ON CERTAIN UNIMODAL SEQUENCES AND STRICT PARTITIONS
SHISHUO FU AND DAZHAO TANG

ABSTRACT. Building on a bijection of Vandervelde, we enumerate certain unimodal se-
quences whose alternating sum equals zero. This enables us to refine the enumeration of
strict partitions with respect to the number of parts and the BG-rank.

1. INTRODUCTION

A partition [2] X of a natural number n is a finite weakly decreasing sequence of positive
integers A\;y > Ag--- > A\, > 0 such that Z:zl A; = n. The \;’s are called the parts of the
partition. Such a partition A is frequently represented by its Young diagram (or Ferrers
graph) |2, Chap. 1.3], which we take to be a left-justified array of square boxes with r rows
such that the i-th row consists of A; boxes (the left one in Fig. 1). But for the graphical
representation of strict partitions, we prefer the shifted Young diagram (the right one in
Fig. 1).

A celebrated theorem of Euler asserts that there are as many partitions of n into distinct
parts as there are partitions into odd parts. In 2010, Sam Vandervelde [I4] raised and
then answered himself a natural question on whether there is a similar relationship between
partitions into distinct parts (abbreviated as strict partitions in what follows) and partitions
involving even parts (see Corollary 3.10 below). He provided a short generating function
proof of this result by making appropriate substitutions in the Jacobi triple product identity.

[ 1] | [

FIGURE 1. Standard and shifted Young diagrams representing A = (7,4, 3,1)

In search of a bijective proof, Vandervelde discovered this statistic which he named the
“characteristic” of a partition, which is actually equivalent to the “BG-rank” introduced by
Berkovich and Garvan [1] in their study of the refinements of Ramanujan’s famous partition
congruence modulo 5. He was then able to propose a conjecture (Conjecture 1, [14]) that
not only strengthened the initial result, but also suggested strongly the existence of a
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bijective proof. Vandervelde then provided such a bijective proof for the case when the
characteristic or BG-rank k& = 0, for which partition he named as “balanced partition”. The
chief aim of this paper is to prove the entire conjecture bijectively for all integer k. We note
that, being not aware of Vandervelde’s conjecture, Huang et al. [I1] supplied essentially
the first proof of it (see Corollary 3.7 below). It is worth noting, that previous works of
Boulet [6], Berkovich and Uncu [5] could establish Vandervelde’s conjecture as well (see
Remark 3.9).

The rest of the paper is organized as follows. We introduce and study certain unimodal
sequences in Section 2. In Section 3, we build on this result and enumerate strict partitions
with respect to the number of parts and the BG-rank (see Theorem 3.5). We conclude in
the last section with some remarks to motivate further investigation.

2. (a,b)-SEQUENCES
Definition 2.1. For integers a > 0, [ > b > 1, we call {dy,...,d;} an (a,b)-sequence of
length [, if it consists of [ positive integers that satisfy the following conditions:
)di=a+1l,dy=a+2,...,dy=a+b;
2) dy > dppy > dpro > >dp > 1

3) S (—1)id; =0.

Let S, denote the set of all (a, b)-sequences, and denote S := (Ua>0’b>1 S(L’b) U{e}, where
¢ denotes the empty sequence. Suppose A = {dy,...,d;} is any sequence of real numbers,
we let I(A) =1, |A] = ', d;, |Al. = X' (~1)'d;. In particular, if A € S,p, then let
a(A) = a, b(A) = b. For the empty sequence €, we set a(e) = b(e) = l(e) = |e| = |¢|, = 0.
Notice that due to condition 3), |A| must be an even integer. We have the following
bivariate generating function.

Theorem 2.2. There holds
1)qkz)y2k—1qk(i+k)

12l i (L (y -
S(z,y) = g BT =1 4 x* , (2.1)
A;S Zo ; (4 Dr(a Qirr
where
k-1
(a; ) = [ J(1 = ag™)
n=0

15 the g-shifted factorial.

In order to prove the above theorem, we constuct a bijection ¢, that maps each A € S,
with weight |A| = 2n to an integer partition A of n. This bijection, in the case of a = 0,
was originally developed by Vandervelde [11]. Before we describe this map, let us make
some useful observations.

Lemma 2.3. Take any A = {dy,--- ,d;} € Sap.
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(1) There does not exist m, 0 < m <, such that

(i(—l)idi) : (%(—1)@'@) > 0. (2.2)

i=1 i=1
(2) If for some n >b—1, we have ;" (—=1)'d; =0, then n =1 (mod 2), and
dnJrl = dn+2 > dn+3 = dn+4 > 2> dimy = dg. (23>

In particular, when b =1, we can take n = 0, and Z?Zl(—l)idi = 0 holds trivially,
so in this case we always have dy = dy > d3 =dg > -+ > dj_1 = d;.

Proof. First, we prove (1) by contradiction. Suppose there exists such a A € S, find the
smallest m that satisfies (2.2). A simple calculation reveals that m > b. Next we discuss
according to the parity of m.
I. If m is even, then by the minimality of m, we must have
m—+1

Z d>02 )id; > 0,

=1
But now we see
1 m+1 m+1
0= (—1)'di =Y (=1)'d; + (dims2 — sz + ) > Z )id; > 0,
i=1 i=1
a contradiction. The penultimate inequality is due to condition 2) in Definition 2.1.
IT. If m is odd, then we have instead
m+1

Z d<02 )id; < 0,

=1

and we see
l m+1 m+1
0= (—1)idi =Y (=1)'d; — (dimy2 — dmiz+++) < Y _(=1)'d; <0,
i=1 i=1 i=1
which is absurd again.
Next for (2), since n > b— 1, n+ 1 > b, so we have d,,;1 > dn+2 >...>d; > 1.
Moreover, condition 3) together with >"""  (—1)'d; = 0 forces ZZ wa1(—1)'d; =0,
which in turn results in (2.3), as desired.

O

Following Chu [3|, we define a k-Durfee rectangle for the Young diagram of a given
partition to be the largest ¢ x (i + k) rectangle (consisting of ¢ rows and ¢ 4+ k& columns)
contained in that Young diagram for a fixed k. Then the original Durfee square becomes
the 0-Durfee rectangle in this setting. Notice that this notion of Durfee rectangle is different
from Andrews’ generalization in [1].
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FIGURE 2. Board configuration for ¢, with labelled blocks

Definition 2.4. Let P be the set of all (integer) partitions, including the empty partition
@. And for a > 0,b > 1, let P,;, be the set of all integer partitions A = (A1, Ag,...) whose
b

a-Durfee rectangle has size (5-‘ X ((%W + a), and either A\, > a 4 b/2 if b is even, or

/\(b+1)/2 =a+ (b—|— 1)/2 if b is odd.
Now we describe the aforementioned bijection ¢,. The main idea is to use the given
sequence A = {dy,...,d;} € S, to “double cover” the board configuration depicted in

Fig. 2. The doubly covered region in the end of this process will be the Young diagram of
an integer partition in Pgy,.

4+ 1
More precisely, the i-th labelled block in this board configuration has size 1 x (a + ! —|2— )

(resp. % x 1) if 7 is odd (resp. even). We denote this block as B; and its area as b;. So for

example, by = a+1,bo = 1,bs = a+2,by = 2,.... Assume we are given A = {dy,...,d;} €
Sap, We get ¢q(A) by performing the following fillings of the initially empty board.
(1) Use dy = a+ 1 cells to fill up B;.
(2) For 2 <i <, first use d;_; cells to double cover the already existing cells in B;_1,
and then use the remaining cells to fill B;.
(3) For each odd-numbered (horizontal) block, the filling is always from left to right,
while for each even-numbered (vertical) block, the filling is from top to bottom.
(4) After we have used up all d;,;1 < i < [, the doubly covered cells form the Young
diagram of an integer partition, which is defined to be A = ¢,(A).

Theorem 2.5. For a fivred a > 0 and any b > 1, the map ¢, defined above is a bijection
from Sap to Payp, such that |A] = 2|¢.(A)]|, for any A € Sap.

Proof. Given any A € S, 4, to see that ¢,(A) is indeed in P, p, we consider two phases.
Phase I is when we use d; cells to fill the blocks for 1 < i < b. Each time we observe an
exact cover of the blocks involved, since by = a+ 1 =d;,b1 + by = a+ 2 = dy, by + b3 =
a+3 =ds,...,bp_1 +b, = a+ b= dy. In the end of this phase we have built up the
(%W X ((gw + a) Durfee rectangle of ¢,(A). Moreover, depending on the parity of b, we
have certain restriction on the length of the bottom row in this Durfee rectangle, as stated

in Definition 2.4.
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Phase [T is for b < ¢ < [. We claim that at the ¢-th step, d; is no less than the number of
cells already covered in B;_1, and no more than the number of cells already doubly covered
in B;_5. More precisely, we have

o d; > Zi.fl (—1)jdj‘. This is due to Lemma 2.3 (1).

j=1
e d; 1 > d;. This is clear since ¢ > b and we have condition 2) in Definition 2.1.
Finally, condition 3) in Definition 2.1 guarantees that we will not have any singly covered
cells left. In conclusion, A = ¢,(A) € P, indeed, and each cell of its Ferrers graph is
doubly covered, when we used up all d;s in A. This shows that the map ¢, is well-defined,
and |A] = 2/6,(A)].

To prove that ¢, is a bijection, we note the following way to define its inverse. Given
an integer partition A € P,;, we put its Ferrers graph on the board as shown in Fig. 2,
such that their top left corners coincide. And we denote the number of cells in A\ that are
confined in B; as ¢;, then we put

d1 = Cq, dz =C_1+ C;, for ¢ Z 2.

It should be clear that the positive numbers d;, ds, - - - form a sequence in S,, and this is
exactly ¢;(\). This completes the proof. O

Example 2.6. Assume a = 6, b =5, take A = (7,8,9,10,11,11,8,7,5,5,4,3,1,1) € Sg5,
then A = ¢6(A) = (12,10,9,6,4,3,1) € Ps5 and || = |A]/2 = 45.

Corollary 2.7. Theorem 2.2 is true.

Proof. First note that the empty sequence corresponds to the empty partition trivially, and
they are both weighted as 1 from both sides of the identity. Next for any b > 1, fix an
a > 0, it suffices to compare the coefficients of % on both sides of (2.1), and realize that

they are respectively the generating functions of (a, b)-sequences over |J S,;, and integer
b>1
partitions over (J P, s, which are the same according to Theorem 2.5. To obtain the right
b>1
hand side of the identity, we only need to add together the odd and even cases for the

power of y and simplify the result. O

3. APPLICATION TO STRICT PARTITIONS

The motivation for studying (a, b)-sequences introduced in the last section comes from
their connection with strict partitions. Let D denote the set of all strict partitions, including
the empty partition @ and T = {3k(k+1) : k € Z} denote the set of all triangular numbers,
then the following observation reveals this connection.

Lemma 3.1. There is an injectiont : D — T xS. Suppose t(X) = (t,A), then |\| = t+|A].
Moreover, (t,A) € (D) if and only if either

(1) a(A) =k, or

(2) a(A) <k —1 and b(A) =1, or

(3) A=,
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where t = (kgl) for some k > 0.

Proof. Recall that we use the shifted Young diagram to represent strict partitions as the
second diagram in Fig. 1. Given a partition A = (A, Ag, ..., A\p) € D, we read its shifted
Young diagram column-wise from left to right and obtain a sequence c¢(\) = {¢1, ¢a, ..., ¢ }-
For instance, we get ¢(\) = {1,2,3,4,3,1,1} for the diagram shown in Fig. 1. In general,
it should be clear that ¢(\) satisfies the first two conditions of being a (0, m)-sequence.
Moreover, we claim that there exists certain integer k, where 0 < k < m, such that
Zle(—l)ici = Zl’.\il(—l)ici. Assuming this claim for the moment, we see that A :=
{Ckt1, Cki2, - .., Cy } satisfies all three conditions in Definition 2.1 and hence A € §. Now
we simply take t = 1 +2+ -+ k = (*}'), and define ((\) = (t,A). Wesee t(A) € T x S
indeed and
A=A +X+ 4+ Ap=ci+eat+-+c, =t+]Al

Now take any (t,A) € «(D) with ¢t = (kgl), we have the following discussion, which leads

to the three cases characterizing the image set +(D).
(1) K < m. In this case k + 1 < m so ¢x+1 = k + 1, which means a(A) = k.
(2) k=m < A;. In this case k = ¢ > 41 > Cpyo > -+, 50 we must have a(A) < k—1
and b(A) = 1.
(3) kK =m = A;. This happens exactly when A itself is a staircase partition

(kk—1,...,2,1)

and A = e.

To see that ¢ is an injection, simply note that for any (¢, A) € D x S that satisfies either
(1) or (2) or (3), we can uniquely recover its preimage by appending columns of length
1,2,...,k to the left of the columns of length given by the integers in the sequence A and
getting a valid shifted Young diagram. This also proves the “if” part of the characterization
of (D).

Finally we prove the aforementioned claim. For ¢(\) = {c1, o, ..., ¢y, }, we consider the
sequence of the initial alternating sums, namely

O7 —C1, —C1 + Co, —C1 + Ccy — C3, —C1 +Cy —C3+ Cy4, Ce (31)

This sequence ends at the full alternating sum |c¢(M),, and it starts as 0,—1,1,—2,2,.. .,
until it reaches Y 7" (—1)"c;. This is also the point where this alternating sum assumes the
largest absolute value (say [) among the entire sequence. Actually, by far all the integer
values from —[ to [ have appeared precisely once each, with a possible exception for value [
(this depends on the parity of m). Passing this point, the behavior of these alternating sums
is less predictable but will never surpass [ in absolute value, since ¢, > Cpp1 > -+ 2> €y -
Therefore, the ending value |¢()\)|, must have appeared exactly once before Y 7", (—1)%c;,
hence we have proved the claim.

Example 3.2. Tab. 1 lists all five strict partitions of 7 and their images under the injection
L.
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TABLE 1. the injection ¢

D (D)

7 [(L{LLLLL1Y
6+1 (3,{1.1,1,1})
5+2 | (1,{2.2,1,1})
4+3 (3,{2,2})

44241 (1,{2,3,1))

Basing on this injection, we can enumerate strict partitions with respect to the number
of parts and the BG-rank.

Definition 3.3 (Berkovich-Garvan [1], 2006). For any partition A, its BG-rank is defined
to be the excess of the number of the odd-indexed odd parts over the number of the even-
indexed odd parts, and is denoted as r(\).

Remark 3.4. If ) is a strict partition, we have —|c(\)|, = 7(\). One convenient way to
see this is to paint the (standard) Young diagram in a chessboard fashion using black and
white, and then weight each black cell (resp. white cell) by 1 (resp. by —1), with the
left-top cell painted black. Then the sum of the weights of all the cells in the diagram
gives us () on one hand, and when viewed using the shifted Young diagram, it gives us
—le(M)]q on the other hand.

Theorem 3.5. Given any integers k,m,n such that m > 2k — 1 if k > 0, m > =2k if
E<0,n> (m;l), the number of strict partitions of n with exactly m parts and BG-rank
being k, equals
(1) the number of A € Sop_1m—2k+1 with |A] =n — (22k), if k>0,m>2k—1.
(2) the number of partitions A with its largest part no greater than 2k — 1, and 2|\| =
n— (%), ifk>0,m=2k—1.
(3) the number of A € S_ok mior with |A| =n — (22k), if Kk <0,m > —2k.
(4) the number of partitions X\ with its largest part no greater than —2k, and 2|\| =
n— (%), ifk<0,m=—2k.

Proof. We only show case (1) here, since the remaining cases are quite similar. As we
have already observed in Remark 3.4, for any strict partition A, we have r(A) = —|c¢(\)]a.
Now suppose k > 0,m > 2k —1,n > (m;—l)’ and A is a strict partition of n with m parts
and 7(\) = k, so |e(\)]. = —k < 0. We apply ¢ to get ¢(\) = (t,A), where t = (%)
and A € Sop—1m-2k+1. Conversely, for any A € Sop—1m—2k+1 With |[A| = n — (22k), we
can append 1,2,...,2k — 1 to the left of A to get ¢()), and hence A, so these two sets
are indeed equinumerous. Finally, note that in cases (2) and (4), we use partitions rather
than (a,b)-sequences, because in these two cases we have b(A) = 1 and the observation in
Lemma 2.3 (2) gives us the results. O
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Example 3.6. We enumerate here all the strict partitions of n with m parts and BG-rank
being k, for various values of (k,m,n). And we also list the corresponding equinumerous
objects as predicted by the last theorem.

(1) For (k,m,n) = (3,6,33), we have the following qualified strict partitions of 33:
(13,6,5,4,3,2), (11,8,5,4,3,2), (9,8,7,4,3,2).

And there are exactly three sequences in S;; with weight being n — (22k) = 18,
namely
{6,6,1,1,1,1,1,1}, {6,6,2,2,1,1}, {6,6,3,3}.
(2) For (k,m,n) = (2,3,16), we have the following qualified strict partitions of 16:

(13,2,1), (11,4,1), (9,6,1), (9,4,3), (7,6,3).

2%
n p—
And there are exactly five partitions of % = 5 with the largest part no greater

than 3, namely
(1,1,1,1,1), (2,1,1,1), (2,2,1), (3,1,1), (3,2).
(3) For (k,m,n) = (0, 3,12), we have the following qualified strict partitions of 12:
(6,4,2), (7,3,2), (8,3,1), (6,5,1).

And there are exactly four sequences in Sy 3 with weight being n — (Qk) = 12, namely

2
{1,2,3,3,2,1}, {1,2,3,3,1,1,1}, {1,2,3,2,1,1,1,1}, {1,2,3,2,2,2}.

(4) For (k,m,n) = (—1,2,11), we have the following qualified strict partitions of 11:
(10,1), (8,3), (6,5).

2%k
n JR—
And there are exactly three partitions of # = 4 with the largest part no

greater than 2, namely
(1,1,1,1), (2,1,1), (2,2).

As an immediate application of last theorem, we derive the following result first obtained
by Huang et al in [11].

Corollary 3.7 (Proposition 5.13, [11]). Let P; be the set of all partitions with 2-core size

(2;), then we have

3 M= < q(f_) ‘ (3.2)

XEP;ND [1(1—¢q%)
i=1
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Proof. As observed in [7], (\) = j if and only if its 2-core is a staircase partition of height
25 —1,if 7 > 0, and —27, if 5 < 0. In either case, the size of its 2-core is (227) Therefore
P; N D is exactly the set of all strict partitions with BG-rank being j.

To get its generating function, we just fix j (suppose j > 0), and let m run through
all integers no less than 2j — 1, i.e., we combine cases (1) and (2) in Theorem 3.5 for all
possible values of m. We note that P, 9, UP, 2,1 is the set of partitions with their a-Durfee
rectangles having size b x (b+a), and the partitions without an a-Durfee rectangle are those
whose largest part is no greater than a. This, together with Theorem 2.5, gives us (3.2).
The 7 < 0 case can be proved analogously, we just need to combine cases (3) and (4) in
Theorem 3.5 instead. ]

Remark 3.8. We note that Huang et al supplied two proofs of (3.2) in [11], the first of
which, albeit being combinatorial, is the composition of three bijections among P; N D,
the set of partitions with some restrictions and the set of partition pairs subject to certain
constraints. It is therefore of quite different nature when compared with our proof.

Remark 3.9. In this remark, the undefined notations are customary in the study of ¢-series
and can be found in [2]. In [5, (3.2)], Berkovich and Uncu derived

> n 2 . 12N 4+ v
ZopgN—H/,k(n)q = q2k F |:N 4 k1q27 (33>

where v = 0,1 and p% . (n) is the number of strict partitions of n into parts < N with BG-
rank = k. Letting N — oo in (3.3) gives us (3.2). It remains an interesting problem, to find
a direct combinatorial proof of (3.3), by applying our injection ¢ or otherwise. Moreover,
it is important to realize that (3.2) is already implicit in the work of Boulet [6]. Indeed,
setting a = d = qz,b = ¢ = ¢/z in Corollary 2 in [0], we get

—azat 3/ A
S P g = (—gz4q )o;'( ! /%4")o

Y

which is equivalent to (3.2) via the Jacobi triple product identity.

Now we can sum over all j and compare the coefficients of ¢" on both sides to arrive at
Vandervelde’s partition theorem that parallels Euler’s “Distinct v.s. Odd” theorem.

Corollary 3.10 (Proposition 1, [11]). For every nonnegative integer n, the number of strict
partitions of n is equal to the number of partitions of n into even parts along with precisely
one triangular part.

4. FINAL REMARKS

We conclude with several remarks that merit further study.
1) First, with the aid of (3.2), we see that

o) =p ("), (4.)
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where ¢;(n) counts the number of strict partitions of n with BG-rank being j. If we let
q(n) denote the total number of strict partitions of 7, then summing up (4.1) gives us

ORI (42)

j=—o0

This is Gauss’ theta function identity [2, Eq. (2.2.13)] in disguise (C. Ballantine, personal
communication, July, 2018).

Although the connection with BG-rank as revealed by (4.1) seems to be new, (4.2)
does lend itself to several applications in the recent literature of partition theory. To
name a few, Merca [12, Theorem 1| used it to obtain a new method for computing
the values for p(n) that requires only the values of p(k) with £ < n/2, Ballantine and
Merca [3, Theorem 2.7| utilized it to determine the parity of sums of partition numbers

at certain places in arithmetic progressions, and Wildon [15] proved certain aymptotic
formula for ¢(n) basing on (4.2).
Moreover, combining (4.1) and one of Ramanujan’s classical congruences [13| p(5n +

4) =0 (mod 5), we obtain the following:

¢;(10n+1)=0 (modb5), if j=9 (mod 10), (4.3)
¢;(10n+3)=0 (mod5), if j=3,5 (mod 10), (4.4)
¢(10n+4)=0 (mod5), if j=2,6 (mod 10), (4.5)
¢;(10n+6) =0 (mod5), if j=4 (mod 10), (4.6)
¢;(10n+8) =0 (mod5), if j=0,8 (mod 10), (4.7)
¢;(10n+9)=0 (mod5), if j=1,7 (mod 10) (4.8)
The congruences above are reminiscent of the congruences (7.19)—(7.23) in [1]. Of

course, there are more congruences beyond this list. For example, by Ramanujan’s
congruences modulo 7 and 11 for p(n), we will obtain some congruences modulo 7 and
11 for gj(n) similar to (4.3)—(4.8).

Next, there are many refinements of Euler’s “Distinct v.s. Odd” theorem. As an example
we present the following refinement due to Fine.

Theorem 4.1 (Theorem 2.13, |2]). The number of strict partitions of n with largest
part k equals the number of partitions of n into odd parts such that 2k + 1 equals the
largest part plus twice the number of parts.

The BG-rank naturally induces a new refinement of the set of strict partitions, it
would be interesting to find an equidistributed statistic on the set of partitions into odd
parts. Consequently this will lead to a new refinement of Euler’s theorem.

Finally, recall that the classical hook length formula for partitions, ordinary and strict.

1 x
S T = (4.9)
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1 o
Il .3
qu H 2L(1) 2 = €2, (4-1())

HED  heH(n)

where H(\) (resp. H(u)) is the multiset of hook lengths associated with the ordinary
partition A (resp. the strict partition u), and £(x) counts the number of parts in . One
of the generalization of (4.9) given in [9, Theorem 4.2] is

1 zq? L
AL #H2(N) , BG(A) S 1 (2j-1)
E g™ Vb Il h2—exp<2>§ b g\, (4.11)

AeP heHa(N) j=—o00

where Ha(A) = {h € H(N), h =0 (mod 2)}. In view of this, it is natural to consider a
generalization of (4.10) to involve BG-rank as (4.11) does. Although at this moment we
are unclear how this could be done, since the hook length of strict partition is essentially
defined as the usual hook length of the corresponding doubled distinct partition [10],
while the BG-rank of all doubled distinct partitions is zero.
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