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Spatio-Temporal Representation with Deep Neural
Recurrent Network in MIMO CSI Feedback

Xiangyi Li and Huaming Wu, Member, IEEE

Abstract—In multiple-input multiple-output (MIMO) systems,
it is crucial of utilizing the available channel state information
(CSI) at the transmitter for precoding to improve the perfor-
mance of frequency division duplex (FDD) networks. One of the
main challenges is to compress a large amount of CSI in CSI
feedback transmission in massive MIMO systems. In this paper,
we propose a deep learning (DL)-based approach that uses a deep
recurrent neural network (RNN) to learn temporal correlation
and adopts depthwise separable convolution to shrink the model.
The feature extraction module is also elaborately devised by
studying decoupled spatio-temporal feature representations in
different structures. Experimental results demonstrate that the
proposed approach outperforms existing DL-based methods in
terms of recovery quality and accuracy, which can also achieve
remarkable robustness at low compression ratio (CR).

Index Terms—MIMO, CSI Feedback, FDD, Recurrent Neural
Network, Spatio-Temporal Feature.

I. INTRODUCTION

THE technology of massive multiple-input multiple-output
(MIMO), which was first pointed out in the early twenti-

eth century, has become increasingly crucial in new generation
mobile wireless communications (5G or B5G). The system
uses multiple antennas as multiple transmitters at the base
station (BS) and receivers at user equipment (UE) to realize the
multipath transmitting, which can double the channel capacity
without increasing spectrum resources or antenna transmit
power. A growing number of studies [1]–[4] have shown the
significance of utilizing the channel state information (CSI)
feedback at the transmitter to gain the improvement of MIMO
systems. In a frequency division duplex (FDD) network [5],
UE can estimate the downlink CSI, which is then fed back to
the BS to perform precoding for the next signal.

In fact, the uplink CSI feedback process is not an easy
task in massive MIMO systems [6], due to a large number
of antennas at the BS, resulting in high CSI feedback and
huge computational complexity. In order to reduce the CSI
feedback overhead, many methods and technologies have been
proposed. Some compressive sensing (CS)-based approaches
may not fit in real world CSI feedback systems and perform
poorly in CSI compression due to the harsh preconditions.
Recent studies have shown that applying DL to address the
nonlinear problems or challenges in wireless communications
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can boost the quality of CSI feedback compression [4]. Wen
et al. [7] proposed an autoencoder network called CsiNet,
which used several neural network (NN) layers as an encoder
instead of the CS model to compress CSI as well as a
decoder to recover the original CSI. Furthermore, they also
put forward another network called CsiNet-LSTM [2], which
extended CsiNet with three RNN layers to show the benefits
of exploring temporal channel correlation. Another paralleled
work, called RecCsiNet [8], applied RNN in both the encoder
and decoder to reduce errors in CSI compression and decom-
pression. Both of them can improve the performance of the
CsiNet network to some extent and outperform state-of-the-art
CS methods.

In this paper, we design a new architecture of deep NN
in CSI feedback compression, which also takes advantage
of RNN. Based on the RecCsiNet architecture, we retain its
structure of feature compression and decompression modules,
and further improve the feature extraction by applying RNN
and separating feature extraction in the spatial and temporal
domains. In addition, motivated by MobileNet [9] that used
depthwise separable convolutions to build lightweight deep
NN, which we substitute them for standard convolutions to
enhance the quality of RefineNet [7]. The main contributions
are summarized as follows:

• We propose a novel and effective CSI sensing and recov-
ery mechanism in the FDD MIMO system, referred to as
ConvlstmCsiNet, which takes advantage of the memory
characteristic of RNN in modules of feature extraction,
compression and decompression, respectively. Moreover,
we adopt depthwise separable convolutions in feature
recovery to reduce the size of the model and interact
information between channels.

• We further refine ConvlstmCsiNet in the feature extrac-
tion module by exploring the spatial-temporal feature
representation that decouples a convolution in the spatial
and temporal domains. Experimental results demonstrate
that the improved ConvlstmCsiNet achieves the highest
recovery quality at different compression ratios (CRs)
compared to the state-of-the-art DL-based models.

II. CSI FEEDBACK SYSTEM

We consider an FDD massive MIMO downlink system with
Nt transmitting antennas at the BS and a single receiving
antenna at each UE, which is operated in OFDM with Ñc

subcarriers. The received signal carried by the nth (n =
1, 2, · · · , Ñc) subcarrier can be given as:

yn = h̃
H

n vnxn + zn (1)
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Fig. 1: The architecture of ConvlstmCsiNet with P3D block

where h̃n ∈ CNt , vn ∈ CNt , xn ∈ C and zn ∈ C denote
the instantaneous channel vector, the precoding vector, the
modulated transmit symbol and the additional noise at the nth

subcarrier, respectively. Then the CSI matrix can be denoted
as:

H̃ = [h̃1, h̃2, · · · , h̃Ñc
] ∈ CNt×Ñc (2)

We assume that each UE can acquire the estimation of
channel response H̃, which is then fed back to the BS to help
the BS to generate the precoding vector vn. The process of
CSI feedback from the UE to the BS, involving the actual
required CSI compression, is the main goal of our research.
Before being transmitted to the BS, the CSI matrix requires
two pretreatments:

• H̃ is supposed to be sparse in the angular-delay domain
after undergoing a 2D discrete Fourier transform (DFT)
operation.

• In the delay domain, most of the elements in H̃ are zeros
except for the first few non-zero columns, because the
time delay between multipath arrivals around the straight
path lies within a small finite time period. Therefore, the
first Nc (Nc < Ñc) nonzero columns can be retained,
while the rest are removed, and the new Nt ×Nc sized
CSI matrix is represented as H.

According to [10], we assume that the channel matrix H
remains fixed for a given OFDM symbol and its associated
precoding vector, however, it varies from time to time based on
a state-space model. Denote that Ht = [h1,t,h2,t, · · · ,hNc,t] ∈
CNt×Nc is the instantaneous CSI at tth time step, and then
Ht+1 at next time step can be expressed as:

Ht+1 = F ·Ht + G · ut (3)

where ut ∈ CNt×Nc is the additive noise that each element
u
(i,j)
t ∼ N(0, σ2

u), and F,G ∈ CNt×Nt are the weight square
matrices, which are assumed to be available to the receiver.
For convenience, we set F = (1−α2)I and G = α2I by intro-
ducing a new parameter α, which depicts the correlation be-
tween adjacent CSI matrices. So this sequence of time-varying
channel matrix is defined as: {Ht}Tt=1 = {H1,H2, · · · ,HT }.

During transmission, {Ht}Tt=1 is separated into a real part
and an imaginary part to reduce the computational complexity,
where all elements in the matrix are turned into real numbers
and normalized within [0, 1]. With the help of DFT and trun-
cation operations, the number of feedback parameters should
be reduced from Ñ = 2×Ñc×Nt to N = 2×Nc×Nt, which

still remains a large number of parameters in massive MIMO
systems and information compression is required during the
transmission procedure. The model consists of an encoder at
the UE to convert a CSI matrix Ht of size N into a compressed
M -dimensional (M < N ) codeword st, as well as a decoder at
the BS to make the compressed vector st transform back to the
original CSI matrix. The data compression ratio is γ = M/N .
Once the BS completes the recovery of Ht, i.e., Ĥt, it outputs
the final matrix ˆ̃Ht by adding zero columns and performing
inverse DFT.

III. PROPOSED CONVLSTMCSINET WITH P3D BLOCKS

The proposed ConvlstmCsiNet is illustrated in Fig. 1. It
includes an encoder at the UE and a decoder at the BS. The
encoder is divided into two modules, i.e., feature extraction
and feature compression; and the decoder consists of feature
decompression and feature recovery modules, where RefineNet
unit is employed in the feature recovery module.

Different types of network layers are colored and each layer
has the output shape on the top, marked by T ×H ×W ×C
or T ×L×C, where T , H , W , C and L denote the time step
of RNN, height, width, channel numbers of feature maps, and
codeword length, respectively. After the DFT and truncation
operations, the CSI matrix H is then fed into this CSI feedback
autoencoder with the input shape of T × 32 × 32 × 2 (H =
Nt = 32, W = Nc = 32), where two channels represent the
real and imaginary parts of H. The output remains the same
shape as the input.

A. ConvlstmCsiNet

1) RNN in Feature Extraction: On the basis of CsiNet [7],
we refine the feature extraction module by adding a convolu-
tional long short-term memory (ConvLSTM) [11] layer before
the convolution, and adopt the memory function of RNN to
learn the temporal correlation from the inputs of previous time
steps as well as compress the temporal redundancy. Therefore,
it can help the convolution to capture more useful temporal
information in feature extraction.

ConvLSTM is a variant of LSTM, which is proposed in
RNN to solve the problem of time sequence gradient disap-
pearing with the increase of calculation time. The main change
is that the weight calculation is switched from linear operation
to convolution operation, which helps it not only inherit the
ability of LSTM and capture the temporal correlation, but also
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depict the detailed local information in image features like
CNN, simultaneously.

The main structure of ConvLSTM is shown in Fig. 2. It
has the ability to remove or add information to the cell state
through three well-designed gates, i.e., forget gate, input gate
and output gate, including a sigmoid activation layer and a
convolutional operation. Both the input xn at nth time step
and the (n − 1)th time step output hn−1 are undergone with
this operation group four times, i.e., once in the forget and the
output gates and twice in the input gate, respectively. Since
convolution operations require far fewer parameters than linear
operations, ConvLSTM can help reduce the size of the model,
especially for large input sizes. Suppose that the input amount
of ConvLSTM and LSTM are the same, i.e., ConvLSTM takes
in features with a shape of (H,W,C) and LSTM takes in
vectors with a length of N , i.e., H ×W × C, and both their
outputs remain the same shape with their inputs, and the kernel
size is k×k in ConvLSTM. Then the LSTM operation requires
4TN(2N+1) parameters while the ConvLSTM operation only
requires 4T (k2×C×C+1) ones, which are much fewer than
LSTM’s.

Fig. 2: The structure of three gates in ConvLSTM [11]

The symmetric feature compression and feature decompres-
sion modules refer to RecCsiNet [8], which has achieved
higher accuracy than PR-RecCsiNet [8] or CsiNet-LSTM [2].
It uses two parallel row structures, i.e., the fully-connected
(FC) layer and the LSTM layer, to compress the reshaped N -
length vector into a M -length codeword, simultaneously. Then
we put the merged codeword as the output of the encoder, and
decompress it back to N -length with the symmetric structure,
which will be reshaped into two 32×32 sized features, serving
as a rough estimation of the real and imaginary parts of H.
During the feedback transmission, the feedback channel is
assumed to be perfect enough to transmit the compressed
codeword without any damage or loss.

Although ConvLSTM has so many advantages, we retain
LSTM instead of completely replacing it with ConvLSTM
since LSTM can perform better in terms of overall information
interaction due to its FC operation in weight calculations, thus
is more suitable for feature compression, while ConvLSTM is
more adaptable for depicting local detailed information.

2) Depthwise Separable Convolution in Feature Recovery:
RefineNet in CsiNet [7] is adopted as the basic structure. Each
RefineNet block has three 3×3×3 Conv3D layers, which are
cascaded together one by one, outputting 8, 16 and 2 feature

maps, respectively. The feature recovery module helps to refine
the primary rough estimation of H with two RefineNet blocks
and the results in CsiNet have testified that two blocks are
sufficient to recover the CSI matrix and more blocks will lead
to parameter redundancy. After two RefineNet blocks follow a
3× 3× 3 Conv3D layer and a sigmoid activation layer, which
outputs the final result of the recovered H, including its real
and imaginary parts.

Fig. 3: Filters of depthwise separable convolution

While in this module, all standard convolutions in the
feature recovery module are replaced by a new type of
convolutional layer, i.e., depthwise separable convolution [9],
referred to as DS-Conv. This substitution not only reduces the
number of parameters, but also helps the RefineNet achieve
better performance and higher recovery accuracy. According
to MobileNet, it can be divided into two steps: depthwise
convolution and pointwise convolution, the kernels of which
are shown in Fig. 3.

It is assumed that the original 3 × 3 × 3 Conv3D accepts
M input feature maps and outputs N feature maps. Depth-
wise convolution is a set of convolutions, each of which is
responsible for one feature map separately, so there are M
3 × 3 × 3 1-depth depthwise convolution filters to output
M feature maps. While pointwise convolution is a M -depth
1× 1× 1 convolution to deal with M feature maps obtained
from depthwise convolution and outputs N feature maps.
The first step is mainly responsible for capturing features in
each channel, while the second step is for the dimensions of
ascending and descending channels, as well as for information
integration and interaction across channels, which helps the
convolution to better understanding the correlation between
different channels. The parameter number of DS-Conv3D is
(M × 33 + M × N)/M × 33 × N times of the Conv3D, so
that DS-Conv3D can also help to reduce the parameter size of
the feature recovery module to a certain extent. In addition,
due to the large use of pointwise convolution, highly optimized
matrix multiplications, such as GEMM, can be used directly to
complete them without the pre-processing operation of im2col,
which greatly improves the operational efficiency.

B. Decoupled Spatial-Temporal Feature Extraction in Convl-
stmCsiNet

For further refinement of ConvlstmCsiNet, we focus on
the spatial-temporal feature representation in the feature ex-
traction module. Notice that ConvLSTM first extracts the
spacial features in the cell and then cycles the cell to form
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a time series, indicating a certain degree of independence
between extracting spatial features and temporal features in
a sense. To better cooperate with ConvLSTM, we rise study
on this independence in a 3D convolution to show how this
representation can affect the NN’s performance.

Inspired by [12], we replace the convolutional layer with
Pseudo-3D (P3D) in ConvlstmCsiNet to perform feature ex-
traction. The key idea of P3D is to capture features in the
temporal and spatial domains, respectively. Suppose we have
3D convolutional filters of size Td × Sd × Sd (Td and Sd

denote temporal depth and spatial depth, respectively), which
can be naturally decoupled into 1×Sd×Sd convolutional filters
equivalent to 2D convolutions in spatial domain and Td×1×1
convolutional filters equivalent to 1D convolutions on temporal
domain. This block replaces the standard convolutional layer
with two filters in a cascaded or paralleled manner. In this way,
both the number of parameters and computational complexity
can be reduced. Moreover, separating spatial and temporal fea-
ture extraction in P3D blocks acquires higher efficiency than a
standard 3D convolution especially when combining with the
ConvLSTM, which can maintain the relative independence of
spatial-temporal features, thereby eliminating the redundancy
more efficiently and accurately in spatial and temporal domain,
respectively.

Fig. 4: Three designs of P3D block

Considering whether the temporal and spatial filters should
directly or indirectly influence each other or the final output,
three designs of P3D blocks are proposed, which are shown
in Fig. 4. The skip connection structure of ResNet [13] is also
used here, which can directly pass the data flow to subsequent
layers and lead the model degenerating into a shallow net-
work, thus helping to ease the optimization and improve the
robustness of the NN by skipping those unnecessary layers.
For regularization, we adopt the idea of pre-activation structure
[14] that the batch normalization (BN) layer followed with an
activation layer of leaky ReLU is placed before all weighted
layers (e.g., convolutional layer), which has the impacts that
the optimization is further eased and the regularization of the
model is improved.

The model complexity analysis is depicted in Table I, where
the number of parameters and MACCs1 stand for space and
time complexity, respectively.

In Table I, CsiNet has the lowest number of parameters and
MACCs, at the cost of low recovery quality. RecCsiNet im-

1MACC: multiply-accumulate operations. A multiplication operation and
an additive operation count for one MACC operation.

TABLE I: The number of parameters and MACCs

CR 1/4 1/8 1/16 1/32

Pa
ra

m
s CsiNet 2,103,904 1,055,072 530,656 268,448

RecCsiNet 28,331,104 22,300,512 19,481,824 18,121,632
ConvlstmCsiNet 28,326,904 22,296,312 19,477,624 18,117,432

ConvlstmCsiNet A/B/C 28,326,854 22,296,262 19,477,574 18,117,382

M
A

C
C

s CsiNet 21,659,648 5,668,864 3,571,712 2,523,136
RecCsiNet 153,059,328 128,942,080 117,669,888 112,230,400

ConvlstmCsiNet 121,708,544 97,591,296 86,319,104 80,879,616
ConvlstmCsiNet A/B/C 121,462,784 97,345,536 86,073,344 80,633,856

proves the NN’s performance by modeling a more complicated
structure, and the strong augment in space and time complexity
is primarily caused by LSTM, where four dense layers are
laid in each LSTM cell. Our approaches, ConvlstmCsiNet or
ConvlstmCsiNet with P3D block, can achieve much higher
accuracy and robustness than RecCsiNet without increasing
the NN’s complexity. Although the proposed methods devise
a dedicated structure based on the structure of RecCsiNet, e.g.,
ConvLSTM layer, in order to achieve more improvement in
model capacity, the number of parameters and MACCs are
reduced due to the alleviative effects on the NN’s complexity
of depthwise separable convolutions as well as P3D blocks.
Especially in MACCs, the operation size of ConvlstmCsiNet
can be reduced to 121 M, which is 21% lower than RecCsiNet
at 1/4 CR. As the number of antennas in BS grows, this
shrinking effect can be enlarged exponentially.

Based on ConvlstmCsiNet, we refer the three newly pro-
posed models as ConvlstmCsiNet-A, ConvlstmCsiNet-B and
ConvlstmCsiNet-C, where P3D-A, P3D-B or P3D-C blocks
replace the convolution in feature compression module, re-
spectively. Then ConvlstmCsiNet is used to highlight the effect
of P3D in feature extraction by comparing to those with
P3D blocks. We assume that the models are trained on a
fully differentiable channel model and interpret the whole CSI
feedback communication system as an auto-encoder [15], [16].
Define the network as an autoencoder function f of the input
Ht, then the output can be expressed as:

Ĥt := f({Hk}tk=1; Θ)

= fdec(fenc({Hk}tk=1; Θenc); Θdec) (4)

where Θ is the whole parameters and f(·) represents the
function of the network. fdec, fenc, Θdec and Θenc denote the
maps and parameters of the decoder and encoder, respectively.

All networks are trained end-to-end by updating parameters
in the procedure of minimizing the mean squared error (MSE)
loss function using the ADAM algorithm, which can be given
as follows:

L(Θ) =
1

MT

M∑
m=1

T∑
t=1

‖f(Hm,t; Θ)−Hm,t‖2F

=
1

MT

M∑
m=1

T∑
t=1

Nt∑
i=1

Nc∑
j=1

∣∣f(H(i,j)
m,t ; Θ)−H(i,j)

m,t

∣∣2 (5)

where ‖ · ‖F is the Frobenius norm, T and M denote the
number of recurrent steps and the total number of examples
in the training data, respectively.
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IV. EXPERIMENTS AND NUMERAL RESULTS

In this section, we illustrate the training process in details
and discuss the experimental results compared with several
other methods of CSI feedback compression networks.

Two metrics are introduced to evaluate the models:
• Normalized Mean Square Error (NMSE): it quantifies

the difference between the input {Ht}Tt=1 and the output
{Ĥt}Tt=1, which can be defined as:

NMSE = E
{

1

T

T∑
t=1

‖Ht − Ĥt‖2F
‖Ht‖2F

}
(6)

• Cosine Similarity ρ: it depicts the similarity between the
original CSI matrix H̃ and the recovered ˆ̃H by calculating
cosine similarity within the channel response h̃n,t (n =
1, · · · , Ñc) of each subcarrier, which is given as:

ρ = E
{

1

T

1

Ñc

T∑
t=1

Ñc∑
n=1

|ˆ̃hH
n,t · h̃n,t|

‖ˆ̃hn,t‖2‖h̃n,t‖2

}
(7)

The MIMO-OFDM feedback system is set to work with
Ñc = 1, 024 subcarriers and uniform linear array (ULA) with
Nt = 32 antennas at the BS. After the DFT and truncation
operations, only the first Nc = 32 columns in CSI feedback
matrix H are nonzero and remain unchanged, which turns H
from a 1, 024× 32 shape to a new 32× 32 shape. According
to Eq. 3, we add tiny white Gauss noise (σu = 10−3) and
coloration index α between each time step, and the 2D CSI
feedback matrix can be extended to a T -time sequence of time-
varying CSI matrix, where T is the recurrent time steps and
is set to four for convenience.

All examples of H are generated based on the COST 2100
[17] channel model. We use the indoor picocellular scenario
at the 5.3 GHz band, and the outdoor rural scenario at the 300
MHz band, respectively. The BS is fixed in the center of a
square area of length 20 m for the indoor scene and 400 m for
the outdoor scene, while UEs are randomly placed within the
square area of each sample. All parameters follow the default
setting in [17]. During the training process of each model, we
use 100,000 examples for training, 30,000 for validation and
20,000 for testing. The learning rate is set to 10−3 for the first
1,000 epochs, 5× 10−4 for the middle 1, 000− 1, 200 epochs
and 10−4 for the last 1, 200− 1, 500 epochs.

TABLE II: The NMSE and ρ at different CRs when α = 0.1

Scenario Indoor Outdoor
CR 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

N
M

SE

CsiNet -17.5 -12.3 -9.93 -6.98 -10.2 -7.40 -5.07 -3.43
RecCsiNet -21.5 -18.8 -16.8 -13.4 -15.1 -13.8 -12.9 -9.36

ConvlstmCsiNet-A -28.4 -23.5 -20.7 -15.0 -20.8 -18.5 -16.5 -13.9
ConvlstmCsiNet-B -25.9 -20.7 -18.3 -14.0 -19.0 -14.3 -13.3 -10.5
ConvlstmCsiNet-C -26.5 -22.0 -19.0 -14.4 -19.9 -17.0 -14.3 -12.7

ConvlstmCsiNet -24.9 -23.0 -18.7 -13.5 -15.5 -15.1 -14.5 -11.1

ρ

CsiNet 95.1% 93.1% 90.4% 87.4% 89.8% 85.1% 77.1% 66.8%
RecCsiNet 95.7% 95.0% 94.7% 93.3% 93.2% 92.4% 91.9% 89.3%

ConvlstmCsiNet-A 95.8% 95.7% 95.5% 94.2% 94.3% 94.0% 93.5% 92.7%
ConvlstmCsiNet-B 95.8% 95.4% 95.0% 93.8% 93.8% 92.7% 92.2% 89.8%
ConvlstmCsiNet-C 95.8% 95.6% 95.3% 93.7% 94.1% 93.6% 92.7% 91.8%

ConvlstmCsiNet 95.7% 95.7% 95.2% 93.5% 93.2% 93.0% 92.7% 90.5%

Since the DL-based approaches are superior to the tradi-
tional CS-based methods, we only compare our methods with

the DL-based approaches, such as CsiNet [7] and RecCsiNet
[8]). The corresponding NMSE and ρ of each network are
given in Table II, where the best results are marked in bold.
The value of NMSE is too small that we use log(NMSE) to
represent it. Obviously, our proposed model ConvlstmCsiNet-
A can achieve the best performance on both NMSE and ρ.

TABLE III: The improvement percentage of proposed networks
compared with CsiNet & RecCsiNet

Scenario Indoor Outdoor
CR 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

C
om

pa
re

to
C

si
N

et
N

M
SE

ConvlstmCsiNet-A 64.0% 91.1% 108.5% 114.9% 103.9% 150.0% 225.4% 305.2%
ConvlstmCsiNet-B 48.0% 68.3% 84.3% 100.6% 86.3% 93.2% 162.3% 206.1%
ConvlstmCsiNet-C 51.4% 78.9% 91.3% 106.3% 95.1% 129.7% 182.1% 270.3%

ConvlstmCsiNet 42.3% 87.0% 88.3% 93.4% 52.0% 104.1% 186.0% 223.6%

ρ

ConvlstmCsiNet-A 0.73% 2.80% 5.64% 7.78% 5.01% 10.5% 21.3% 38.8%
ConvlstmCsiNet-B 0.73% 2.47% 5.09% 7.32% 4.45% 8.93% 19.6% 34.4%
ConvlstmCsiNet-C 0.73% 2.69% 5.42% 7.21% 4.79% 10.0% 20.2% 37.4%

ConvlstmCsiNet 0.63% 2.79% 5.31% 7.00% 3.79% 9.28% 20.2% 35.5%

C
om

pa
re

to
R

ec
C

si
N

et
N

M
SE

ConvlstmCsiNet-A 32.1% 25.0% 23.2% 11.9% 37.7% 34.1% 27.9% 48.5%
ConvlstmCsiNet-B 20.5% 10.1% 8.93% 4.48% 25.8% 3.62% 3.10% 12.2%
ConvlstmCsiNet-C 23.3% 17.0% 13.1% 7.46% 31.8% 23.2% 10.9% 35.7%

ConvlstmCsiNet 15.8% 22.3% 11.3% 0.75% 2.65% 9.42% 12.4% 18.6%

ρ

ConvlstmCsiNet-A 0.10% 0.74% 0.84% 0.96% 1.18% 1.73% 1.74% 3.81%
ConvlstmCsiNet-B 0.10% 0.42% 0.32% 0.54% 0.64% 0.32% 0.33% 0.56%
ConvlstmCsiNet-C 0.10% 0.63% 0.63% 0.43% 0.97% 1.30% 0.87% 2.80%

ConvlstmCsiNet 0.00% 0.74% 0.53% 0.21% 0.00% 0.65% 0.87% 1.34%

To show the contrast more intuitively, we give percentage
improvements of the proposed network compared with CsiNet
and RecCsiNet in Tabel III. It demonstrates that all four
purposed models outperform CsiNet and RecCsiNet. In the
networks with P3D blocks, ConvlstmCsiNet-A achieves the
best performance while ConvlstmCsiNet-B achieves the worst,
indicating that the cascaded manner of temporal and spatial
filter performs better than the parallel fashion, which can also
be proved by the result that the performance of the combined
structure ConvlstmCsiNet-C is between ConvlstmCsiNet-A
and ConvlstmCsiNet-B.

When analyzing the functions of P3D blocks, all
ConvlstmCsiNet-A, ConvlstmCsiNet-B and ConvlstmCsiNet-
C have obtained much lower NMSE and higher cosine similar-
ity ρ than ConvlstmCsiNet, especially at high CRs, indicating
that the decoupling convolution structure (P3D block) does
have a positive impact on capturing features and improving
the performance of the network.

In Table III, we can find that in the first part (compared
with CsiNet) that the improvements of all four networks are
increasing as CR decreases due to a better and more compli-
cated devised architecture. However, the increase in improve-
ment becomes slower when compared with RecCsiNet, which
indicates that the advantage of the ConvLSTM layer in feature
extraction module in our models becomes less noticeable
compared with RecCsiNet at low CRs. This is because the
CR value only affects the performance of feature compression
and decompression, where LSTM begins to play a major
role in accelerating the convergence of models, emphasizing
the benefits of LSTM and shrinking the advantage effects of
feature extraction part.

Moreover, all the four models can achieve higher improve-
ments in the outdoor scenario than in the indoor scenario,
indicating the high robustness of our proposed methods, es-
pecially when applied to those difficult situations. Compared
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with ConvlstmCsiNet, the models using P3D block achieve
much better improvements, which demonstrates that the P3D
block has a positive effect on enhancing the robustness of the
models.

Fig. 5: The absolute value of original (α = 0.1) and reconstructed
CSI images at different CRs

Figure 5 plots the reconstructed CSI images by CsiNet and
ConvlstmCsiNet-A (the best model we proposed) in Pseudo-
gray. Obviously, ConvlstmCsiNet-A outperforms CsiNet, es-
pecially at low CRs. Furthermore, CsiNet may lose some
feature information in both indoor and outdoor scenarios,
while ConvlstmCsiNet-A does not. Particularly in the outdoor
scenario, the cosine similarity of CsiNet decreases to a low
66.8%, while ConvlstmCsiNet-A always performs above 90%.

Fig. 6: The NMSE of the proposed NN at CR=1/4 in different
correlation parameter α

Figure 6 demonstrates that the rise of α leads to a growth of
corresponding NMSE, indicating that a decrease in temporal
correlation may prevent the proposed networks from achieving
high performance in CSI recovery.

V. CONCLUSION

We proposed a novel network architecture of CSI feedback
by adopting RNN and depthwise separable convolution in

feature extraction and recovery modules, respectively. Further-
more, we also devised the feature extraction part by studying
the decoupled temporal-spatial convolutional representations,
which proved to be better than standard Conv3D convolutions.
Experimental results demonstrate that our method can improve
the performance of RecCsiNet in terms of recovery robustness,
accuracy and quality. This architecture has the potential for
practical deployment on real MIMO systems.
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