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ABSTRACT
Recently, many methods based on deep learning (DL) have been used for hyperspec-
tral image (HSI) classification and achieved good performance. But such approaches
often need numerous labeled training samples. This issue is aggravated when ap-
plying DL on small-scale HSIs. To alleviate this problem, transfer learning (TL) is
introduced to HSI analysis by some existing works. Most of these works transfer
knowledge from a single source domain to the target domain. However, the single
source TL tends to learn specific knowledge instead of general knowledge. Moreover,
since the samples are limited in one source domain, it only partially alleviates the
shortage of labeled samples. To learn more general knowledge and further alleviate
the issue of limited samples, we introduce the multi-source transfer learning strategy
to classify HSIs. Specifically, a framework named multi-source deep transfer learning
(MS-DTL) is proposed. This framework consists of a multi-source compatible model
and a customized loss function. We perform experiments by comparing the proposed
method with the baseline methods on the well-known hyperspectral datasets. The
results show that the proposed MS-DTL performs better than the benchmarks on
the classification tasks of the small-scale HSIs. Thanks to the strategy of TL, the
proposed network is also time-saving.
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1. Introduction

Different from the single-channeled grayscale images and the three-channeled RGB
images, hyperspectral images (HSIs) have complex structures with hundreds of spectral
channels spanning from the visible spectrum to the infrared spectrum. Due to the
abundant spectral information, techniques utilizing HSIs have been applied to many
fields, for instance, food safety, biomedicine, industry, biometric, etc. (Bioucas-Dias
et al. 2013). In the field of HSI analysis, the classification task, which aims at assigning
pixels to specific classes based on their spectral or spatial-spectral characters, is one
of the most popular topics (Chen et al. 2014). However, manually labeling HSI is
laborious and expensive, hence the annotated HSI data is not enough in most cases
of classification tasks. Nowadays, hyperspectral image classification (HSIC) is still a
challenging task (He et al. 2018).
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Over the past two decades, various methods have been proposed to deal with these
issues on HSIC. Nowadays, some conventional ways to classify HSI data are still of
reference value, for example, support vector machines (SVMs) (Melgani and Bruzzone
2004), extended morphological profiles (EMPs) (Benediktsson, Palmason, and Sveins-
son 2005), kernel sparse representation (KSR) (Chen, Nasrabadi, and Tran 2013), etc.
In recent years, deep learning (DL) has made great achievements in the fields of com-
puter vision and artificial intelligence (Han et al. 2018). As the core part of the DL,
the neural networks are capable of extracting abstract, complex, and hierarchical fea-
tures automatically. Furthermore, convolutional neural network (CNN) could be easily
applied to process the spectral-spatial information integrally. Nowadays, several DL-
based trials have been applied to HSIC. Typical deep neural network models include
stacked autoencoder (SAE) (Chen et al. 2014), deep belief network (DBN) (Chen,
Zhao, and Jia 2015), and CNN (Romero, Gatta, and Camps-Valls 2016). Recently,
in the field of computer vision, CNN has made great breakthroughs by increasing its
model depth (Zhong et al. 2018). Residential network (ResNet) (He et al. 2016), fully
convolutional networks (FCN) (Long, Shelhamer, and Darrell 2015), and densely con-
nected convolutional network (DenseNet) (Wang et al. 2018) are representatives of the
pretty deep models.

Several solutions are aiming at solving the problem of the limited annotated sam-
ples, such as active learning (Deng et al. 2018; Deng et al. 2019) and semi-supervised
learning (Wu and Prasad 2018). Another useful idea is transfer learning (TL) strategy,
which can effectively alleviate the difficulty of applying deep learning to small-scale
samples. Since proposed in (Pratt 1993), TL has become a hotspot in DL. The core
idea of TL is to learn knowledge from a source domain with abundant data and apply
the learned knowledge to a target domain with insufficient data (Pan and Yang 2010).
In (Yosinski et al. 2014), it was shown that fine tuning after transferring a deep net-
work can overcome the difference between source domain and target domain, hence
have better generalization ability. Following this idea, researchers have applied TL to
HSI analysis in several works. In (Jiao et al. 2017), the authors adopted the ImageNet
(Deng et al. 2009) of RGB images to pre-train a VGG-16 network (Simonyan and Zis-
serman 2015) and engaged this pre-trained network as the spatial feature extraction
module of their HSIC algorithm. Several works used HSI dataset as the source domain
(Windrim et al. 2018; Yang, Zhao, and Chan 2017; Lin, Ward, and Wang 2018). In
(Windrim et al. 2018), spectra from public HSI datasets were cut into components
of the visible and near infrared (VNIR) and the short-wave infrared (SWIR) for the
source domain. Later, the pre-trained networks were transferred for the field-based
applications. The work in (Yang, Zhao, and Chan 2017) transferred the networks be-
tween datasets obtained from the same sensor. While in (Lin, Ward, and Wang 2018),
the authors used canonical correlation analysis (CCA) to transfer knowledge between
two SAEs that were trained by source data and target data independently.

In this letter, we introduce the multiple sources transfer learning (Yao and Doretto
2010) to boost the deep neural network for classifying the HSIs, especially the small-
scaled ones. Breaking the restrictions on source and target datasets, the proposed
multi-source deep transfer learning (MS-DTL) model is designed to be able to learn
from multi-source HSI datasets and transfer knowledge to the target domain. To be
more precise, the main contributions of the present letter can be summarized as follows.

• To transfer knowledge from multiple sources, we design a deep model with a com-
patible structure. Cooperating with this deep model, a customized loss function
that packages the losses from every single source is applied for backpropagation.
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Figure 1. Structure of the model for source domain

Figure 2. Structure of the model for target domain

The model we proposed is capable of learning from multiple tasks in the source
domain and easy to extend to an arbitrary target domain.
• The transferred model is designed to be a fully convolutional network which

breaks the limit that the source data should have the same spatial size with the
target data.

By these efforts, the proposed MS-DTL shows competitive performance in both clas-
sification accuracy and time cost on small-scale HSI datasets.

2. Proposed framework

In this section, we present a detailed description of the proposed framework.

2.1. Training a model with multiple HSIs

The existing works that apply TL to HSIC tasks usually have restrictions on the source
and target domains. In these works, data from the source and target domains should
have the same size or should be obtained by the same sensor. These restrictions are
set to make better compatibility between the source and target domains, but they
also lead to some weaknesses. Under these restrictions, the source domain is usually
limited to one specific HSI dataset. Even the source data are chosen with relatively
large cardinality, they are still not comparable with abundant RGB images. The limited
training samples may lead to overfitting in the source domain. Superior to these works,
we propose a multi-source domain strategy, which means the source data are from
different datasets.

In this letter, we use a ResNet-based model, which is called the base model in the
following, to learn from multiple hyperspectral datasets in the source domain. The
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model’s structure is shown in Figure 1. The ResNet has advantages in both extracting
hierarchical features and alleviating the following issues. When the depth of neural
network increases, the main problem of gradient vanishing/exploding rises (Bengio,
Simard, and Frasconi 1994). To solve this problem, the authors of ResNet (He et al.
2016) proposed a deep residual learning framework by making neural network layers
to learn the residual mapping R(·) instead of the desired underlying mapping H(·).
As illustrated in the light gray shaded area of Figure 1, the solid arrows indicate the
network that behaves the residual mapping R(·), while the dashed arrows represent
the identity mapping I(·). Combining these two mappings by addition, the network
fits the desired underlying mapping by

H(x) = R(x) + I(x), (1)

where x represents the input vector of the layers considered. Under the setting that the
network treats the residual mapping and the identity mapping separately, the behavior
of the residual block is prone to fit mappings that range from the identity mapping
I(·) to the desired underlying mapping H(x). Three continuous convolutional layers
and an additional layer form a residual block in Figure 1.

In this letter, we choose three aforementioned residual blocks to form the base model,
as illustrated in Figure 1. After the final residual block, a global average pooling (GAP)
layer is concatenated, which outputs features in a fixed length. Further, each branch
is constituted by a fully connected (FC) layer and a softmax layer. These branches
are connected to the GAP layer to give predictions on different sources and to back
propagate the gradients. The number of branches should be the same as the number
of sources, which is set to be three in this letter.

To describe the multi-source training stage clearly, we will first introduce some
mathematical notations. In our experiments, x represents the input HSI patch, which
refers to a square pixel patch labeled according to its centre pixel. Assuming that
we have M HSI sources to train the base model. The training samples from the K-
th source are denoted by (xK,i, yK,i), i = 1, 2, · · · ,mK , where mK represents the total
number of the training samples, xK,i is the i-th HSI patch and yK,i is the corresponding
ground truth label, in the K-th source. Focus on a branch K of our model, i.e. the
K-th source. Let pK(ŷ = i |x) be the chance that predicted label equals to i on the
HSI patch x from the branch K, which is the i-th component in the output vector
of the softmax layer for the branch K. Following these notations, the commonly used
estimation of cross-entropy loss LK is formulated as:

LK(x, y) = −ln(pK(ŷ = y |x)). (2)

To back propagate properly, each branch should only respond to one source, we have
the multi-source loss L on a training sample (xK,i, yK,i), which is given by

L(xK,i, yK,i) =

M∑
I=1

δI,KLK(xK,i, yK,i), (3)

where the δI,K is the Kronecker delta, defined by

δI,K =

{
1, I = K;

0, I 6= K.
(4)
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Note that in Equation (3), the loss L sums over all the sources, while the Kronecker
delta controls each branch only responds to one source. In the end, we calculate gradi-
ents of the loss L on the parameters and apply the optimization methods to optimize
the base model.

2.2. Transfer knowledge to target HSI

Generally speaking, transfer learning is to reuse the pre-trained network to a new
model for new tasks. In the field of neural network, the weight of each node in each layer
is transferred from the pre-trained network to another brand-new network (Yosinski
et al. 2014). The migrated network does not need to be trained from scratch and can
be directly used to extract features.

In this letter, we transfer the base model trained by multi-source in Section 2.1 to
the target domain. Under the assumption that the pre-trained base model is capable of
extracting universal features from HSIs for classification, we build the model for target
source. Firstly, we remove the structure of branches and the GAP layer from the model
in Figure 1. The remaining structure of the base model is called as the remained base
model in this letter. Layer GAP has an inherent attribute that calculating the mean
of all the pixels on each feature map and then outputting a value, which destroys
the spatial structure of the extracted features. In this way, the transferred model is
designed as a fully convolutional network, hence the spatial size of the input target
data can be any size. Secondly, an additional structure is concatenated to the remained
base model, and the resulting model is used in the target domain, as shown in Figure 2.
This new adding structure is constituted by two convolutional layers, one GAP layer,
one fully connected layer and one softmax layer, which is called as the additional
model in this letter. During the training stage of the target domain, the weights in the
pre-trained base model are transferred and kept invariant. We feed the target data to
the remained base model and directly utilize the resulting output as the input of the
additional model, that is, using the resulting output to train the additional model from
scratch. This approach makes the new branch could adapt to the new classification
task of the target domain. While training, a cross-entropy loss is engaged in back
propagating in the additional layers of the model. From another point of view, we
could regard the base model as a feature extractor to extract features from HSIs,
and regard the additional model as a classifier, based on a shallow neural network, to
classify the extracted features.

3. Experimental results and analysis

3.1. Datasets and quantitative metrics

Our experiments are carried out on five public available hyperspectral datasets, namely
the Pavia Centre (PC) scene, the Pavia University (PU) scene, the Salinas (SA) scene,
the Indian Pines (IP) scene, and the Botswana (BO) Scene. From these five datasets,
the PC scene, PU scene, and SA scene are chosen for the source domains, while the
other two scenes are chosen for the target domains. The detailed information about
these five datasets is shown in Table 1.

We adopt the universal quantitative metrics, that is, overall accuracy (OA), average
accuracy (AA) and the kappa coefficient (κ), to evaluate the classification performance
of the model. The metric OA is the ratio between the number of correctly predicted

5



Table 1. Basic attributes of the datasets

Dataset
Spatial size

(pixels)
No. of spectral

bands
Spectral

range(µm)
Spatial

resolution (m)
No. of labeled

classes
Sensor

Pavia University 610 × 340 103 0.43 − 0.86 1.3 9 ROSIS
Pavia Centre 1096 × 715 102 0.43 − 0.86 1.3 9 ROSIS
Salinas 512 × 217 204 0.2 − 2.4 3.7 16 AVIRIS
Indian Pines 145 × 145 200 0.2 − 2.4 20 16 AVIRIS
Botswana 1476 × 256 145 0.4 − 2.5 30 14 NASA EO-1

samples and the total samples from a dataset, while the metric AA is the average
number of the accuracies from each class. κ is a measure of agreement between the
predicted labels and the ground truth. It is defined as κ = (p0 − pe)/(1 − pe), where
p0 represents the probability that a predicted label is the same as the ground truth,
which equals to the metric OA, and pe represents the hypothetical probability of chance
agreement. It is calculated by

pe = (m1 × n1 +m2 × n2 + ...+mC × nC)/(N ×N), (5)

where C is the total number of categories, N is the total number of samples, mi

represents the number of samples in class i, and ni represents the number of predicted
labels which equal to class i , where i ranges from 1 to C.

3.2. Experimental setup and parameter analysis

In the experiments, all five datasets are preprocessed by the following steps. Firstly,
each raw HSI dataset is normalized to have zero mean and unit variance. Secondly, we
use principal component analysis (PCA) (Farrell and Mersereau 2005) to process each
pixel of the HSIs and retain the first 30 principal components (PCs) of the spectral
dimensions to make sure that all the datasets have the same spectral dimensionality.
Finally, we cut the resulting HSIs into patches for training the model.

In the experiments, the PU scene, the PC scene, and the SA scene are used to train
the base model. To form the multi-source data, we randomly choose 2000 patches from
each class, for each of the three datasets. If some classes have fewer samples than 2000,
we simply duplicate its samples to 2000 randomly.

We use the small-scale datasets, the IP scene and the BO scene, as target domains.
In respect of the IP scene, we randomly choose 10% of annotated patches as training
samples, 10% as validation samples, and the remained 80% as testing samples. For the
BO scene, 5%, 15%, and 80% annotated patches are randomly selected for training,
validation, and testing, respectively.

As shown in Figure 1, the base model is mainly composed of a convolutional layer
with 256 filters and three residual blocks. The numbers of the convolutional filters in
the first and second residual block are both (64, 64, 256), while in the third residual
block, these numbers are set to be (128, 128, 256). The sizes of convolutional kernels
are set to be 1 × 1 pixels and 3 × 3 pixels in the residual blocks, and 7 × 7 pixels
in the leading convolutional layer, which are the same with the ResNet in (He et al.
2016) and is indicated by the numbers in Figure 1. After each convolutional layer
in the residual blocks, there is a Batch Normalization (BN) layer (Ioffe and Szegedy
2015). When training in the source domains, the fully connected layer in each branch
is set to be compatible with the number of classes in its corresponding source dataset.
As shown in Figure 2, the additional structure in the target domain model uses the
1×1 pixels kernelled convolutional layers. The numbers of filters in the two additional
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Table 2. Classification overall accuracy (averaged over 10 runs) of different sizes of patches from Indian

Pines scene and Botswana scene

Patch size (pixels)

Dataset 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

Indian Pines 96.35 ± 0.36 97.42 ± 0.51 97.53 ± 0.22 97.41 ± 0.54 97.25 ± 0.41 97.62 ± 0.44
Botswana 98.85 ± 0.38 98.58 ± 0.91 98.69 ± 0.41 98.55 ± 0.46 98.34 ± 0.67 98.21 ± 0.77

Table 3. Classification results (averaged over 10 runs) of MS-DTL, TFS, SS-DTL, 3D-CNN, and

FDSSC on Indian Pines scene and Botswana scene

Method

Dataset MS-DTL TFS SS-DTL 3D-CNN FDSSC

Indian Pines
AA(%) 97.79 ± 0.39 96.96 ± 1.00 94.42 ± 1.50 97.29 ± 0.69 93.16 ± 5.54
OA(%) 97.53 ± 0.22 96.77 ± 0.75 95.74 ± 1.21 96.12 ± 0.36 92.03 ± 7.40

κ
0.9718
±0.0026

0.9630
±0.0086

0.9388
±0.0160

0.9557
±0.0041

0.9078
±0.0878

Botswana
AA(%) 98.83 ± 0.53 97.86 ± 0.81 - 95.48 ± 0.92 98.87 ± 0.49
OA(%) 98.85 ± 0.38 97.82 ± 0.82 - 95.50 ± 0.67 98.67 ± 0.71

κ
0.9875
±0.0041

0.9763
±0.0089

-
0.9512
±0.0073

0.9856
±0.0077

convolutional layers are set to be 128 and 256. In all the aforementioned models, the
parameters in the BN layer and the GAP layer are all set as default. In all experiments,
RMSprop (Ruder 2016) with default parameters is adopted to optimize the networks.

The sizes of patches from the source datasets and the target datasets control the
spatial information that are taken into account in our algorithm, hence they are the
two most important hyperparameters. Since the remained base model is designed to
be a fully convolutional network, these two parameters are not required to be the
same. According to the different spectral characteristics of the datasets, we retain
the appropriate spatial size of each dataset, which takes full account of the spatial
information about different datasets. To simplify the experiments, when training the
base model, the size of patches is fixed as 11×11 pixels. When training the additional
structure, the sizes of patches are set to be 13× 13 pixels and 9× 9 pixels for the IP
scene and the BO scene respectively. The effect of different patch sizes for the IP scene
and the BO scene is reported in Table 2. As we can see, different spatial sizes could
influence the final classification accuracy, and it is effective to make the source data
and the target data have different spatial sizes.

3.3. Comparison with different methods and results analysis

We have some experiments for comparison. Firstly, the experiments, which engage the
same model structure with the MS-DTL but are trained from scratch (TFS) by the
training data from the IP scene or the BO scene, are carried out. Secondly, instead of
transferring knowledge from multi-source, we transfer knowledge from one dataset to
another collected by the same sensor, which is the single source deep transfer learning

Table 4. Comparison of training time (in seconds)

Method

Dataset MS-DTL TFS 3D-CNN FDSSC

Indian Pines 17.52 27.94 78.17 1683.04
Botswana 5.19 13.70 19.49 589.34
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(SS-DTL). The SS-DTL shares the same model structure with the MS-DTL. In this
experiment, the base model and additional structure are trained with the SA scene
and the IP scene, respectively. Finally, we choose a classic model and a DenseNet-
based state-of-art model, which are the 3D-CNN (Chen et al. 2016) and the FDSSC
(Wang et al. 2018), as our baselines. In the contrast experiments, all the experimental
settings, such as the ratio of training samples, the size of patches, are the same as
the MS-DTL. We list the experimental results of the proposed MS-DTL and contrast
experiments in Table 3. The results are formed of the mean values and the standard
deviations over 10 runs.

In (Donahue et al. 2014), the authors showed that the shallow layers learn low-level
universal features, whereas the deep layers learn high-level specific features. Moreover,
in (Huh, Agrawal, and Efros 2016), the authors illustrated that by increasing the
number of classes in the source data set, more universal features can be learned and
more knowledge can be transferred to target learning tasks. In this letter, we transfer
the shallow layers and increase the number of classes by using multiple sources to
extract universal features and improve performance of the proposed method. As one
could see, the comparison of the first two columns of Table 3 shows that the strategy
of transferring knowledge from multi-source performs better than directly training a
deep model from scratch, when the dataset is small. This indicates that the MS-DTL
strategy helps extract better features. When comparing the first and third columns
of Table 3, although the source HSI and the target HSI are chosen to be collected by
the same sensor, the results from SS-DTL indicate that transferring from only one
HSI performs worse than the MS-DTL and the TFS in this letter. This illustrates that
when we transfer from a single source, the model may learn dataset-specific knowledge,
which may even be negative knowledge instead of universal knowledge.

Compared to the baseline algorithm 3D-CNN, the proposed MS-DTL shows over-
whelming advantage in classification accuracies, especially on the BO scene. The MS-
DTL also outperforms the FDSSC on the IP scene. It is worth mentioning that because
only the small amount of parameters from the additional structure need to be trained,
the MS-DTL greatly reduces the training time. The training time is listed in Table 4,
as one can see, the FDSSC takes about a hundred times than the MS-DTL in time
cost. Also, the MS-DTL occupies 50% less in time than the TFS algorithm. Gener-
ally speaking, benefiting from the deep transfer model structure, the MS-DTL model
performs its advantages in both classification accuracy and training time.

4. Conclusion

In this letter, we proposed the MS-DTL framework to classify the small-scale HSIs. The
ResNet-like base model was designed to meet the requirements of the multiple sources
and a single target. To train the base model, we proposed a loss that combined the
cross-entropy losses from each source HSI. After having learned universal knowledge
from multiple HSIs, the proposed framework only needed limited training samples.
The experiments showed that the proposed framework performed better than both
the single-source algorithm and the algorithm that directly trained from scratch, on
small-scale HSIs. Comparing to the state-of-art algorithms, the MS-DTL also provided
competitive results in both the classification accuracies and time cost.
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