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DOLBEAULT COHOMOLOGIES OF BLOWING UP COMPLEX

MANIFOLDS II: BUNDLE-VALUED CASE

SHENG RAO, SONG YANG, AND XIANGDONG YANG

Abstract. We use a sheaf-theoretic approach to obtain a blow-up formula for Dolbeault

cohomology groups with values in the holomorphic vector bundle over a compact complex

manifold. As applications, we present several positive (or negative) examples associated to

the vanishing theorems of Girbau, Kawamata-Viehweg and Green-Lazarsfeld in a uniform

manner and study the blow-up invariance of some classical holomorphic invariants.
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1. Introduction

1.1. Background and related works. In complex and algebraic geometries, one of the

most important geometric transformations is blow-up (or blow-down) which provides us with

a useful method to construct new complex manifolds or algebraic varieties from the orig-

inal ones. In particular, the blow-up operation plays a significant role in bimeromorphic

geometry. For instance, the Kodaira embedding theorem [24] is a remarkable application of

the pointed blow-up technique; the first example of non-algebraic Moishezon threefold and

non-projective smooth proper algebraic threefold due to Hironaka [19] are constructed by

blowing-up technique; Demailly-Paun’s characterization of a manifold in the Fujiki Class (C )

in [11] is established by a finite sequence of blow-ups of the complex manifold with a Kähler

current along smooth centers to construct a Kähler metric on the final blow-up. According

to the celebrated weak factorization theorem [43, 1], each bimeromorphic map between com-

pact complex manifolds can be factored into a finite sequence of blow-ups and blow-downs.
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This implies that a holomorphic invariant of compact complex manifolds is a bimeromor-

phic invariant, if and only if, it is stable under the blow-up transformation. So from the

bimeromorphic geometry point of view, it is natural to study the variant of holomorphic

invariants of compact complex manifolds under the blow-up operations, or in a more general

setting, to compare holomorphic invariants for holomorphic mappings such as the Dolbeault,

Bott-Chern cohomology groups and so on.

The first result in this direction can be traced back at least to Aeppli [2] for proper

modifications. Subsequently, from the viewpoint of algebraic geometry Deligne [9] considered

the comparison problem of cohomology for proper birational morphisms of smooth schemes

over a field k and proved an injectivity result. In particular, for a proper modification

π : X̃ → X of compact Kähler manifolds, Grauert-Riemenschneider [13] showed that the

induced morphism

π∗ : Hp,q
∂̄

(X) → Hp,q
∂̄

(X̃), for any p, q ≥ 0

is injective. In general, let V be a holomorphic vector bundle over a complex manifold X.

Then we can define the Dolbeault cohomology groups of X with values in V . Furthermore,

the holomorphic map π : X̃ → X induces a morphism on cohomology groups

π∗ : Hp,q(X,V ) → Hp,q(X̃, π∗V ), for any p, q ≥ 0. (1.1)

In his paper [41], Wells proved that if π is a proper surjective holomorphic mapping of complex

manifolds with the same complex dimension, then the pullback of π induces an injection on

de Rham, Dolbeault cohomology groups. Moreover, the map (1.1) for the bundle-valued

Dolbeault cohomology groups is also injective.

1.2. Summary of the results. This work is motivated by the following problem.

Problem 1.1. Can we describe explicitly the cokernel of the injective morphism (1.1)?

Generally, it seems difficult to give an answer to the above problem for a holomorphic

mapping and therefore we consider the special case: the blow-up morphism. The purpose of

this paper is twofold. First, as a sequel to our work [32], we extend the Dolbeault blow-up

formula [32, Theorem 1.1] to the bundle-valued case, which appears a non-trivial result even

for the projective manifolds. Secondly, the notion of relative Dolbeault sheaves introduced in

[32]v3 which is a uniform generalization of the ideal and canonical sheaves, is crucial in the

proof of blow-up formula on compact complex manifolds and we believe that these sheaves

admit their own independent meanings. Here we use this kind of sheaves to prove:

Theorem 1.2. Assume that X is a compact complex manifold with complex dimension n.

Let ı : Z →֒ X be a closed complex submanifold with complex codimension r ≥ 2 and let

π : X̃ → X be the blow-up of X with the center Z. If W is a holomorphic vector bundle over

X, then for any 0 ≤ p, q ≤ n there exists a canonical isomorphism

Hp,q(X̃, π∗W )
φ

−→ Hp,q(X,W ) ⊕

(r−1
⊕

i=1

Hp−i,q−i(Z, ı∗W )

)

, (1.2)

where φ is a linear map defined in (5.2).
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A subsidiary result of the above theorem is a natural isomorphism between cohomologies

of relative Dolbeault sheaves given in Lemma 4.5: for 0 ≤ p, q ≤ n,

Hq(X,K p
X,Z(W )) ∼= Hq(X̃,K p

X̃,E
(π∗W )),

whose notations we refer to Definition 4.2. This isomorphism is a natural generalization of

the key isomorphism

Hq(X,K 0
X,Z(W )) ∼= Hq(X̃,K 0

X̃,E
(π∗W ))

with W being a holomorphic line bundle over X in the proof of Bertram-Ein-Lazarsfeld’s

vanishing theorem [4, Theorem 1.2] (see also [26, Lemma 4.3.16] for the case of a = 1 therein).

As applications, we uniformly present several positive (or negative) examples associated

to the vanishing theorems of Girbau [12], Kawamata-Viehweg [23, 39] and Green-Lazarsfeld

[15] and study the blow-up invariance of some classical holomorphic invariants. In particular,

one obtains a new positive example to affirm that Girbau’s result is possibly true for p 6= q

when the Chern curvature form of the associated line bundle is semi-positive and positive

only on a dense open set: Let π : X → CPn (n ≥ 3) be the blowing up at a point in CPn.

Then for p 6= q, Hq(X,Ωp
X ⊗ π∗OCPn(1)) = 0.

More generally, let f : X → Y be a projective and birational morphism between n-

dimensional smooth varieties over a field of characteristic zero. It is known that f∗OX = OY .

Moreover, as a corollary of local Chow’s lemma and Hironaka’s resolution of singularities [20,

Main Theorem II’], the higher direct images Rif∗OX , i ≥ 1, of the structure sheaf OX is

zero. Hence, for a locally free sheaf W of constant rank on Y , by the projection formula, we

have

Rif∗f
∗W =







W, i = 0,

0, i ≥ 1.

As a result, an application of the Leray spectral sequence implies that for all l ≥ 0,

H l(X, f∗W) ∼= H l(Y,W), (1.3)

which yields the case p = 0, q = l of Theorem 1.2 over a field of characteristic zero. The case

p = n, q = l of Theorem 1.2 over a field of characteristic zero follows from f∗Ω
n
X = Ωn

Y and

Rif∗Ω
n
X = 0, i ≥ 1 by the Grothendieck-Serre duality (cf. [30, §10] for example). But the

case p 6= 0, n for Theorem 1.2 can’t be obtained directly by Leray spectral sequences since

the relative vanishing doesn’t hold necessarily as shown in [36, Remark 2 (β)] then.

By Serre’s GAGA principle [34] and Theorem 1.2, the isomorphism (1.2) holds for smooth

proper varieties over C. Hence, abstractly by Lefschetz’s principle, the isomorphism (1.2)

should hold for smooth proper varieties over a field of characteristic zero. By a recent result

of Chatzistamatiou-Rülling [7], Rif∗OX = 0, i ≥ 1 and f∗OX = OY , hence the isomorphism

(1.3) holds for smooth varieties over a field of positive characteristic. This also partially

verifies that the isomorphism (1.4) holds for smooth varieties over arbitrary field.

It is also important to note that the topological approach in the proof of de Rham blow-up

formula can not directly apply to the Dolbeault blow-up formula. However, the sheaf-theoretic

approach still works. Comparing with the de Rham blow-up formula [40, Theorem 7.31], one

finds that a crucial step in the proof is the Thom isomorphism. Because each closed complex
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submanifold Z of X (as a smooth submanifold) always admits a smooth tubular neighborhood

in X, the Thom isomorphism holds necessarily. However, the ∂̄-Thom isomorphism does not

hold in general, because of the absence of the holomorphic tubular neighborhood of Z in X.

Especially, even for compact Kähler manifolds, there exist some obstructions for the existence

of the holomorphic tubular neighborhoods (cf. [33] and references therein).

In particular, if W is a trivial holomorphic line bundle over X, then the formula (1.2)

descends to a canonical isomorphism

φ : Hp,q
∂̄

(X̃) → Hp,q
∂̄

(X)⊕

(r−1
⊕

i=1

Hp−i,q−i
∂̄

(Z)

)

. (1.4)

This implies that the isomorphism of Dolbeault blow-up formula in [32, Theorem 1.1] is

actually canonical. Recently, Meng [28] extended (1.4) to non-compact complex manifolds

and Stelzig [35] gave a different proof of this formula. It is noteworthy that the directions

of the morphisms in (1.4) are opposite to those in [40, Theorem 7.31], [28]. In some sense,

the morphism from the sheaf-theoretic approach is the inverse of the morphism from the

topological approach.

After our preprint had been distributed, Meng [29] informed us that he has also considered

the Dolbeault blow-up formula for the bundle-valued case on non-compact manifolds by

Mayer-Vietoris sequence.

1.3. Outline of the paper. We devote Section 2 to the preliminaries on the notations

throughout this paper and basic sheaf theory of Dolbeault cohomology with values in a

holomorphic vector bundle. In Section 3, following the steps in the proof of the Hirsch

Lemma for Dolbeault cohomology by Cordero-Fernandez-Gray-Ugarte [8], we establish that

with values in a holomorphic vector bundle. In Section 4, we introduce the notation of

relative Dolbeault sheaves associated to the blow-up morphism. In Section 5, we use the

preparations of Sections 2-4 to give the first proof of the main result (Theorem 1.2), following

the full approach of [32]v3. Finally, Section 6 contains some applications of Theorem 1.2.

Appendix A is a rapid review of Borel spectral sequence of complex analytic bundles and

Appendix B presents a second proof of Theorem 1.2 using the same philosophy as in [35].

Acknowledgements. S. Rao is partially supported by the NSFC (Grant No. 11671305,

11771339). S. Yang and X. Yang are supported by the NSFC (Grant No. 11571242, 11701414,

11701051) and the China Scholarship Council. The authors would like to express their grat-

itude to the following institutes for providing them with excellent working environment and

the hospitalities during their respective visits: Institute of Mathematics, Academia Sinica;

Department of Mathematics at Università degli Studi di Milano and Department of Math-

ematics at Cornell University. Last but not least, we sincerely thank Professor V. Navarro

Aznar for answering our question on Lemma 4.1 (iii), and Dr. L. Meng, J. Stelzig for sending

us their preprints [28, 29] and [35], respectively.

2. Notations and sheaf theory

In this section we introduce notation and review some basic definitions to be referred to

later.
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2.1. Notations and conventions. Throughout this paper we assume that X is an n-

dimensional compact complex manifold and Z ⊂ X is a closed complex submanifold such that

r = codimCZ ≥ 2. Let π : X̃ → X be the blow-up of X with the center Z and E := π−1(Z)

the exceptional divisor. We assume the following notations:

a) ı : Z →֒ X is the holomorphic inclusion of Z in X;

b)  : E →֒ X̃ is the holomorphic inclusion of E in X̃;

c) W is a holomorphic vector bundle over X and W̃ = π∗W is the pullback of W by π;

d) ı∗W and ∗W̃ are the restrictions of W and W̃ on Z and E, respectively.

In summary, we have the following commutative cube

W̃ //

��

W

��

∗W̃

::✉✉✉✉
//

��

ı∗W

::✉✉✉✉

��
X̃

π // X

E
̟ //

 99ssssss
Z

ı 99sssss

The bottom of the above cube is the blow-up diagram.

2.2. Bundle-valued Dolbeault cohomology. Let Ap,q(X,W ) be the space of smooth sec-

tions of the bundle ∧p,qT ∗X ⊗C W . Assume that k = rank (W ) and W |Ui
∼= Ui × Ck is a

holomorphic local trivialization with respect to an open covering {Ui}i∈I of X. Under the

trivialization W |U ∼= U × Ck an element α ∈ Ap,q(X,W ) can be locally written as

α = (α1, · · · , αk),

where α1, · · · , αk are smooth forms of type (p, q) on U . We then set

∂̄U (α) = (∂̄α1, · · · , ∂̄αk);

it is a section of Ωp,q+1(U) ⊗C W . Assume that V is another open subset of X with the

holomorphic trivialization W |V ∼= V × Ck such that U ∩ V 6= ∅. The holomorphic property

of the trivialization means for any α ∈ Ap,q(X,W ) the following equality holds

∂̄U (α)
∣

∣

U∩V
= ∂̄V (α)

∣

∣

U∩V
. (2.1)

The equality (2.1) enables us to define an operator

∂̄ : Ap,q(X,W ) → Ap,q+1(X,W )

by the condition ∂̄(α|U ) = ∂̄U (α|U ). We call ∂̄ the canonical (0, 1)-connection of the holomor-

phic bundle W . It is clear that ∂̄2 = 0. Therefore, for any integer p = 0, · · · , n, we get the

so-called Dolbeault complex of (p, •)-forms with values in W :

0 // Ap,0(X,W )
∂̄ // Ap,1(X,W )

∂̄ // · · ·
∂̄ // Ap,n−1(X,W )

∂̄ // Ap,n(X,W ) // 0. (2.2)

The q-th cohomology of the complex (2.2), denoted by Hp,q(X,W ), is called the (p, q)-

Dolbeault cohomology group with values in W .
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For the given complex manifold X let OX be the sheaf of holomorphic functions on X and

Ωp
X the sheaf of holomorphic differentiable forms of type (p, 0) on X. Then there exists a

canonical resolution of OX -modules for the sheaf Ωp
X , namely, the Dolbeault resolution:

0 // Ωp
X

// A
p,0
X

∂̄ // A
p,1
X

∂̄ // · · ·
∂̄ // A

p,n−1
X

∂̄ // A
p,n
X

// 0, (2.3)

where A
p,q
X is the sheaf of differentiable (p, q)-forms on X. Since W → X is a holomorphic

vector bundle, the sheaf of holomorphic sections of W , denoted by O(W ), is a locally free

sheaf of OX -modules on X. By tensoring the Dolbeault resolution (2.3) with O(W ), we

obtain a resolution of the sheaf Ωp
X ⊗OX

O(W ) (cf. [42, Lemma 3.19 of Chapter II])

0 // Ωp
X ⊗OX

O(W ) // A
p,0
X ⊗OX

O(W )
∂̄⊗1
−−→ A

p,1
X ⊗OX

O(W )
∂̄⊗1
−−→

· · ·
∂̄⊗1
−−→ A

p,n−1
X ⊗OX

O(W )
∂̄⊗1
−−→ A

p,n
X ⊗OX

O(W ) // 0. (2.4)

Note that Ωp
X ⊗OX

O(W ) is isomorphic to the sheaf of the holomorphic sections of the

holomorphic bundle ∧pT ′∗X ⊗C W and A
p,q
X ⊗OX

O(W ) is isomorphic to the sheaf of dif-

ferentiable sections of the differentiable bundle ∧p,qT ∗X ⊗C W . For the simplicity, we write

∂̄ ⊗ 1 as ∂̄,

Ωp
X(W ) := Ωp

X ⊗OX
O(W ) ∼= O(∧pT ′∗X ⊗C W )

and

A
p,q
X (W ) := A

p,q
X ⊗OX

O(W ) ∼= C∞(X,∧p,qT ∗X ⊗C W ).

Then the sequence (2.4) equals to

0 // Ωp
X(W )

j
// A

p,0
X (W )

∂̄ // A
p,1
X (W )

∂̄ // · · · · · ·
∂̄ // A

p,n−1
X (W )

∂̄ // A
p,n
X (W ) // 0,

where j : Ωp
X(W ) →֒ A

p,0
X (W ) is the inclusion. From definition, the q-th sheaf cohomology of

Ωp
X(W ) is defined to be

Hq(X,Ωp
X(W )) := RqΓ(X,Ωp

X(W )),

where RqΓ is the q-th derived functor of the global section functor. For the sheaf complex

(A p,•
X (W ), ∂̄), let RqΓ be the q-th derived functor of the global section functor of the sheaf

complex and the q-th hypercohomology of (A p,•
X (W ), ∂̄) is defined by

Hq(X,A p,•
X (W )) := RqΓ(X,A p,•

X (W )).

Due to the Dolbeault-Grothendieck Lemma [40, Proposition 2.31] we get that the sheaf

complex (A p,•
X (W ), ∂̄) is exact and

ker (∂̄ : A
p,0
X (W ) → A

p,1
X (W )) = Ωp

X(W ).

The sheaf Ωp
X(W ) can be thought of as a sheaf complex which is zero in degree different from

0, and equal to Ωp
X(W ) in degree 0; and therefore, the inclusion j : Ωp

X(W ) →֒ A
p,•
X (W ) is

a quasi-isomorphism of sheaf complexes. By [40, Corollary 8.9] the following isomorphism

holds:

RqΓ(X,Ωp
X(W )) ∼= RqΓ(X,A p,•

X (W )). (2.5)

Moreover, from the Dolbeault theorem [42, Theorem 3.20 of Chapter II] and (2.5) we get

Hp,q(X,W ) ∼= Hq(X,Ωp
X(W )) ∼= Hq(X,A p,•

X (W )).
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2.3. Direct and inverse images. Here we refer to [18] as a standard reference of sheaf

theory.

Let f : X → Y be a continuous map of topological spaces. For an abelian sheaf F on X

we define the direct image f∗F to be the sheaf on Y defined by setting

U 7→ f∗F (U) = F (f−1(U)),

where U is open in Y . The i-th higher direct image Rif∗F is defined to be the sheafification

of the presheaf

U 7→ H i(f−1(U),F )

for any open U ⊂ Y ; equivalently, Rif∗F = H i(f∗I
•) for an injective resolution I• of F

and H i(f∗I
•) is the i-th cohomology sheaf of the sheaf complex f∗I

•. In general, since the

functor f∗ is left exact, one can define the right derived functor Rf∗ of f∗ as follows:

Rf∗(F
•) := f∗I

•,

where F • is a bounded blow sheaf complex and F • → I• is a quasi-isomorphism with I• a

complex of injectives. Particularly, if X and Y have additional structure (for instance, ringed

spaces) we mean Rif∗ and Rf∗ in this sense.

Let G be an abelian sheaf on Y . The topological inverse image of G , denoted by f−1G , is

defined to be the sheafification of the presheaf

U 7→ lim
f(U)⊆V

G (V )

for every open subset U of X.

Assume that f is a morphism of ringed spaces (X,OX ) → (Y,OY ). If F is an OX -

module, then the derived image Rif∗F has the structure of OY -module. Since OX is an

f−1OY -module, the inverse image of G in the sense of ringed spaces is defined to be

f∗G := f−1
G ⊗f−1OY

OX .

Furthermore, we have the well known projection formula to be frequently used in this

context.

Lemma 2.1 (Projection formula). For any i ∈ N, there is a natural isomorphism

Rif∗E ⊗ F
≃

−→ Rif∗(E ⊗ f∗F) (2.6)

for a sheaf of OX -module E and a locally free sheaf of constant rank F on Y .

3. Hirsch Lemma: bundle-valued case

The purpose of this section is to establish the Hirsch Lemma for bundle-valued Dolbeault

cohomology using the same results and intermediate steps as in [8, Section 4.2], which is

possibly known to experts.

Suppose that F →֒ E
π // B is a holomorphic fibration such that E,B,F are connected

complex manifolds. Moreover, we assume that the structure group G of ξ = (E,B,F, π) is
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connected and all forms we consider are smooth and C-valued. Let W be a holomorphic

vector bundle over B and W̃ the pull-back of W by the projection π

W̃

��

// W

��
E

π // B.

From definition, the projection π induces a morphism π∗ : A•,•(X,W ) → A•,•(X̃, π∗W ).

Definition 3.1. Let j : F →֒ E be the inclusion mapping. We say that H•,•
∂̄

(F ) satisfies

the extending condition, if the morphism of bigraded algebras j∗ : H•,•
∂̄

(E) → H•,•
∂̄

(F ) is

surjective.

It is noteworthy that the extending condition here is stronger than the condition that each

generator of H•,•
∂̄

(F ) is transgressive in the sense of [8, Section 4.2]. However, the extending

condition is always satisfied for the projectivization of a holomorphic vector bundle.

Assume that H•,•
∂̄

(F ) is a free bigraded algebra satisfying the extending condition. Pick up

a basis {x1, · · · ,xm} of H•,•
∂̄

(F ). From Definition 3.1, there exists an element x̃i ∈ H•,•
∂̄

(E)

such that j∗(x̃i) = xi. Let T = A•,•(B,W )⊗C H
•,•
∂̄

(F ) and define the differential ∂̄ on T by

setting

∂̄(ω ⊗ xi) = (∂̄ω)⊗ xi, for any 1 ≤ i ≤ m. (3.1)

Thus, (T, ∂̄) is a differential graded complex over C. Moreover, we can define a morphism of

complexes

ψ : T → A•,•(E, π∗W ), ω ⊗ xi 7→ π∗(ω) ∧ x̃i, (3.2)

where x̃i can be viewed as a form on E with values in the trivial holomorphic line bundle.

Set
p,qT =

∑

a+c=p
b+d=q

Aa,b(B,W )⊗Hc,d
∂̄

(F )

and define

LkT =
∑

a+b≥k

Aa,b(B,W )⊗Hc,d
∂̄

(F ),

where the degree 0 ≤ k ≤ n := dimRB. Then we get

T =
⊕

p,q

p,q
T, ∂̄(LkT ) ⊂ LkT.

The above construction actually yields a filtration on T :

T = L0T ⊃ L1T ⊃ · · · ⊃ Ln−1T ⊃ LnT ⊃ 0. (3.3)

We introduce the following subspaces of T :

(i) T s+t =
⊕

p+q=s+t(
p,qT ),

(ii) p,qLkT = (LkT ) ∩ (p,qT ),

(iii) p,qZs,t
l = (p,qLsT s+t) ∩ (∂̄−1

(

p,q+1Ls+lT s+t+1
)

),

(iv) p,qBs,t
l = (p,qLsT s+t) ∩ ∂̄

(p,q−1
Ls−lT s+t−1

)

.
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The differential ∂̄ acts on p,qLkT with the degree 1 in q and the degree 0 in p, i.e.,

∂̄ : p,qLkT → p,q+1LkT.

According to the standard spectral sequence theory, there exists a spectral sequence {Êl, d̂l}

with respect to the filtration (3.3) such that

(i) the term of Êl of type (p, q) with the filtration degree s and the total degree s+ t is

p,qÊs,t
l =

p,qZs,t
l

p,qZs+1,t−1
l−1 + p,qBs,t

l−1

;

(ii) the differential is

d̂l :
p,qÊs,t

l → p,q+1Ês+l,t−l+1
l ;

(iii) {Êl} converges to H∂̄(T ), i.e.,
∑

p+q=s+t

p,qÊs,t
∞

∼= GrHp,q
∂̄

(T ) ∼= Hp,q
∂̄

(T ).

We claim that the second term Ê2 is

p,qÊs,t
2

∼=
∑

i≥0

H i,s−i(B,W )⊗Hp−i,q−s+1
∂̄

(F ).

For the (p, q)-type subspace of T with the filtration degree s and total degree s + t, we

have
p,qLsT s+t =

∑

a+b≥s
p+q=s+t

∑

a+c=p
b+d=q

Aa,b(B,W )⊗Hc,d
∂̄

(F ) (3.4)

and
p,qLs+1T s+t =

∑

a+b≥s+1

p+q=s+t

∑

a+c=p
b+d=q

Aa,b(B,W )⊗Hc,d
∂̄

(F ). (3.5)

Set

p,qQs,t =
∑

a+b=s
p+q=s+t

∑

a+c=p
b+d=q

Aa,b(B,W )⊗Hc,d

∂̄
(F ) =

∑

j≥0

Aj,s−j(B,W )⊗Hp−j,q−s+j

∂̄
(F ). (3.6)

From (3.4)-(3.6) we obtain the following equality

p,qLsT s+t = p,qQs,t ⊕ p,qLs+1T s+t. (3.7)

We are ready to compute p,qÊs,t
2 . From definition, we have

p,qZs+1,t−1
1 = (p,qLs+1T s+t) ∩ ∂̄−1

(p,q+1
Ls+2T s+t+1

)

. (3.8)

Furthermore, it is straightforward to get

p,qZs,t
2 = p,qLsT s+t ∩ ∂̄−1

(p,q+1
Ls+2T s+t+1

)

=
(p,q

Qs,t ⊕ p,qLs+1T s+t
)

∩ ∂̄−1
(p,q+1

Ls+2T s+t+1
)

(By (3.7)− (3.8))

=
(p,q

Qs,t ∩ ∂̄−1
(p,q+1

Ls+2T s+t+1
))

⊕ p,qZs+1,t−1
1 . (3.9)

If ωs =
∑

j≥0(ω
j,s−j ⊗ xp−j,q−s+j) ∈ p,qQs,t, then we have

∂̄(ωs) =
∑

j≥0

∂̄(ωj,s−j)⊗ xp−j,q−s+j. (3.10)
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Consider the filtration degrees of the terms in the right side of (3.10). Observe that

∂̄(ωj,s−j)⊗ xp−j,q−s+j ∈ Ls+1T

has the filtration degree s+1. This means that ∂̄(ωs) ∈
p,q+1Ls+2T s+t+1, namely, ∂̄(ωs) has

the filtration degree at least s+2, if and only if ∂̄(ωj,s−j)⊗xp−j,q−s+j = 0 for any j ≥ 0 and

hence ∂̄(ωj,s−j) = 0. It follows that the subspace

p,qQs,t ∩ ∂̄−1
(p,q+1

Ls+2T s+t+1
)

is equivalent to

Y :=

{

∑

j≥0

ωj,s−j ⊗ xp−j,q−s+j ∈ p,qQs,t

∣

∣

∣

∣

∂̄(ωj,s−j) = 0, for any j ≥ 0

}

and thus, by (3.9), we get
p,qZs,t

2 = Y ⊕ p,qZs+1,t−1
1 . (3.11)

For the term p,qBs,t
1 , the definition shows

p,qBs,t
1 = (p,qLsT s+t) ∩ ∂̄

(p,q−1
Ls−1T s+t−1

)

.

An element ωs−1 ∈
p,q−1Ls−1T s+t−1 has a unique expression

ωs−1 =
∑

i≥0

ωi,s−i−1 ⊗ xp−i,q−s+i +
∑

i≥0

k≥s

ωi,k−i ⊗ xp−i,q−k−1+i.

Due to (3.1), we get

∂̄(ωs−1) =
∑

i≥0

∂̄
(

ωi,s−i−1
)

⊗ xp−i,q−s+i +
∑

i≥0

k≥s

∂̄(ωi,k−i)⊗ xp−i,q−k−1+i.

On one hand, a careful degree checking shows

ω′ :=
∑

i≥0

∂̄
(

ωi,s−i−1
)

⊗ xp−i,q−s+i ∈ p,qLsT s+t

and

ω′′ :=
∑

i≥0

k≥s

∂̄
(

ωi,k−i
)

⊗ xp−i,q−k−1+i ∈ p,qLs+1T s+t.

On the other hand, since ∂̄(ω′′) = 0 it means

ω′′ ∈ (p,qLs+1T s+t) ∩ ∂̄−1
(p,q+1

Ls+2T s+t+1
)

= p,qZs+1,t−1
1 .

As a result, we obtain

p,qBs,t
1 = ∂̄

(p,q−1
Ls−1T s+t−1

)

+ terms in p,qZs+1,t−1
1 . (3.12)

From (3.11) and (3.12), it concludes the isomorphisms:

p,qÊs,t
2 =

p,qZs,t
2

p,qZs+1,t−1
1 + p,qBs,t

1

∼=
Y

∂̄
(p,q−1

Ls−1T s+t−1
)

,

and thus
p,qÊs,t

2
∼=

∑

i≥0

H i,s−i
∂̄

(B,W )⊗Hp−i,q−s+i
∂̄

(F ). (3.13)
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Lemma 3.2 (Hirsch Lemma). Suppose that H•,•
∂̄

(F ) satisfies the extending condition (see

Definition 3.1). Then the morphism ψ in (3.2) induces an isomorphism

H•,•
∂̄

(T ) ∼= H•,•(E, π∗W ).

Proof. Let L∗A•,•(E, π∗W ) be the Borel filtration of A•,•(E, π∗W ). On one hand, according

to Theorem A.2 and Corollary A.3 we get that the associated Borel spectral sequence {El, dl}

converges to H(E, π∗W ) with the second terms

p,qEs,t
2

∼=
∑

i≥0

H i,s−i(B,W )⊗Hp−i,q−s+1
∂̄

(F ). (3.14)

On the other hand, note that the morphism of complexes ψ : T → A•,•(E, π∗W ) is filtration

preserving, and hence it induces a morphism of spectral sequences ψl : Êl → El. Combining

(3.13) with (3.14) implies that

ψ2 :
p,qÊs,t

2 → p,qEs,t
2

is isomorphic. As a direct consequence of a standard result in spectral sequence theory we

get Êl
∼= El for any l ≥ 2. This means Ê∞

∼= E∞, and therefore ψ induces an isomorphism

of cohomologies H•,•
∂̄

(T ) ∼= H•,•(E, W̃ ), which completes the proof. �

Now consider the projectivization π : P(V ) → B of a holomorphic vector bundle V over

B with rank r. Then the fiber F of P(V ) is CPr−1. Assume that W → B is a holomorphic

vector bundle and let W̃ = π∗W be the pull-back of W on P(V ). Then we have

Lemma 3.3. The Dolbeault cohomology of W̃ is a free H•,•(B,W )-bigraded module with the

basis {1, t̃, · · · , t̃r−1}; namely, we have the canonical isomorphism

H•,•(P(V ), W̃ ) ∼= H•,•(B,W )⊗ {1, t̃, · · · , t̃r−1},

where t̃ = c1(OP(V )(1)) ∈ H1,1
∂̄

(P(V )).

Proof. Note that the Dolbeault cohomology of F is

H•,•
∂̄

(F ) ∼= H•,•
∂̄

(CPr−1) ∼= C[t]/(tr),

where the generator t ∈ H1,1
∂̄

(CPr−1) is the Kähler form of the Fubini-Study metric on CPr−1.

We claim that H•,•
∂̄

(F ) satisfies the extending condition. Consider the first Chern class of

the tautological line bundle over P(V ):

t̃ = c1(OP(V )(1)) ∈ H1,1

∂̄
(P(V )).

From definition, the restriction of t̃ to each fiber F is the generator of H∗,∗
∂̄

(F ), namely, t̃|F =

t. Consequently, t can be extended to be a class on E. Set T = A•,•(B,W )⊗H•,•
∂̄

(CPr−1).

We can define a natural differential operator of (0,1)-type on T by setting

∂̄T (a⊗ t) = (∂̄a)⊗ t,

for any a⊗ t ∈ T . By definition, the cohomology of T is

H•,•(T, ∂̄T ) = H•,•(B,W )⊗H•,•

∂̄
(CPr−1)

∼= H•,•(B,W )⊗ {1, t, · · · , tr−1}

∼= H•,•(B,W )⊗ {1, t̃, · · · , t̃r−1}.



12 SHENG RAO, SONG YANG, AND XIANGDONG YANG

According to Lemma 3.2 we obtain

H•,•(P(V ), W̃ ) ∼= H•,•(T, ∂̄T ) ∼= H•,•(B,W )⊗ {1, t̃, · · · , t̃r−1},

and the proof is complete. �

4. Relative Dolbeault sheaves associated to the blow-up diagram

4.1. Higher direct images. Recall the blow-up diagram:

E

̟
��

�

�


// X̃

π
��

Z �

� ı // X.

(4.1)

Then we have the following isomorphisms:

π∗ : Ωp
X

≃
−→ π∗Ω

p

X̃
, ̟∗ : Ωp

Z
≃

−→ ̟∗Ω
p
E, and ∗ : Rsπ∗Ω

p

X̃

≃
−→ ı∗R

s̟∗Ω
p
E (s ≥ 1). (4.2)

The first isomorphism in (4.2) can be proved by using the Hartogs extension theorem and

for the second we refer to [38, §4, Theorem 2]. For s > 1, the third isomorphism in (4.2) was

first proved by Gros [16] for smooth schemes over a field. Subsequently, in their paper [17],

Gullén-Navarro Aznar improved this result for any s ≥ 1 on smooth schemes over a field. In

his paper [35], Stelzig indicated those isomorphisms for complex manifolds. Without claiming

any originality, we extend the isomorphisms in (4.2) to the bundle-valued case by following

the same steps in the proof of [17, Proposition 3.3] since there is no available literature.

Lemma 4.1. For a holomorphic vector bundle W on X and W̃ := π∗W , there hold:

(i) π∗ : Ωp
X(W )

≃
−→ π∗Ω

p

X̃
(W̃ ),

(ii) ̟∗ : Ωp
Z(ı

∗W )
≃

−→ ̟∗Ω
p
E(

∗W̃ ),

(iii) ∗ : Rsπ∗Ω
p

X̃
(W̃ )

≃
−→ ı∗R

s̟∗Ω
p
E(

∗W̃ ), (s ≥ 1).

Proof. (i) The morphism π∗ : Ωp
X → π∗Ω

p

X̃
is naturally induced by the pullback of holomor-

phic differential forms

π∗(V ) : Γ(V,Ωp
X) → Γ(Ṽ ,Ωp

X̃
)

α 7→ (π|Ṽ )
∗α

for every open subset V ⊂ X and Ṽ := π−1(V ).

First we prove that the morphism π∗ : Ωp
X → π∗Ω

p

X̃
is isomorphic. It suffices to show that

π∗(V ) is isomorphic for any open set V ⊂ X with V ∩ Z 6= ∅ since π : X̃ − E → X − Z

is biholomorphic. It is easy to see that π∗(V ) is injective. In fact, note that π|Ṽ−Ṽ ∩E :

Ṽ − Ṽ ∩ E → V − V ∩ Z is biholomorphic. Suppose β ∈ Γ(V,Ωp
X) with (π|Ṽ )

∗β = 0. Then

we obtain β|V−V ∩Z = (π|Ṽ −Ṽ ∩E)
∗β = 0. Since codimCV ∩ Z ≥ 2, the continuity argument

gives β = 0. Moreover, for any α̃ ∈ Γ(Ṽ ,Ωp

X̃
), we define a holomorphic p-form on V −V ∩Z:

ϕ := ((π|Ṽ−Ṽ ∩E)
−1)∗(α̃|Ṽ−Ṽ ∩E).

As codimCV ∩ Z ≥ 2, the Hartogs extension theorem yields a holomorphic extension α of ϕ

on V such that α|V−V ∩Z = ϕ. Then we have
(

(π|Ṽ )
∗α

)

|Ṽ−Ṽ ∩E = (π|Ṽ −Ṽ ∩E)
∗ϕ = α̃|Ṽ−Ṽ ∩E .
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Again by the continuity argument, we have (π|Ṽ )
∗α = α̃. This shows that π∗(V ) is surjective

and thus π∗(V ) is isomorphic.

Furthermore, note that Ωp

X̃
(W̃ ) = Ωp

X̃
⊗ W̃ and according to the projection formula, we

get

π∗Ω
p

X̃
⊗W

≃
−→ π∗(Ω

p

X̃
⊗ π∗W ) = π∗(Ω

p

X̃
⊗ W̃ ).

(ii) The morphism ̟∗ : Ωp
Z → ̟∗Ω

p
E is naturally induced by the pullback of holomorphic

differential forms

̟∗(V ) : Γ(V,Ωp
Z) −→ Γ(̟−1(V ),Ωp

E)

for any open subset V ⊂ Z. The local trivialization of fibre bundle gives an open neighborhood

for any point in Z, still denoted by V , such that ̟−1(V ) is biholomorphic to V × CPr−1.

Notice that

Γ(̟−1(V ),Ωp
E)

∼= Hp,0

∂̄
(V × CPr−1).

From the Künneth formula [8, Corollary 19] (still true with the noncompact base), we get

Hp,0
∂̄

(V × CPr−1) ∼=
∑

a+c=p

Ha,0
∂̄

(V )⊗Hc,0
∂̄

(CPr−1)

= Γ(V,Ωp
Z).

So ̟∗ : Ωp
Z

≃
−→ ̟∗Ω

p
E. Moreover, we have

̟∗(Ω
p
E ⊗ ∗W̃ ) = ̟∗(Ω

p
E ⊗ ∗π∗W )

= ̟∗(Ω
p
E ⊗̟∗ı∗W ) (̟∗ı∗ = ∗π∗).

By the projection formula for ̟, it follows

Ωp
Z(ı

∗W ) = Ωp
Z ⊗ ı∗W

≃
−→ ̟∗Ω

p
E ⊗ ı∗W

≃
−→ ̟∗(Ω

p
E ⊗̟∗ı∗W ).

Finally, we give the proof of (iii). Because E is the exceptional divisor, there exist two

short exact sequences of vector bundles, i.e., the structure sheaf sequence and the dual of the

normal bundle sequence on X̃ and E, respectively,

0 // OX̃(−E) // OX̃
// ∗OE

// 0; (4.3)

0 // OE(−E) // ∗ΩX̃
// ΩE

// 0, (4.4)

where OE(−E) = ∗OX̃(−E). Set OX̃(1) := OX̃(−E), OE(1) := OE(−E) and thus we have

OE(1) = ∗OX̃(1).

For any integer 1 ≤ p ≤ n − 1, by tensoring the sequence (4.3) with Ωp

X̃
(W̃ ) ⊗ OX̃(m)

and using the projection formula for the last term, we obtain a short exact sequence of

holomorphic vector bundles over X̃

0 // Ωp

X̃
(W̃ )⊗OX̃(m+ 1) // Ωp

X̃
(W̃ )⊗OX̃(m) // Ωp

X̃
(W̃ )⊗ ∗OE(m) // 0. (4.5)

Taking p-th exterior wedge of (4.4), we obtain an exact sequence

0 // Ωp−1
E ⊗OE(1) // ∗Ωp

X̃
// Ωp

E
// 0. (4.6)
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Tensoring ∗W̃ ⊗OE(m) with (4.6), we get another short exact sequence of vector bundles

0 // Ωp−1
E (∗W̃ )⊗OE(m+ 1) // ∗Ωp

X̃
(W̃ )⊗OE(m) // Ωp

E(
∗W̃ )⊗OE(m) // 0.

(4.7)

From now on, we fix an integer q ≥ 1 and consider the higher direct images of the first

and last terms in (4.7). Observe that the line bundle

OX̃(1)|E = OX̃(−E)|E ∼= OP(NZ/X)(1)

is positive [40, Lemma 3.26]. Set Fk(l) = Ωk
E ⊗ OE(l) and the Bott vanishing theorem [25,

Theorem 5.2] implies for any l ≥ 1 and z ∈ Z,

Hq(Ez,F
k(l)z) ∼= Hq(Pr−1,Ωk

Pr−1 ⊗OPr−1(l)) = 0.

So we get Rq̟∗(Ω
k
E⊗OE(l)) = 0 for any integer l ≥ 1. Actually, from the Grauert continuity

theorem [3, Theorem 4.12 (ii) of Chapter III], we know that Rq̟∗F
k(l) is a locally free sheaf

of rank dimHq
(

Ez,F
k(l)z

)

= 0. Moreover, there hold

Rq̟∗

(

Ωp−1
E (∗W̃ )⊗OE(m+1)

)

= O(ı∗W )⊗Rq̟∗

(

Ωp−1
E ⊗OE(m+1)

)

= 0, for any m ≥ 0

(4.8)

and similarly

Rq̟∗

(

Ωp
E(

∗W̃ )⊗OE(m)
)

= 0, for any m ≥ 1.

Hence, by the long exact sequence of higher direct images of (4.7), we obtain

Rq̟∗

(

∗Ωp

X̃
(W̃ )⊗OE(m)

)

= 0, for any m ≥ 1. (4.9)

If m = 0, then (4.7) becomes

0 // Ωp−1
E (∗W̃ )⊗OE(1) // ∗Ωp

X̃
(W̃ ) // Ωp

E(
∗W̃ ) // 0. (4.10)

Likewise, using the vanishing result (4.8) of the case m = 0, one sees that the exactness

of the long exact sequence of higher direct images associated to (4.10) implies the following

isomorphism

Rq̟∗
∗Ωp

X̃
(W̃ )

≃
−→ Rq̟∗Ω

p
E(

∗W̃ ), for any q ≥ 1. (4.11)

Next we construct an isomorphism between the higher direct images of the third term in

(4.5) and the second term in (4.7). Based on the exactness of the functor ∗ and ı∗ we have

Rqπ∗
(

Ωp

X̃
(W̃ )⊗ ∗OE(m)

) ≃
−→ Rqπ∗

(

∗(
∗Ωp

X̃
(W̃ )⊗OE(m))

)

(by projection formula)

∼= Rq(π ◦ )∗
(

∗Ωp

X̃
(W̃ )⊗OE(m)

)

( is a closed embedding)

∼= Rq(ı ◦̟)∗
(

∗Ωp

X̃
(W̃ )⊗OE(m)

)

(π ◦  = ı ◦̟)

∼= ı∗R
q̟∗

(

∗Ωp

X̃
(W̃ )⊗OE(m)

)

(ı is a closed embedding).

In summary, for m ≥ 0 there exists an isomorphism

Rqπ∗
(

Ωp

X̃
(W̃ )⊗ ∗OE(m)

) ≃
−→ ı∗R

q̟∗

(

∗Ωp

X̃
(W̃ )⊗OE(m)

)

. (4.12)

Therefore, if m ≥ 1, then combining (4.9) with (4.12), we get

Rqπ∗
(

Ωp

X̃
(W̃ )⊗ ∗OE(m)

)

= 0. (4.13)
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In the case of m = 0, (4.11) and (4.12) imply

Rqπ∗(Ω
p

X̃
(W̃ )⊗ ∗OE)

≃
−→ ı∗R

q̟∗
∗Ωp

X̃
(W̃ )

≃
−→ ı∗R

q̟∗Ω
p
E(

∗W̃ ).

Hence, to prove that the assertion holds, i.e.,

Rqπ∗Ω
p

X̃
(W̃ )

≃
−→ ı∗R

q̟∗Ω
p
E(

∗W̃ ),

it suffices to show Rqπ∗Ω
p

X̃
(W̃ )

≃
−→ Rqπ∗(Ω

p

X̃
(W̃ )⊗ ∗OE).

Let us turn back to the long exact sequence of higher direct images associated to (4.5). On

one hand, since X is compact and the blow-up morphism π is projective (cf. [14, Remarks

2.1 (0)]), the projection formula and the Grauert-Remmert theorem [3, Theorem 2.1 (B) of

Chapter IV] give

Rqπ∗
(

Ωp

X̃
(W̃ )⊗OX̃(l)

)

= O(W )⊗Rqπ∗
(

Ωp

X̃
⊗OX̃(l)

)

= 0 (4.14)

for any l ≥ l0 with some integer l0 = l0(X,Ω
p

X̃
). On the other hand, the vanishing result

(4.13) implies that the morphism

Rqπ∗
(

Ωp

X̃
(W̃ )⊗OX̃(m+ 1)

)

→ Rqπ∗
(

Ωp

X̃
(W̃ )⊗OX̃(m)

)

(4.15)

is surjective for any m ≥ 1. From (4.14) and (4.15) we get

Rqπ∗
(

Ωp

X̃
(W̃ )⊗OX̃(1)

)

= 0, for any q ≥ 1 (4.16)

by an induction for the index m. Let m = 0 in the long exact sequence of higher direct

images associated to (4.5). On account of the vanishing result (4.16) and the exactness we

obtain the desired isomorphism

Rqπ∗Ω
p

X̃
(W̃ )

≃
−→ Rqπ∗(Ω

p

X̃
(W̃ )⊗ ∗OE)

and this completes the proof. �

4.2. Relative Dolbeault sheaves. Let X be a compact complex manifold and let ı : Z →֒

X be a closed complex submanifold. There exist two natural morphisms of sheaves: ı∗ :

Ωp
X → ı∗Ω

p
Z and ı∗ : A

p,q
X → ı∗ A

p,q
Z which are induced by the pullback as follows. For any

open subset V ⊂ X, we define the morphisms

ı∗(V ) : Γ(V,Ωp
X) → Γ(V, ı∗Ω

p
Z) = Γ(V ∩ Z,Ωp

Z)

α 7→ (ıV ∩Z)
∗α, (4.17)

and

ı∗(V ) : Γ(V,A p,q
X ) → Γ(V, ı∗ A

p,q
Z ) = Γ(V ∩ Z,A p,q

Z )

α 7→ (ıV ∩Z)
∗α, (4.18)

where ıV ∩Z : V ∩Z → V is the holomorphic inclusion. It is direct to check that the maps ı∗(V )

in (4.17) and (4.18) are homomorphisms of OX(V )-module and C∞
X (V ), respectively. Hence,

ı∗ : Ωp
X → ı∗Ω

p
Z is a morphism of OX -modules and ı∗ : A

p,q
X → ı∗ A

p,q
Z is a morphism of

C∞
X -modules. For any 0 ≤ p, q ≤ n, consider the kernel sheaves K

p
X,Z := ker

(

Ωp
X

ı∗
−→ ı∗Ω

p
Z

)

and K
p,q
X,Z := ker

(

A
p,q
X

ı∗
−→ ı∗ A

p,q
Z

)

.
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Definition 4.2. We say that K
p
X,Z and K

p,q
X,Z are the p-th and (p, q)-th relative Dolbeault

sheaves of X with respect to Z, respectively.

From the definitions, K
p
X,Z is a coherent sheaf of OX -module and K

p,q
X,Z is a sheaf of

C∞
X -module. If p = 0, then K

0
X,Z is the ideal sheaf IZ of Z in X; if p = n, then K

n
X,Z = Ωn

X .

Moreover, we have the following result.

Proposition 4.3. With the above setting, there hold

(i) K
p,•
X,Z is a fine resolution of K

p
X,Z;

(ii) ı∗ : Ωp
X → ı∗Ω

p
Z is a surjective morphism of OX-modules;

(iii) ı∗ : A
p,q
X → ı∗ A

p,q
Z is a surjective morphism of C∞

X -modules.

Proof. (i) By the Dolbeault-Grothendieck lemma [40, Proposition 2.31], the sheaf complex

K
p,•
X,Z is exact, and hence K

p,•
X,Z is a fine resolution of K

p
X,Z .

(ii) It suffices to verify that for any x ∈ Z the morphism of stalks ı∗x : (Ωp
X)x → (ı∗Ω

p
Z)x is

surjective. Let (U ; z1, z2, · · · , zn) be a local coordinate chart of x such that

U ∩ Z = {zn−r+1 = · · · = zn = 0}.

Then there exists a holomorphic projection given by

τ : U → U ∩ Z, (z1, · · · , zn) 7→ (z1, · · · , zn−r).

For any germ αx ∈ (ı∗Ω
p
Z)x we can choose a representative (V, α), where α is a holomorphic

p-form on V ∩ Z. Particularly, we can choose V small enough such that V ⊂ U and then

the restriction of τ on V gives rise to a holomorphic map τV : V → V ∩ Z such that

τV ◦ ιV ∩Z = idV ∩Z . Let β = (τV )
∗(α). Then (V, β) represents a germ, denoted by βx, in the

stalk (Ωp
X)x. From definition, we get

(ıV ∩Z)
∗β = (ıV ∩Z)

∗
(

(τV )
∗(α)

)

= (τV ◦ ıV ∩Z)
∗(α) = α.

It follows that ı∗x(βx) = αx, namely, ı∗x is surjective.

The proof of (iii) is similar to (ii); see also [32, Lemma 3.9]v3. �

By Proposition 4.3 (i), we get the isomorphisms

Hq(X,K p
X,Z)

∼= Hq(X,K p,•
X,Z)

∼= Hp,q(X,Z),

where Hp,q(X,Z) is the relative Dolbeault cohomology of X with respect to Z defined in

[32]v4. Moreover, the assertion Proposition 4.3 (ii) yields a short exact sequence of OX -

modules

0 // K
p
X,Z

// Ωp
X

ı∗ // ı∗Ω
p
Z

// 0, (4.19)

and the assertion Proposition 4.3 (iii) induces a short exact sequence of C∞
X -modules:

0 // K
p,q
X,Z

// A
p,q
X

ı∗ // ı∗ A
p,q
Z

// 0. (4.20)

As W is a holomorphic vector bundle over X, the sheaf of holomorphic sections of W is

a sheaf of OX -modules. Consequently, the tensor functor − ⊗OX
O(W ) is exact. Tensoring

(4.19) with O(W ), one gets the short sequence of OX -modules

0 // K
p
X,Z ⊗OX

O(W ) // Ωp
X ⊗OX

O(W )
ı∗ // ı∗Ω

p
Z ⊗OX

O(W ) // 0 (4.21)
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is exact. Note that Ωp
X(W ) = Ωp

X ⊗OX
W ∼= O(∧pT ′X ⊗CW ). From the projection formula,

we have

ı∗Ω
p
Z ⊗OX

O(W )
≃
−→ ı∗(Ω

p
Z ⊗OZ

ı∗O(W ))

∼= ı∗(Ω
p
Z ⊗OZ

O(ı∗W ))

= ı∗Ω
p
Z(ı

∗W ).

Set K
p
X,Z(W ) = K

p
X,Z ⊗OX

O(W ). Then the short exact sequence (4.21) is equal to

0 // K
p
X,Z(W ) // Ωp

X(W )
ı∗ // ı∗Ω

p
Z(ı

∗W ) // 0. (4.22)

Akin to (4.22), for the pair of the holomorphic vector bundles (W̃ , ∗W̃ ) we have a short

exact sequence of sheaves on X̃ as follows

0 // K
p

X̃,E
(W̃ ) // Ωp

X̃
(W̃ )

∗
// ∗Ω

p
E(

∗W̃ ) // 0. (4.23)

Lemma 4.4. For any 0 ≤ p ≤ n, the pullback of holomorphic forms induces an isomorphism

π∗ : K
p
X,Z(W )

≃
−→ π∗K

p

X̃,E
(W̃ ); moreover, for any q ≥ 1, we have Rqπ∗K

p

X̃,E
(W̃ ) = 0.

Proof. Since π ◦  = ı ◦̟ (4.1), we have

π∗∗Ω
p
E(

∗W̃ ) = ı∗̟∗Ω
p
E(

∗W̃ ).

From (i) and (ii) in Lemma 4.1, there is a commutative diagram of exact sequences

0 // K
p
X,Z(W )

π∗

��

// Ωp
X(W )

π∗ ∼=
��

ı∗ // ı∗Ω
p
Z(ı

∗W )

̟∗ ∼=
��

// 0

0 // π∗ K
p

X̃,E
(W̃ ) // π∗Ω

p

X̃
(W̃ )

∗
// π∗∗Ω

p
E(

∗W̃ ).

(4.24)

Observe that ı∗ : Ωp
X(W ) → ı∗Ω

p
Z(ı

∗W ) is surjective by (4.22). Thus the sheaf morphism

∗ : π∗Ω
p

X̃
(W̃ ) → π∗∗Ω

p
E(

∗W̃ ) is surjective by the commutative diagram (4.24). As a result,

the morphism π∗ : K
p
X,Z(W ) → π∗K

p

X̃,E
(W̃ ) is isomorphic.

Now we consider the higher direct images of KX̃,E(W ) along π. The short exact sequence

(4.23) induces a long exact sequence: for q ≥ 0,

· · · // Rqπ∗K
p

X̃,E
(W̃ ) // Rqπ∗Ω

p

X̃
(W̃ )

∗
// Rqπ∗∗Ω

p
E(

∗W̃ ) // Rq+1π∗K
p

X̃,E
(W̃ ) // · · · .

To prove that the higher direct images vanish, we need the following isomorphisms

Rqπ∗∗Ω
p
E(

∗W̃ ) ∼= Rq(π ◦ )∗Ω
p
E(

∗W̃ )

∼= Rq(ı ◦̟)∗Ω
p
E(

∗W̃ )

∼= ı∗R
q̟∗Ω

p
E(

∗W̃ ). (4.25)

Combining Lemma 4.1 (iii) with the above equality we get

· · · // Rqπ∗K
p

X̃,E
(W̃ ) // Rqπ∗Ω

p

X̃
(W̃ )

∗

∼=
// ı∗R

q̟∗Ω
p
E(

∗W̃ ) // Rq+1π∗K
p

X̃,E
(W̃ ) // · · ·

with q ≥ 1. The exactness of the above sequence induces Rqπ∗K
p

X̃,E
(W̃ ) = 0, for any q ≥ 2.
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It remains to show that R1π∗K
p

X̃,E
(W̃ ) vanishes. Consider the exact sequence

π∗Ω
p

X̃
(W̃ )

∗
// π∗∗Ω

p
E(

∗W̃ )
ρ
// R1π∗K

p

X̃,E
(W̃ )

κ // R1π∗Ω
p

X̃
(W̃ )

∼= // ı∗R
1̟∗Ω

p
E(

∗W̃ ).

The exactness means Im (κ) = 0 and ker (κ) = R1π∗K
p

X̃,E
(W̃ ) = Im (ρ), i.e., ρ is surjective.

So we get

R1π∗K
p

X̃,E
(W̃ ) ∼= π∗∗Ω

p
E(

∗W̃ )/ ker (ρ) = π∗∗Ω
p
E(

∗W̃ )/Im (∗) = 0

because ∗ is surjective.

This lemma also can be proved by [28, Lemma 2.4] and the projection formula. �

We are ready to present the most important result of this section which plays a significant

role in the proof of Theorem 1.2.

Lemma 4.5. For any q ∈ N, the pullback π∗ induces an isomorphism as abelian groups

π∗ : Hq(X,K p
X,Z(W ))

≃
−→ Hq(X̃,K p

X̃,E
(W̃ )). (4.26)

Proof. Pick K
p

X̃,E
(W̃ ) → Gp,• a flabby resolution. By the definition of sheaf cohomology, we

have

H l(X̃,K p

X̃,E
(W̃ )) := H l(Γ(X̃,Gp,•)).

As defined in [10, (13.4) Definition of Chapter IV], the higher direct images are

Rqπ∗ K
p

X̃,E
(W̃ ) := H

q(π∗G
p,•).

According to Lemma 4.4, Rqπ∗ K
p

X̃,E
(W̃ ) = 0 for q 6= 0, hence H q(π∗G

p,•) = 0 for q 6= 0,

which means that the sheaf complex π∗G
p,• is exact. It concludes that π∗G

p,• is a flabby

resolution of π∗ K
p

X̃,E
(W̃ ) since the direct image of a flabby sheaf is flabby. Therefore, we

derive an isomorphism of abelian groups

H l(X,π∗ K
p

X̃,E
(W̃ )) = H l(Γ(X,π∗G

p,•)) = H l(Γ(X̃,Gp,•)) = H l(X̃,K p

X̃,E
(W̃ )). (4.27)

Moreover, since π∗ : K
p
X,Z(W ) → π∗ K

p

X̃,E
(W̃ ) is an isomorphism as in Lemma 4.4, it

induces an isomorphism

π∗ : Hq(X,K p
X,Z(W ))

≃
−→ Hq(X,π∗ K

p

X̃,E
(W̃ )).

Combining it with (4.27) concludes the proof. �

5. Proof of Theorem 1.2

5.1. Construction of the morphism φ. Let W ∗ be the dual bundle to the holomorphic

vector bundle W over X. Then the pullback π∗W ∗ is a holomorphic vector bundle on X̃ .

Set Dp,q(X,W ) as the space of W -valued currents of type (p, q) on X, which is defined

to be the dual of the topological vector space An−q,n−q(X,W ∗) equipped with its natural

topology. Moreover, the operator ∂̄ induces a differential ∂̄∗ on Dp,•(X,W ). The associated

q-th cohomology of the dual complex {Dp,•(X,W ), ∂̄∗} is denoted by Hp,q
D

(X,W ). From

definition, there is a natural inclusion ̺ : Ap,•(X,W ) →֒ Dp,•(X,W ) which induces an

isomorphism

̺∗ : H
p,q(X,W )

≃
−→ Hp,q

D
(X,W )



DOLBEAULT COHOMOLOGIES OF BLOWING UP COMPLEX MANIFOLDS II 19

as shown in the proof of [41, Theorem 3.3]. Similarly, for the π∗W -valued currents on X̃ we

have

˜̺∗ : H
p,q(X̃, π∗W )

≃
−→ Hp,q

D
(X̃, π∗W ).

The pushforward of the currents defines a morphism

π♭ : H
p,q
D

(X̃, π∗W ) → Hp,q
D

(X,W )

and gives the following diagram

Hp,q(X̃, π∗W )
˜̺∗

∼=
// Hp,q

D
(X̃, π∗W )

π♭

��
Hp,q(X,W )

π∗

OO

̺∗

∼=
// Hp,q

D
(X,W ).

(5.1)

As the degree of the blow-up morphism π is 1, we get ̺∗ = π♭ ◦ ˜̺∗ ◦ π∗ (cf. [41, Lemma

2.2]). For any 0 ≤ p, q ≤ n, the morphism

π∗ : Hp,q(X,W ) → Hp,q(X̃, π∗W )

is an injection (cf. [41, Theorem 3.1 (c)]). From (5.1), we can define a natural morphism

π∗ = ̺−1
∗ ◦ π♭ ◦ ˜̺∗ : H

p,q(X̃, π∗W ) → Hp,q(X,W ).

Then (5.1) implies that

π∗ : H
p,q(X̃, π∗W ) → Hp,q(X,W )

is surjective.

In view of Lemma 3.3, we get

Hp,q(E, ∗W̃ ) =

r−1
⊕

i=0

h
i ∧̟∗Hp−i,q−i(Z, ı∗W ),

where h = c1(OE(1)) ∈ H1,1
∂̄

(E) and ̟∗ is the pullback of the projection ̟ : E → Z. It

means that each class [α̃](p,q) ∈ Hp,q(E, ∗W̃ ) admits a unique expression

[α̃](p,q) =

r−1
∑

i=0

h
i ∧̟∗[α](p−i,q−i),

where [α](p−i,q−i) ∈ H
p−i,q−i(Z, ı∗W ). Define the linear map

Πi : H
p,q(E, ∗W̃ ) → Hp−i,q−i(Z, ı∗W )

[α̃](p,q) 7→ [α](p−i,q−i).

Then we can define the desired morphism φ by setting

φ = π∗ +
r−1
∑

i=1

Πi ◦ 
∗ (5.2)

which maps Vp,q := Hp,q(X̃, π∗W ) to the space

Wp,q := Hp,q(X,W )⊕

(r−1
⊕

i=1

Hp−i,q−i(Z, ı∗W )

)

.
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5.2. φ is isomorphic. We divide the proof in two steps. First, we prove that Vp,q is isomor-

phic to Wp,q as complex vector spaces, i.e., they have the same complex dimensions. Then

we show that the linear morphism φ : Vp,q → Wp,q is injective.

In the proof we need the following basic result from homological algebra.

Proposition 5.1. Consider an exact ladder of complex vector spaces

· · · // A1

i1
��

f1 // A2

i2
��

f2 // A3

i3
��

f3 // A4

i4
��

// · · ·

· · · // B1
g1 // B2

g2 // B3
g3 // B4

// · · · .

If the vertical maps i1, i4 are isomorphic, and i2, i3 are injective, then g2 induces an isomor-

phism

B2/i2(A2) ∼= B3/i3(A3).

Tensoring (4.20) withW (viewed as a complex vector bundle), we get a short exact sequence

0 // K
p,q
X,Z(W ) // A

p,q
X (W )

ı∗// ı∗(A
p,q
Z (ı∗W )) // 0

for sheaves of C∞
X -modules. Note that K

p,q
X,Z(W ) is a fine sheaf and hence Γ-acyclic (cf. [40,

Proposition 4.36]). Moreover, since Γ(X,−) is a left exact functor, taking the global sections

to the exact sequence above we obtain a short exact sequence of vector spaces

0 // Γ(X,K p,q
X,Z(W )) // Γ(X,A p,q

X (W ))
ı∗ // Γ(Z,A p,q

Z (ı∗W )) // 0 .

Since ı∗ commutes with the Dolbeault differential ∂̄, there exists a commutative diagram of

short exact sequences

0 // Γ(X,K p,q
X,Z(W ))

∂̄
��

// Γ(X,A p,q
X (W ))

∂̄
��

ı∗ // Γ(Z,A p,q
Z (ı∗W ))

∂̄
��

// 0

0 // Γ(X,K p,q+1
X,Z (W )) // Γ(X,A p,q+1

X (W ))
ı∗ // Γ(Z,A p,q+1

Z (ı∗W )) // 0.

Therefore, there is a short exact sequence for complexes of vector spaces

0 // Γ(X,K p,•
X,Z(W )) // Γ(X,A p,•

X (W ))
ı∗ // Γ(Z,A p,•

Z (ı∗W )) // 0.

Likewise, for the triple (X̃, E, W̃ ), there exist a short exact sequence of C∞
X̃
-modules

0 // K
p,q

X̃,E
(W̃ ) // A

p,q

X̃
(W̃ )

∗
// ∗(A

p,q
E (∗W̃ )) // 0

and a short exact sequence for complexes of vector spaces

0 // Γ(X,K p,•

X̃,E
(W̃ )) // Γ(X,A p,•

X̃
(W̃ ))

∗
// Γ(E,A p,•

E (∗W̃ )) // 0.
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By the blow-up diagram (4.1), we have ∗ ◦π∗ = ̟∗ ◦ ı∗ and hence there is a commutative

diagram for short exact sequences of vector spaces

0 // Γ(X,K p,q
X,Z(W ))

π∗

��

// Γ(X,A p,q
X (W ))

π∗

��

ı∗ // Γ(Z,A p,q
Z (ı∗W ))

̟∗

��

// 0

0 // Γ(X̃,K p,q

X̃,E
(W̃ )) // Γ(X̃,A p,q

X̃
(W̃ ))

∗
// Γ(E,A p,q

E (∗W̃ )) // 0.

As the operator ∂̄ commutes with the pullback maps, there exists a commutative diagram

0 // Γ(X,K p,•
X,Z(W ))

π∗

��

// Γ(X,A p,•
X (W ))

π∗

��

ı∗ // Γ(Z,A p,•
Z (ı∗W ))

̟∗

��

// 0

0 // Γ(X̃,K p,•

X̃,E
(W̃ )) // Γ(X̃,A p,•

X̃
(W̃ ))

∗
// Γ(E,A p,•

E (∗W̃ )) // 0

(5.3)

of short exact sequences for complexes of vector spaces.

By the definition of hypercohomologies, the standard diagram chasing of the commutative

diagram (5.3) gives rise to a ladder of hypercohomologies

· · · // Hq(X,K p,•
X,Z(W ))

π∗

��

// Hq(X,A p,•
X (W ))

π∗

��

// Hq(Z,A p,•
Z (ı∗W ))

̟∗

��

// Hq+1(X,K p,•
X,Z(W ))

π∗

��

// · · ·

· · · // Hq(X̃,K p,•

X̃,E
(W̃ )) // Hq(X̃,A p,•

X̃
(W̃ )) // Hq(E,A p,•

E (∗W̃ )) // Hq+1(X̃,K p,•

X̃,E
(W̃ )) // · · · .

(5.4)

By Proposition 4.3 (i), K
p,•
X,Z is a fine resolution of K

p
X,Z and thus K

p,•
X,Z(W ) is a fine

resolution of K
p
X,Z(W ). It follows Hq(X,K p,•

X,Z(W )) ∼= Hq(X,K p
X,Z(W )). Similarly, we

have

Hq(X̃,K p,•

X̃,E
(W̃ )) ∼= Hq(X̃,K p

X̃,E
(W̃ )).

Moreover, by the bundle-valued Dolbeault theorem to (X,W ), (Z, ı∗W ), (X̃, W̃ ) and (E, ∗W̃ ),

the ladder (5.4) turns into

· · · // Hq(X,K p
X,Z(W ))

π∗

��

// Hq(X,Ωp
X(W ))

π∗

��

// Hq(Z,Ωp
Z(ı

∗W ))

π∗

��

// Hq+1(X,K p
X,Z(W ))

π∗

��

// · · ·

· · · // Hq(X̃,K p

X̃,E
(W̃ )) // Hq(X̃,Ωp

X̃
(W̃ )) // Hq(E,Ωp

X̃
(∗W̃ )) // Hq+1(X̃,K p

X̃,E
(W̃ )) // · · · .

(5.5)

Combine (5.5) with Lemma 4.5 to get the equivalent ladder

· · · // Hq(X,K p
X,Z(W ))

∼=

��

// Hq(X,Ωp
X(W ))

π∗

��

// Hq(Z,Ωp
Z(ı

∗W ))

̟∗

��

// Hq+1(X,K p
X,Z(W ))

∼=

��

// · · ·

· · · // Hq(X̃,K p

X̃,E
(W̃ )) // Hq(X̃,Ωp

X̃
(W̃ )) // Hq(E,Ωp

E(
∗W̃ )) // Hq+1(X̃,K p

X̃,E
(W̃ )) // · · ·

(5.6)

to (5.5). Since π : X̃ → X is a proper surjective holomorphic map, by [41, Theorem 3.1], the

pullback morphism

π∗ : Hq(X,Ωp
X (W )) → Hq(X̃,Ωp

X̃
(W̃ ))



22 SHENG RAO, SONG YANG, AND XIANGDONG YANG

is injective. In particular, the morphism ̟∗ in (5.6) is injective since the Weak Five Lemma

(cf. [27, Lemma 3.3 (i) of Chapter I]). Due to Proposition 5.1, the commutative diagram

(5.6) gives rise to the following isomorphism of complex vector spaces

coker
(

Hq(X,Ωp
X (W ))

π∗

→ Hq(X̃,Ωp

X̃
(W̃ ))

)

∼= coker
(

Hq(Z,Ωp
Z(ı

∗W ))
̟∗

→ Hq(E,Ωp
E(

∗W̃ ))
)

.

(5.7)

From definition, the exceptional divisor E is biholomorphic to the projectivization of the

normal bundle NZ/X . Owing to the Dolbeault theorem, we get that the morphism

̟∗ : Hq(Z,Ωp
Z(ı

∗W )) → Hq(E,Ωp
E(

∗W̃ ))

is equal to the morphism

̟∗ : Hp,q(Z, ı∗W ) → Hp,q(E, ∗W̃ )

in Lemma 3.3. Thanks to Lemma 3.3 we get

Hp,q(E, ∗W̃ )

̟∗Hp,q(Z, ı∗W )
=

r−1
⊕

i=1

t̃
i ∧̟∗Hp−i,q−i(Z, ı∗W )

∼=

r−1
⊕

i=1

Hp−i,q−i(Z, ı∗W ). (5.8)

By (5.7) and (5.8) one has the following isomorphism of complex vector spaces

Hp,q(X̃, W̃ ) ∼= Hq(X̃,Ωp

X̃
(W̃ ))

∼= Hq(X,Ωp
X(W ))⊕ coker̟∗

∼= Hp,q(X,W )⊕
(

r−1
⊕

i=1

Hp−i,q−i(Z, ı∗W )
)

. (5.9)

Next we verify the injectivity of φ. From (5.7), we obtain a commutative diagram of short

exact sequences as follows

0 // Hp,q(X,W )

ı∗

��

π∗
// Hp,q(X̃, π∗W )

∗

��

// coker (π∗)

̄∗ ∼=

��

// 0

0 // Hp,q(Z, ı∗W )
̟∗

// Hp,q(E, ∗W̃ ) // coker (̟∗) // 0.

(5.10)

Here ̄∗ is the induced isomorphism of the quotient spaces by ∗. Combining (5.1) with (5.10)

we get the following diagram

Hp,q
D

(X,W ) Hp,q
D

(X̃, π∗W )
π♭oo

0 // Hp,q(X,W )

̺∗ ∼=

OO

ı∗

��

π∗
// Hp,q(X̃, π∗W )

∗

��

˜̺∗ ∼=

OO

// coker (π∗)

̄∗ ∼=

��

// 0

0 // Hp,q(Z, ı∗W )
̟∗

// Hp,q(E, ∗W̃ ) // coker (̟∗) // 0.

(5.11)
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Recall that π∗ = ̺−1
∗ ◦ π♭ ◦ ˜̺∗ and φ = π∗ +

∑r−1
i=1 Πi ◦ 

∗ maps Hp,q(X̃, π∗W ) to

Hp,q(X,W )⊕

(r−1
⊕

i=1

Hp−i,q−i(Z, ı∗W )

)

.

Notice that π∗ is surjective; moreover, a direct check shows that the kernel of π∗ is equal

to the co-kernel of π∗, i.e.,

ker (π∗) = coker (π∗)
̄∗
→

(r−1
⊕

i=1

h
i ∧̟∗Hp−i,q−i(Z, ı∗W )

)

.

It follows that the restriction of ∗ on ker (π∗) is injective. Given an element α̃ ∈ Hp,q(X̃, π∗W ),

suppose that φ(α̃) = 0. Then we get α̃ ∈ ker (π∗), 
∗(α̃) = 0 and hence α̃ = 0. This implies

that φ is injective and the proof of the theorem is now complete.

6. Applications of Theorem 1.2

We start this section with several basic notions in bimeromorphic geometry, whose nice

reference is [37, § 2]. The first one is the proper modification.

Definition 6.1. A morphism π : X̃ → X of two equidimensional complex spaces is called a

proper modification, if it satisfies:

(i) π is proper and surjective;

(ii) there exist nowhere dense analytic subsets Ẽ ⊂ X̃ and E ⊂ X such that

π : X̃ − Ẽ → X − E

is a biholomorphism, where Ẽ := π−1(E) is called the exceptional space of the modi-

fication.

If X̃ and X are compact, a proper modification π : X̃ → X is often called simply a modifi-

cation.

More generally, we have the following important notation in complex geometry.

Definition 6.2. Let X and Y be two complex spaces. A map ϕ of X into the power set of

Y is a meromorphic map of X into Y , denoted by ϕ : X 99K Y , if X satisfies the following

conditions:

(i) The graph Gϕ = {(x, y) ∈ X × Y | y ∈ ϕ(x)} of ϕ is an irreducible analytic subset in

X × Y ;

(ii) The projection map PX : Gϕ → X is a proper modification.

A meromorphic map ϕ : X 99K Y of complex varieties is called a bimeromorphic map if

PY : Gϕ → Y is also a proper modification.

If ϕ is a bimeromorphic map, the analytic set

{(y, x) ∈ Y ×X | (x, y) ∈ Gϕ} ⊂ Y ×X

defines a meromorphic map ϕ−1 : Y 99K X such that ϕ ◦ ϕ−1 = idY and ϕ−1 ◦ ϕ = idX .

Two complex varieties X and Y are called bimeromorphically equivalent (or bimeromor-

phic) if there exists a bimeromorphic map ϕ : X 99K Y .
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Relating blow-up to bimeromorphic map, one is fortunate to own the remarkable:

Theorem 6.3 ([1, Theorem 0.3.1] and [43]). Let π : X̃ 99K X be a bimeromorphic map

between two compact complex manifolds as in Definition 6.2. Let U be an open set where

π is an isomorphism. Then π can be factored into a sequence of blow-ups and blow-downs

along irreducible nonsingular centers disjoint from U . That is, to any such π we associate a

diagram

π : X̃ = X0
π1

99K X1
π2

99K · · ·
πi−1

99K Xi−1
πi
99K Xi

πi+1

99K · · ·
πl
99K Xl = X, (6.1)

where

(i) π = πl ◦ · · · ◦ π1;

(ii) πi are isomorphisms on U ;

(iii) either πi : Xi−1 99K Xi or π
−1
i : Xi 99K Xi−1 is a morphism obtained by blowing up a

nonsingular center disjoint from U .

Now we state several applications of Theorem 1.2 to complex algebraic geometry.

6.1. Vanishing theorems. Girbau’s theorem deals with the vanishing theorem on higher-

order cohomology of the line bundle being (possibly everywhere) degenerate semi-positive.

Theorem 6.4. Let L be a holomorphic line bundle over a compact connected n-dimensional

Kähler manifold X.

(i) If the Chern curvature form iΘ(L) of L is semi-positive and has at least n − s + 1

positive eigenvalues at a point of X for some integer s ∈ {1, · · · , n}, then Hq(X,KX⊗

L) = 0 for q ≥ s. Here KX is canonical bundle of X.

(ii) ([12]) If iΘ(L) is semi-positive and has at least n− s+1 positive eigenvalues at every

point of X for some integer s ∈ {1, · · · , n}, then Hq(X,Ωp⊗L) = 0 for p+ q ≥ n+s.

From Theorem 1.2 we can construct a series of examples for the above theorem avoiding

the complicated computation.

Example 6.5 (Ramanujam’s example, [31], [10, (4.5) Remark of Chapter VII]). Here is a quick

description of Ramanujam’s example, which shows that Girbau’s result is no longer true for

p < n when iΘ(L) is semi-positive and has at least n − s + 1 positive eigenvalues even on a

dense open set: Let

π : X → CPn, n ≥ 3

be the blow-up of CPn at a point {a}. Then for any m > 0, π∗OCPn(m) is a semipositive

line bundle over X, positive (s = 1) outside π−1({a}) and for 1 ≤ p ≤ n− 1,

Hp(X,Ωp
X ⊗ π∗OCPn(m)) ∼= Hp(CPn,Ωp

CPn ⊗OCPn(m))⊕

(n−1
⊕

i=1

Hp−i,p−i({a},OCPn (m)|{a})

)

∼=

n−1
⊕

i=1

Hp−i,p−i({a},OCPn(m)|{a})

6= 0

directly by Bott vanishing theorem ([25, Theorem 5.2] for example) and Theorem 1.2.
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Example 6.6. Here is a new positive example, which affirms that Girbau’s result is possibly

true for p 6= q when iΘ(L) is semi-positive and positive only on a dense open set: Let

π : X → CPn (n ≥ 3) be the blowing up at a point {a} in CPn. Then for p 6= q,

Hq(X,Ωp
X⊗π∗OCPn(1)) ∼= Hq(CPn,Ωp

CPn⊗OCPn(1))⊕

(n−1
⊕

i=1

Hp−i,q−i({a},OCPn(1)|{a})

)

= 0

directly by Theorem 1.2 and Bott vanishing theorem. It seems interesting to give a direct

proof of the above vanishing.

Actually, Ramanujam [31] generalized the Kodaira’s vanishing theorem for big and nef

line bundles on smooth projective surfaces. Later, a higher dimensional analogy of Kodaira-

Ramanujam vanishing was independently proved by Kawamata [23] and Viehweg [39]. By

contrast of Kodaira-Nakano vanishing theorem, the Nakano-type Kawamata-Viehweg vanish-

ing can fail for big and nef line bundles; see for instance [26, Example 4.3.4]. Here we present

a slight generalization of [26, Example 4.3.4] since π∗OCPn(1) is a big and nef line bundle.

Example 6.7. Let π : X → CPn (n ≥ 3) be the blow-up along a smooth curve C. Then

π∗OCPn(1) is a semipositive line bundle over X, positive (s = 1) outside π−1(C) and a direct

application of Theorem 1.2 implies that for 1 ≤ p ≤ n− 2,

Hp(X,Ωp
X ⊗ π∗OCPn(1)) ∼= Hp(CPn,Ωp

CPn ⊗OCPn(1)) ⊕

(n−2
⊕

i=1

Hp−i,p−i(C,OCPn(1)|C)

)

∼=

n−2
⊕

i=1

Hp−i,p−i(C,OCPn(1)|C )

∼= H0(C,OCPn(1)|C )⊕ · · ·

6= 0.

Now let us present a counterexample to Nakano-type generic vanishing theorem. Let X

be a compact, connected Kähler manifold. We denote by Pic0(X) the identity component of

the Picard group of X and A : X → Alb(X) the Albanese mapping of X. In [15, Theorem

1], Green-Lazarsfeld obtained the Kodaira-type generic vanishing theorem: if L ∈ Pic0(X) is

a generic line bundle, then Hq(X,L) = 0 for q < dimA(X). However, for p+ q < dimA(X),

Hq(X,Ωp
X ⊗ L) 6= 0,

which means that the Nakano-type generic vanishing theorem does not hold generally.

Example 6.8 ([15, §3, Remark]). Suppose that X is an abelian variety of dimension n ≥ 4

and Z ⊂ X is a smooth curve of genus g > 1. Let A : X̃ → X be the blow-up of X centered

at Z. Then A is the Albanese mapping of X̃ and dimA(X̃) = n. Using Theorem 1.2, we

have

Hq(X̃,Ωp

X̃
⊗ A

∗L) ∼= Hq(X,Ωp
X ⊗ L)⊕

n−2
⊕

i=1

Hq−i(Z,Ωp−i
Z ⊗ L|Z)
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for any non-zero generic L ∈ Pic0(X) and A
∗L ∈ Pic0(X̃). In particular, for 1 ≤ p < n−1

2 ,

the generic vanishing theorem implies that

Hp+1(X̃,Ωp

X̃
⊗ A

∗L) ∼= Hp+1(X,Ωp
X ⊗ L)⊕

n−2
⊕

i=1

Hp+1−i(Z,Ωp−i
Z ⊗ L|Z)

∼=

n−2
⊕

i=1

Hp+1−i(Z,Ωp−i
Z ⊗ L|Z)

= H1(Z,OZ ⊗ L|Z)⊕ · · ·

6= 0,

since Ωp
X

∼= O
⊕(np)
X and c1(OZ ⊗ L|Z) = 0, and by Riemann-Roch theorem,

h0(Z,OZ ⊗ L|Z)− h1(Z,OZ ⊗ L|Z) = 1− g < 0

for g > 1.

6.2. Blow-up invariants. In this subsection, we always consider the blow-up π : X̃ → X

of a compact complex n-dimensional manifold X with a center ı : Z ⊂ X and are able to

obtain all the results applicable to a composition of finite blow-ups.

The first consideration is the blow-up invariance for the volume of a line bundle. Recall

that

Definition 6.9 (Volume of a line bundle). Let X be an irreducible compact complex space

of dimension n, and L a line bundle on X. The volume of L is defined to be the non-negative

real number

vol(L) = volX(L) = lim sup
m→∞

h0(X,L⊗m)

mn/n!
.

The volume vol(D) = volX(D) of a Cartier divisor D is defined similarly, or by passing to

OX(D).

From Fujita’s vanishing theorem and Properties of the volume in [26, Proposition 2.2.35],

it follows that the volume of a line bundle depends only upon its numerical equivalence class.

Proposition 6.10 (Blow-up invariance of volume). Given an integral or Q-divisor D on X,

put D̃ = π∗D. Then

volX̃(D̃) = volX(D).

Proof. This is a direct corollary of Theorem 1.2 when one takes p = q = 0 and thus for each

i ≥ 1,

Hp−i,q−i(Z; ı∗OX(mD)) = 0.

Comparing birational invariance I of volume as in [26, Proposition 2.2.43], one can obtain

the estimate:

h0(X,OX (mD)) ≤ h0(X̃,OX̃(mD̃)) = h0(X,OX (mD)) +O(mn−1)

when π is a birational projective mapping. �
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Next, we consider the bimeromorphic invariance of plurigenera and Kodaira dimension,

and blow-up invariance of Kodaira-Iitaka dimension of holomorphic line bundle on a compact

complex manifold. We first give a geometric description of the Kodaira map. Let X be a

compact connected complex manifold of dimension n and L a holomorphic line bundle over

X. The space for holomorphic sections of L on X is finite-dimensional. Set the linear system

associated to V = H0(X,L) as |V | = {Div(s) : s ∈ V }. The base point locus of the linear

system |V | is given by

Bl|V | = ∩s∈VDiv(s) = {x ∈ X : s(x) = 0, for all s ∈ V }.

Set d = dimH0(X,L) and let G(d − 1,H0(X,L)) be the Grassmannian of hyperplanes of

H0(X,L).

Definition 6.11. The Kodaira map ΦV associated to L is defined by

ΦV : X \ Bl|V | −→ G(d− 1,H0(X,L)) : x 7−→ {s ∈ H0(X,L) : s(x) = 0}.

Now consider Vm := H0(X,L⊗m) and Φm := ΦVm. Set

̺m =







max{rk Φm : x ∈ X \ Bl|Vm|}, if Vm 6= {0},

−∞, otherwise.

The Kodaira-Iitaka dimension of L is

κ(L) = max{̺m : m ∈ N+}.

The Kodaira dimension κ(X) of a compact complex manifold X is defined as κ(KX) of the

canonical bundle KX . A useful characterization of Kodaira-Iitaka dimension is:

Theorem 6.12 ([37, Theorem 8.1]). For a Cartier divisor (or a line bundle) D on a variety

V , there exists positive numbers α, β and a positive integer m0 such that for any integer

m ≥ m0, there hold the inequalities

αmκ(D) ≤ Pm(dD) := dimCH
0(V,OV (mdD)) ≤ βmκ(D), (6.2)

where d is some positive integer depending on D. When the divisor D is effective (or P1(D) 6=

0), one can take d = 1 in (6.2).

Corollary 6.13. Let ν : X̃ → X be a bimeromorphic map of two compact complex manifolds

X̃ and X. Then there hold the equalities

Pm(X̃) = Pm(X), κ(X̃) = κ(X)

for Pm(•) = dimCH
0(•,K⊗m

• ). In particular, if π : X̃ → X is the blow-up morphism and L

is a holomorphic line bundle over X, then

κ(L) = κ(π∗L).

Proof. Compare the classical proof in [37, Lemma 6.3, Corollary 6.4, Theorem 5.13] or [26,

Example 2.1.16].
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Without loss of generality, one may assume that ν is a blow-up morphism along the smooth

center with codimension r with the exceptional divisor E by the weak factorization Theorem

6.3. Then

ν∗ : H0(X,K⊗m
X ) → H0(X̃,K⊗m

X̃
)

is an isomorphism. Actually, notice

KX̃ = ν∗KX ⊗O((r − 1)E)

as shown in [10, (12.7) Proposition of Chapter VII], and thus

H0(X̃, ν∗(K⊗m
X ))

∼=
−→ H0(X̃, ν∗(K⊗m

X )⊗O(m(r − 1)E)) = H0(X̃,K⊗m
X̃

),

where the group on the left-hand side is isomorphic to H0(X,K⊗m
X ) directly by Theorem 1.2,

while a section of the group H0(X̃, ν∗(K⊗m
X )⊗O(m(r− 1)E)) restricts to one of Km

X defined

off the codimension ≥ 2 fundamental locus of ν, which extends to the whole X by normality.

Then the Kodaira(-Iitaka) dimension case is a direct result of Theorem 6.12 (and Theorem

1.2). �

Similarly, one can also obtain that the holomorphic Euler characteristic

χ(X,F ) =

dimC X
∑

i=1

(−1)i dimCH
i(X,F )

for a holomorphic vector bundle F over a compact complex manifold X is a blow-up invariant

in the sense:

Corollary 6.14. With the above setting, there holds the equality

χ(X,F ) = χ(X̃, π∗F ).

Notice that it seems not easy to obtain Corollary 6.14 by the remarkable Hirzebruch-

Riemann-Roch theorem, which is usually used to compute the holomorphic Euler character-

istic, that is, for a holomorphic vector bundle F over X, the holomorphic Euler characteristic

χ(X,F ) can be computed as

χ(X,F ) =

∫

X
ch(F ) · td(X),

where the exponential Chern character ch(F ) is

rk F + c1(F ) +
1

2!
(c21(F )− c2(F )) +

1

3!
(c31(F )− 3c1(F )c2(F ) + 3c3(F )) + · · · ,

and the Todd class td(X) of the holomorphic tangent bundle T ′
X of X is

1 +
1

2
c1(T

′
X) +

1

12
(c21(T

′
X) + c2(T

′
X)) +

1

24
c1(T

′
X)c2(T

′
X) + · · · .

It is worth introducing:

Definition 6.15. Let X and Y be compact complex manifolds. We say that X and Y are

strongly K-equivalent if, there are the correspondences

Z
πX

~~⑦⑦
⑦⑦
⑦⑦
⑦

πY

��❅
❅❅

❅❅
❅❅

❅

X Y
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where πX , πY are the compositions of finite blow-ups, and π∗XKX
∼= π∗YKY .

Then with this setting, the similar argument to Corollary 6.13 gives

χ(X,K⊗m
X ) = χ(Y,K⊗m

Y ).

6.3. Blow-up formula for bundle-valued Hochschild homology. Let X be a compact

complex manifold of dimension n and W a locally sheaf of constant rank on X. Recall that

the Hochschild homology of X with value in W is given by

HHk(X,W ) := TorX×X
k (O∆,∆∗W ), −n ≤ k ≤ n,

where O∆ is the structure sheaf of the diagonal embedding ∆ : X →֒ X × X. By the

Hochschild-Kostant-Rosenberg Theorem as in [5, Corollary 3.1.4], we have

HHk(X,W ) ∼=
⊕

p−q=k

Hq(X,Ωp
X ⊗W ) ∼=

⊕

p−q=k

Hp,q(X,W )

for any −n ≤ k ≤ n.

Corollary 6.16. Let Z ⊂ X be a closed complex submanifold of complex codimension r ≥ 2.

For any −n ≤ k ≤ n, there is an isomorphism of Hochschild homologies

HHk(X̃, W̃ ) ∼= HHk(X,W )⊕HHk(Z, ı
∗W )⊕(r−1),

where π : X̃ → X is the blow-up of X along Z, and W̃ := π∗W .

Proof. This is a combination result of our main Theorem 1.2 and HKR theorem and see also

[32, Corollary 1.7]v3. In fact, we have the following isomorphisms:

HHk(X̃, W̃ ) ∼=
⊕

p−q=k

Hp,q(X̃, W̃ ) (HKR Theorem for (X̃, W̃ ))

∼=
⊕

p−q=k

(

Hp,q(X,W )⊕
r−1
⊕

i=1

Hp−i,q−i(Z, ı∗W )
)

(Theorem 1.2)

∼=
⊕

p−q=k

Hp,q(X,W )⊕
r−1
⊕

i=1

(

⊕

p−q=k

Hp−i,q−i(Z, ı∗W )
)

∼= HHk(X,W )⊕HHk(Z, ı
∗W )⊕(r−1) (HKR theorem for (X,W ), (Z, ı∗W ))

for any −n ≤ k ≤ n. �

6.4. Hochschild cohomology under blowing up. Let X be a compact complex manifold

of dimension n. Recall that the Hochschild cohomology of X is given by

HHk(X) := ExtkX×X(O∆,O∆), 0 ≤ k ≤ n.

By the Hochschild-Kostant-Rosenberg Theorem as in [6, Corollary 4.2], one has

HHk(X) ∼=
⊕

p+q=k

Hq(X,∧pT ′X)

for any 0 ≤ k ≤ n. Here comes a natural:

Question 6.17. Is there a blow-up formula for the Hochschild cohomology of compact complex

manifolds?
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At present, it seems that it is hard to build an explicit blow-up formula for the Hochschild

cohomology; even for smooth projective varieties. By Hochschild-Kostant-Rosenberg Theo-

rem, one possible way to handle this question is to understand the cohomology Hq(X,∧pT ′X)

under blowing up. Using our blow-up formula, we will discuss some relations between

Hq(X,∧pT ′X) and Hq(X̃,∧pT ′X̃). First of all, Serre duality gives

Hq(X,∧pT ′X) ∼= Hn−q(X,Ωp
X ⊗ ωX)∗,

where ωX is the canonical sheaf of X. Then from the blow-up formula in Theorem 1.2, it

follows

Hs(X̃,Ωp

X̃
⊗ π∗ωX) ∼= Hs(X,Ωp

X ⊗ ωX)⊕
r−1
⊕

i=1

Hs−i(Z,Ωp−i
Z ⊗ ı∗ωX). (6.3)

Set D := (r − 1)E as r ≥ 2 and the structure sheaf sequence yields a short exact sequence

0 // OX̃
// OX̃(D) // j∗j

∗OX̃(D) // 0, (6.4)

where j : D →֒ X̃ . Tensoring (6.4) with Ωp

X̃
⊗ π∗ωX , we get

0 // Ωp

X̃
⊗ π∗ωX

// Ωp

X̃
⊗ ωX̃

// Ωp

X̃
⊗ π∗ωX ⊗ j∗j

∗OX̃(D) // 0 , (6.5)

since ωX̃ = π∗ωX ⊗ OX̃((r − 1)E) = π∗ωX ⊗ OX̃(D). On the long exact sequence (6.5) of

sheaf cohomologies, (6.3) implies a long exact sequence

· · · Hq(X,∧pT ′X)∗ ⊕
⊕r−1

i=1 H
q−i(Z,Ωp−i

Z (ı∗ωX)) Hq(X̃,∧pT ′X̃)∗

Hq(D, j∗(Ωp

X̃
(π∗ωX)⊗OX̃(D))) · · · .

In particular, as the codimension r = 2, we obtain

· · · Hq(X,∧pT ′X)∗ ⊕Hq−1(Z,Ωp−1
Z (ı∗ωX)) Hq(X̃,∧pT ′X̃)∗

Hq(E, j∗(Ωp

X̃
(π∗ωX)⊗OX̃(E))) · · · .

Appendix A. Borel spectral sequence for complex analytic bundles

Let ξ = (E,B,F, π) be a complex analytic fibre bundle, where E,B,F are connected and

F is compact. Let W be a complex vector bundle on B, and W̃ = π∗W the pullback on E.

Suppose that {fαβ} is the transition functions of W with respect to a suitable open covering

{Uα}α∈Λ, where fαβ : Uα ∩ Uβ → G. From definition, there exist a representation of G over

Hp,q
∂̄

(F ) denoted by ϕ0 : G→ GL(Hp,q
∂̄

(F )). Consider the collection

C
p,q :=

⋃

b∈B

Hp,q
∂̄

(Fb),

where Fb = π−1(b). The collection C
p,q forms a smooth vector bundle Hp,q(F ) over B with

the transition functions {f0αβ := ϕ0 ◦ fαβ}. Let H∂̄(F ) be the direct sum of Hp,q(F ), i.e.,

H∂̄(F ) =
⊕

p,q

Hp,q(F ).
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Then we have

Lemma A.1 ([21, Appendix Two, §1]). If ϕ0 is constant on the connected components of G,

in particular if F is Kähler, then H∂̄(F ) is a holomorphic vector bundle over B.

In particular, the following theorem attributed to Borel [21, Appendix Two, 2.1] provides

us with an approach to compute the Dolbeault cohomology with values in W̃ .

Theorem A.2. Assume that every connected component of the structure group G of ξ acts

trivially on H∂̄(F ), and then there exists a spectral sequence (Ek, dk) (k ≥ 0) with the following

properties:

(i) Ek is 4-graded, by the fibre degree, the base-degree and the type. Let p,qEs,t
k be the

subspace of elements of Ek of type (p, q), fibre-degree s, base-degree t, we have p,qEs,t
k =

0 if p+ q 6= s+ t or if one of p, q, s, t is < 0. The differential dk is

dk : p,qEs,t
k → p,q+1Es+k,t−k+1

k .

(ii) If p+ q = s+ t, we have

p,qEs,t
2

∼=
∑

i≥0

H i,s−i(B,W ⊗Hp−i,q−s+1(F )).

(iii) The spectral sequence converges to H(E, W̃ ). For all p, q ≥ 0 we have

GrHp,q(E, W̃ ) =
∑

s+t=p+q

p,qEs,t
∞

for a suitable filtration of Hp,q(E, W̃ ).

Especially, as a corollary, we have the following result (cf. [21, Appendix Two, 7.1]).

Corollary A.3. If the vector bundle H∂̄(F ) is trivial, in particular, if the structure group of

ξ is connected, then we have

p,qEs,t
2

∼=
∑

i≥0

H i,s−i(B,W )⊗Hp−i,q−s+i
∂̄

(F ).

Appendix B. Blow-up formula re-examined

The purpose of this appendix is to sketch a second proof of Theorem 1.2 by the same

philosophy as in [35].

B.1. Morphism of cohomology induced by pullback of differential forms. Suppose

that f : X → Y is a holomorphic map of complex manifolds. Then there exists a natural

morphism α : f−1Ωp
Y → Ωp

X of f−1OY -modules, determined by the pullback of holomorphic

p-forms. It is first defined by a morphism of presheaves

lim
f(U)⊂V

Ωp
Y (V )

µ
−→ lim

f(U)⊂V
Ωp
X(f−1(V ))

ν
−→ Ωp

X(U)

for any open sets U ⊂ X and V ⊂ Y . Here the first step is the limit of the pullbacks

µ = limf(U)⊂V f
∗|f−1(V ) and ν is the restriction. Note that f∗Ω

p
X(V ) = Ωp

X(f−1(V )). By the

uniqueness of sheafification, we obtain a composition morphism of f−1OY -modules

α : f−1Ωp
Y −→ f−1f∗Ω

p
X −→ Ωp

X . (B.1)
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Because f−1 is the left adjoint of Rf∗, there is a functorial morphism

E −→ Rf∗f
−1E (B.2)

for any E ∈ Db(OY ) the bounded derived category of OY -modules (cf. [22, Proposition

2.6.4]). Combining (B.1) with the functorial morphism (B.2) for Ωp
Y and f∗Ω

p
X leads to the

following morphisms:

Ωp
Y −→ Rf∗f

−1Ωp
Y −→ Rf∗Ω

p
X (B.3)

and

f∗Ω
p
X −→ Rf∗f

−1f∗Ω
p
X −→ Rf∗Ω

p
X (B.4)

in Db(OY ).

Note that there exists a natural morphism f∗ : Ωp
Y → f∗Ω

p
X induced by pullback of

differential forms. By (B.1)-(B.4), we get a commutative diagram

f∗ : H l(Y,Ωp
Y )

f∗

��

// H l(X, f−1Ωp
Y )

f∗

��

α // H l(X,Ωp
X)

=

��

f † : H l(Y, f∗Ω
p
X) // H l(X, f−1f∗Ω

p
X) // H l(X,Ωp

X ).

By the construction, it is important to notice that f∗ : H l(Y,Ωp
Y ) → H l(X,Ωp

X ) is the

morphism induced by pullback of differential forms. Moreover, the morphism f † is the edge

morphism of the Leray spectral sequence for Ωp
X under the morphism f (cf. [10, (13.8)

Theorem of Chapter IV]). The bundle-valued case can be dealt with similarly.

B.2. Sketch of proof. Note that the morphisms π∗ : Hp,q(X,W ) → Hp,q(X̃, W̃ ) and ̟∗ :

Hp,q(Z, ı∗W ) → Hp,q(E, ∗W̃ ) are injective because of [41, Theorem 3.1] and Lemma 3.3.

The blow-up diagram (4.1) induces a commutative diagram of short exact sequences

0 // Hp,q(X,W )

ı∗

��

π∗
// Hp,q(X̃, W̃ )

∗

��

// coker (π∗)

̄∗

��

// 0

0 // Hp,q(Z, ı∗W )
̟∗

// Hp,q(E, ∗W̃ ) // coker (̟∗) // 0.

(B.5)

Like (5.10), to prove the blow-up formula, it remains to verify that ̄∗ is isomorphic.

Consider the sheaves Ωp

X̃
(W̃ ) and Ωp

E(
∗W̃ ) on X̃ and E, respectively. We have the asso-

ciated Leray spectral sequences {Ek(W̃ ), dk} and {Ek(
∗W̃ ), d′k} with the second terms

El,s
2 (W̃ ) = H l(X,Rsπ∗Ω

p

X̃
(W̃ )) =⇒ GrHp,l+s(X̃, W̃ )

and

El,s
2 (∗W̃ ) = H l(Z,Rs̟∗Ω

p
E(

∗W̃ )) =⇒ GrHp,l+s(E, ∗W̃ ).

Here the filtration of Hp,l+s(−) is defined by setting

Hp,l+s(−) = F 0Hp,l+s(−) ⊃ F 1Hp,l+s(−) ⊃ · · · ⊃ F l+sHp,l+s(−) ⊃ F l+s+1Hp,l+s(−) = 0

and the associated graded space is defined by

Grk(−) =
F k(−)

F k+1(−)
.
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From Lemma 4.1 we have

El,0
2 (W̃ ) = H l(X,π∗Ω

p

X̃
(W̃ )) ∼= H l(X,Ωp

X (W ))

and

El,0
2 (∗W̃ ) = H l(Z,̟∗Ω

p
E(

∗W̃ )) ∼= H l(Z,Ωp
Z(ı

∗W )).

On one hand, the Dolbeault theorem implies

H l(X̃,Ωp

X̃
(W̃ )) ∼= Hp,l(X̃, W̃ ) and H l(X,Ωp

X (W )) ∼= Hp,l(X,W ).

On the other hand, the pullback of the differential forms determines a morphism

π∗ : Hp,l(X,W ) → Hp,l(X̃, W̃ ).

So one can have the following commutative diagram of abelian groups

El,0
∞ (W̃ )

�

u

''PP
PP

PP
P

H l(X,Ωp
X(W )) = El,0

2 (W̃ )

55 55❥❥❥❥❥❥❥❥❥

∼= Dolbeault��

π†
// H l(X̃,Ωp

X̃
(W̃ ))

∼= Dolbeault��

Hp,l(X,W )
π∗

// Hp,l(X̃, W̃ )

where π† is the edge morphism of El,0
2 (W̃ ). This implies that the differentials for E(W̃ ) with

target of degree (l, 0) are zero. Likewise, we can show that the differentials for E(∗W̃ ) with

target of degree (l, 0) are also zero. In particular, we have an exact sequence

0 // Eq,0
∞ (W̃ )

⊆ // Hq(X̃,Ωp

X̃
(W̃ )) // Hq(X̃,Ωp

X̃
(W̃ ))/Eq,0

∞ (W̃ ) // 0. (B.6)

By definition, there hold the equalities

Eq,0
∞ (W̃ ) =

F qHq(X̃,Ωp

X̃
(W̃ ))

F q+1Hq(X̃,Ωp

X̃
(W̃ ))

= F qHq(X̃,Ωp

X̃
(W̃ )) ∼= Hp,q(X,W )

and

F 0Hq(X̃,Ωp

X̃
(W̃ )) = Hq(X̃,Ωp

X̃
(W̃ )) ∼= Hp,q(X̃, W̃ ).

So the exact sequence (B.6) becomes

0 // F qHp,q(X̃, W̃ )
⊆

// F 0Hp,q(X̃, W̃ ) // F 0Hp,q(X̃, W̃ )/F qHp,q(X̃, W̃ ) // 0,

which is equal to

0 // Hp,q(X,W )
π∗

// Hp,q(X̃, W̃ ) // coker (π∗) // 0.

Similarly, we can show that

0 // Hp,q(Z, ı∗W )
̟∗

// Hp,q(E, ∗W̃ ) // coker (̟∗) // 0

equals to

0 // F qHp,q(E, ∗W̃ )
⊆ // F 0Hp,q(E, ∗W̃ ) // F 0Hp,q(E, ∗W̃ )/F qHp,q(E, ∗W̃ ) // 0.
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Consequently, (B.5) is equivalent to

0 // F qHp,q(X̃, W̃ )

��

⊆
// F 0Hp,q(X̃, W̃ )

��

// F 0Hp,q(X̃, W̃ )/F qHp,q(X̃, W̃ )

∗

��

// 0

0 // F qHp,q(E, ∗W̃ )
⊆ // F 0Hp,q(E, ∗W̃ ) // F 0Hp,q(E, ∗W̃ )/F qHp,q(E, ∗W̃ ) // 0.

Moreover, due to the third isomorphism in Lemma 4.1 one gets

∗ : El,s
2 (W̃ ) ∼= El,s

2 (∗W̃ ) for any s ≥ 1,

and thus, for any l with q = l + s, the following isomorphism holds:

∗ : GrlHp,q(X̃, W̃ ) ∼= GrlHp,q(E, ∗W̃ ).

As a result, one has

∗ :
F 0Hp,q(X̃, W̃ )

F qHp,q(X̃, W̃ )
∼=
F 0Hp,q(E, ∗W̃ )

F qHp,q(E, ∗W̃ )

and therefore ̄∗ in (B.5) is an isomorphism.

Remark B.1. It is easy to check that the isomorphisms (4.26)

π∗ : Hq(X,K p
X,Z(W ))

≃
−→ Hq(X̃,K p

X̃,E
(W̃ ))

for all suitable p, q are equivalent to the ones (B.5)

Hp,q(X̃, W̃ )

π∗Hp,q(X,W )
∼=

Hp,q(E, ∗W̃ )

̟∗Hp,q(Z, ı∗W )

by use of the commutative diagram

· · · // ker (π̄∗
q )

��

// 0

��

// 0

��

// ker (π̄∗
q+1)

��

// · · ·

· · · // Hq(X,K p
X,Z(W ))

π̄∗

q ��

// Hp,q(X,W )

π∗

q ��

ı∗ // Hp,q(Z, ı∗W )

̟∗

q ��

δ // Hq+1(X,K p
X,Z(W ))

π̄∗

q+1 ��

// · · ·

· · · // Hq(X̃,K p

X̃,E
(W̃ ))

��

// Hp,q(X̃, W̃ )

��

∗ // Hp,q(E, ∗W̃ )

��

δ̃ // Hq+1(X̃,K p

X̃,E
(W̃ ))

��

// · · ·

· · · // coker (π̄∗
q )

��

// coker (π∗
q )

��

// coker (̟∗
q )

��

δ̂ // coker (π̄∗
q+1)

//

��

· · ·

0 0 0 0

See also the simple Dolbeault case in [32, Proof of Proposition 3.4 and Remark 3.6]v4.
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Math. France. Mémoire 21 (1985) 1-87. 12
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