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Abstract

The von Neumann entropy of a nonempty graph provides a mean of characterizing
the information content of the quantum state of a physical system. We give sharp up-
per and lower bounds for the von Neumann entropy of a nonempty graph using graph
parameters and characterize the graphs when each bound is attained. These upper
(lower, respectively) bounds are shown to be incomparable in general by examples.
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1 Introduction

In quantum mechanics, the state of a physical system is represented by a positive semi-definite
hermitian matrix with unit trace, called its density matrix. The von Neumann entropy of
a quantum state is defined as the Shannon entropy associated with the eigenvalues of its
density matrix. It provides a mean of characterizing the information content of the quantum
state.

We consider simple graphs. Let G be a graph on n vertices with vertex set V (G) and
edge set E(G). The adjacency matrix of G is the n× n matrix A(G) = (auv), where auv = 1
if u and v are adjacent in G, and 0 otherwise. For u ∈ V (G), dG(u) or du denotes the degree
of u in G. The matrix L(G) = D(G) − A(G) is known as the (combinatorial) Laplacian
matrix of G, where D(G) is the degree diagonal matrix of G. For a nonempty graph G, let
σ(G) = 1

dG
L(G), where dG is the trace of L(G), i.e., the sum of degrees of G, i.e., 2|E(G)|.

Note that σ(G) is a positive semi-definite hermitian matrix with unit trace. It may be
interpreted as the density matrix of a physical system. We call σ(G) the density matrix of G.
Let ρ1, . . . , ρn be the eigenvalues of σ(G), arranged in a non-increasing order. Then ρn = 0
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and the multiplicity of eigenvalue 0 for σ(G) is equal to the number of components of G. The
von Neumann entropy of G is defined as [2]

s(G) = −
n∑
i=1

ρi log2 ρi

with convention that 0 log2 0 = 0. Thus, s(G) = −
∑n−1

i=1 ρi log2 ρi.
Braunstein et al. [2] showed that, for a nonempty graph G on n vertices,

0 ≤ s(G) ≤ log2(n− 1)

with left equality if and only if G has a single edge and with right equality if and only if G
is (isomorphic to) the complete graph Kn. For a graph G with n vertices and m ≥ 1 edges,
let Z = Z(G) =

∑
u∈V (G) d

2
u. Let Sn be the star on n vertices. Among others, Dairyko et al.

[5] showed that

s(G) ≥ − log2

2m+ Z

4m2
, (1.1)

and they used this inequality to deduce sufficient conditions that s(G) ≥ s(Sn). Recall that,
early, it was asked in [16] whether Sn minimizes von Neumann entropy among connected
graphs with n ≥ 2 vertices, which was conjectured to be true in [5]. The von Neumann en-
tropies of the Erdős-Rényi random graphs and multipartite generalizations have been studied
in [6, 9]. Related work on the von Neumann entropies may be found in [3, 11].

In this paper, we find upper and lower bounds for the von Neumann entropy of a nonempty
graph in terms of graph parameters that are easy to discern to some extent such as the number
of vertices, the number of edges, the maximum degree, the degree sequence, the conjugate
degree sequence, and the quantity Z, and determine those graphs that attain the bounds.
Particularly, we determine the graphs attaining the bound in (1.1). We also compare these
bounds by examples.

2 Preliminaries

For a graph G on n vertices, let λ1, . . . , λn be the Laplacian eigenvalues of G (i.e., the
eigenvalues of L(G)), arranged in a non-increasing order. When more than one graph is
under discussion, we may write λi(G) in place of λi. We mention that λn−1 is known as the
algebraic connectivity of G, see [7]. Obviously, λi = 2mρi, where m = |E(G)|.

Recall that, for a nonempty graph G with n vertices,

n−1∑
i=1

ρi = tr(σ(G)) = 1.

This fact will be used frequently.

Lemma 2.1. [15] Let G be a nonempty graph with maximum degree ∆. Then λ1 ≥ ∆ + 1
with equality when G is connected on n vertices if and only if ∆ = n− 1.
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For a graph G, let G be its complement.

Lemma 2.2. [15] Let G be a graph with n vertices. Then the Laplacian eigenvalues of G are
n− λn−1(G), . . . , n− λ1(G), 0.

Lemma 2.3. [15] Let G be a connected graph with diameter d. Suppose that G has exactly
k distinct Laplacian eigenvalues. Then d+ 1 ≤ k.

Lemma 2.4. [15] Let G be a graph on n vertices with minimum degree δ and G � Kn. Then
λn−1 ≤ δ.

For a graph G on n vertices, let µ1 be the largest eigenvalue of A(G), and q1 the largest

eigenvalue of Q(G) = D(G) + A(G). It is known that µ1 ≥
√

Z
n

with equality when G is

connected if and only if G is regular or bipartite semiregular (i.e., bipartite and vertices in the
same color class have equal degrees), see [12]. Let x be the nonnegative unit eigenvector of
A(G) corresponding to µ1. Then q1 ≥ x>Q(G)x =

∑
uv∈E(G)(xu+xv)

2 ≥ 2·2
∑

uv∈E(G) xuxv =

2µ1 with equalities if and only if Q(G)x = q1x and xu = xv for any uv ∈ E(G) [4]. Thus
q1 ≥ 2µ1 with equality when G is connected if and only if G is regular. If G is bipartite, then

λ1 = q1 (see [15]), and thus λ1 ≥ 2
√

Z
n

with equality when G is connected if and only if G is

regular. Thus, we have the following lemma.

Lemma 2.5. Let G be a bipartite graph on n vertices. Then λ1 ≥ 2
√

Z
n
with equality when

G is connected if and only if G is regular.

For non-increasing sequences x = (x1, . . . , xn) and y = (y1, . . . , yn), x is majorized by y,
denoted by x � y, if

∑j
i=1 xi ≤

∑j
i=1 yi for j = 1, . . . , n, and equality holds when j = n.

Lemma 2.6. [8] Let G be a graph with non-increasing degree sequence (d1, . . . , dn), where
dn ≥ 1. Then

(d1 + 1, d2, . . . , dn−1, dn − 1) � (λ1, . . . , λn).

For the (non-increasing) degree sequence (d1, . . . , dn) of a graph G, its conjugate degree
sequence is (d∗1, . . . , d

∗
n), where d∗i = |{j : dj ≥ i}|. The following lemma was conjectured in

[10] and was confirmed in [1].

Lemma 2.7. Let G be a graph with conjugate degree sequence (d∗1, . . . , d
∗
n). Then

(λ1, . . . , λn) � (d∗1, . . . , d
∗
n).

For vertex-disjoint graphs G and H, G ∪ H denotes the vertex-disjoint union of G and
H, and sH denotes the vertex-disjoint union of s copies of H for a positive integer s. Let
G ∪ 0H = G.

For vertex-disjoint graphs G and H, the join G∨H is the graph obtained from G∪H by
adding edges between each vertex of G and each vertex of H. Let Γ1 = {Kp : p ≥ 1}, and
for i ≥ 1, Γi+1 = {G ∨Kq : G ∈ Γi, q ≥ 1}. Let Γ = ∪i≥1Γi. Let Γ(n) be the set of graphs in
Γ of order n.

Lemma 2.8. [14] Let G be a connected graph with conjugate degree sequence (d∗1, . . . , d
∗
n).

Then (λ1, . . . , λn) = (d∗1, . . . , d
∗
n) if and only if G is isomorphic to a graph in Γ(n).

A real function F defined on a set on Rn is said to be strictly Schur-convex if F (x) < F (y)
whenever x � y but x 6= y. From [13, p. 64, C.1.a], if a real function f defined on an interval
in R is strictly convex, then

∑n
i=1 f(xi) is strictly Schur-convex.
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3 Upper bounds and extremal graphs

In this section, we give upper bounds for the von Neumann entropy of a nonempty graph
and characterize the extremal graphs.

Theorem 3.1. Let G be a graph with n vertices, k components, m edges and maximum
degree ∆, where n ≥ k + 2. Then

s(G) ≤ −∆ + 1

2m
log2

∆ + 1

2m
−
(

1− ∆ + 1

2m

)
log2

1− ∆+1
2m

n− k − 1
(3.1)

with equality if and only if G ∼= Sn−k+1 ∪ (k − 1)K1, or G ∼= aK∆+1 ∪ (k − a)K1 for some
positive integer a = n−k

∆
.

Proof. Since G has k components, we have ρn−k+1 = · · · = ρn = 0 and
∑n−k

i=1 ρi = 1. Note
that f(x) = −x log2 x for x > 0 is a strictly concave function. By Jensen’s inequality, we
have

n−k∑
i=2

1

n− k − 1
· (−ρi log2 ρi) ≤ −

∑n−k
i=2 ρi

n− k − 1
log2

∑n−k
i=2 ρi

n− k − 1
,

i.e.,

−
n−k∑
i=2

ρi log2 ρi ≤ −
n−k∑
i=2

ρi log2

∑n−k
i=2 ρi

n− k − 1
= −(1− ρ1) log2

1− ρ1

n− k − 1
,

with equality if and only if ρ2 = · · · = ρn−k. Therefore

s(G) ≤ −ρ1 log2 ρ1 − (1− ρ1) log2

1− ρ1

n− k − 1

with equality if and only if λ2 = · · · = λn−k.
Let g(x) = −x log2 x−(1−x) log2

1−x
n−k−1

for 0 < x ≤ 1. Obviously, g′(x) = − log2
(n−k−1)x

1−x ,

which is negative for 1
n−k ≤ x < 1. Thus g(x) is strictly decreasing for 1

n−k ≤ x ≤ 1. By
Lemma 2.1, λ1 ≥ ∆ + 1. Note that 2m ≤ (∆ + 1)(n − k), which is obvious if k = 1, and
follows by considering its components if k ≥ 2. Then ρ1 = λ1

2m
≥ ∆+1

2m
≥ 1

n−k . Thus

s(G) ≤ g(ρ1) ≤ g

(
∆ + 1

2m

)
= −∆ + 1

2m
log2

∆ + 1

2m
−
(

1− ∆ + 1

2m

)
log2

1− ∆+1
2m

n− k − 1
.

This proves (3.1).
Suppose that equality holds in (3.1). By the above argument, we have λ1 = ∆ + 1,

λ2 = · · · = λn−k. Obviously, there is a component G1 of G with maximum degree ∆.
Since λ1 = ∆ + 1, we have by Lemma 2.1 that λ1 ≥ λ1(G1) ≥ ∆ + 1 = λ1, and then
λ1(G1) = ∆ + 1, implying that ∆ = |V (G1)| − 1. Thus G1 = K1 ∪ H for a graph H on ∆
vertices. By Lemma 2.2, the Laplacian eigenvalues of G1 are ∆ + 1− λ2, . . . ,∆ + 1− λ2︸ ︷︷ ︸

∆−1 times

, 0, 0,

and thus the Laplacian eigenvalues of H are ∆ + 1− λ2, . . . ,∆ + 1− λ2︸ ︷︷ ︸
∆−1 times

, 0. If ∆+1−λ2 = 0,

4



then H is empty, and if ∆ + 1 − λ2 > 0, then by Lemma 2.3, H is complete. Therefore
G1
∼= S∆+1 or G1

∼= K∆+1.
Case 1. G1

∼= S∆+1 with ∆ ≥ 2. Note that the Laplacian eigenvalues of S∆+1 are ∆ +
1, 1, . . . , 1︸ ︷︷ ︸

∆−1 times

, 0. Then λ2 = · · · = λn−k = 1, implying that the largest Laplacian eigenvalue of

any other component of G is at most 1. By Lemma 2.1, the largest Laplacian eigenvalue of
any nontrivial connected graph is at least 2. Thus all components of G except G1 are trivial.
Therefore G ∼= S∆+1 ∪ (k − 1)K1 with ∆ = n− k.
Case 2. G1

∼= K∆+1. If ∆ = 1, then G ∼= mK2 ∪ (n− 2m)K1 with k = n−m. Suppose that
∆ ≥ 2. If G has another nontrivial component G′1 except G1, then λ2 = · · · = λn−k = ∆ + 1,
and by Lemma 2.3, the diameter ofG′1 is 1, and thusG′1

∼= K∆+1. ThusG ∼= aK∆+1∪(k−a)K1

for some positive integer a = n−k
∆

whether ∆ = 1 or ∆ ≥ 2.
Combining Cases 1 and 2, G ∼= S∆+1∪(k−1)K1 with ∆ = n−k, or G ∼= aK∆+1∪(k−a)K1

for some positive integer a = n−k
∆

.
Conversely, if G ∼= Sn−k+1∪(k−1)K1, or G ∼= aK∆+1∪(k−a)K1 for some positive integer

a = n−k
∆

, then λ2 = · · · = λn−k, and for any nontrivial component of G, it has ∆ + 1 vertices
and its maximum degree is ∆, and thus it is easily seen that equality holds in (3.1).

In Theorem 3.1, we need to know the number of components, which is eliminated in the
following theorem with a weaker but still useful upper bound.

Theorem 3.2. Let G be a graph with n ≥ 3 vertices, m ≥ 1 edges and maximum degree ∆.
Then

s(G) ≤ −∆ + 1

2m
log2

∆ + 1

2m
−
(

1− ∆ + 1

2m

)
log2

1− ∆+1
2m

n− 2
(3.2)

with equality if and only if G ∼= Sn or G ∼= Kn.

Proof. Let k be the number of components of G. Note that f(x) = log2 x is strictly increas-

ing for x ≥ 0. We have log2
1−∆+1

2m

n−k−1
≥ log2

1−∆+1
2m

n−2
, which is strict when k > 1. Thus, by

Theorem 3.1, we have (3.2), and equality holds in (3.2) if and only if G ∼= Sn or G ∼= Kn.

Theorem 3.3. Let G be a graph withm edges and non-increasing degree sequence (d1, . . . , dn),
where dn ≥ 1. Then

s(G) ≤ log2(2m)− d1 + 1

2m
log2(d1 + 1)−

n−1∑
i=2

di
2m

log2 di −
dn − 1

2m
log2(dn − 1) (3.3)

with equality if and only if G ∼= Sn.

Proof. Let f(x) = x log2 x for x ≥ 0. Obviously, f(x) is strictly convex. From [13, p. 64,
C.1.a],

∑n
i=1 f(xi) is strictly Schur-convex. By Lemma 2.6, we have

n∑
i=1

λi log2 λi ≥ (d1 + 1) log2(d1 + 1) +
n−1∑
i=2

di log2 di + (dn − 1) log2(dn − 1)
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with equality if and only if (λ1, . . . , λn) = (d1+1, d2, . . . , dn−1, dn−1). Note that
∑n

i=1 λi log2 λi =
2m log2(2m) + 2m

∑n
i=1 ρi log2 ρi. Thus

2ms(G) ≤ 2m log2(2m)− (d1 + 1) log2(d1 + 1)−
n−1∑
i=2

di log2 di − (dn − 1) log2(dn − 1),

from which (3.3) follows.
Suppose equality holds in (3.3). Then (λ1, . . . , λn) = (d1 + 1, d2, . . . , dn−1, dn − 1), and

thus λn−1 = dn−1 ≥ 1 (implying that G is connected) and λ1 = d1 + 1. Now by Lemma 2.1,
d1 = n−1. Thus G = K1∪H for a graph H on n−1 vertices. By Lemma 2.2, the Laplacian
eigenvalues of G are n − dn−1, . . . , n − d2, 0, 0, and thus the Laplacian eigenvalues of H are
n−dn−1, . . . , n−d2, 0, implying that the Laplacian eigenvalues of H are d2−1, . . . , dn−1−1, 0.
Obviously, the degree sequence of H is (d2−1, . . . , dn−1). By Lemma 2.1, H = Kn−1. Thus
G ∼= Sn.

Conversely, the Laplacian eigenvalues of Sn are n, 1 (with multiplicity n− 2) and 0. It is
easily seen that equality holds in (3.3).

Note that the upper bound is attained for Kn in Theorem 3.2 and is not attained in
Theorem 3.3. Let G be the graph obtained from S5 by adding two edges with one common
vertex. Then m = 6, n = 5 and (d1, . . . , d5) = (4, 3, 2, 2, 1). For this graph, the upper
bounds in Theorems 3.2 and 3.3 are respectively 5

12
log2

12
5

+ 7
12

log2
36
7
≈ 1.90443 and log2 12−

5
12

log2 5− 1
4

log2 3− 1
3
≈ 1.887918, and thus the upper bound in Theorem 3.3 is better than the

one in Theorem 3.2. Therefore the upper bounds in Theorems 3.3 and 3.2 are incomparable
in general.

In previous theorem we need to know the degree sequence. If only the two largest degrees
are known, then we have the following result.

Theorem 3.4. Let G be a graph with n vertices and m ≥ 1 edges, where n ≥ 5. Let d1 and
d2 be the maximum degree and second maximum degree of G, respectively. Then

s(G) ≤ 1 +
d1 + d2 + 1

2m
+

2m− (d1 + d2 + 1)

2m
log2(n− 3) (3.4)

with equality if and only if G ∼= K5.

Proof. Note that f(x) = −x log2 x for x ≥ 0 is a strictly concave function. By Jensen’s
inequality, we have

−
n−1∑
i=3

ρi log2 ρi ≤ −

(
n−1∑
i=3

ρi

)
log2

n−1∑
i=3

ρi
n− 3

,

and thus

s(G) ≤ −ρ1 log2 ρ1 − ρ2 log2 ρ2 −

(
n−1∑
i=3

ρi

)
log2

n−1∑
i=3

ρi
n− 3

= −ρ1 log2 ρ1 − ρ2 log2 ρ2 − (1− ρ1 − ρ2) log2

1− ρ1 − ρ2

n− 3
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with equality if and only if ρ3 = · · · = ρn−1. Similarly, by Jensen’s inequality,

−ρ1 log2 ρ1 − ρ2 log2 ρ2 ≤ −(ρ1 + ρ2) log2

ρ1 + ρ2

2

with equality if and only if ρ1 = ρ2, and

−(ρ1 + ρ2) log2(ρ1 + ρ2)

2
− (1− ρ1 − ρ2) log2(1− ρ1 − ρ2)

2
≤ −1

2
log2

1

2
=

1

2
,

i.e.,
−(ρ1 + ρ2) log2(ρ1 + ρ2)− (1− ρ1 − ρ2) log2(1− ρ1 − ρ2) ≤ 1

with equality if and only if ρ1 + ρ2 = 1− ρ1 − ρ2. Therefore

s(G) ≤ −(ρ1 + ρ2) log2

ρ1 + ρ2

2
− (1− ρ1 − ρ2) log2

1− ρ1 − ρ2

n− 3
= −(ρ1 + ρ2)(log2(ρ1 + ρ2)− 1)

−(1− ρ1 − ρ2)(log2(1− ρ1 − ρ2)− log2(n− 3))

= −(ρ1 + ρ2) log2(ρ1 + ρ2)− (1− ρ1 − ρ2) log2(1− ρ1 − ρ2)

+(ρ1 + ρ2) + (1− ρ1 − ρ2) log2(n− 3)

≤ 1 + (ρ1 + ρ2) + (1− ρ1 − ρ2) log2(n− 3).

If n = 5, then s(G) ≤ 2 with equality if and only if λ1 = · · · = λ4 = m
2

, which, by
Lemma 2.3, is equivalently to the fact that G ∼= K5. The result for n = 5 follows.

Suppose that n ≥ 6.
Let g(x) = 1 + x + (1− x) log2(n− 3). Then g′(x) = 1− log2(n− 3) < 0, and thus g(x)

is strictly decreasing. Now by Lemma 2.6, we have ρ1 + ρ2 ≥ d1+d2+1
2m

, and thus

s(G) ≤ g

(
d1 + d2 + 1

2m

)
= 1 +

d1 + d2 + 1

2m
+

(
1− d1 + d2 + 1

2m

)
log2(n− 3),

from which (3.4) follows.
Suppose that equality holds in (3.4). Then by the above argument, we have λ1 = λ2 = m

2
,

λ3 = · · · = λn−1 = m
n−3

, and λ1 + λ2 = d1 + d2 + 1. By Lemma 2.1, d1 + d2 + 1 = λ1 + λ2 =
2λ1 ≥ 2d1 + 2 ≥ d1 + d2 + 2, a contradiction. Thus, (3.4) is strict for n ≥ 6.

For Sn, the upper bound in Theorem 3.2 is better than the one in Theorem 3.4. For the
graph obtained from S6 and S5 by adding an edge between a pendant vertex of S6 and a
pendant vertex of S5, the upper bound in Theorem 3.4 is 3, which is better than the upper
bound in Theorem 3.2, which is 3

10
log2

10
3

+ 7
10

log2
7
90
≈ 3.1002384. Thus the upper bounds

in Theorems 3.4 and 3.2 are incomparable in general.

Theorem 3.5. Let G be a graph with n vertices, m ≥ 1 edges and minimum degree δ.
Suppose that G � Kn. Then

s(G) ≤ −
(

1− δ

2m

)
log2

1− δ
2m

n− 2
− δ

2m
log2

δ

2m
(3.5)

with equality if and only if G ∼= Kn−1 ∪K1 or G ∼= S3.
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Proof. Since f(x) = −x log2 x for x ≥ 0 is a strictly concave function, we have by Jensen’s
inequality that

−
n−2∑
i=1

ρi log2 ρi ≤ −

(
n−2∑
i=1

ρi

)
log2

n−2∑
i=1

ρi
n− 2

,

and thus

s(G) ≤ −

(
n−2∑
i=1

ρi

)
log2

n−2∑
i=1

ρi
n− 2

− ρn−1 log2 ρn−1

= −(1− ρn−1) log2

1− ρn−1

n− 2
− ρn−1 log2 ρn−1

with equality if and only if ρ1 = · · · = ρn−2.
Suppose first that δ = 0. Then ρn−1 = 0, and thus s(G) ≤ log2(n − 2) with equality if

and only if λ1 = · · · = λn−2. Now (3.5) follows and by Lemma 2.3, equality holds in (3.5) if
and only if G ∼= Kn−1 ∪K1.

Next suppose that δ > 0.
Let g(x) = −(1−x) log2

1−x
n−2
−x log2 x for 0 < x < 1. Obviously g′(x) = log2

1−x
x(n−2)

, which

is positive for 0 < x ≤ 1
n−1

. Thus g(x) is strictly increasing for 0 < x ≤ 1
n−1

. By Lemma 2.4,

we have ρn−1 ≤ δ
2m

< 1
n−1

, and thus s(G) ≤ g
(
δ

2m

)
, from which (3.5) follows.

Suppose that equality holds in (3.5). By the above argument, λ1 = · · · = λn−2 and
λn−1 = δ. By Lemma 2.2, the Laplacian eigenvalues of G are n− δ, n−λ1, . . . , n−λ1, 0. Let
∆(G) be the maximum degree of G. If G is connected, then, since λ1(G) = n−δ = ∆(G)+1,
we have by Lemma 2.1 that ∆(G) = n − 1, implying that δ = 0, which is impossible.
Thus G is not connected. Then n − λ1 = 0, implying that G has n − 1 components, i.e.,
G ∼= K2 ∪ (n− 2)K1 with n− δ = 2. Thus G ∼= K2 ∪K1, i.e., G ∼= S3.

Conversely, if G ∼= S3, then it is easy to see that (3.5) is an equality.

From the graphs that attain the bounds, it is easily seen that the upper bound in Theo-
rem 3.5 is incomparable with the ones in Theorems 3.2, 3.3 and 3.4.

Let Kr,r be the complete bipartite graph with size r for both color classes.

Theorem 3.6. Let G be a bipartite graph with n vertices and m ≥ 1 edges, where n ≥ 2.
Then

s(G) ≤ − 1

m

√
Z

n
log2

1

m

√
Z

n
−

(
1− 1

m

√
Z

n

)
log2

1− 1
m

√
Z
n

n− 2
(3.6)

with equality if and only if G ∼= Kn/2,n/2.

Proof. By similar argument as in the proof of Theorem 3.1, we have

s(G) ≤ g(ρ1)

with equality if and only if ρ2 = · · · = ρn−1, where g(x) = −x log2 x − (1 − x) log2
1−x
n−2

is

strictly decreasing for x ≥ 1
n−1

. Note that

m2 =

(∑
u∈V (G) du

2

)2

=

∑
u∈V (G) d

2
u + 2

∑
u6=v dudv

4
≤

3
∑

u∈V (G) d
2
u

4
=

3Z

4
.
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By Lemma 2.5, we have ρ1 = λ1

2m
≥ 1

m

√
Z
n
≥
√

4
3n
≥ 1

n−1
. Thus

s(G) ≤ g(ρ1) ≤ g

(
1

m

√
Z

n

)
,

from which (3.6) follows.
Suppose that equality holds in (3.6). By the above argument, λ2 = · · · = λn−1. If

λ2 = · · · = λn−1 > 0, then n ≥ 3, G is connected, and by Lemmas 2.3 and 2.5, G is
a regular complete bipartite graph, i.e., G ∼= Kn/2,n/2. If λ2 = · · · = λn−1 = 0, then
G = K1,1 ∪ (n− 2)K1, and by Lemma 2.5, n can only be 2, i.e., G ∼= K1,1.

Conversely, if G ∼= Kn/2,n/2, then λ2 = · · · = λn−1. Since G is a bipartite regular graph,

we have by Lemma 2.5 that λ1 = 2
√

Z
n

. Thus equality holds in (3.6).

We remark that for bipartite graphs, the upper bound in Theorem 3.6 is incomparable
with the ones in Theorems 3.2, 3.3 and 3.5.

Note the upper bound is attained in Theorem 3.6 by Kn/2,n/2, but it is not in Theorem 3.4.
For the graph obtained from S6 and S5 by adding an edge between a pendant vertex of S6

and a pendant vertex of S5, the upper bound in Theorem 3.4 is 3, which is better than the

upper bound in Theorem 3.6, which is − 1
10

√
56
11

log2
1
10

√
56
11
−
(

1− 1
10

√
56
11

)
log2

1− 1
10

√
56
11

9
≈

3.2250095. Thus the upper bounds in Theorems 3.6 and 3.4 are incomparable in general.

4 Lower bounds and extremal graphs

In this section, we discuss lower bounds for the von Neumann entropy of a nonempty graph
and determine the extremal graphs. First we give an alternative proof for (1.1) in the following
theorem.

Theorem 4.1. Let G be a graph with n vertices and m ≥ 1 edges. Then we have (1.1) with
equality if and only if G ∼= rKs ∪ (n− rs)K1, where some integers r and s with r ≥ 1, s ≥ 2,
and rs ≤ n.

Proof. Let f(x) = − log2 x for x > 0. Since f ′′(x) = 1
x2 ln 2

> 0, f(x) is a strictly convex

function. Note that
∑n−1

i=1 ρi = 1. By Jensen’s inequality, we have

− log2

(
n−1∑
i=1

ρi · ρi

)
≤ −

n−1∑
i=1

ρi log2 ρi,

i.e.,

s(G) ≥ − log2

n−1∑
i=1

ρ2
i

with equality if and only if all nonzero eigenvalues of σ(G) are equal. Note that

n−1∑
i=1

ρ2
i = tr(σ(G)2) =

2m+ Z

4m2
.

9



Thus, (1.1) follows. Equality holds in (1.1) if and only if ρ1 = · · · = ρk > 0 and ρk+1 = 0
for some positive integer k, which, by Lemma 2.3, is equivalent to the fact that all nontrivial
components are complete with the same number of vertices, i.e., G ∼= rKs ∪ (n − rs)K1 for
some integers r and s with r ≥ 1, s ≥ 2 and rs ≤ n.

Note that if G is a connected graph that achieves the equality in (1.1), then G ∼= Kn.

Theorem 4.2. Let G be a graph on n vertices with m ≥ 1 edges and conjugate degree
sequence (d∗1, . . . , d

∗
n). Then

s(G) ≥ log2(2m)− 1

2m

n−1∑
i=1

d∗i log2 d
∗
i . (4.1)

with equality when G is connected if and only if G is isomorphic to a graph in Γ(n).

Proof. Let f(x) = x log2 x for x ≥ 0. Obviously, f(x) is strictly convex. From [13, p. 64,
C.1.a],

∑n
i=1 f(xi) is strictly Schur-convex. By Lemma 2.7, we have

n−1∑
i=1

λi log2 λi ≤
n−1∑
i=1

d∗i log2 d
∗
i

with equality if and only if (λ1, . . . , λn) = (d∗1, . . . , d
∗
n), which, by Lemma 2.8, is equivalent to

the fact that G is isomorphic to a graph in Γ(n). Note that
∑n

i=1 λi log2 λi = 2m log2(2m) +
2m
∑n

i=1 ρi log2 ρi. Thus

2ms(G) ≥ 2m log2(2m)−
n−1∑
i=1

d∗i log2 d
∗
i ,

from which (4.1) follows and equality holds in (4.1) if and only if G is isomorphic to a graph
in Γ(n).

Note that, for n ≥ 3, besides Kn, there are other graphs, say Sn, in Γ(n). For these graphs
in Γ(n) \ {Kn}, the bound in Theorem 4.2 is better than the one in (1.1). Let G = K4,4. In
notation in Theorem 4.2, m = 16, Z = 128 and (d∗1, . . . , d

∗
n) = (8, 8, 8, 8, 0, 0, 0, 0). Then the

lower bound in in Theorem 4.2 is 2, which is worse than the lower bound in (1.1), which is is
log2 6.4 ≈ 2.67807. Thus the upper bound in Theorem 4.2 and the early known one in (1.1)
are incomparable in general.

5 Concluding remark

The density matrix of a graph was introduced to represent the quantum state of a graph,
and the von Neumann entropy measures the mixedness of this quantum state as a convex
combination of several pure states. We obtain upper bounds and lower bounds (one was
known) for the von Neumann entropy using degree information and gives characterizations
for those graphs when each bound is attained. Examples show that any two upper bounds in

10



Theorems 3.2, 3.3, 3.4, 3.5, and 3.6 (or 3.1, 3.3, 3.4, 3.5, and 3.6) as well as the lower bounds
Theorem 4.2 and (1.1) are incomparable in general.
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