An Application Placement Technique for
Concurrent loT Applications in Edge and Fog
Computing Environments

Mohammad Goudarzi, Member, IEEE, Huaming Wu, Member, IEEE,
Marimuthu Palaniswami, Fellow, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—Fog/Edge computing emerges as a novel computing paradigm that harnesses resources in the proximity of the Internet of
Things (IoT) devices so that, alongside with the cloud servers, provide services in a timely manner. However, due to the
ever-increasing growth of loT devices with resource-hungry applications, fog/edge servers with limited resources cannot efficiently
satisfy the requirements of the loT applications. Therefore, the application placement in the fog/edge computing environment, in which
several distributed fog/edge servers and centralized cloud servers are available, is a challenging issue. In this article, we propose a
weighted cost model to minimize the execution time and energy consumption of loT applications, in a computing environment with
multiple loT devices, multiple fog/edge servers and cloud servers. Besides, a new application placement technique based on the
Memetic Algorithm is proposed to make batch application placement decision for concurrent loT applications. Due to the heterogeneity
of loT applications, we also propose a lightweight pre-scheduling algorithm to maximize the number of parallel tasks for the concurrent
execution. The performance results demonstrate that our technique significantly improves the weighted cost of loT applications up to

65% in comparison to its counterparts.

Index Terms—Fog Computing, Edge Computing, Internet of Things (loT), Application Placement, Optimization, Application

Partitioning.

1 INTRODUCTION

UE to recent advances in hardware and software
Dtechnologies, the number of Internet of Things (IoT)
devices (e.g. smartphones, smart cameras, smart vehicles,
etc) has significantly increased, so that IoT devices and
their applications have become pervasive in modern digital
society. However, the IoT paradigm, in which heterogeneous
devices can connect and communicate together, generates
a huge amount of data that needs processing and stor-
age. According to Cisco, it is anticipated that by 2030,
approximately 500 billion IoT devices will be connected to
the Internet [1]. In addition, the number of real-time and
latency-sensitive applications such as smart transportation,
smart health-care, augmented reality, and smart buildings
requiring large amounts of computing and network re-
sources has increased significantly [2]. Moreover, perform-
ing such resource-hungry applications requires a consider-
able amount of energy to be consumed, which significantly
affects the performance of IoT devices such as mobile de-
vices and sensors, due to their limited battery lifetime.

As a centralized solution, the cloud computing
pmaradigm is one of the main enablers of the IoT, in which
unlimited and elastic resources are available to execute IoT’s

e M. Goudarzi and R. Buyya are with the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, School of Computing and Information
Systems, The University of Melbourne, Australia.

e M. Palaniswami is with the Department of Electrical and Electronic
Engineering, The University of Melbourne, Australia

o H. Wu is with the Center for Applied Mathematics, Tianjin University,
Tianjin 300072, China.

E-mail: mgoudarzi@student.unimelb.edu.au,
palani@unimelb.edu.au, rbuyya@unimelb.edu.au.

whming@tju.edu.cn

computation-intensive applications. The execution time of
IoT applications and IoT devices” energy consumption can
be reduced by offloading (i.e., application/task placement)
all/some of their computation-intensive tasks to different
cloud servers [3]. However, IoT devices suffer from low
bandwidth and high latency when communicating with
cloud servers. These latter are mainly because IoT devices
are connected to the cloud servers via Wide Area Network
(WAN) which provides low bandwidth, and the far distance
of cloud servers and IoT devices which leads to high latency
[4]. Besides, the huge amount of incoming data to the cloud
servers and resource-hungry nature of emerging IoT appli-
cations requiring more computing and storage resources,
lead to congestion in the cloud servers. Hence, not only the
cloud servers cannot efficiently satisfy the requirements of
emerging resource-hungry IoT applications, but also they
may incur more energy consumption for IoT devices due to
their low bandwidth.

To reduce the huge amount of incoming data to the
cloud servers, and alleviate the high latency and low
bandwidth problem, a new computing paradigm, called
Fog Computing has emerged. It provides an intermediate
computing layer between cloud servers and IoT devices
in which several heterogeneous fog servers are distributed.
These fog servers have fewer resources (e.g. CPU, RAM)
in comparison to cloud servers, while they provide higher
bandwidth with less latency for IoT devices since they can
be accessed via Local Area Network (LAN) [4], [5]. In our
view, edge computing harnesses only edge resources while
fog computing harnesses both edge and cloud resources (al-
though some of the works use these terms interchangeably).

Considering the potential of fog computing, lol devices can
perform their resource-hungry and latency-sensitive appli-
cations with improved Quality of Service (QoS) by offload-
ing all/some of their applications to fog or cloud servers
based on their QoS requirements [6], [7]. It also leads to less
congestion in cloud servers since distributed fog servers can
ease the burden of cloud servers for processing and storage
of incoming data from IoT devices. However, considering
the large number of heterogeneous IoT devices whose ap-
plications require various level of QoS, it is challenging to
decide whether the execution of such applications on remote
servers (whether fog or cloud servers) is beneficial or not.
Besides, the ever-increasing number of IoT devices causes
more requests to be forwarded to the fog servers, which may
incur congestion due to their limited resources. This latter
may result in more execution time and energy consumption
for IoT devices.

To address the aforementioned issues, we propose an
efficient application placement technique to jointly optimize
the execution time and energy consumption of IoT devices
in an environment with multiple heterogeneous cloud and
fog servers. The main contributions of this paper are as
follows.

o We propose a weighted cost model for application
placement of multiple IoT devices to minimize their
execution time and energy consumption.

e We put forward a dynamic and lightweight pre-
scheduling technique to maximize the number of par-
allel tasks for execution. Considering the NP-Complete
nature of application placement in fog computing en-
vironments, we propose an optimized version of the
Memetic Algorithm (MA) to achieve a well-suited solu-
tion in reasonable decision time.

o We embed a fast failure recovery method in our tech-
nique to assign failed tasks to appropriate servers in a
timely manner.

The rest of the paper is organized as follows. Relevant
work of application placement techniques in fog computing
environments is discussed in section 2. The system model
and problem formulations are presented in section 3. Section
4 presents our proposed applications placement technique.
We evaluate the performance of our technique and compare
it by the state-of-the-art techniques in section 5. Finally,
section 6 concludes the paper and draws future works.

2 RELATED WORK

In this section, related works for application placement
techniques in fog computing environments are discussed,
where cloud and fog servers work collaboratively to satisfy
the IoT application requirements. They are divided into
independent and dependent categories based on the de-
pendency mode of their IoT applications’ constituent parts
(e.g., tasks). Each IoT application can be modeled as a set of
independent or dependent tasks. The dependent one refers
to applications consisted of several dependent tasks so that
each new task runs only when its predecessor tasks are
completely performed. However, in the independent one,
the applications” tasks do not have such constraints for
execution.

2.1 Independent Tasks

Huang et al. [8] proposed a task placement algorithm where
multiple mobile devices offload their independent tasks to
multiple edge servers and one cloud server. In this tech-
nique, each mobile device decides whether each task should
be offloaded or not, and in case of offloading, which edge
or cloud server is suited for execution of each task. An
energy-aware cloudlet selection technique was proposed in
[9] to meet the latency requirement of incoming tasks from
one IoT device. Haber et al. [10] proposed an offloading
algorithm deployed in the cloud layer, aiming at minimizing
the energy consumption of several mobile devices while sat-
isfying the latency requirements of mobile applications. It is
obtained by optimizing mobile devices’ transmission power
and the assigned server computation. An offloading algo-
rithm based on the Lyapunov optimization was proposed
in [11] to reduce the execution time of IoT applications by
offloading the task to either the single fog server or one
cloud server. Mahmud et. al. [12] proposed a Quality of
Experience (QoE)-aware application placement technique in
which independent tasks of IoT devices are placed in the fog
or cloud servers. Chen et al. [13] considered a multi-user
environment with a single computing access point and a
remote cloud server, in which the independent tasks of mo-
bile users can be processed locally, at the computing access
point, or the cloud server. Hong et al. [14] proposed a game-
theoretic approach for computation offloading, and multi-
hop cooperative-messaging mechanism for IoT devices. It
considers that each IoT device decides either to forward
its single task to the fog or cloud server if it has access to
wireless networks or to collaborate with other IoT devices
that have access to wireless networks for forwarding its task.

2.2 Dependent Tasks

In the dependent category, related works modeled their
applications by Directed Acyclic Graph (DAG) in which
each vertex represents one task of IoT application, and each
edge shows data flow (i.e., dependency) between two tasks.

Neto et al. [15] and Wu et al. [16] proposed a partition-
ing algorithm for a single mobile device to offload their
computation-intensive tasks to a single edge or cloud server.
The placement engine of these proposal are placed at the
mobile device aiming at finding a group of tasks for of-
floading, by which the execution time of mobile application
and energy consumption of mobile device become reduced.
The main goal of [17], [18] is to minimize the execution time
of IoT applications in an environment in which multiple fog
servers and a cloud server are accessible for the application
placement. Lin et al. [17] considered only one mobile device
in its system model for offloading, while Stavrinides et al.
[18] attempted to place tasks of multiple users requiring
low communication overhead at the cloud server and those
tasks that have more communication overhead at the edge
layer. Mahmud et al. [19] proposed a latency-aware appli-
cation placement policy in an environment with multiple
fog servers and a single cloud server. Although the above-
mentioned techniques consider task placement as their main
objective, Bi et al. [20] proposed a solution for joint op-
timization of service caching placement and computation
offloading.

Table 1: The Qualitative Comparison of the Current Literature

10T Application Properties Architectural Properties Placement Engine Properties
. Decision
Tech s i ”
echniques Dependency Task . IoT Device Edge Layer Cloud Layer » Batch Parameters
Mode Number Heterogeneity Request Fo, Cloud Position Placement
Number Nu?nbér Numier Cooperation | Heterogeneity Number Cooperation | Heterogeneity Time | Energy | Weighted
81 Multiple v Multiple | Different | Multiple x x Single x x dI"_T v v v
evice
1] Single v Single Same | Multiple x v Single x x Edge v v x
e 8 i P s Layer
3 . . . Cloud
[10] Single v Multiple Same Multiple x x Single x X L v v v
ayer
. 5 . . Edge
[11] Independent Single v Multiple _ Single X X Single X x Layer v X x
ay
. . . . Edge
(2] Single v Multiple Same Multiple x v Single x X Layer No v X x
) ; v v Edge
[13] Multiple v Multiple Same Single X X Single X X v v v
Layer
. . . . Edge
[14] Single v Multiple | Same | Multiple v v Single x x Layer v v v
= IoT
[15] Multiple v Single Same Single x _ Single x x Device v v v
. - - - - IoT
[16] Multiple v Single Same Single X _ Single x X Device v v v
. 5 - . . Edge
[18] Multiple v Single Same Multiple v v Single 3 X Layer v X X
Y
[20] Dependent | Multiple v Single Same Single x x _ x x _ v v v
- Edge
[17] Multiple v Multiple _ Multiple X X Single X X Layer v X x
. : . . . Edge
[19] Multiple v Multiple | Different | Multiple v v Single x X La v X x
ayer
. : . . . Edge
[4] Multiple X Multiple | Different Single X X Single X X Layer v v v
= Yes
Our Technique Multiple v Multiple | Different | Multiple v v Multiple v v f:}fr v v v

The proposed placement engines in the aforementioned
works made application placement decisions for different
users at different time slots, or only consider a fraction of a
whole of each user’s tasks at each time slot. However, Xu
et al. [4] proposed a batch task placement based on Genetic
Algorithm (GA), in which mobile applications of multiple
users are forwarded to the single central edge server for
application placement decision.

2.3 A Qualitative Comparison

Table 1 identifies and compares key elements of related
works with ours in terms of their IoT application, archi-
tectural, and placement engine properties. In the IoT ap-
plication section, the dependency mode of each proposal
is studied which can be either independent or dependent.
Moreover, we study how each proposal modeled IoT appli-
cation in terms of the number of tasks and heterogeneity.
This latter demonstrates whether IoT applications consist
of homogeneous or heterogeneous tasks in terms of their
computation and data flow. In the architectural section,
the attributes of IoT devices, fog/edge servers, and cloud
servers are studied. For IoT devices, the overall number of
devices and their type of requests are identified. The differ-
ent request number shows that each device has a different
number of requests compared to other IoT devices. In the
fog and cloud layers, the number of fog and cloud servers,
the cooperation between different fog/cloud servers, and
the heterogeneity in terms of servers’ specifications are
identified, respectively. The position of placement engine,
the capability of batch placement, and decision parameters
are also studied in the placement engine section.
Considering application placement techniques proposed
for fog computing environments, this work proposes a
batch application placement technique for an environment
consisting of multiple devices in the IoT layer, multiple
fog/edge servers in the edge layer, and multiple cloud
servers in the cloud layer. To the best of our knowledge,
this is the only work that considers the aforementioned

fog computing environment and proposes a weighted cost
model to jointly minimize the execution time of IoT applica-
tions and energy consumption of IoT devices. Our weighted
cost model not only can be applied for our general fog
computing environment, but it also can be used for sim-
pler fog computing environments with a single IoT device,
single fog server, single cloud server, or any combination
thereof. In addition, it is important to note that the IoT
applications are considered as heterogeneous DAGs (ie.,
workflows) with a different number of tasks and data flows.
Hence, we propose a lightweight pre-scheduling algorithm
to organize incoming tasks of different DAGs, so that the
number of tasks for parallel execution becomes maximized.
Then, an optimized version of the Memetic Algorithm (MA)
is proposed to perform application placement in a timely
manner.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a framework consisting of multiple IoT devices,
multiple fog (i.e., edge) servers, multiple cloud servers,
and brokers, in which IoT devices can locally execute their
workflows (i.e.,, DAGs) or completely/partially place them
on cloud servers and/or fog servers for execution. Figure 1
represents an overview of our system model.

In this system framework, each broker supports up to
N IoT devices, which are distributed in its proximity. The
broker (which can be a fog server) receives workflows from
different IoT devices, and periodically makes task placement
decisions based on the requirements of IoT applications
and the current status of the network. According to the
result of application placement decisions, each IoT device
understands to which server each constituent part of its
workflow should be sent, or it should be executed locally
on the IoT device.

3.1

Each IoT application can be partitioned based on different
levels of granularity such as class and task, just to mention a

Application Workflow

Cloud #1

Distributed Fog/Edge Servers

10T devices {/ \\
ST T T T ~ @
|([J §\I s A i P
i «@’)@ l) (@) @
o £ K
] L | Broker () YA X
| = A= | | A AN Cloud #2
D - | ' 9 <
N / \ ERVIAN =

N

10T Layer

\ Edge Layer f

Cloud Layer

Fog Computing

Figure 1: An overview of our system model

few [21]. Without loss of generality, we represent the appli-
cation running on the nth IoT device as a DAG (i.e., work-
flow) of its tasks Gn = (Vn,&n),Vn € {1,2,---, N}, where
Vn = {vy,i|1 < i <|Vs|} denotes the set of tasks running on
the nth IoT device, and &, = {en,i jlvn,i;Vn; € Vn, i # j}
illustrates the set of data flows between tasks. As an illus-
tration, e, ; ; represents the dependency between v, ; and
vy, ; of the application running on the nth IoT device.

Considering the number of instructions for each task
vn,i, its corresponding weight is represented as v, ;. Besides,
the associated weight of each edge e;,; ; shows the amount
of data that the task v, ; receives as an input from v, ;.
Since IoT applications are modeled as DAGs, each task vy, ;
cannot be executed unless all its predecessor tasks, denoted
as P(vy ;) finish their execution.

3.2 Problem Formulation

We formulate the task placement problem as an optimiza-
tion problem aiming at minimizing the overall execution
time of IoT applications and energy consumption of IoT
devices.

Since different servers are available to run each task vy, ;,
the set of all available servers is represented as S with |S| =
M. The §Y°* represents one server, in which y represents the
type of server (the IoT device (y = 0), fog servers (y = 1),
cloud servers (y = 2)) and z denotes that server’s index. The
offloading configuration of the workflow belonging to the
nth IoT device is represented as Xy, and the z,, ; denotes the
offloading configuration for each task v,, ;, which is obtained
from the following criteria:

0, V% = 0,
Ty = { 1, s¥%e {51’1,51’2,--- 7Sl,f} |z = f 1
2, s¥Fe{sP 22 ... s2°), zl=c¢

where z,, ; = 0 depicts that the ith task is assigned to the nth
IoT device (s”™) for local execution, and Tp,s=1and zy,; =
2 denote that the ith task is assigned to one of fog servers
and cloud servers, respectively, for the remote execution.
Moreover, the f and ¢ show the number of available fog
servers and cloud servers respectively.

3.2.1

The goal of the task placement technique is to find the
best possible configuration of available servers for each IoT
application so that the weighted cost of execution for each

Weighted cost model

4

IoT device becomes minimized, as depicted in the following:

i U(X,), Vne{l,2,---,N 2
o (Xn), VYne{ } (2)
where o
(Xn Xn
W) =y x T 4y x S ©)
s.t.

C1: VMfog,i < Cfog,i: Vi € {81717 T :Sl’f} (4)
C2: ‘mn’i|:1, Vne{1,2,--- N}, 1<i<|[Vu| (B)
C3: U(P(vns)) < Y(P(vnyi) + i) (6)

where I'(Xn), ©(Xn), I'roc,, and ©Or,., demonstrate the
execution time, energy consumption, local execution time
and local energy consumption of the nth IoT device’s work-
flow, respectively. Besides, ¢ and vy are control parameters
for execution time and energy consumption, by which the
weighted cost model can be tuned according to the users’
requirements. Moreover, we assume that each task can be
exactly assigned to one Virtual Machine (VM) of one fog
or cloud server. C'1 denotes that the number of instantiated
VMs of the ith fog server V My, ; is less or equal to the
maximum capacity of that fog server Cy,, ;. C2 represents
that each task i belonging to the workflow of nth IoT device
can only be assigned to one server in each time slot. In
addition, C3 indicates that the predecessor tasks of v, ;
should be executed before the execution of the task vy, ;.

3.2.2 Execution time model

Considering the Eq. 3, the weighted cost optimization is
equal to the execution time model when ¢, = 1 and ¢y = 0.

The goal of execution time optimization model is to
find the optimal configuration of the application running
on the nth IoT device so that the execution time of that
application decreases. The overall execution time of each
candidate configuration can be defined as the sum of latency
in task offloading (Fl)}’i), the computing time of workflow’s
tasks based on their assigned servers (I'’“) and the data
transmission time between each pair of dependent tasks in
each workflow (F'}?s), as depicted in the following;:

[(Xp) =T+ 4+ 14 @)

The computing execution time that corresponds to the
application running on the nth IoT device is calculated by:

exre exre
1—\Xn = Van,i ®)
l'n,?ieXn,

where ;% shows the computing time of task vy ;, and is

calculated based on its corresponding assigned server from
the following equation:

oW

Tocera Tni =0
exe Uy
Van,: = SET angccpu ’ Tn,i = 1 (9)
Ui
SFexlocepu / Tn,i = 2
where loc®P* demonstrates the computing power of the IoT

device, and SF/ and SF¢ denote the speedup factor of fog
servers and cloud servers, respectively.

The offloading latency Fl)‘}: of tasks corresponding to the

nth ToT device is calculated based on tasks’ assigned servers:

lat 2 : lat
FXn = ,Ywn,i

Tn,i€Xn

(10)

where 72" | illustrates the offloading latency of task vy, ;, and

is calculated according to its corresponding assigned server
from the following equation:

Or l‘n,i — 0
1
%it = Lpan, @ni=1 (11)
Lwan, Tni=2

where Lj 4y and Ly g n correspond to the latency of LAN
and WAN respectively.
The tasks’ transmission time of the workflow corre-
sponding to the nth IoT device is calculated by:
F?(: = ’ana” (12)
€n,i,j €EEn
where the transmission time of each pair of dependent tasks
v, and vy, ; is calculated as follows:

w
Cn,ij

CT; =CT,,CT;s

Bran’
tra _ e . .
Yen,ij = BCV’;’;T, CT; =CT,CTy (13)

0, CT; =CTs

where By, 4y and By 4y stand for the bandwidth (i.e., data
rate) of LAN and WAN respectively. The CT; represents
possible transmission configuration for each edge e, ; ; ac-
cording to the assigned servers of its tasks v, ; and v, ;
to calculate transmission time. The possible transmission
configurations are defined as:

Tn,i S Tp,j = 0
& Tp; =1 i=1
& SI(vpi) @ SI(vn,j) #0
Tn,i ®Tn,j =0
& Tp,i = 2 ;=2
CTy(e¥,; ;) = & SI(vn,;) @ SI(vy, ;) #0 ”
Tn,i ® Tn,j =1, i=3
Tn,i D Tn,j > 1, i—=4
Tn,i S Tp,j = 0
& S’I(vn,l) @ SI(UTL,J) = O/ 1=5

where @ is XOR binary operation and SI(v, ;) is a func-
tion that returns the assigned server’s index (ie., z) of
ith task belonging to the nth workflow. CT; denotes that
the invocation is between two tasks v, ; and v, ; that are
assigned to two different fog servers, and CT, represents the
configuration in which the two tasks run on two different
cloud servers. The invocation between two tasks assigned
to the IoT device and one of fog server is depicted in C'T5.
CTy is used to show two different configurations. The first
one is whenever the two tasks are assigned to the IoT device
and one of the cloud servers, while the second one illustrates
that one task is assigned to one of the cloud servers and the
second task is assigned to one of the fog servers. Finally, CT5

5

refers to the condition that two tasks are assigned exactly to
the same server, for which the transmission time is equal to
Zero.

3.2.3 Energy consumption model

According to Eq. 2, the weighted cost optimization is equal
to the energy consumption model when ¢, = 0 and g = 1.
The energy consumption model aims at finding the best-
possible configuration of the application’s tasks to minimize
the energy consumption of the nth IoT device.

The overall energy consumption of each candidate con-
figuration can be defined as the sum of energy consumed
in task offloading (©%!), the energy consumption for the
computing of tasks (@g?f), and the energy consumed for
the data transmission between each pair of dependent tasks
(©%%) of that application, as depicted in the following:

O(Xn) = OF + 6%, + K1 (15)
The amount of energy consumed to compute the application
belonging to the nth IoT device is defined as follows:

%= >

wn,'iEXn

exre
emn,i

(16)

where 6077 represents the energy consumption required to
compute the task vy, ;, as calculated in the following;:

exe ’y;:eb X Pepu, Tp,i =0
Oz = idle (17)
Vrp; X Pidles Tn;=1,2

where Pepy is the CPU power of the IoT device on which
the task v, ; runs. Since we only consider the energy con-
sumption from IoT device perspective, whenever each task
is offloaded to the fog servers (z,,; = 1) or cloud servers
(zn,s = 2), the respective energy consumption is equal to
the idle time of the IoT device 7% multiplied to the power
consumption of that device in its idle mode P, ..

The energy consumed to offload applications’ tasks be-

longing to the nth IoT device @l)‘}i is calculated by:

o =

2 : lat
n ewn,i

Tn,i€Xn

(18)

where 6.2 . stands for the offloading energy consumption of

the task vnz and is obtained from:

0, Tpi =0
Qi“(iwtz = lat o (19)
' 'Ya;n,i X Pidle1 Tn,i = 17 2
The transmission energy consumption ©%® correspond-
ing to the nth IoT device is obtained from:
okl = > O, (20)

Tn,i€Xn

where the transmission energy between each pair of depen-
dent tasks vy, ; and vy, ; is calculated as follows:

w

Bz:;jv X Ptransfer/ CE; =CFE;
tra v,
Ocn,i; = Bk X Piransfer, CE; = CEp 1)
O’ C’E‘7 = CES

where the transmission power of the IoT device is denoted
as Piyqnsfer, and the CE; shows transmission configuration

tor each edge e, ; ; based on the assigned servers of its tasks
to calculate the transmission energy, which is calculated
from:

Tn,iDTnj= 1, i=1
C’Ei(eﬁ’,i’j) = Tpi DTnj =2, =2 (22)
otherwise, i=3

where CE; denotes that the data flow is between two tasks
vp,; and vy, ; that are assigned to the IoT device and fog
servers. Moreover, CE» is used to represent the invocation
between two tasks that are assigned to IoT device and cloud
servers. Because the energy consumption is considered from
the IoT device perspective, the transmission energy con-
sumption is equal to zero whenever one of the participating
tasks in each edge e, ; ; is not assigned to the IoT device, as
represented in C'Es.

4 A NEWw APPLICATION PLACEMENT TECHNIQUE
Our proposed application placement technique is divided
into three phases: pre-scheduling, batch application place-
ment, and failure recovery. In the pre-scheduling phase, an
algorithm is proposed by which brokers can organize the
concurrent IoT devices” workflows. Next, we propose an
optimized version of Memetic Algorithm (MA) for batch
application placement to minimize the weighted cost of each
IoT device. Beside, to overcome any potential failures in the
runtime, we embed a lightweight failure recovery method
in our technique.

4.1 Pre-scheduling Phase

The broker receives concurrent workflows from IoT devices
in its decision time slot and organizes them based on their
respective dependencies. Moreover, it calculates the local
execution time and energy consumption of IoT devices
based on their respective workflows.

Workflows of IoT devices are heterogeneous in terms
of the number and weight of tasks, dependencies, and the
amount of dataflow between each pair of dependent tasks.
Moreover, the order of execution of tasks in each workflow
should be sorted so that a new task v, ; cannot be executed
unless all tasks in its P(vy, ;) finish their execution.

4.1.1 Algorithmic process

Algorithm 1 demonstrates how the pre-scheduling phase
organizes tasks of each workflow and accordingly creates
a list of schedules of concurrent workflows. In Algorithm
1, for each workflow, the local execution time and en-
ergy consumption are calculated and stored in LocTime
and LocEnergy, respectively (lines 3 and 4). Since DAGs
can have several root vertices (i.e., source nodes), the
RootFinder method finds all the root vertices of each DAG
and stores them in Source, (line 5). This method checks
whether the P(v, ;) is equal to null or not for each task ¢ in
the nth workflow, and if it equals to null returns that task
as one source root. The SingleRootTransformer method
receives the WF, and Source, and creates a new DAG,
called DAG},, in which the workflow has only a single
source root (line 6). To obtain this, we create a dummy
vertex (called DummyRoot,) and connect this vertex to all
source vertices of Source, obtained from the original DAG.

6

This enables us to run Breadth-First-Search (BFS) algorithm
over DAG, starting from the DummyRoot, by which we can
specify scheduling number for each vertex (i.e., BFS level of
each vertex) (line 7). The main outcome of the first loop
(lines 2-8) of this algorithm is providing a schedule number
for tasks of each workflow, by which the concurrent tasks of
each workflow are specified. Because our proposed batch
application placement algorithm concurrently decides for
several workflows at each time slot, it is required to combine
these workflows based on their respective schedule number.
To achieve this, the algorithm iterates over all workflows, so
that tasks with same schedule number (either from same or
different workflows) are stored in the respective row of a 2D
Arraylist called FinalOrderedList. The get(x) and add(vy, ;)
methods are used to access a row in the 2D Arraylist (i.e.,
one schedule), and to add a new entry to a list, respectively
(line 12).

Algorithm 1: Pre-scheduling phase

: W List of all workflows

Output : FinalOrderedList, LocTime, LocEnergy

/+* N: Number of workflows, WZF,: The nth
workflow in the WF, Loclime & LocEnergy:
Lists storing local execution time and
energy consumption of workflows,
FinalOrderedList: A 2D Arraylist in which
tasks in each row can be executed in
parallel *x/

N = |WF|

forn=1to N do

LocT'ime.add(CalLocalExeTime(W F},))

LocEnergy.add(CalLocalExeEnergy(W Fy,))

Sourceyn = RootFinder(W F,)

DAG?Y, = SingleRootTransformer(W Fl,, Sourcen)

BFS(DAG?},, DummyRooty)

Input

end
forn =1t N do
fori=1to |WF,| do
integer = CheckOrderNumber(v,, ;)
FinalOrderedList.get(x).add(vy,;)
end

O ® U R W N R

(SR
R R oS

Ju
@

end

=
=

4.1.2 Example

Figure 2 demonstrates how this pre-scheduling phase
works. Figure 2a represents two workflows with five and
eight vertices. The first workflow has one source vertex
while the second workflow has three source vertices (repre-
sented by gray color). After identifying the source vertices,
the SingleRootTransformer method creates a DAG), with
single source vertex, as depicted in Fig. 2b. Next, the BFS
algorithm is applied on the DAG}, to specify the schedule
number for each task as depicted in Fig. 2c. This latter helps
to identify how many tasks can be executed in parallel
in each schedule. When the schedule number of all tasks
in all workflows are identified, the tasks with the same
schedule numbers are placed together in a 2D Arraylist
(called FinalOrderedList) as depicted in Fig. 2d.

4.2 Batch Application Placement Phase

We propose a batch application placement algorithm in
which a Memetic Algorithm (MA) is employed to make
placement decisions for tasks of each schedule. Because
tasks in each schedule are either independent tasks in one

Workflow 1 :;

Q One task in workflow —— Dependency
O Source Task (Source Vertex)

(a) Different workflows with identified source vertices

Workflow 1 :

ScN: Schedule Number

(c) Assigning schedule numbers to tasks based on BFS

Workfl Workflow 2

Dummy Root -----~ Dummy Edge

(b) Transforming workflows to single root DAGY,

Schedule 1~ @ @ @ @
Schedule 3+ @ @
Schedule 4 — -

FinalOrderedList

(d) List of scheduled tasks of concurrent workflows

Figure 2: An example demonstrating the pre-scheduling phase

workflow or tasks from different workflows (which do not
have any dependency), they can be executed in parallel.

Algorithm 2: Batch task placement phase

Input : WF: The list of all workflows ,FinalOrderedList:
The 2D Arraylist containing all schedules
Output : finalConfigs, finalCost

/+x N: Number of workflows, WUF,: The nth
workflow, @Q: Number of all schedules,
MAResultList: A global 2D list container in
which each row stores the offloading
configuration of one schedule, finalConfigs:
A 2D Arraylist container storing obtained
severs’ configuration of each workflow,
finalCost: An array to store the execution
cost of each workflow */

M AResultList = null

fori=1to Q@ do
M AResult.get(i) = APMA(FinalOrderedList.get(i))
finalConfigs = ResultProcessor(M AResult List.get(i))

end

forn=1to N do

| finalCost[n] = CostCalculator(finalCon figs)

end

® 9 U R W N

An overview of the proposed batch application place-
ment phase is presented in Algorithm 2. This phase
receives the list of all workflows WFE and schedules
FinalOrderedList as an input, and outputs the workflows’
configuration finalConfigs and the execution cost of all
workflows finalCost. Considering the number of schedules,
the Application Placement Memetic Algorithm (APMA) is
invoked to decide for tasks of the current schedule while
considering the server assignments of previous schedules
(line 3). Since tasks in each schedule are from one or several
workflows, the ResultProcessor(M AResultList) method re-
ceives tasks assignments of all schedules M AResultList,
organize tasks assignments of each workflow, and stores
them in a 2D Arraylist called finalConfigs so that each row

represents one workflow (line 4). When task assignment of
all schedules is finished, the CostCalculator(finalConfigs)
method calculates the execution cost of each workflow
based on the respective obtained configuration. Since the
main function of this phase is the APMA, we illustrate how
this algorithm works in detail in what follows.

4.2.1 Application Placement Memetic Algorithm (APMA)
The Memetic Algorithm (MA) is algorithmic pairing of
evolutionary-based search methods such as GA with one
or more refinement methods (i.e, local search, individual
learning), used for different types of optimization prob-
lems such as routing and scheduling [22]. In the MA, each
candidate solution is represented by an individual and the
solution is extracted from a set of candidate individuals
called population.

We propose an Application Placement Memetic Algo-
rithm (APMA) based on the GA functions, in which local
search is applied to the selected individuals of each iteration.
This latter helps the APMA converge faster to the best-
possible solution. In the APMA, each candidate configura-
tion of servers assigned to tasks of one schedule is encoded
as an individual. The atomic part of each individual is a
gene which represents a task in a schedule and carries a
tuple (z,y) illustrating the type of assigned server « and the
index of that server y. The values for each tuple is derived
from the Eq. 1 in which values for type and index of servers
are defined. Moreover, the length of individuals in each
schedule depends on the number of genes (i.e., tasks) on that
schedule. A sample individual in our technique is depicted
in Fig. 3 representing a sample configuration for tasks in the
second schedule of Fig. 2d.

The APMA is made up of five main steps called initial-
ization, selection, crossover, mutation, and local search. The
first four steps are among population-based operations used
in GA while the local search step is used as the refinement

Site Identifier [1,3] [2,2] [1,f]

= () (@) @) ()

Figure 3: An individual representing a sample server con-
figuration for second schedule of Fig. 2d

[2,c] [0,0]

method. Besides, the utility of each candidate individual is
evaluated by a fitness function enabling the APMA to select
the best individuals in each iteration. An overview of the
APMA is presented in Algorithm 3.

Algorithm 3: An overview of APMA

Input : scheduleT asks: A set of tasks for one schedule

Output : selectedList®P.get(0)

/+ I:Maximum iteration number, selectedList: The
best individuals of respective population
found in the in each iteration x/

selectedList°P=null; selected List®=null

Initialization(scheduleT asks)

selected List°P=Selection(O P)

selected List? =Selection(D P)

fori=1toIdo
Crossover(selected List°P,selected List®P)
Mutation(selected List°P, selected ListP)
LocalSearch(selected List®P,selected ListoP)
selectedList°P = selection(OP)
selectedList® = selection(D P)

end

© ® N Ul R W N R

=
= S

4.2.2 |Initialization step

In this step, required parameters for the APMA includ-
ing the maximum number of iterations I, population size
PopSize, and individuals in the population are initialized.
Moreover, alongside with Original Population (OP), a new
population is defined to enhance the diversity of solutions,
called Diversity Population (D P). Since the main goal of the
APMA is to find the best-possible configuration of servers
by which the local execution cost decreases, a pre-defined
individual is produced for the OP, in which tuple values
of all genes are set to their respective local servers (i.e., IoT
devices). This reduces the number of low utility individuals
because those whose fitness values are worse than the pre-
defined individual are not selected in the subsequent itera-
tions. The rest of the individuals in the OP and individuals
in the DP are generated randomly in the initialization step.

4.2.3 Fitness function

The APMA uses two global and local fitness functions
for OP, which are used to evaluate the utility of each
individual Fy¥ (indv) (representing the utility of a servers’
configuration for tasks of one schedule indv), and each task
of one workflow on that schedule F;”(v, ;) (representing
the cumulative utility of the given task plus the utility of
other tasks in that workflow), respectively. The F/”(vy ;)
receives a task v, ; and calculates the local fitness value
based on Eq. 2 with the assumption that the execution
cost of unassigned tasks in one workflow is equal to zero.
Moreover, Algorithm 4 demonstrates how the global fitness
of each individual Fy” (indv) is calculated. The Fy? (indv) is

8

the sum of local fitness F’(v, ;) of tasks on that sched-
ule. However, due to the parallel execution of multiple
tasks of one workflow in each schedule, the maximum
of local fitness F}’’(vy ;) values of tasks belonging to the
same workflow MaxLoc are first calculated (line 1-11). The
responsibility of finding tasks of the same workflow in one
schedule is handled by the ParallelTaskCheck method that
stores parallel tasks of one workflow in the parallelSet (line
3). Then, the local fitness of each task in the paralielSet is
calculated and the maximum local fitness of tasks belonging
to that workflow is stored in MaxzLoc (line 4-10). Finally, the
global fitness value gBest can be obtained by summation
on all values of MazLoc, which stores the maximum local
fitness of each workflow up to that schedule (line 12-14).

Algorithm 4: Global fitness function of OP: FP

Input : indv: An individual showing tasks of one schedule
Output :gBest
/+ WF: Set of all workflows , parallelSet = A

container to store parallel tasks of one
workflow, MaxLoc: A container to store the
maximum local fitness of each workflow in
the schedule, gBest: The global best
fitness value, N = |WF| */

1 forn=1to N do

2 parallelSet = null

3 parallelSet = ParallelTaskCheck(indv, W Fy,)

4 MazLoc[n] = Fy’? (parallelSet.get(1))

5 for i=1 to |parallelSet| do

6 tempMazx = F? (parallelSet;)

7 if tempMax >MaxLoc|n] then

8 | MaxLoc[n] = tempMax

9 end

10 end

1 end

12 fori=1to MaxLoc do

18 | gBest = gBest + MaxLoc.get(i)

14 end

The principal goal of the diversity population (DP) is to
diversify the individuals in the APMA so that the probabil-
ity of getting stuck in local optimum decreases. Hence, the
fitness function of DP, F;p (indv), is different from the OP
and is calculated in what follows:

PopSize
Z H (indv;”, indvf}p)

i=1

ng(indvgp) = (23)
where PopSize represents the population size of OP and DP
in the APMA. Individual of OP and DP are displayed by
indv;” and indv®, respectively. Besides, H (indv;?, indv®®)
is the Hamming distance function that calculates the differ-
ence between individuals received as its arguments in terms
of assigned servers to their tasks, and is defined as:
H(indv® indvi?) = ij df (24)
k=1

where f displays the size of that individual (i.e., schedule).
In Egs. 23 and 24, to calculate the fitness of one individ-
ual of DP, we calculate its difference by all individuals in
the OP, and the individual with a higher difference receives
better fitness value. This helps to maintain individuals with
a higher difference in the DP that better diversify the
individuals in the APMA. Since different type of servers
(i.e., IoT, Fog, and cloud) with different number of servers

in each type (i.e., server index) are considered in the system
model, a diversity factor df is defined which describes the
fitness of each task according to the type and index of its
assigned server. This latter is obtained from what follows:

2, sgn(|ST(indv?™) — ST(indv™)|) = 1

sgn(|ST (indv{%) — ST (indvih)[) = 0
1, &
sgn(|S1(indv??) — SI(indvih)|) =1 (25)
sgn(|ST (indv$%) — ST (indvh)[) = 0
0, &
sgn(|S1(indv??) — SI(indvih)|) = 0

where the kth task (i.e., gene) on those individuals are
depicted as indv;’; and indvfﬁc, respectively. sgn is the
symbolic function, which is defined as:

0, =z=
sandle = ={ 3 22

According to Eq. 25, if the server type of each task in
the DP (i.e, ST(indvf”;)) is different from the server type of
corresponding task in an individual of OP (i.e., ST (indv;")),
it receives higher fitness value. However, in condition that
the server types of these tasks are equal, the df is set to 1.
Moreover, if the two tasks are assigned to exactly one server
(i.e., same server type and server index), the fitness value
for that task in the DP is equal to zero.

(26)

4.2.4 Selection step

The goal of selection is to choose the high utility individuals
from both OP and DP based on their respective fitness
functions for next iterations. To achieve this, the individuals
of OP and DP are sorted based on their respective fitness
functions and the top three of individuals plus one random
individual from each population are selected and stored in
the selectedListP and selectedList®®, respectively.

4.2.5 Crossover and Mutation steps

The goal of crossover step is to generate new individuals
(called offspring) by a combination of individuals selected in
the selection step (called parents). The APMA applies a two-
point crossover operation to each pair of selected parents
and creates two offspring from them. In each iteration,
the total number of new offspring for each population is
calculated based on the following equation:

of fspringNumber = _n , k=2
(n —k)!

In the two-point crossover, two crossover points are ran-
domly selected from the parents. Then, genes in between
the two crossover points are exchanged between the parent
individuals while the rest remain unchanged. Since the
APMA uses two populations OP and DP, the crossover
between individuals of each population is called inbreeding,
while the crossover between individuals of different popu-
lations is called crossbreeding. The crossbreeding provides
diversity in individuals which helps to avoid local optimal
values with higher probability. Besides, the outcomes of
crossbreeding are stored in selected list of both populations

(27)

9

selectedListP, selectedList®™, while the results of inbreed-
ings are only stored in the selected list of respective popula-
tions.

In the APMA, the mutation function, based on the pre-
defined probability, modifies several genes of offspring in
hope of generating individuals with higher utility.

4.2.6 Local search step

Considering the fact that crossover points and genes for the
mutation are selected randomly, a new function called local
search is defined which works based on the local fitness
function of the OP (F”(vy)). It is worth mentioning that
the randomness provided by the crossover function and
mutation is essential since it provides the opportunity to
jump out from local optimal points with a higher probabil-
ity. The local search function, alongside with those random
functions, leads to faster convergence to the global optimal
solution. Algorithm 5 demonstrates the process of local
search step.

Algorithm 5: Local search step

: selected List®P: Selected list of the OP,
selectedList%: Selected list of the DP
/* tempList: A temporary list container storing
the best-found tuple values for each gene
in the individual */

Input

1 size=|selectedListP|
2 tempList=setListtMAXINT)
3 for i=1 to |indv| do
4 for j=1 to size do
% j iterates over |selectedListP|
5 if F? (indv;g) < tempList.get(i) then
6 ‘ tempList[i}=FlOp(indv;ﬁ)
7 end
8 end
9 end

selectedList°P.add(CreateNewIndv(tempList.get(i)))
11 UpdatePop(OP,selectedList®P)
12 UpdatePop(D P,selected ListP)

=
=)

Although the local search function increases the prob-
ability to converge faster to the global optimal solutions,
two problems may occur. First, if the local search functions
are used solely, the probability of getting stuck in the local
optimal points increases. Second, for problems with a large
solution space, the local search function requires a signifi-
cant amount of time to visit the search space. Hence, these
two factors should be considered while designing a local
search function in the APMA. To address the first issue, the
crossover and mutation functions which provide random-
ness are kept in the APMA. Moreover, the diversity popula-
tion DP is created which ensures diversity in each iteration.
To benefit from the local search function while decreasing its
searching time, we reduce the search space for local search
by only considering the individuals in the selected list of
OP (i.e., selectedList’?) (line 1). The setList(MAXINT)
initializes the tempList with infinite value for all its indexes.
Considering individuals in the selectedList°F, genes with the
same index number are evaluated in terms of their local
fitness values F7”(indv;%) and best genes are selected and
stored in the respective index number of tempList (line 3-
9). Since the fitness function is defined according to the
execution cost, the less fitness value means better assign-
ment (line 5). Afterward, a new individual is created and

stored in the selectedList’? (line 10). Finally, the updated
selectedList°P in the local search step and the selectedList™
are then combined with the OP and DP respectively, and
top individuals of each population (up to the PopSize) are
selected for the populations of the next iteration (line 11-12).

Whenever the APMA reaches to its stopping criteria, the
best individual of the OP stored in selectedList®P.get(0) is
returned as the result of the APMA.

4.3 Failure Recovery Phase

Failures can happen in any systems, and hence, providing
an efficient failure recovery method is of paramount impor-
tance. In our system, brokers always keep records of free
servers and check whether they are planned to perform
a task in the near future or not. Besides, considering the
assigned server to each task, they estimate the completion
cost of each task based on its local fitness value F”(v,, ;).
So, if the execution of any tasks fails, the failure recovery
method is called to select a surrogate server for that task.
The failure recovery method receives the list of current free
servers (including IoT devices) and failed task as inputs.
Then, it calculates the local fitness value F} (v, ;) of that
tasks for free servers. Finally, tasks will be forwarded to the
server with the least F}” (v, ;) for the execution.

4.4 Complexity Analysis

The Time Complexity (TC) of our technique depends on its
three phases. We consider the number of incoming work-
flows to the broker as N and the maximum number of tasks
for all workflows as L. The most time-consuming part in
the pre-scheduling phase (Algorithm 1) is the BF'S which
requires O(L + | E|) time to visit all tasks of one workflow in
which |E| represents the number of data flows. In the dense
DAG, the |E| = O(L?). Hence, the TC of pre-scheduling
phase at the worst case is of O(N x L?). In addition, in the
best-case scenario, if we assume N = 1, and |E| = O(L) for
sparse DAGs, the TC is of O(L).

The batch task placement phase (Algorithm 2) calls the
APMA (Algorithm 3) @ times where Q represents the num-
ber of schedules. To calculate the TC of the second phase, we
ignore the iteration size I and the population size popSize
of the APMA since they are constant values. In the APMA,
the local fitness function F;” (v, ;) and ParallelTaskCheck
which are invoked from the global fitness function (Al-
gorithm 4) are the most repeated functions, defining the
TC of the batch application placement phase. The TC of
ParallelTaskCheck depends on the size of indv which at
most can be N x (L — 1) in the case that each workflow
has L — 1 parallel tasks in one schedule. Hence, the TC of
parallelTaskCheck at the worst case is of O(Q x N? x L).
The maximum length of parallelSet (line 5 of Algorithm
4) is L — 1, and hence, the local fitness function F;”(vy, ;)
is called @ x N x (L — 1) times. Moreover, the instructions
in the F? (v, ;) at most can be executed L times since the
local fitness function only considers tasks of one workflow
which are at most L. Finally, the TC of the batch task
placement phase (Algorithm 2) at the worst case is of
O(Q x (N x L?> + N? x L)). In addition, in the best-case
scenario, if we assume N = 1, the TC is of O(Q x L?).

10

The TC of the failure recovery phase depends on the TC
of local fitness function F,” (v, ;) which is of O(L), and the
number of free servers which at most is equal to all available
servers in the system M. Hence the TC of this phase at
the worst case is of O(M x L). In addition, in the best-case
scenario, no failure happens in the system.

Considering that in all cases 2 < @, the TC of our
technique at the worst case is polynomial and is represented
as O(Q(NL?>+N2L)+ML). Besides, in the best-case scenario,
where N = 1, Q = 2, and no failures occur in the system, the
TC is of O(L?).

5 PERFORMANCE EVALUATION

In this section, the system setup and parameters, and de-
tailed performance analysis of our technique in comparison
to its counterparts (especially [4]) are provided.

5.1 System Setup and Parameters

In our experiments, all techniques are implemented and
evaluated using iFogSim simulator [23]. We used two types
of workflows, namely, real workflows of applications and
synthetic workflows. For the real workflows, we used the
DAGs extracted from the face recognition application [16]
(Workflow) and the QR code recognition application [24]
(Work flows). Moreover, to consider other possible forms
of workflows, several synthetic workflows are generated
(Work flows to Workflowg). We consider an environment
in which six IoT devices are available and each IoT device
has one specific workflow from Workflow, to Work flows.
Each group of six IoT devices is connected to one fog
broker, and fog brokers have access to six fog servers and
three cloud servers. In this setup, each fog server has three
VMs while each cloud server is assumed to have 16 VMs.
The computing power of IoT devices is considered as 500
MIPS [4] and their power consumption in processing and
idle states are 0.9W and 0.3W respectively. Besides, the
transmission power consumption of IoT devices is 1.3W
[25]. We also assume that the computing power of each VM
of fog servers is 6 or 8 times more than IoT devices [4], [26]
while the computing power of each VM of cloud servers
are 10 or 12 times more than IoT devices [4]. The summary
of our evaluation parameters and their respective values is
presented in Table 2.

Table 2: Evaluation parameters

Evaluation Parameters Value

Number of IoT devices 6

Number of Fog/Edge servers 6

Number of Cloud servers 3

Bandwidth of LAN (2000,4000) KB/s
Bandwidth of WAN (500,1000) KB/s
Delay of LAN 0.5 ms

Delay of WAN 30 ms
Computing power of IoT devices 500 MIPS
Speedup Factor of Fog/Edge Servers’ VMs | (6, 8)

Speedup Factor of Cloud Servers” VMs (10, 12)

Idle Power Consumption of IoT device 03 W

CPU power of IoT devices 09W
Transmission Power of IoT devices 1.3 W

11

Local =Only Edge = Only Cloud = Proposed Solution ® COM 2019 = ULOOF

8
6
4‘||
0

Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow 5 Workflow 6

Execution Time (S)

Local =Only Edge = Only Cloud = Proposed Solution ® COM 2019 ® ULOOF

MW s O N oo S

Energy Consumption (J)

1 ke IOt otk okl

Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow5 Workflow 6

Local mOnly Edge ® Only Cloud ® Proposed Solution 8 COM 2019 & ULOOF

1

08
06
04
02 |
1]
0

Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow 5 Workflow 6

Weighted Cost

(a) Execution time
(LAN:2000 KB/s, WAN:500 KB/s)

(b) Energy consumption
(LAN: 2000 KB/s, WAN: 500 KB/s)

(c) Weighted cost
(LAN: 2000 KB/s, WAN: 500 KB/s)

Local mOnly Edge = Only Cloud = Proposed Solution ®COM 2019 = ULOOF
10

Local =Only Edges Only Cloud = Proposed Solution ® COM 2019 ® ULOOF

Local mOnly Edge ® Only Cloud = Proposed Solution ® COM 2019 ® ULOOF

8

6

4
|||I|||||I|||||| I
: |

Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow 5 Workflow 6

Execution Time (S)

Nws oo N®o s

Energy Consumption (J)

1
0Illlll

Workflow 1 Workflow2 Workflow3 Workflow 4 Workflow5 Workflow 6

204

203

02 I I
' lhn l
: |

Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow 5 Workflow 6

(d) Execution time
(LAN:4000 KB/s, WAN:1000 KB/s)

(e) Energy consumption
(LAN: 4000 KB/s, WAN: 1000 KB/s)

(f) Weighted cost
(LAN: 4000 KB/s, WAN: 1000 KB/s)

Figure 4: Execution cost of workflows with different bandwidth values

5.2 Performance Study

We employed three quantitative parameters including ex-
ecution time, energy consumption, and weighted cost to
comprehensively study the behavior of our technique in
different experiments. Five experiments are conducted to
analyze the efficiency of techniques in terms of various
bandwidths, different iteration sizes, techniques’ decision
times, failure recovery, and system size analysis. Both
and vy are set to 0.5 meaning that the importance of exe-
cution time and energy consumption is equal in the results.
However, these parameters can be adjusted based on the
users’ requirements and network conditions. To analyze
the efficiency of our technique, the following methods are
implemented for comparisons:

e Local: In this method, all tasks of workflows are exe-
cuted locally on their respective IoT devices, and hence,
no parallel execution of tasks can be performed for
workflows. The results of this method can be used as
a reference point to analyze the gain of application
placement techniques.

e Only Edge: In this method, all tasks of workflows are
offloaded to the fog/edge servers in the edge layer for
the execution. If the VMs of all servers are full and there
is no free VMs, the remaining tasks have to wait until
free computing resources become available.

o Only Cloud: In this method, all tasks of workflows are
executed on the cloud servers.

e COM2019: To the best of our knowledge, there is no
work considering batch application placement in a sce-
nario with multiple IoT devices, multiple fog servers,
and multiple cloud servers. Therefore, we updated the
fitness function and chromosome structure of the [4],
which only consider single fog server and single cloud
server, to become compatible with our system model.
Afterward, the efficiency of its heuristics and searching
methods are compared with the other techniques.

e ULOOF: This is the extended version of user level

online offloading technique [15], so that it can consider
scenarios with multiples cloud and fog/edge server for
task placement.
The obtained results of each workflow are the average of
10,000 runs with a 95% confidence interval.

5.2.1 Bandwidth Analysis

In this experiment, we study the behavior of techniques
in various bandwidth values as depicted in Fig. 4. The
maximum iteration size I and population size PopSize are
set to 100 and 20, respectively.

Figure 4 shows that as the bandwidth increases, the
execution time, energy consumption, and weighted cost of
workflows decrease, meaning better application placement
gain in comparison to local execution of workflows. More-
over, in most of cases, the only edge method outperforms
the only cloud because the fog servers are distributed at
the proximity of IoT devices and can be accessed by higher
Bandwidth and less latency. However, since the resources
of fog servers are limited compared to cloud servers, it
cannot obtain the best-possible outcome. This is why the
COM2019 and the ULOOF obtain better results in most
scenarios than only cloud and only edge methods. They
use the resources of cloud and fog servers simultaneously,
resulting in the parallelization of more tasks. As it can
be seen, our proposed technique is superior to all other
methods due to two important reasons. First, similar to the
COM2019 and the ULOQOF, it utilizes the resources of fog
and cloud servers simultaneously. Second, due to its local
fitness function, local search, and the diversity provided
by the DP, it stays away from local optimal values with
higher probability, converges faster to the optimal solution,
and hence, outperforms the COM2019 and the ULOOF.

It is worth mentioning that in some cases such as
Work flows in Fig. 4c, the weighted cost of the only cloud
method is less than the local execution, however, its execu-
tion time in Fig. 4a is far more than the local execution. This
is because the i~ and vy are set to 0.5, which give equal

Execution Time (S)
Energy Consumption (J)

O oW s ;e o

Workflow1 Workflow2 Workflow3 ~ Workflow4 ~ Workflow5 ~ Workflow 6
Olteration 50 Proposed @ Iteration 100 Proposed Olteration 150 Proposed

Olteration 200 Proposed @ Iteration 50 COM2019 @ Iteration 100 COM2019
Dlteration 150 COM2019 @ Iteration 200 COM2019 0 Local

mOnly Edge 8 Only Cloud 5 ULOOF mOnly Edge & Only Cloud

||||”§‘| Ilnnl‘l
Workflow1 Workflow2 ~ Workflow3 Workflow4 ~ Workflow5 ~ Workflow 6
Olteration 50 Proposed @ teration 100 Proposed O Iteration 150 Proposed

O Iteration 200 Proposed @Iteration 50 COM2019 @ Iteration 100 COM2019
O teration 150 COM2019 @ Iteration 200 COM2019 @ Local

1
08
06

04

Weighted Cost

o

| i il
Workflow1 Workflow2 ~Workflow3 ~Workflow4 ~Workflow5 Workflow 6

Olteration 50 Proposed @ Iteration 100 Proposed Olteration 150 Proposed

0 lteration 200 Proposed B Iteration 50 COM2019 @ Iteration 100 COM2019

0O lteration 150 COM2019 & Iteration 200 COM2019 0 Local

mOnly Edge a Only Cloud mULOOF

0

uULOOF

(a) Execution time
(LAN: 2000 KB/s, WAN: 500 KB/s)

(b) Energy consumption
(LAN: 2000 KB/s, WAN: 500 KB/s)

(c) Weighted cost
(LAN: 2000 KB/s, WAN: 500 KB/s)

Figure 5: Execution cost of workflows with different maximum iteration number values

importance to execution time and energy consumption.
Therefore, due to lower value for the energy consumption
in this workflow compared to its obtained execution time,
the weighted cost shows low gain for the task placement.

5.2.2 Maximum iteration number analysis

One of the important parameters for comparing evolu-
tionary application placement techniques is the maximum
iteration number, through which their convergence speed
to the optimal solution can be evaluated. In this exper-
iment, the performance of COM2019 and our technique
are studied. Since the solution of the local execution, only
edge, only cloud, and ULOOF methods do not change in
different iterations, the obtained results of these methods
are just depicted to better understand the efficiency of other
techniques. For this experiment, the PopSize, the LAN, and
WAN bandwidths are set to 20, 2000 KB/s and 500 KB/s,
respectively.

It can be seen from Fig. 5 that the increase in maximum
number of iterations I leads to better solutions for both our
technique and the COM2019 for all workflows in compari-
son to the ULOOF, local, only edge, and only cloud methods.
However, our technique converges to the better solution in
a smaller number of iteration compared to the COM20109.
The Fig. 5a shows that the obtained results of our technique
in I = 50 for all workflows outperform the obtained results
of the COM2019 even at I = 200. This trend can also be seen
in Fig. 5c for weighted cost of execution, while in Fig. 5b
the obtained results of the COM2019 and our technique are
closer to each other. It is important to note that although
better solutions can be found by increasing the maximum
number of iterations (if the techniques do not get stuck in
the local optimal points), the decision time of algorithms
also increases that can be critical for some of workflows,
especially for latency-sensitive ones.

5.2.3 Decision time analysis

This experiment analyzes the efficiency of each technique
based on the decision time required to obtain a well-suited
solution. Although application placement algorithms offer
server configurations by which the execution time and
energy consumption of IoT applications can be reduced, the
time that they spend to reach that solution is also important.
This is mainly because obtaining good server configurations
for IoT applications in a long period of time can negatively

Table 3: Decision time analysis

Decision . Workflow Execution Time Result

Technique

Time WF1 | WF2 | WF3 | WF4 | WF5 | WFé6

100 ms Proposed 2412 | 2467 | 2.758 | 3.638 | 3.837 | 1.649

COM2019 | 4.333 | 2917 | 3422 | 6.276 | 6.526 | 3.09

200 ms Proposed | 2345 | 2397 | 2.610 | 3.430 | 3.384 | 1.446

COM2019 4.073 | 2707 | 2984 | 5344 | 5.109 | 2.529

300 ms Proposed | 2.288 | 2.302 | 2.455 | 2.869 | 3.362 | 1.344

COM2019 | 3.656 | 2.494 | 2.868 | 4.388 | 4.709 | 2.746

400 ms Proposed | 2.229 | 2.204 | 2403 | 2.587 | 2.870 | 1.304

COM2019 | 3.623 | 2.445 | 2.753 | 3.663 | 4.295 | 2.523

affect the execution time requirements of IoT applications.
Another important reason elaborating the importance of
the decision time analysis, especially for evolutionary al-
gorithms, is that only iteration size analysis cannot solely
judge the efficiency of one application placement technique.
This is because one technique can reach to better solutions
in a small number of iterations compared to its counterparts,
however, the time spent on each iteration may be far more
than other techniques resulting in longer decision time.
Hence, although the maximum iteration size analysis is
required, the decision time analysis acts as a supplementary
analysis to ensure the efficiency of one technique. In this
experiment, the population size PopSize is set to 20, and the
LAN and WAN bandwidths are 2000 KB/s and 500 KB/s,
respectively.

Table 3 represents obtained execution times of our pro-
posed solution and COM2019 for four different decision
times. Since the execution time result of the ULOOF does
not change in different decision times, its respective results
are not presented in Table 3, however, its average decision
time is roughly 30 ms. As the decision time of techniques
increases from 100 ms to 400 ms, the execution time of
techniques decreases meaning that the higher utility results
are obtained. The obtained results of our solution gradu-
ally decrease from 100 ms to 400 ms, while the results of
COM2019 has a significant decreasing trend in the range of
100-200 ms and 200-300 ms, and gradually decrease between
300-400 ms, which means that the results of COM2019 ap-
proximately converged at 400 ms. It can be clearly seen that
our technique not only provides better values compared to
the COM2019 in the equivalent decision time, but its results
at 100 ms also outperform the results of the COM2019 at

13

Local mOnly Edgem Only Cloud = Proposed Solution ® COM 2019 & ULOOF
180 180
160 160
140
120

#10T=6 #10T=12 #10T=18 #10T=24 #10T=6

Local mOnly Edge= Only Cloud = Proposed Solution = COM 2019 = ULOOF

=100 g 100
2
8 80 UUJ 80
60 60
w0 II o
20 20
: [] | : - (]

#10T=12

Local mOnly Edge® Only Cloud = Proposed Solution ®COM 2019 ® ULOOF

10
[Il : [|| ||
. [[

#10T=18 #10T=24 #10T=6 #10T=12 #10T=18 #10T=24

(a) Cumulative Execution Time (CET)

(b) Cumulative Energy Consumption

(c) Cumulative Weighted Cost (CWC)

Figure 6: System size analysis with different number of IoT devices per fog broker

Table 4: Failure recovery analysis

Technique Workflow Execution Time Results
q WF1 WF2 WEF3 WF4 WF5 WF6
Proposed
7 . . .))
(FR Mode) 2.7132 | 2.6243 | 2.8642 | 3.4125 | 3.6321 | 1.4685
Local 6.4354 | 10.031 | 5.5194 | 8.9654 | 6.0520 | 8.0180

400 ms. This demonstrates that, regardless of number of
iterations, our technique converges faster to the optimal
solutions.

5.2.4 Failure recovery analysis

This experiment analyzes the effect of failure recovery
method in application placement techniques. Since the
COM2019 and ULOOF do not have any failure recovery
method, we present results of our technique with failure
recovery mode (FR Mode) when the probability of failure
occurrence is 5% in comparison to the local execution,
as depicted in Table 4. In this experiment, the maximum
iteration size I is equal to 100 and values of the rest of
parameters are set as same as parameters in decision time
analysis.

Table 4 shows that obtained results of our technique with
FR mode still outperform results of local execution for all
workflows and achieve offloading gain. In techniques ignor-
ing failure recovery in their consideration, failed tasks result
in incomplete execution of workflows due to dependencies
among tasks of one workflow. However, our technique, by
accepting a small overhead of failure recovery phase, can
achieve a reasonable gain in comparison to local execution.

5.2.5 System size analysis

In this experiment, we analyze the effect of system size on
different application placement techniques. In our system,
each fog broker makes application placement decisions for
its respective IoT devices. Hence, to analyze the perfor-
mance of our proposed technique, we increase the number
of IoT devices and fog servers per each fog broker from 6 to
24 by the step of 6. Moreover, in this experiment, we use the
same workflows as the previous experiments. In addition,
the LAN, and WAN bandwidths are set to 2000 KB/s and
500 KB/s, respectively, and the rest of parameters are as the
same as values of Table 2.

The Fig. 6 shows the result of Cumulative Execution
Time (CET), Cumulative Energy Consumption (CEC), and
Cumulative Weighted Cost (CWC) when different numbers

of IoT devices are connected to one fog broker. The term
cumulative refers to the aggregate execution cost of all IoT
devices (e.g., the CET shows the aggregate execution time
of all IoT devices in scenarios with different number of
IoT devices). In Fig. 6, the CET, CEC, and CWC increase
as the number of IoT devices increases. In all scenarios,
the CET, CEC, and CWC of all methods are lower than
the local execution cost, however, our proposed technique
outperforms other methods in all scenarios and results in
lower cost. In addition, the performance of the ULOOF
and COM2019 is roughly the same in scenarios with six
IoT devices, however the ULOOF shows better performance
for the rest of scenarios. This latter is because ULOOF is
independent of maximum number of iteration while the per-
formance of the COM2019 largely depends on the maximum
number of iterations.

6 CONCLUSIONS AND FUTURE WORK

We proposed a weighted cost model for optimizing the exe-
cution time and energy consumption of IoT devices in a het-
erogeneous computing environment, in which multiple IoT
devices, multiple fog servers, and multiple cloud servers are
available. We also proposed a batch application placement
technique based on the Memetic Algorithm to efficiently
place tasks of different workflows on appropriate servers
in a timely manner. Besides, a light-weight failure recovery
technique is proposed to overcome the potential failures
in the execution of tasks in runtime. The effectiveness of
our technique is analyzed through extensive experiments
and comparisons by the state-of-the-art techniques in the
literature. The obtained results demonstrate that our tech-
nique improves its counterparts by 65% and 51% in terms
of weighted cost in bandwidth analysis and execution time
in decision time analysis, respectively. The performance
results demonstrate that our technique achieves up to 65%
improvement over existing counterparts in terms of the
weighted cost.

As part of future work, we plan to extend our proposed
weighted cost model to consider other aspects such as mon-
etary cost. Moreover, we plan to apply mobility models in
this scenario and adapt our proposed application placement
technique accordingly.

REFERENCES

[1] Internet of things at-a-glance, 2016, [accessed 8 4 2019]. [Online].
Available: https:/ /www.cisco.com/c/dam/en/us/products/
collateral/se/internet-of-things/at-a-glance-c45-731471.pdf

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog comput-
ing: architecture, key technologies, applications and open issues,”
Journal of Network and Computer Applications, vol. 98, pp. 27-42,
2017.

M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid
multi-site computation offloading for mobile cloud computing,”
Journal of Network and Computer Applications, vol. 80, pp. 219-231,
2017.

X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and
L. Qi, “A computation offloading method over big data for iot-
enabled cloud-edge computing,” Future Generation Computer Sys-
tems, vol. 95, pp. 522-533, 2019.

M. Goudarzi, M. Palaniswami, and R. Buyya, “A fog-driven
dynamic resource allocation technique in ultra dense femtocell
networks,” Journal of Network and Computer Applications, vol. 145,
p. 102407, 2019.

Z. Zhuy, T. Liu, Y. Yang, and X. Luo, “Blot: Bandit learning-based
offloading of tasks in fog-enabled networks,” IEEE Transactions on
Parallel and Distributed Systems, 2019, (in press).

J. Wang, K. Liu, B. Li, T. Liu, R. Li, and Z. Han, “Delay-sensitive
multi-period computation offloading with reliability guarantees
in fog networks,” IEEE Transactions on Mobile Computing, 2019, (in
press).

L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multi-server
multi-user multi-task computation offloading for mobile edge
computing networks,” Sensors, vol. 19, no. 6, p. 1446, 2019.

D. G. Roy, D. De, A. Mukherjee, and R. Buyya, “Application-aware
cloudlet selection for computation offloading in multi-cloudlet
environment,” The Journal of Supercomputing, vol. 73, no. 4, pp.
1672-1690, 2017.

E. El Haber, T. M. Nguyen, D. Ebrahimi, and C. Assi, “Compu-
tational cost and energy efficient task offloading in hierarchical
edge-clouds,” in Proceeding of the 29th IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC).
IEEE, 2018, pp. 1-6.

Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y.
Zomaya, “A dynamic tradeoff data processing framework for
delay-sensitive applications in cloud of things systems,” Journal
of Parallel and Distributed Computing, vol. 112, pp. 53-66, 2018.

R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Quality of experience (qoe)-aware placement of applications in
fog computing environments,” Journal of Parallel and Distributed
Computing, vol. 132, pp. 190-203, 2018.

M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud
with computing access point,” in Proceeding of the IEEE Conference
on Computer Communications INFOCOM). 1IEEE, 2017, pp. 1-9.
Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-
hop cooperative computation offloading for industrial iot-edge-
cloud computing environments,” IEEE Transactions on Parallel and
Distributed Systems, 2019, (in press).

J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar,
and S. Secci, “Uloof: a user level online offloading framework for
mobile edge computing,” IEEE Transactions on Mobile Computing,
vol. 17, no. 11, pp. 2660-2674, 2018.

H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application
partitioning algorithm in mobile environments,” IEEE Transactions
on Parallel and Distributed Systems, vol. 30, no. 7, pp. 14641480,
2019.

L. Lin, P. Li, X. Liao, H. Jin, and Y. Zhang, “Echo: An edge-centric
code offloading system with quality of service guarantee,” IEEE
Access, vol. 7, pp. 5905-5917, 2018.

G. L. Stavrinides and H. D. Karatza, “A hybrid approach to
scheduling real-time iot workflows in fog and cloud environ-
ments,” Multimedia Tools and Applications, pp. 1-17, 2018.

R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware
application module management for fog computing environ-
ments,” ACM Transactions on Internet Technology (TOIT), vol. 19,
no. 1, p. 9, 2018.

S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge
computing system,” arXiv preprint arXiv:1906.00711, 2019.

M. Goudarzi, M. Zamani, and A. Toroghi Haghighat, “A genetic-
based decision algorithm for multisite computation offloading in
mobile cloud computing,” International Journal of Communication
Systems, vol. 30, no. 10, p. 3241, 2017.

[22]

[23]

[24]

[25]

[26]

14

X. Chen, Y.-5. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet sur-
vey on memetic computation,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 5, pp. 591-607, 2011.

H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim:
A toolkit for modeling and simulation of resource management
techniques in the internet of things, edge and fog computing
environments,” Software: Practice and Experience, vol. 47, no. 9, pp.
1275-1296, 2017.

L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mo-
bile cloud computing,” ACM SIGMETRICS Performance Evaluation
Review, vol. 40, no. 4, pp. 23-32, 2013.

K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, no. 4, pp. 51-56,
2010.

L. E Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-aware application scheduling in fog com-
puting,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26-35, 2017.

Mohammad Goudarzi is working towards the
Ph.D. degree at the Cloud Computing and Dis-
. tributed Systems (CLOUDS) Laboratory, Depart-
™ ment of Computing and Information Systems,
© the University of Melbourne, Australia. He was
~ awarded the Melbourne International Research
. Scholarship (MIRS) supporting his studies. His
research interests include Internet of Things
(loT), Fog Computing, Wireless Networks, and
Distributed Systems.

Huaming Wu received the B.E. and M.S. de-
grees from Harbin Institute of Technology, China
in 2009 and 2011, respectively, both in electri-
cal engineering. He received the Ph.D. degree
with the highest honor in computer science at
Freie Universitat Berlin, Germany in 2015. He
is currently an associate professor in the Center
for Applied Mathematics, Tianjin University. His
research interests include mobile cloud comput-
ing, edge computing, fog computing, Internet of
Things (loTs), and deep learning.

Marimuthu Palaniswami is a Fellow of IEEE
and past distinguished lecturer of the IEEE Com-
putational Intelligence Society. He received his
Ph.D. from the University of Newcastle, Aus-
tralia before joining the University of Melbourne,
where he is a Professor of Electrical Engineer-
ing. Previously, he was a Co-Director of Centre
of Expertise on Networked Decision & Sensor
Systems. He has published more than 500 refer-
eed journal and conference papers, including 3
books, 10 edited volumes.

Rajkumar Buyya is a Redmond Barry Distin-
guished Professor and Director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Aus-
tralia. He has authored over 625 publications
and seven text books including "Mastering Cloud
Computing” published by McGraw Hill, China
Machine Press, and Morgan Kaufmann for In-
dian, Chinese and international markets respec-
tively. He is one of the highly cited authors
in computer science and software engineering

worldwide (h-index=130, g-index=280, 90,300+ citations).

