m + 6n ≡ 0 (mod 5), then 2m + n ≡ 0 (mod 5). Equivalently, m − 2n ≡ 0
(mod 5). Assume 2m+n = 5r andm−2n = −5s, it follows thatm = 2r−s and n = r+2s.
Therefore

H5,0(S1) =
∞∑

r,s=−∞

q100r
2+10r+100s2+10s = f(q90, q110)2. (3.13)

Similarly, we obtain

H5,0(q
4S2) = q20f(q10, q190)f(q90, q110), (3.14)

H5,0(q
2S3) = q20f(q10, q190)f(q90, q110), (3.15)

H5,0(q
6S4) = q40f(q10, q190)2, (3.16)

H5,0(qS5) = q25f(q60, q140)f(q10, q190), (3.17)

H5,0(q
5S6) = q5f(q60, q140)f(q90, q110), (3.18)

H5,0(q
4S7) = q30f(q40, q160)f(q10, q190), (3.19)

H5,0(q
8S8) = q10f(q40, q160)f(q90, q110). (3.20)

Picking out the term involving q5n in (3.12), applying (3.13)–(3.20) and replacing q5 by q,
we obtain

∞∑
n=0

g1(5n)q
n =

ϕ(q)

(q; q)2∞(q
2; q2)∞

(
f(q18, q22)2 − q8f(q2, q38)2

)
+

2ψ(q2)

(q; q)2∞(q
2; q2)∞

(
q5f(q12, q28)f(q2, q38) + q6f(q8, q32)f(q2, q38)

− qf(q12, q28)f(q18, q22)− q2f(q8, q32)f(q18, q22)
)
. (3.21)

On the other hand,

1

(q, q4; q5)2∞
=

(q2, q3, q5; q5)2∞
(q; q)2∞

=
1

(q; q)2∞

∞∑
m,n=−∞

(−1)m+nq(5m
2+m)/2+(5n2+n)/2

=
1

(q; q)2∞

(
∞∑

r,s=−∞

q(5(r+s)2+(r+s))/2+(5(r−s)2+(r−s))/2

−
∞∑

r,s=−∞

q(5(r+s−1)2+(r+s−1))/2+(5(r−s)2+(r−s))/2

)
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=
1

(q; q)2∞

(
∞∑

m,n=−∞

q5m
2+m+5n2 −

∞∑
m,n=−∞

q5m
2+5m+5n2+4n

)

=
ϕ(q5)

(q; q)2∞

∞∑
m=−∞

q5m
2+m − 2q2ψ(q10)

(q; q)2∞

∞∑
m=−∞

q5m
2+4m

=
ϕ(q5)

(q; q)2∞

(
∞∑

m=−∞

q20m
2+2m + q4

∞∑
m=−∞

q20m
2+18m

)

− 2ψ(q10)

(q; q)2∞

(
q2

∞∑
m=−∞

q20m
2+8m + q3

∞∑
m=−∞

q20m
2+12m

)
. (3.22)

Moreover,

1

(q2, q8; q10)∞
=

(q4, q6, q10; q10)∞
(q2; q2)∞

=
1

(q2; q2)∞

∞∑
m=−∞

(−1)mq5m2+m

=
1

(q2; q2)∞

(
∞∑

m=−∞

q20m
2+2m − q4

∞∑
m=−∞

q20m
2+18m

)
. (3.23)

Combining (3.22) and (3.23) yields

1

(q, q4; q5)2∞(q
2, q8; q10)∞

=

(
ϕ(q5)

(q; q)2∞

(
∞∑

m=−∞

q20m
2+2m + q4

∞∑
m=−∞

q20m
2+18m

)

− 2ψ(q10)

(q; q)2∞

(
q2

∞∑
m=−∞

q20m
2+8m + q3

∞∑
m=−∞

q20m
2+12m

))

× 1

(q2; q2)∞

(
∞∑

m=−∞

q20m
2+2m − q4

∞∑
m=−∞

q20m
2+18m

)

=
ϕ(q5)

(q; q)2∞(q
2; q2)∞

(
f(q18, q22)2 − q8f(q2, q38)2

)
+

2ψ(q10)

(q; q)2∞(q
2; q2)∞

(
q6f(q12, q28)f(q2, q38) + q7f(q8, q32)f(q2, q38)

− q2f(q12, q28)f(q18, q22)− q3f(q8, q32)f(q18, q22)
)
. (3.24)

Equation (1.4) follows from (3.1), (3.21), and (3.24).
Next we are ready to prove (1.5).
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Following the same line of proving (3.21), we obtain
∞∑
n=0

g1(5n+ 1)qn =
2ϕ(q)

(q; q)2∞(q
2; q2)∞

(
q5f(q10, q30)f(q2, q38)− qf(q10, q30)f(q18, q22)

)
+

2ψ(q2)

(q; q)2∞(q
2; q2)∞

(
f(q20, q20)f(q18, q22) + 2q5f(q40, q120)f(q18, q22)

− q4f(q20, q20)f(q2, q38)− 2q9f(q40, q120)f(q2, q38)
)

:=
2ϕ(q)

(q; q)2∞(q
2; q2)∞

M2(q) +
2ψ(q2)

(q; q)2∞(q
2; q2)∞

N2(q), (3.25)

say.
Taking (a, b, c, d) = (−q4,−q16,−q6,−q14) in (2.6),

f(q10, q30)f(q18, q22)− q4f(q10, q30)f(q2, q38) = f(−q4,−q16)f(−q6,−q14),
which yields

M2(q) = −qf(−q4,−q16)f(−q6,−q14). (3.26)

In view of (2.1) and (2.3),

N2(q) =f(q
20, q20)f(q18, q22)− 2q9f(q40, q120)f(q2, q38)

+ 2q5f(q40, q120)f(q18, q22)− q4f(q20, q20)f(q2, q38)
=f(q20, q20)f(q18, q22)− q9f(1, q40)f(q2, q38)

+ q5f(1, q40)f(q18, q22)− q4f(q20, q20)f(q2, q38). (3.27)

Similarly, putting (a, b, c, d) = (−q9,−q11,−q11,−q9) in (2.6),

f(q20, q20)f(q18, q22)− q9f(1, q40)f(q2, q38) = f(−q9,−q11)2. (3.28)

Picking (a, b, c, d) = (−q,−q19,−q19,−q) in (2.6),

f(q20, q20)f(q2, q38)− qf(1, q40)f(q18, q22) = f(−q,−q19)2. (3.29)

Taking (a, b, c, d) = (−q4,−q6, q5, q5) in (2.6),

f(−q9,−q11)2 − q4f(−q,−q19)2 = f(q5, q5)f(−q4,−q6) = ϕ(q5)f(−q4,−q6). (3.30)

With the help of (3.27)–(3.30),

N2(q) = ϕ(q5)f(−q4,−q6). (3.31)

Substituting (3.26) and (3.31) into (3.25),
∞∑
n=0

g1(5n+ 1)qn =
2ψ(q2)ϕ(q5)f(−q4,−q6)

(q; q)2∞(q
2; q2)∞

− 2qϕ(q)f(−q4,−q16)f(−q6,−q14)
(q; q)2∞(q

2; q2)∞

=
2ψ(q2)ϕ(q5)f(−q4,−q6)

(q; q)2∞(q
2; q2)∞

− 2qϕ(q)ψ(q10)f(−q4,−q6)
(q; q)2∞(q

2; q2)∞
. (3.32)



SEVERAL q-SERIES RELATED TO RAMANUJAN’S THETA FUNCTIONS 11

On the other hand,

2

(q, q2, q3, q4; q5)∞(q2, q8; q10)∞
=

2f(−q2,−q3)f(−q,−q4)f(−q4,−q6)
(q; q)2∞(q

2; q2)∞

=
2(q; q)∞(q

5; q5)∞f(−q4,−q6)
(q; q)2∞(q

2; q2)∞
. (3.33)

In light of (3.7), (3.32), and (3.33), we obtain (1.5).
The proofs of (1.6) and (1.7) are similar to that of (1.4).
The proof of Theorem 1.2 is similar to Theorem 1.1.

4. Proofs of Theorems 1.7 and 1.8

We only prove (1.16), and (1.17)–(1.23) can be proved similarly.
From [7], we have the following representation for

∑∞
n=0 g1,2,5(n)q

n:
∞∑
n=0

g1,2,5(n)q
n =

(q10; q10)4∞(q
80; q80)5∞f(q, q

4)

(q5; q5)5∞(q
20; q20)2∞(q

40; q40)2∞(q
160; q160)2∞

×

(
∞∑

n=−∞

q40n
2+12n − q4

∞∑
n=−∞

q40n
2+28n

)

+
2(q10; q10)4∞(q

160; q160)2∞f(q, q
4)

(q5; q5)5∞(q
20; q20)2∞(q

80; q80)∞

(
q14

∞∑
n=−∞

q40n
2+28n − q10

∞∑
n=−∞

q40n
2+12n

)

+
2(q20; q20)2∞f(q

30, q50)f(q, q4)

(q5; q5)3∞(q
10; q10)2∞

(
q
∞∑

n=−∞

q40n
2+2n − q10

∞∑
n=−∞

q40n
2+38n

+ q4
∞∑

n=−∞

q40n
2+22n − q3

∞∑
n=−∞

q40n
2+18n

)

+
2(q20; q20)2∞f(q

10, q70)f(q, q4)

(q5; q5)3∞(q
10; q10)2∞

(
q15

∞∑
n=−∞

q40n
2+38n − q9

∞∑
n=−∞

q40n
2+22n

+ q8
∞∑

n=−∞

q40n
2+18n − q6

∞∑
n=−∞

q40n
2+2n

)
. (4.1)

With the aid of (3.22) and (3.23),

(−q2,−q3; q5)2∞ =
(−q2,−q3, q5; q5)2∞

(q5; q5)2∞

=

(
(q10; q10)5∞

(q5; q5)4∞(q
20; q20)2∞

∞∑
m=−∞

q20m
2+2m +

q4(q10; q10)5∞
(q5; q5)4∞(q

20; q20)2∞

∞∑
m=−∞

q20m
2+18m

)
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+

(
2q2(q20; q20)2∞

(q5; q5)2∞(q
10; q10)∞

∞∑
m=−∞

q20m
2+8m +

2q3(q20; q20)2∞
(q5; q5)2∞(q

10; q10)∞

∞∑
m=−∞

q20m
2+12m

)
(4.2)

and

(q4, q6; q10)∞ =
1

(q10; q10)∞

(
∞∑

m=−∞

q20m
2+2m − q4

∞∑
m=−∞

q20m
2+18m

)
. (4.3)

Combining (4.2) and (4.3) as well as following the similar strategy of proving (3.22), we
obtain

∞∑
n=0

g2,4,5(n)q
n =

f(q2, q3)

(q5; q5)∞(q10; q10)∞

(
∞∑

m=−∞

q20m
2+2m − q4

∞∑
m=−∞

q20m
2+18m

)

×

(
(q10; q10)5∞

(q5; q5)4∞(q
20; q20)2∞

∞∑
n=−∞

q20n
2+2n +

q4(q10; q10)5∞
(q5; q5)4∞(q

20; q20)2∞

∞∑
n=−∞

q20n
2+18n

+
2q2(q20; q20)2∞

(q5; q5)2∞(q
10; q10)∞

∞∑
n=−∞

q20n
2+8n +

2q3(q20; q20)2∞
(q5; q5)2∞(q

10; q10)∞

∞∑
n=−∞

q20n
2+12n

)

=
(q10; q10)4∞(q

80; q80)5∞f(q
2, q3)

(q5; q5)5∞(q
20; q20)2∞(q

40; q40)2∞(q
160; q160)2∞

(
∞∑

n=−∞

q40n
2+4n − q8

∞∑
n=−∞

q40n
2+36n

)

+
2(q10; q10)4∞(q

160; q160)2∞f(q
2, q3)

(q5; q5)5∞(q
20; q20)2∞(q

80; q80)∞

(
q18

∞∑
n=−∞

q40n
2+36n − q10

∞∑
n=−∞

q40n
2+4n

)

+
2(q20; q20)2∞f(q

30, q50)f(q2, q3)

(q5; q5)3∞(q
10; q10)2∞

(
q2

∞∑
n=−∞

q40n
2+6n − q9

∞∑
n=−∞

q40n
2+34n

+ q3
∞∑

n=−∞

q40n
2+14n − q6

∞∑
n=−∞

q40n
2+26n

)

+
2(q20; q20)2∞f(q

10, q70)f(q2, q3)

(q5; q5)3∞(q
10; q10)2∞

(
q14

∞∑
n=−∞

q40n
2+34n − q8

∞∑
n=−∞

q40n
2+14n

+ q11
∞∑

n=−∞

q40n
2+26n − q7

∞∑
n=−∞

q40n
2+6n

)
.

Define

W1 := f(q, q4)
∞∑

n=−∞

q40n
2+12n − q4f(q, q4)

∞∑
n=−∞

q40n
2+28n,
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W2 := q14f(q, q4)
∞∑

n=−∞

q40n
2+28n − q10f(q, q4)

∞∑
n=−∞

q40n
2+12n,

W3 := qf(q, q4)
∞∑

n=−∞

q40n
2+2n − q10f(q, q4)

∞∑
n=−∞

q40n
2+38n,

W4 := q4f(q, q4)
∞∑

n=−∞

q40n
2+22n − q3f(q, q4)

∞∑
n=−∞

q40n
2+18n,

W5 := q15f(q, q4)
∞∑

n=−∞

q40n
2+38n − q9f(q, q4)

∞∑
n=−∞

q40n
2+22n,

W6 := q8f(q, q4)
∞∑

n=−∞

q40n
2+18n − q6f(q, q4)

∞∑
n=−∞

q40n
2+2n,

T1 := f(q2, q3)
∞∑

n=−∞

q40n
2+4n − q8f(q2, q3)

∞∑
n=−∞

q40n
2+36n,

T2 := q18f(q2, q3)
∞∑

n=−∞

q40n
2+36n − q10f(q2, q3)

∞∑
n=−∞

q40n
2+4n,

T3 := q2f(q2, q3)
∞∑

n=−∞

q40n
2+6n − q9f(q2, q3)

∞∑
n=−∞

q40n
2+34n,

T4 := q3f(q2, q3)
∞∑

n=−∞

q40n
2+14n − q6f(q2, q3)

∞∑
n=−∞

q40n
2+26n,

T5 := q14f(q2, q3)
∞∑

n=−∞

q40n
2+34n − q8f(q2, q3)

∞∑
n=−∞

q40n
2+14n,

T6 := q11f(q2, q3)
∞∑

n=−∞

q40n
2+26n − q7f(q2, q3)

∞∑
n=−∞

q40n
2+6n.

Next, we prove that

H5,1(Wi) = H5,2(Ti) for 1 ≤ i ≤ 6.

We only prove the case H5,1(W1) = H5,2(T1) here because the proofs of remaining cases are
similar.

Notice that

f(q2, q3) =
∞∑

m=−∞

q(5m
2+m)/2
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=
∞∑

m=−∞

q10m
2+m + q2

∞∑
m=−∞

q10m
2+9m

=
∞∑

m=−∞

q40m
2+2m + q9

∞∑
m=−∞

q40m
2+38m + q2

∞∑
m=−∞

q40m
2+18m + q3

∞∑
m=−∞

q40m
2+22m

and

f(q, q4) =
∞∑

m=−∞

q40m
2+6m + q7

∞∑
m=−∞

q40m
2+34m + q

∞∑
m=−∞

q40m
2+14m + q4

∞∑
m=−∞

q40m
2+26m.

Therefore,

S1 = P1 + P2 + P3 + P4 − P5 − P6 − P7 − P8,

T1 = Q1 +Q2 +Q3 +Q4 −Q5 −Q6 −Q7 −Q8,

where

P1 =
∞∑

m,n=−∞

q40m
2+6m+40n2+12n, P2 = q7

∞∑
m,n=−∞

q40m
2+34m+40n2+12n,

P3 = q
∞∑

m,n=−∞

q40m
2+14m+40n2+12n, P4 = q4

∞∑
m,n=−∞

q40m
2+26m+40n2+12n,

P5 = q4
∞∑

m,n=−∞

q40m
2+6m+40n2+28n, P6 = q11

∞∑
m,n=−∞

q40m
2+34m+40n2+28n,

P7 = q5
∞∑

m,n=−∞

q40m
14+14m+40n2+28n, P8 = q8

∞∑
m,n=−∞

q40m
2+26m+40n2+28n,

Q1 = q9
∞∑

m,n=−∞

q40m
2+38m+40n2+4n, Q2 =

∞∑
m,n=−∞

q40m
2+2m+40n2+4n,

Q3 = q2
∞∑

m,n=−∞

q40m
2+18m+40n2+4n, Q4 = q3

∞∑
m,n=−∞

q40m
2+22m+40n2+4n,

Q5 = q17
∞∑

m,n=−∞

q40m
2+38m+40n2+36n, Q6 = q8

∞∑
m,n=−∞

q40m
2+2m+40n2+36n,

Q7 = q10
∞∑

m,n=−∞

q40m
2+18m+40n2+36n, Q8 = q11

∞∑
m,n=−∞

q40m
2+22m+40n2+36n.

Following the similar strategy of proving (3.13), we deduce that

H5,1(Pi) = H5,2(Qi) for 1 ≤ i ≤ 8.

This establishes (1.16).
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Finally, we are ready to prove (1.26)–(1.29).
It follows easily from (2.2) that

f(−q2s,−q2t) = (q2s+2t; q2s+2t)∞
(qs+t; qs+t)2∞

f(qs, qt)f(−qs,−qt), s, t ∈ N+, (4.4)

f(q, q4)f(q2, q3) =
(q2; q2)∞(q

5; q5)3∞
(q; q)∞(q10; q10)∞

, (4.5)

f(−q2,−q3)f(−q4,−q6) = (q5; q5)∞(q
2, q3, q4, q6, q7, q8, q10; q10)∞

=
(q2; q2)∞(q

5; q5)∞
(q10; q10)∞

f(−q3,−q7), (4.6)

f(−q,−q4)f(−q2,−q8) = (q5; q5)∞(q, q
2, q4, q6, q8, q9, q10; q10)∞

=
(q2; q2)∞(q

5; q5)∞
(q10; q10)∞

f(−q,−q9). (4.7)

On one hand, according to (4.4) and (4.5), we obtain

(−q,−q4; q5)2∞(q4, q6; q10)∞ + (−q2,−q3; q5)2∞(q2, q8; q10)∞

=
1

(q5; q5)2∞(q
10; q10)∞

(
f(q, q4)2f(−q4,−q6) + f(q2, q3)2f(−q2,−q8)

)
=

1

(q5; q5)4∞
f(q, q4)f(q2, q3)

(
f(q, q4)f(−q2,−q3) + f(−q,−q4)f(q2, q3)

)
=

(q2; q2)∞
(q; q)∞(q5; q5)∞(q10; q10)∞

(
f(q, q4)f(−q2,−q3) + f(−q,−q4)f(q2, q3)

)
. (4.8)

Taking (a, b, c, d) = (−q,−q4, q2, q3) in (2.6),

f(−q,−q4)f(q2, q3) = f(−q3,−q7)f(−q4,−q6)− qf(−q,−q9)f(−q2,−q8). (4.9)

Picking (a, b, c, d) = (q, q4,−q2,−q3) in (2.6),

f(q, q4)f(−q2,−q3) = f(−q3,−q7)f(−q4,−q6) + qf(−q,−q9)f(−q2,−q8). (4.10)

Substituting (4.9) and (4.10) into (4.8),

(−q,−q4; q5)2∞(q4, q6; q10)∞ + (−q2,−q3; q5)2∞(q2, q8; q10)∞

=
2(q2; q2)∞

(q; q)∞(q5; q5)∞(q10; q10)∞
f(−q3,−q7)f(−q4,−q6).

On the other hand, with the help of (4.5) and (4.6),

2(q10; q10)3∞
(q2; q2)∞(q5; q5)2∞

(−q,−q4; q5)∞(q4, q6; q10)3∞

=
2

(q2; q2)∞(q5; q5)3∞
f(q, q4)f(−q4,−q6)3
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=
2(q10; q10)∞

(q2; q2)∞(q5; q5)5∞

((
f(q, q4)f(q2, q3)

) (
f(−q2,−q3)f(−q4,−q6)

)
f(−q4,−q6)

)
=

2(q2; q2)∞
(q; q)∞(q5; q5)∞(q10; q10)∞

f(−q3,−q7)f(−q4,−q6).

This establishes (1.26).
According to (4.4)–(4.7) and (4.9),

(−q,−q4; q5)∞(q4, q6; q10)3∞ − q(−q2,−q3; q5)∞(q2, q8; q10)3∞

=
1

(q5; q5)∞(q10; q10)3∞

(
f(q, q4)f(−q4,−q6)3 − qf(q2, q3)f(−q2,−q8)3

)
=

1

(q5; q5)3∞(q
10; q10)2∞

f(q, q4)f(q2, q3)

((
f(−q2,−q3)f(−q4,−q6)

)
f(−q4,−q6)

− q
(
f(−q,−q4)f(−q2,−q8)

)
f(−q2,−q8)

)
=
(q2; q2)2∞(q

5; q5)∞
(q; q)∞(q10; q10)4∞

f(−q,−q4)f(q2, q3).

Also, using (4.4),

(q2; q2)∞(q
5; q5)2∞

(q10; q10)3∞
(−q2,−q3; q5)2∞(q2, q8; q10)∞

=
(q2; q2)∞
(q10; q10)4∞

f(q2, q3)2f(−q2,−q8)

=
(q2; q2)∞

(q5; q5)2∞(q
10; q10)3∞

(
f(q, q4)f(q2, q3)

)
f(−q,−q4)f(q2, q3)

=
(q2; q2)2∞(q

5; q5)∞
(q; q)∞(q10; q10)4∞

f(−q,−q4)f(q2, q3).

This proves (1.28).
The proofs of (1.27) and (1.29) are similar to those of (1.26) and (1.28), respectively.

5. Final remarks

We close this paper with some remarks.
1) Following the same line of proving (1.16)–(1.19), we can also prove

a1,1,7(7n+ 1) = a3,3,7(7n+ 3), (5.1)
a1,6,7(7n+ 6) = −a2,2,7(7n+ 6), (5.2)

a4,6,11(11n+ 5) = −a5,2,11(11n+ 4), (5.3)
a4,6,11(11n+ 7) = a5,2,11(11n+ 6). (5.4)
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There are other identities similar to (5.1)–(5.4) for t = 11. Therefore it is natural to
ask whether or not there exist some identities between ar,s,t(n) and br,s,t(n) for arbitrary
prime t, which parallel to (5.1)–(5.4).

2) Following the similar method of proving (1.3) in [7], we can also obtain

g2(5n+ 3) = h2(5n+ 1) = 0, (5.5)

which is parallel to (1.3).
Eqs. (1.27) and (5.5) imply

h2(5n+ 3) ≡ 0 (mod 2).

Furthermore, there are some results similar to (1.16)–(1.23) in another types of q-series
expansions. Relating to (1.15) and (1.26), define

(−q,−q4; q5)2∞(q4, q6; q10)2∞(q2, q8; q10)∞ =
∞∑
n=0

ĝ1(n)q
n,

(−q2,−q3; q5)2∞(q2, q8; q10)2∞(q4, q6; q10)∞ =
∞∑
n=0

ĥ1(n)q
n.

Following the similar strategy of proving (1.16), we can also obtain

ĝ1(5n) = ĥ1(5n),

ĝ1(5n+ 2) = ĥ1(5n+ 1) = 0,

ĝ1(5n+ 3) = −ĥ1(5n+ 3).

Of course, we can also obtain similar results for (1.27)–(1.29).
3) We also learn from Nayandeep Deka Baruah and Mandeep Kaur [1] that they have

provided new proofs of (1.18)–(1.21). Their proofs rely highly on two known q-identities
[4, Eqs. (40.1.1) and (41.1.5)] involving Ramanujan’s continued fractions.

4) Finally, with the help of computer, the signs of coefficients in q-series (1.24) and (1.25)
appear to be periodic.

Conjecture 5.1. For any integer n ≥ 0,

g2(5n) > 0, (5.6)
g2(5n+ 1) < 0, (5.7)
g2(5n+ 2) > 0, (5.8)
g2(5n+ 4) < 0, (5.9)

h2(5n) > 0, (5.10)
h2(5n+ 2) < 0, (5.11)
h2(5n+ 3) < 0, (5.12)
h3(5n+ 4) > 0. (5.13)
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It would be interesting to find an elementary proof of (5.6)–(5.13).
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