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Abstract

The von Neumann entropy of a nonempty graph provides a mean of characterizing
the information content of the quantum state of a physical system. We give sharp up-
per and lower bounds for the von Neumann entropy of a nonempty graph using graph
parameters and characterize the graphs when each bound is attained. These upper
(lower, respectively) bounds are shown to be incomparable in general by examples.
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1 Introduction

In quantum mechanics, the state of a physical system is represented by a positive semi-definite
hermitian matrix with unit trace, called its density matrix. The von Neumann entropy of
a quantum state is defined as the Shannon entropy associated with the eigenvalues of its
density matrix. It provides a mean of characterizing the information content of the quantum
state.

We consider simple graphs. Let G be a graph on n vertices with vertex set V(G) and
edge set E(G). The adjacency matrix of G is the n x n matrix A(G) = (@), where a,, =1
if u and v are adjacent in G, and 0 otherwise. For u € V(G), dg(u) or d, denotes the degree
of u in G. The matrix L(G) = D(G) — A(G) is known as the (combinatorial) Laplacian
matrix of G, where D(G) is the degree diagonal matrix of G. For a nonempty graph G, let
o(G) = %L(G), where dg is the trace of L(G), i.e., the sum of degrees of G, i.e., 2|E(G)|.
Note that ¢(G) is a positive semi-definite hermitian matrix with unit trace. It may be
interpreted as the density matrix of a physical system. We call o(G) the density matrix of G.
Let p1,...,pn be the eigenvalues of o(G), arranged in a non-increasing order. Then p, = 0

*E-mail: lhongying0908@126.com
fCorresponding author. E-mail: zhoubo@scnu.edu.cn



and the multiplicity of eigenvalue 0 for (@) is equal to the number of components of G. The
von Neumann entropy of G is defined as [2]

s(G) == pilog, p;
=1

with convention that 0log, 0 = 0. Thus, s(G) = — 37" p; log, p;.
Braunstein et al. [2] showed that, for a nonempty graph G on n vertices,

0 < s(G) <logy(n—1)

with left equality if and only if G’ has a single edge and with right equality if and only if G
is (isomorphic to) the complete graph K. For a graph G with n vertices and m > 1 edges,
let Z=2(G) = Zuev(e) d?. Let S, be the star on n vertices. Among others, Dairyko et al.
[5] showed that

(1.1)

and they used this inequality to deduce sufficient conditions that s(G) > s(S,,). Recall that,
early, it was asked in [16] whether S,, minimizes von Neumann entropy among connected
graphs with n > 2 vertices, which was conjectured to be true in [5]. The von Neumann en-
tropies of the Erdos-Rényi random graphs and multipartite generalizations have been studied
in [6, 9]. Related work on the von Neumann entropies may be found in [3, 11].

In this paper, we find upper and lower bounds for the von Neumann entropy of a nonempty
graph in terms of graph parameters that are easy to discern to some extent such as the number
of vertices, the number of edges, the maximum degree, the degree sequence, the conjugate
degree sequence, and the quantity Z, and determine those graphs that attain the bounds.
Particularly, we determine the graphs attaining the bound in (1.1). We also compare these
bounds by examples.

2 Preliminaries

For a graph G on n vertices, let Ay,...,\, be the Laplacian eigenvalues of G (i.e., the
eigenvalues of L(()), arranged in a non-increasing order. When more than one graph is
under discussion, we may write \;(G) in place of \;. We mention that A, ; is known as the
algebraic connectivity of G, see [7]. Obviously, A\; = 2mp;, where m = |E(G)].

Recall that, for a nonempty graph G with n vertices,

ipi = tr(c(G)) = 1.

This fact will be used frequently.

Lemma 2.1. [15] Let G be a nonempty graph with maximum degree A. Then Ay > A + 1
with equality when G is connected on n vertices if and only if A =n — 1.
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For a graph G, let G be its complement.
Lemma 2.2. [15] Let G be a graph with n vertices. Then the Laplacian eigenvalues of G are
n— )\n—l(G)a e, = >\1<G), 0.
Lemma 2.3. [15] Let G be a connected graph with diameter d. Suppose that G has exactly
k distinct Laplacian eigenvalues. Then d +1 < k.

Lemma 2.4. [15] Let G be a graph on n vertices with minimum degree § and G 2 K,,. Then
)\n—l S J.

For a graph G on n vertices, let uy be the largest eigenvalue of A(G), and ¢; the largest
eigenvalue of Q(G) = D(G) + A(G). It is known that p; > \/% with equality when G is

connected if and only if G is regular or bipartite semiregular (i.e., bipartite and vertices in the
same color class have equal degrees), see [12]. Let x be the nonnegative unit eigenvector of
A(G) corresponding to ;. Then q; > 2" Q(G)x = > weE(G) (Tytx,)? > 2:2 > e B(G) Tuly =
2411 with equalities if and only if Q(G)x = ¢z and z, = z, for any wv € E(G) [4]. Thus
q1 > 2p1 with equality when G is connected if and only if G is regular. If G is bipartite, then
A1 = q1 (see [15]), and thus \; > 2\/% with equality when G is connected if and only if G is

regular. Thus, we have the following lemma.

Lemma 2.5. Let G be a bipartite graph on n vertices. Then Ay > 2\/% with equality when
G is connected if and only if G is reqular.

For non-increasing sequences x = (z1,...,2,) and y = (y1,...,¥n), X is majorized by y,
denoted by z <y, if Y7 x; <>,y for j =1,...,n, and equality holds when j = n.
Lemma 2.6. /8] Let G be a graph with non-increasing degree sequence (di,...,d,), where
d, > 1. Then

(dy+1,dg, ..., dy1,dp — 1) X (A1,..., \n).

For the (non-increasing) degree sequence (dy,...,d,) of a graph G, its conjugate degree

sequence is (dj,...,d}), where df = |{j : d; > i}|. The following lemma was conjectured in

[10] and was confirmed in [1].
Lemma 2.7. Let G be a graph with conjugate degree sequence (di,...,d:). Then
(A, ooy An) 2 (dy, .., d)).

For vertex-disjoint graphs G and H, G U H denotes the vertex-disjoint union of G and
H, and sH denotes the vertex-disjoint union of s copies of H for a positive integer s. Let
GUOH =G.

For vertex-disjoint graphs G and H, the join GV H is the graph obtained from GU H by
adding edges between each vertex of G and each vertex of H. Let I'y = {K, : p > 1}, and
fori > 1, Tiyy = {GVK,:GeT;,q>1}. Let T = Uj» Ty Let T be the set of graphs in
I of order n.

Lemma 2.8. [1}] Let G be a connected graph with conjugate degree sequence (d,...,d}).
Then (A1, ..., ) = (dt,....d") if and only if G is isomorphic to a graph in T'™.

A real function F' defined on a set on R™ is said to be strictly Schur-convex if F'(x) < F(y)
whenever x <y but x # y. From [13, p. 64, C.1.a], if a real function f defined on an interval
in R is strictly convex, then )" | f(x;) is strictly Schur-convex.
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3 Upper bounds and extremal graphs

In this section, we give upper bounds for the von Neumann entropy of a nonempty graph
and characterize the extremal graphs.

Theorem 3.1. Let G be a graph with n vertices, k components, m edges and mazimum
degree A, where n >k + 2. Then

s(G) < — log, Sy 2m (3.1)

A+1 A+1 A+1 1—Aatl
< — 11 logy ——"—
2m n—k—1

with equality if and only if G =2 S, k11 U (k— 1)Ky, or G = aKayq U (kK — a)Ky for some

PR _ n—k
positive integer a = “x~.

Proof. Since G has k components, we have p, 1 = -+ = p, = 0 and Z?:_lk p; = 1. Note
that f(z) = —xlogyz for x > 0 is a strictly concave function. By Jensen’s inequality, we
have
S Sia P Y i
- _ zl ; < _ =2 "t 1 =2 It ’
By (=pilogy pi) < — =55 logy =5
ie.,
Z ) i 1—p
- i1 i < — ;i 1 ==2 0 — _(1- 1 — 7 1
Zp 0gy pi < — Zp 0gy I = —(1 = p1) logy ——
with equality if and only if po = --+ = p,_. Therefore
L—p
5(G) < —pilogy pr = (1 = p1)logy —————
with equality if and only if Ay = -+ = )\n k-
Let g(z) = —zlogy,z—(1—x) log2 - for 0 < 2 < 1. Obviously, ¢'(x) = —log, (n k;l)x,

which is negative for n% <z <l Thus g(x) is strictly decreasing for m <z <1 By
Lemma 2.1, \; > A + 1. Note that 2m < (A + 1)(n — k), which is obvious if £ = 1, and

follows by considering its components if k > 2. Then p; = 2L > £t > L Thus

A+1 A+l A+1 A+1 1— &t
(6) <o) <9 () == Sitton Gt (10 G oy S
This proves (3.1).

Suppose that equality holds in (3.1). By the above argument, we have \; = A + 1,
Ao = -+ = Ak Obviously, there is a component G; of G with maximum degree A.
Since Ay = A + 1, we have by Lemma 2.1 that A\; > A\ (G;) > A+ 1 = A, and then
M(Gh) = A + 1, implying that A = |[V(G4)| — 1. Thus G; = K; U H for a graph H on A
vertices. By Lemma 2.2, the Laplacian eigenvalues of Gy are A +1— Xy, ..., A+ 1 — A2, 0,0,

A—1 times
and thus the Laplacian eigenvalues of H are A+1—Xg,...,A+1— X, 0. IFA+1—-2X =0,
A—1 times



then H is empty, and if A +1 — Ay > 0, then by Lemma 2.3, H is complete. Therefore
G = Saqr or Gy = Kay.
Case 1. G; = Sa,; with A > 2. Note that the Laplacian eigenvalues of Say; are A +
1, 1,...,1 ,0. Then Ay = --- = X\, = 1, implying that the largest Laplacian eigenvalue of
H/'_/
A-1 times
any other component of GG is at most 1. By Lemma 2.1, the largest Laplacian eigenvalue of
any nontrivial connected graph is at least 2. Thus all components of G except Gy are trivial.
Therefore G = Sa41 U (K — 1)K, with A =n — k.
Case 2. G4 = Kaqq1. A =1, then G =2 mKyU (n—2m)K; with k = n—m. Suppose that
A > 2. If G has another nontr1v1al component G except G, then g = --- =\, = A+ 1,
and by Lemma 2.3, the diameter of G/ is 1, and thus G} = K. Thus G &~ aKAHU(k:—a)Kl
for some positive integer a = ”T_k whether A =1 or A > 2.
Combining Cases 1 and 2, G = Sx1U(k—1)K; with A =n—k, or G = aKx1U(k—a) K,
for some positive integer a = ok
Conversely, if G = Sn rr1U(k—1)K;, or G = aK a1 U(k—a)K; for some positive integer
a= A , then A\ = = A\,_k, and for any nontrivial component of GG, it has A + 1 vertices
and its maximum degree is A, and thus it is easily seen that equality holds in (3.1). O]

l>

In Theorem 3.1, we need to know the number of components, which is eliminated in the
following theorem with a weaker but still useful upper bound.

Theorem 3.2. Let G be a graph with n > 3 vertices, m > 1 edges and maximum degree A.
Then

(3.2)

A+1 A+1 A+1 1 —Aatl
§(G) < Bt L, AF —( +) i
2m 2m

with equality if and only if G = S,, or G = K,,.
Proof. Let k be the number of components of G. Note that f(z) = log, = is strictly increas-

A+1

1
ing for x > 0. We have log2 —2m > log, nj, which is strict when £ > 1. Thus, by
Theorem 3.1, we have (3.2), and equality holds in (3.2) if and only if G = S, or G = K,,. [

Theorem 3.3. Let G be a graph with m edges and non-increasing degree sequence (dy, .. ., d,),
where d,, > 1. Then

1 n—1 d
logy(di +1) = > 5

=2

S(G) < logy(2m) — - Dogd—1) 33

with equality if and only if G = S,,.

Proof. Let f(x) = xlogyx for x > 0. Obviously, f(z) is strictly convex. From [13, p. 64,
C.l.a], > I, f(x;) is strictly Schur-convex. By Lemma 2.6, we have

n—1

Z/\ logy A; > (di + 1) log,(dy + 1) + Y _ d;logy d; + (d, — 1) logy(dy, — 1)

i=1 =2



with equality if and only if (A, ..., \,) = (di+1,da, ..., dp_1,d,—1). Note that > | A\;log, \; =
2mlog,(2m) + 2m Y"1 | p;log, p;. Thus

2ms(G) < 2mlog,y(2m) — (dy + 1) logy(dy + 1 Zd log, d; — 1) logy(d, — 1),

from which (3.3) follows.

Suppose equality holds in (3.3). Then (Ay,...,\,) = (dy + 1,ds,...,d,_1,d, — 1), and
thus A\,_1 = d,—; > 1 (implying that G is connected) and A; = d; + 1. Now by Lemma 2.1,
diy =n—1. Thus G = K;UH for a graph H on n — 1 vertices. By Lemma 2.2, the Laplacian
eigenvalues of G are n — d,,_1,...,n — d, 0,0, and thus the Laplacian eigenvalues of H are
n—dy_1,...,n—dy, 0, implying that the Laplacian eigenvalues of H are dy—1,...,d,_1—1,0.
Obviously, the degree sequence of H is (dy —1,...,d, —1). By Lemma 2.1, H = K,,_;. Thus
G=S5,.

Conversely, the Laplacian eigenvalues of S, are n, 1 (with multiplicity n — 2) and 0. It is
easily seen that equality holds in (3.3). ]

Note that the upper bound is attained for K, in Theorem 3.2 and is not attained in
Theorem 3.3. Let G be the graph obtained from S5 by adding two edges with one common
vertex. Then m = 6, n = 5 and (dy,...,d5) = (4,3,2, 2 1). For this graph, the upper
bounds in Theorems 3.2 and 3.3 are respectively = log, % +15 log2 ~ 1.90443 and log, 12—
5 > logy 5— log2 3—3 ~ 1.887918, and thus the upper bound m Theorem 3.3 is better than the
one in Theorem 3.2. Therefore the upper bounds in Theorems 3.3 and 3.2 are incomparable
in general.

In previous theorem we need to know the degree sequence. If only the two largest degrees
are known, then we have the following result.

Theorem 3.4. Let G be a graph with n vertices and m > 1 edges, where n > 5. Let d; and
dy be the maximum degree and second maximum degree of G, respectively. Then

d1+d2+1+2m—(d1+d2+1)

<1 1 — 4
5(G) < 14 252 ) (3.4)
with equality if and only if G = K.
Proof. Note that f(z) = —zlogyx for > 0 is a strictly concave function. By Jensen’s
inequality, we have

Pz
S s (zm) o>
=3

and thus

n—1 n—1
Pi
s(G) < —pilogy pr — p2log, pa — (Z Pi) log, Z n—3

1
= —p1logy p1 — palogy pa — (1 — p1 — p2) log,



with equality if and only if p3 = --- = p,_1. Similarly, by Jensen’s inequality,
p1 + p2

—p1logy p1 — palogy p2 < —(p1 + p2) log,

with equality if and only if p; = ps, and

_ (o1 4 po)logy(pr +pa) (1= p1—p2)logy(l — p1 = pa) _ —llog 11
2 2 - 2 %22 Y
ie.,
—(p1 + p2)logy(p1 + p2) — (1 = p1 — p2)logy(1 — p1 — p2) < 1
with equality if and only if p; + p2 =1 — p; — p2. Therefore
S(G) < (o1 + pa)logy TP (1= py = py)log, TP L2

n—3

1 — p1 — pa)(logy(1 — p1 — p2) — logy(n — 3))

p1+ p2)logy(pr + p2) — (1 — p1 — p2) logy(1 — p1 — p2)
+(p1 + p2) + (1 = p1 — pa) logy(n — 3)

< 14 (p1+p2) + (1= p1— p2)logy(n — 3).

If n =5, then s(G) < 2 with equality if and only if Ay = -+ = Ay = 7,
Lemma 2.3, is equivalently to the fact that G = K5. The result for n = 5 follows.

Suppose that n > 6.

Let g(z) =142 + (1 — x)logy(n — 3). Then ¢'(z) =1 —logy(n — 3) < 0, and thus g(x)
is strictly decreasing. Now by Lemma 2.6, we have p; + po > dl%‘f;“, and thus

5(G) < g(@iiﬁii)

2m

di+dy+ 1 di+dy + 1

+#+(1_#
2m

—(

= —(p1+ p2)(logy(p1 + p2) — 1)
—(
—(

which, by

_ )hgxn—3x

2m

from which (3.4) follows.
Suppose that equality holds in (3.4). Then by the above argument, we have A, = Ay = %,

)\3: :)\n,1 = %, and >\1+)\2:d1+d2+1 ByLemmaZ.l, d1+d2—|—1:)\1+)\2:
2\1 > 2d; + 2 > dy + dy + 2, a contradiction. Thus, (3.4) is strict for n > 6. O

For S,,, the upper bound in Theorem 3.2 is better than the one in Theorem 3.4. For the
graph obtained from Sg and S; by adding an edge between a pendant vertex of Sg and a
pendant vertex of S5, the upper bound in Theorem 3.4 is 3, which is better than the upper
bound in Theorem 3.2, which is 1% log, % + 1—70 log, % ~ 3.1002384. Thus the upper bounds
in Theorems 3.4 and 3.2 are incomparable in general.

Theorem 3.5. Let G be a graph with n vertices, m > 1 edges and minimum degree 6.

Suppose that G 2 K,,. Then

5 1-2 0
s(G) < — (1 — %) log, - _2m — —logy, — (3.5)

with equality iof and only of G = K,y U Ky or G = S5.
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Proof. Since f(x) = —xlogyx for x > 0 is a strictly concave function, we have by Jensen’s

inequality that
n—2 n—2 n—2 p;
— Z‘lO i S — A 10 :

and thus

s(G)

IN

n—2 n—2
Pi
— i |1 —— — pPp_l —
<§ p) 0gs Y 5~ Po-1l0gy pu

1 - Pn—1

5 T Pet logy pn—1

= _(1 - pn—1> log2

with equality if and only if py = --- = p,_o.

Suppose first that § = 0. Then p,_; = 0, and thus s(G) < logy(n — 2) with equality if
and only if Ay = -+ = \,_o. Now (3.5) follows and by Lemma 2.3, equality holds in (3.5) if
and only if G = K,, 1 U K;.

Next suppose that § > 0.

Let g(z) = —(1—x) log2 5 —xlog, v for 0 < 2 < 1. Obviously ¢'(z) = log2 T3y Which
is positive for 0 < r < — Thus g(x) is strictly increasing for 0 < 2 < —5. By Lemma 2.4,
we have p,_; < 5~ < —= and thus s(G) < g (%), from which (3.5) follows.

Suppose that equahty holds in (3.5). By the above argument, A\; = --- = )\, 5 and

An_1 = 6. By Lemma 2.2, the Laplacian eigenvalues of G are n —3, n—Ay,...,n— A, 0. Let
A(G) be the maximum degree of G. If G is connected, then, since A (G) = n—3§ = A(G)+1,
we have by Lemma 2.1 that A(G) = n — 1, implying that § = 0, which is impossible.
Thus G is not connected. Then n — A\; = 0, implying that G has n — 1 components, i.e.,
G2 KyU(n—2)K, withn —4¢=2. Thus G 2 K, UK, ie, G=Ss.

Conversely, if G = S3, then it is easy to see that (3.5) is an equality. O

From the graphs that attain the bounds, it is easily seen that the upper bound in Theo-
rem 3.5 is incomparable with the ones in Theorems 3.2, 3.3 and 3.4.
Let K, , be the complete bipartite graph with size r for both color classes.

Theorem 3.6. Let G be a bipartite graph with n vertices and m > 1 edges, where n > 2.

Then
1 [Z. 1 [z 1 [Z 1-1,/2
s(G) < ——4/=logy—1/— —[1——4/— | log, — (3.6)

B myn myn myn
with equality if and only if G = K, /9./2.

Proof. By similar argument as in the proof of Theorem 3.1, we have

s(G) < g(p1)

with equality if and only if p2 = -+ = pu_1, where g(z) = —zlogyx — (1 — z)log, =% is
strictly decreasing for x > ——. Note that
2
mz o (ZUEV(G) du) . ZuEV(G) dizt +2 Zu;ﬁv dudv < 3 ZuGV(G) di . %
B 2 B 4 - 4 4



By Lemma 2.5, we have p; = 2’\—1711 > %\/% > ‘/3% > ﬁ Thus

from which (3.6) follows.

Suppose that equality holds in (3.6). By the above argument, Ay = --- = \,_;. If
Ay = -+ = X\y_1 > 0, then n > 3, G is connected, and by Lemmas 2.3 and 2.5, G is
a regular complete bipartite graph, ie., G = Ky/2,/. If Ay = -+ = X\,_1 = 0, then
G = K;; U (n—2)K;, and by Lemma 2.5, n can only be 2, i.e., G = K ;.

Conversely, it G = K,,/5,/2, then Ay = --- = \,_;. Since G is a bipartite regular graph,
we have by Lemma 2.5 that A\; = 2\/% . Thus equality holds in (3.6). O

We remark that for bipartite graphs, the upper bound in Theorem 3.6 is incomparable
with the ones in Theorems 3.2, 3.3 and 3.5.

Note the upper bound is attained in Theorem 3.6 by K, /2 /2, but it is not in Theorem 3.4.
For the graph obtained from Sz and S5 by adding an edge between a pendant vertex of Sg
and a pendant vertex of S5, the upper bound in Theorem 3.4 is 3, which is better than the

_ 1. /5%
upper bound in Theorem 3.6, which is —11—0,/%10& %ﬂ/% — <1 — %M%) log, WT“ 7
3.2250095. Thus the upper bounds in Theorems 3.6 and 3.4 are incomparable in general.

4 Lower bounds and extremal graphs

In this section, we discuss lower bounds for the von Neumann entropy of a nonempty graph
and determine the extremal graphs. First we give an alternative proof for (1.1) in the following
theorem.

Theorem 4.1. Let G be a graph with n vertices and m > 1 edges. Then we have (1.1) with
equality if and only if G = rK,U (n —rs)Ky, where some integers r and s withr > 1, s > 2,
and rs < n.

Proof. Let f(x) = —logyx for x > 0. Since f"(z) = - > 0, f(z) is a strictly convex

z21n 2

function. Note that Z?:_ll p; = 1. By Jensen’s inequality, we have

n—1 n—1
— log, (Z pi * Pi) < - Zpi log, pi
i=1 i=1
ie.,
n—1
s(G) = —log, Z pi
i=1

with equality if and only if all nonzero eigenvalues of o(G) are equal. Note that

n—1

2m+ 7
2 2

S ot = (oGP = T

=1



Thus, (1.1) follows. Equality holds in (1.1) if and only if p; = -+ = px > 0 and pg; =0
for some positive integer k, which, by Lemma 2.3, is equivalent to the fact that all nontrivial
components are complete with the same number of vertices, i.e., G = rK,U (n — rs)K; for
some integers r and s with » > 1, s > 2 and rs < n. O

Note that if G is a connected graph that achieves the equality in (1.1), then G = K,,.

Theorem 4.2. Let G be a graph on n vertices with m > 1 edges and conjugate degree
sequence (di,...,d:). Then

n—1

1
s(G) > logy(2m) — I de log, d. (4.1)

i=1
with equality when G is connected if and only if G is isomorphic to a graph in I'™.

Proof. Let f(x) = xlogyx for x > 0. Obviously, f(z) is strictly convex. From [13, p. 64,
C.l.a], > I, f(x;) is strictly Schur-convex. By Lemma 2.7, we have

n—1 n—1
Z Ailogy Ai < Z d; log, dy
i=1 i=1

with equality if and only if (A\y,..., \,) = (d3,...,d}), which, by Lemma 2.8, is equivalent to
the fact that G is isomorphic to a graph in I'™. Note that > | A\;log, \i = 2mlog,(2m) +
2m Y " | pilog, p;. Thus

n—1
2ms(G) > 2mlogy(2m) — Z d:log, d,
i=1

from which (4.1) follows and equality holds in (4.1) if and only if G is isomorphic to a graph
in T, []

Note that, for n > 3, besides K, there are other graphs, say S,, in I'™. For these graphs
in T\ {K,}, the bound in Theorem 4.2 is better than the one in (1.1). Let G = K, 4. In
notation in Theorem 4.2, m = 16, Z = 128 and (dj,...,d;) = (8,8,8,8,0,0,0,0). Then the
lower bound in in Theorem 4.2 is 2, which is worse than the lower bound in (1.1), which is is
log, 6.4 ~ 2.67807. Thus the upper bound in Theorem 4.2 and the early known one in (1.1)
are incomparable in general.

5 Concluding remark

The density matrix of a graph was introduced to represent the quantum state of a graph,
and the von Neumann entropy measures the mixedness of this quantum state as a convex
combination of several pure states. We obtain upper bounds and lower bounds (one was
known) for the von Neumann entropy using degree information and gives characterizations
for those graphs when each bound is attained. Examples show that any two upper bounds in
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Theorems 3.2, 3.3, 3.4, 3.5, and 3.6 (or 3.1, 3.3, 3.4, 3.5, and 3.6) as well as the lower bounds
Theorem 4.2 and (1.1) are incomparable in general.
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