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Continuous Drifts ∗

Jianhai Baob), Xing Huanga), Chenggui Yuanb)

a)School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

hxsc19880409@163.com

b)Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, UK

Jianhai.Bao@Swansea.ac.uk, c.yuan@swansea.ac.uk

Abstract

In this paper, we are concerned with convergence rate of Euler-Maruyama scheme
for stochastic differential equations with Hölder-Dini continuous drift. The key con-
tributions lie in (i), by means of regularity of non-degenerate Kolmogrov equation, we
investigate convergence rate of Euler-Maruyama scheme for a class of stochastic dif-
ferential equations, which allow the drifts to be Dini-continuous and unbounded; (ii)
by the aid of regularization properties of degenerate Kolmogrov equation, we discuss
convergence rate of Euler-Maruyama scheme for a range of degenerate stochastic dif-
ferential equations, where the drift is Hölder-Dini continuous of order 2

3 with respect to
the first component, and is merely Dini-continuous concerning the second component.

AMS subject Classification: 60H35 · 41A25 · 60H10 · 60C30
Keywords: Euler-Maruyama scheme · convergence rate · Hölder-Dini continuity · degener-
ate stochastic differential equation · Kolmogorov equation

1 Introduction and Main Results

In their paper [24], Wang and Zhang studied existence and uniqueness for a class of s-
tochastic differential equations (SDEs) with Hölder-Dini continuous drifts; Wang [23] also
investigated the strong Feller property, log-Harnack inequality and gradient estimates for
SDEs with Dini continuous drift. So far there are no numerical schemes available for SDEs
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1



with Hölder-Dini continuous drifts. So the aim of this paper is to prove the convergence of
Euler-Maruyama (EM) scheme and obtain the rate of convergence for these equations under
reasonable conditions.

It is well-known that convergence rate of Euler-Maruyama for SDEs with regular coeffi-
cients is one-half, see, e.g., [12]. With regard to convergence rate of EM scheme under various
settings, we refer to, e.g., [1] for stochastic differential delay equations (SDDEs) with polyno-
mial growth with respect to (w.r.t.) the delay variables, [6] for SDDEs under local Lipschitz
and also under monotonicity condition, [15] for SDEs with discontinuous coefficients, and
[26] for SDEs under log-Lipschitz condition. Whereas, for SDEs with non-globally Lipschitz
continuous coefficients, see, e.g., [3, 8, 9, 10], to name a few. On the other hand, Hairer et
al. [7] have established the first result in the literature that Euler’s method converges to the
solution of an SDE with smooth coefficients in the strong and numerical weak sense without
any arbitrarily small polynomial rate of convergence, and Jentzen et al. [11] have further
given a counterexample that no approximation method converges to the true solution in the
mean square sense with polynomial rate.

The rate of convergence of EM scheme for SDEs with irregular coefficients has also gained
much attention. For instance, Adopting the Yamada-Watanabe approximation approach, [5]
discussed strong convergence rate in Lp-norm sense; Using the Yamada-Watanabe approxi-
mation trick and heat kernel estimate, [17] studied strong convergence rate in L1-norm sense
for a class of non-degenerate SDEs, where the bounded drift term satisfies a weak mono-
tonicity and is of bounded variation w.r.t. a Gaussian measure and the diffusion term is
Hölder continuous; Applying the Zvonkin transformation, [19] discussed strong convergence
rate in Lp-norm sense for SDEs with additive noise, where the drift coefficient is bounded
and Hölder continuous.

It is worth pointing out that [17, 19] focused on convergence rate of EM for SDEs with
Hölder continuous and bounded drifts, which rules out Hölder-Dini continuous and unbound-
ed drifts. On the other hand, most of the existing literature on convergence rate of EM
scheme is concerned with non-degenerate SDEs. Yet the corresponding issue for degenerate
SDEs is scarce, to the best of our knowledge. So, in this work, we will not only investigate
the convergence of the EM scheme for SDEs with Hölder-Dini continuous drift, but will also
study the degenerate cases. For wellposedness of SDEs with singular coefficients, we refer
to, e.g., [14, 23, 24, 28] for more details.

Throughout the paper, the following notation will be used. Let n,m be positive integers,
(Rn, 〈·, ·〉, | · |) the n-dimensional Euclidean space, and Rn ⊗ Rm the family of all n × m
matrices. Let ‖ · ‖ and ‖ · ‖HS stand for the usual operator norm and the Hilbert-Schmidt
norm, respectively. Fix T > 0 and set ‖f‖T,∞ := supt∈[0,T ],x∈Rm ‖f(t, x)‖ for an operator-
valued map f on [0, T ]×Rm. C(Rm;Rn) means the continuous functions f : Rm → Rn. Let
C2(Rn;Rn ⊗ Rn) be the family of all continuously twice differentiable functions f : Rn →
Rn ⊗ Rn. Denote Mn

non by the collection of all nonsingular n × n-matrices. Let S0 be the
collection of all slowly varying functions φ : R+ → R+ at zero in Karamata’s sense (i.e.,

limt→0
φ(λt)
φ(t)

= 1 for any λ > 0), which are bounded from 0 and ∞ on [ε,∞) for any ε > 0.
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Let D0 be the family of Dini functions, i.e.,

D0 : =
{
φ
∣∣∣φ : R+ → R+ is increasing and

∫ 1

0

φ(s)

s
ds <∞

}
.

A function f : Rm → Rn is called Dini-continuity if there exists φ ∈ D0 such that |f(x) −
f(y)| ≤ φ(|x − y|) for any x, y ∈ Rm. We remark that every Dini-continuous function
is continuous and every Lipschitz continuous function is Dini-continuous; Moreover, if f
is Hölder continuous, then f is Dini-continuous. Nevertheless, there are numerous Dini-
continuous functions, which are not Hölder continuous at all; see, e.g.,

φ(x) =

{
1

(log(c+x−1))(1+δ) , x > 0

0, x = 0

for some constants δ > 0 and c ≥ e3+2δ. Set

D := {φ ∈ D0|φ2 is concave} and Dε := {φ ∈ D |φ2(1+ε) is concave}

for some ε ∈ (0, 1) sufficiently small. Clearly, φ constructed above belongs to Dε. A function
f : Rm → Rn is called Hölder-Dini continuity of order α ∈ [0, 1) if

|f(x)− f(y)| ≤ |x− y|αφ(|x− y|), |x− y| ≤ 1

for some φ ∈ D0; see, for instance,

f(x) =

{
1

(1+x)α(log(c+x−1))(1+δ) , x > 0

0, x = 0

for some constants c, δ > 0 and α ∈ (0, 1).
Before proceeding further, a few words about the notation are in order. Generic constants

will be denoted by c; we use the shorthand notation a . b to mean a ≤ cb. If the constant
c depends on a parameter p, we shall also write cp and a .p b.

1.1 Non-degenerate SDEs with Bounded Coefficients

In this sebsection, we consider an SDE on (Rn, 〈·, ·〉, | · |)

(1.1) dXt = bt(Xt)dt+ σt(Xt)dWt, t > 0, X0 = x,

where b : R+×Rn → Rn, σ : R+×Rn → Rn⊗Rn, and (Wt)t≥0 is an n-dimensional Brownian
motion defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P).

With regard to (1.1), we suppose that there exists φ ∈ D such that for any s, t ∈ [0, T ]
and x, y ∈ Rn,
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(A1) σt ∈ C2(Rn;Rn ⊗ Rn), σt(x) ∈Mn
non, and

(1.2) ‖b‖T,∞ +
2∑
i=0

‖∇iσ‖T,∞ + ‖∇σ−1‖T,∞ + ‖σ−1‖T,∞ <∞,

where ∇i means the i-th order gradient operator;

(A2) (Regularity of b w.r.t. spatial variables)

|bt(x)− bt(y)| ≤ φ(|x− y|);

(A3) (Regularity of b and σ w.r.t. time variables)

|bs(x)− bt(x)|+ ‖σs(x)− σt(x)‖HS ≤ φ(|s− t|).

Under (A1) and (A2), (1.1) admits a unique non-explosive strong solution (Xt)t∈[0,T ]; see,
e.g., [23, Theorem 1.1].

Without loss of generality, we take an integer N > 0 sufficiently large such that the
stepsize δ := T/N ∈ (0, 1). The continuous-time EM scheme corresponding to (1.1) is

(1.3) dYt = btδ(Ytδ)dt+ σtδ(Ytδ)dWt, t > 0, Y0 = X0 = x.

Herein, tδ := bt/δcδ with bt/δc being the integer part of t/δ.

The first contribution in this paper is stated as follows.

Theorem 1.1. Let (A1)-(A3) hold. Then(
E
(

sup
0≤t≤T

|Xt − Yt|2
))1/2

.T φ(CT
√
δ)

for some constant CT ≥ 1.

Remark 1.2. In Theorem 1.1, by taking φ(x) = xβ for x > 0 and β ∈ (0, 1], and inspecting
closely the argument of Theorem 1.1, the concave property of φ2 can be dropped. Moreover,
we have

E
(

sup
0≤t≤T

|Xt − Yt|2
)
.T δ

β.

So, our present result covers [19, Theorem 2.13], where the drift is only Hölder continuous.
In particular, for β = 1, it reduces to the classical result on strong convergence of EM scheme
for SDEs with regular coefficients; see, e.g., [12].
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1.2 Non-degenerate SDEs with Unbounded Coefficients

As we can see, in Theorem 1.1, the coefficients are uniformly bounded, and that the drift
term b satisfies the global Dini-continuous condition (see (A2) above), which seems to be a
little bit stringent. Therefore, concerning the coefficients, it is quite natural to replace uni-
form boundedness by local boundedness and global Dini continuity by local Dini continuity,
respectively.

In lieu of (A1)-(A3), as for (1.1) we assume that for any s, t ∈ [0, T ] and k ≥ 1,

(A1’) σt ∈ C2(Rn;Rn ⊗ Rn), for every x ∈ Rn, σt(x) ∈Mn
non, and

|bt(x)|+
2∑
i=0

‖∇iσt(x)‖HS + ‖∇σ−1
t (x)‖HS + ‖σ−1

t (x)‖HS ≤ KT (1 + |x|), x ∈ Rn

for some constant KT > 0;

(A2’) (Regularity of b w.r.t. spatial variables) There exists φk ∈ D such that

|bt(x)− bt(y)| ≤ φk(|x− y|), |x| ∨ |y| ≤ k;

(A3’) (Regularity of b and σ w.r.t. time variables) For φk ∈ D such that (A2’),

|bs(x)− bt(x)|+ ‖σs(x)− σt(x)‖HS ≤ φk(|s− t|), |x| ≤ k.

By the cut-off approach, Theorem 1.1 can be extended to include SDEs with local Dini-
continuous coefficients, which is presented as below.

Theorem 1.3. Assume (A1’)-(A3’) hold. Then it holds that

(1.4) lim
δ→0

E
(

sup
0≤t≤T

|Xt − Yt|2
)

= 0.

In particular, if φk(s) = eec0k
4

sα, s ≥ 0, for some α ∈ (0, 1] and c0 > 0, then

(1.5) E
(

sup
0≤t≤T

|Xt − Yt|2
)
. inf

ε∈(0,1)

{
(log log(δ−αε))−

1
4 + δα(1−ε)

}
.

Remark 1.4. Theorem 1.3 has improved the result in [18] since the drift involved is allowed
to be unbounded and local Dini continuous, while the drift in [18] is merely bounded and
Hölder continuous.
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1.3 Degenerate SDEs

So far, most of the existing literature on convergence of EM scheme for SDEs with irregular
coefficients is concerned with non-degenerate SDEs; see, e.g., [17, 18, 19] for SDEs driven
by Brownian motions, and [19] for SDEs driven by jump processes. The issue for the setup
of degenerate SDEs has not yet been considered to date to the best of our knowledge.
Nevertheless, in this subsection, we make an attempt to discuss the topic for degenerate
SDEs with Hölder-Dini continuous drift.

Consider the following degenerate SDE on R2n

(1.6)

{
dX

(1)
t = b

(1)
t (X

(1)
t , X

(2)
t )dt, X

(1)
0 = x(1) ∈ Rn,

dX
(2)
t = b

(2)
t (X

(1)
t , X

(2)
t )dt+ σt(X

(1)
t , X

(2)
t )dWt, X

(2)
0 = x(2) ∈ Rn,

where b
(1)
t , b

(2)
t : R2n → Rn, σt : R2n → Rn ⊗ Rn, and (Wt)t≥0 is an n-dimensional Brownian

motion defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P). (1.6) is also
called a stochastic Hamiltonian system, which has been investigated extensively in [25, 27]
on Bismut formulae, in [16] on ergodicity, in [22] on hypercontractivity, and in [24] on
wellposedness, to name a few. For applications of the model (1.6), we refer to, e.g., Soize
[21].

For notational simplicity, we shall write R2n instead of Rn × Rn. Write the gradient
operator on R2n as ∇ = (∇(1),∇(2)), where ∇(1) and ∇(2) stand for the gradient operators
w.r.t. the first and the second components, respectively.

We assume that there exists φ ∈ Dε ∩ S0 such that for any x = (x(1), x(2)), y =
(y(1), y(2)) ∈ R2n and s, t ∈ [0, T ],

(C1) (Hypoellipticity) [∇(2)b
(1)
t (x)], σt(x) ∈Mn

non, and

‖b(1)‖T,∞ + ‖b(2)‖T,∞ + ‖∇(2)b(1)‖T,∞ +
∥∥[∇(2)b(1)]−1

∥∥
T,∞

+ ‖σ‖T,∞ + ‖∇σ‖T,∞ + ‖σ−1‖T,∞ <∞;

(C2) (Regularity of b(1) w.r.t. spatial variables)

|b(1)
t (x)− b(1)

t (y)| ≤ |x(1) − y(1)|
2
3φ(|x(1) − y(1)|) if x(2) = y(2),

‖(∇(2)b
(1)
t )(x)− (∇(2)b

(1)
t )(y)‖HS ≤ φ(|x(2) − y(2)|) if x(1) = y(1);

(C3) (Regularity of b(2) w.r.t. spatial variables)

|b(2)
t (x)− b(2)

t (y)| ≤ |x(1) − y(1)|
2
3φ(|x(1) − y(1)|) + φ

7
2 (|x(2) − y(2)|);

(C4) (Regularity of b(1), b(2) and σ w.r.t. time variables)

|b(1)
t (x)− b(1)

s (x)|+ |b(2)
t (x)− b(2)

s (x)|+ ‖σt(x)− σs(x)‖HS ≤ φ(|t− s|).
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Observe from (C2) and (C3) that b(1)(·, x(2)) and b(2)(·, x(2)) with fixed x(2) are locally
Hölder-Dini continuous of order 2

3
, and (∇(2)b(1))(x(1), ·) and b(2)(x(1), ·) with fixed x(1) are

merely Dini continuous. According to [24, Theorem 1.2], (1.6) admits a unique strong
solution under the assumptions (C1)-(C3). In fact, (1.6) is wellposed under (C1)-(C3)
with φ ∈ D0 ∩ S0 in lieu of φ ∈ Dε ∩ S0. Nevertheless, the requirement φ ∈ Dε ∩ S0 is
imposed in order to reveal the order of convergence for the EM scheme below.

The continuous-time EM scheme associated with (1.6) is as follows:

(1.7)

{
dY

(1)
t = b

(1)
tδ

(Y
(1)
tδ
, Y

(2)
tδ

)dt, X
(1)
0 = x(1) ∈ Rn,

dY
(2)
t = b

(2)
tδ

(Y
(1)
tδ
, Y

(2)
tδ

)dt+ σtδ(Y
(1)
tδ
, Y

(2)
tδ

)dWt, X
(2)
0 = x(2) ∈ Rn,

where tδ is defined as in (1.3).
Another contribution in this paper reads as below.

Theorem 1.5. Let (C1)-(C4) hold. Then(
E
(

sup
0≤t≤T

|Xt − Yt|2
))1/2

.T φ(CT
√
δ)

for some constant CT ≥ 1, in which

Xt :=

(
X

(1)
t

X
(2)
t

)
and Yt :=

(
Y

(1)
t

Y
(2)
t

)
.

Remark 1.6. By applying the cut-off approach and refining the argument of [24, Theorem
2.3] (see also Lemma 5.1 below), the boundedness of coefficients can be removed. We herein
do not go into details since the corresponding trick is quite similar to the proof of Theorem
1.3.

The outline of this paper is organized as follows: In Section 2, we elaborate regulari-
ty of nondegenerate Kolmogorov equation, which plays an important role in dealing with
convergence rate of EM scheme for nondegenerate SDEs with Hölder-Dini continuous and
unbounded drifts; In Sections 3, 4 and 5, we complete the proofs of Theorems 1.1, 1.3 and
1.5, respectively.

2 Regularity of Non-degenerate Kolmogorov Equation

Let (ei)i≥1 be an orthogonal basis of Rn. For any λ > 0, consider the following Rn-valued
parabolic equation:

∂tu
λ
t + Ltu

λ
t + bt +∇btu

λ
t = λuλt , uλT = 0n,(2.1)

where ∇btu
λ
t means the directional derivative along the direction bt, 0n is the zero vector in

Rn and

Lt :=
1

2

∑
i,j

〈(σtσ∗t )(·)ei, ej〉∇ei∇ej

7



with σ∗t standing for the transpose of σt. Consider the coupled forward-backward SDE{
dZs,x

t = σt(Z
s,x
t )dWt, Zs,x

s = x,

dY λ,s,x
t = {λY λ,s,x

t − b(Zs,x
t )−∇b(Zs,xt )Y

λ,s,x
t }dt+ Zs,x

t dWt, Y λ,s,x
T = 0n

(2.2)

for any t ∈ [s, T ] ⊂ [0, T ]. By the chain rule, it follows from (2.2) that

d(e−λtY λ,s,x
t ) = −λe−λtY λ,s,x

t dt+ e−λtdY λ,s,x
t

= −eλt{b(Zs,x
t ) +∇b(Zs,xt )Y

λ,s,x
t }dt+ eλtZs,x

t dWt.

Integrating from t to T and, in particular, taking s = t yields that

EY λ,t,x
t =

∫ T

t

e−λ(r−t)E{b(Zt,x
r ) +∇b(Zt,xr )Y

λ,t,x
r }dr.

Noting from [2, Theorem 5.5] that Y λ,t,x
t = uλt (Z

t,x
t ), P-a.s., and Zt,x

t = x, so we arrive at

(2.3) uλs =

∫ T

s

e−λ(t−s)P 0
s,t{bt +∇btu

λ
t }dt,

where the semigroup (P 0
s,t)0≤s≤t is generated by (Zs,x

t )0≤s≤t which solves an SDE below

(2.4) dZs,x
t = σt(Z

s,x
t )dWt, t > s, Zs,x

s = x.

For notational simplicity, let

(2.5) ΛT,σ = e
T
2
‖∇σ‖2T,∞‖σ−1‖T,∞

and

Λ̃T,σ = 48e288T 2‖∇σ‖4T,∞
{

6
√

2eT‖∇σ‖
2
T,∞‖σ−1‖4

T,∞ + T‖∇σ−1‖2
T,∞

+ 2T 2‖∇2σ‖2
T,∞‖σ−1‖2

T,∞e2T‖∇σ‖2T,∞
}
.

(2.6)

Moreover, set

(2.7) ΥT,σ :=

√
Λ̃T,σ

{
3 + 2‖b‖T,∞ + 28

(
ΛT,σ +

√
Λ̃T,σ

)
‖b‖2

T,∞

}
.

The lemma below plays a crucial role in investigating error analysis.

Lemma 2.1. Under(A1) and (A2), for any λ ≥ 9πΛ2
T,σ‖b‖2

T,∞ + 4(‖b‖T,∞ + ΛT,σ)2,

(i) (2.1) (i.e., (2.3)) enjoys a unique strong solution uλ ∈ C([0, T ];C1
b (Rn;Rn));

(ii) ‖∇uλ‖T,∞ ≤ 1
2
;

(iii) ‖∇2uλ‖T,∞ ≤ ΥT,σ

∫ T
0

e−λt

t
φ̃(‖σ‖T,∞

√
t)dt, where φ̃(s) :=

√
φ2(s) + s, s ≥ 0.
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Proof. To show (i)-(iii), it boils down to refine the argument of [23, Lemma 2.1]. (i) holds
for any λ ≥ 4(‖b‖T,∞ + ΛT,σ)2 via the Banach fixed-point theorem.

In what follows, we aim to show (ii) and (iii) one-by-one. Observe from [13, Theorem
3.1, p.218] that

(2.8) d∇ηZ
s,x
t = (∇∇ηZs,xt σt)(Z

s,x
t )dWt, t ≥ s, ∇ηZ

s,x
s = η ∈ Rn.

Using Itô’s isometry and Gronwall’s inequality, one has

(2.9) E|∇ηZ
s,x
t |2 ≤ |η|2eT‖∇σ‖

2
T,∞ .

Utilizing the BDG inequality, we deduce that

E|∇ηZ
s,x
t |4 ≤ 8

{
|η|4 + 36(t− s)‖∇σ‖4

T,∞

∫ t

s

E|∇ηZ
s,x
u |4du

}
,

which, combining with Gronwall’s inequality, yields that

E|∇ηZ
s,x
t |4 ≤ 8|η|4e288T 2‖∇σ‖4T,∞ .(2.10)

Recall from [23, (2.8)] that the Bismut formula below

(2.11) ∇ηP
0
s,tf(x) = E

(f(Zs,x
t )

t− s

∫ t

s

〈σ−1
r (Zs,x

r )∇ηZ
s,x
r , dWr〉

)
, f ∈ Bb(Rn)

holds. By the Cauchy-Schwartz inequality, the Itô isometry and (2.9), we obtain that

|∇ηP
0
s,tf |2(x) ≤

Λ2
T,σ|η|2P 0

s,tf
2(x)

t− s
, f ∈ Bb(Rn),(2.12)

where ΛT,σ > 0 is defined in (2.5). So, one infers from (2.3) and (2.12) that

‖∇uλs‖ ≤
∫ T

s

e−λ(t−s)‖∇P 0
s,t{bt +∇btu

λ
t }‖dt

≤ ΛT,σ(1 + ‖∇uλ‖T,∞)‖b‖T,∞
∫ T

0

e−λt√
t

dt

≤ λ−
1
2
√
πΛT,σ‖b‖T,∞(1 + ‖∇uλ‖T,∞).

Thus, (ii) follows by taking λ ≥ 9πΛ2
T,σ‖b‖2

T,∞.
In the sequel, we intend to verify (iii). Set γs,t := ∇η∇η′Z

s,x
t for any η, η′ ∈ Rn. Notice

from (2.8) that

dγs,t =
{
∇γs,tσt(Z

s,x
t ) +∇∇ηZs,xt ∇∇η′Zs,xt σt(Z

s,x
t )
}

dWt, t ≥ s, γs,s = 0n.

By the Doob submartingale inequality and the Itô isometry, besides the Gronwall inequality
and (2.9), we get that

sup
s≤t≤T

E|γs,t|2 ≤ 16T‖∇2σ‖2
T,∞e288T 2‖∇σ‖4T,∞+2T‖∇σ‖2T,∞|η|2|η′|2.(2.13)
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From (2.11) and the Markov property, we have

∇ηP
0
s,tf(x) = E

((P 0
t+s
2
,t
f)(Zs,x

t+s
2

)

(t− s)/2

∫ t+s
2

s

〈σ−1
r (Zs,x

r )∇ηZ
s,x
r , dWr〉

)
.

This further gives that

1

2
(∇η′∇ηP

0
s,tf)(x)

= E
((∇∇η′Zs,xt+s

2

P 0
t+s
2
,t
f)(Zs,x

t+s
2

)

t− s

∫ t+s
2

s

〈σ−1
r (Zs,x

r )∇ηZ
s,x
r , dWr〉

)
+ E

((P 0
t+s
2
,t
f)(Zs,x

t+s
2

)

t− s

∫ t+s
2

s

〈(∇∇η′Zs,xr σ−1
r )(Zs,x

r )∇ηZ
s,x
r , dWr〉

)
+ E

((P 0
t+s
2
,t
f)(Zs,x

t+s
2

)

t− s

∫ t+s
2

s

〈σ−1
r (Zs,x

r )∇η′∇ηZ
s,x
r , dWr〉

)
.

Thus, applying Cauchy-Schwartz’s inequality and Itô’s isometry and taking (2.10), (2.12)
and (2.13) into consideration, we derive that

|∇η′∇ηP
0
s,tf |2(x)

≤ 12

{
6‖σ−1‖2

T,∞

E|∇P 0
t+s
2
,t
f |2(Zs,x

t+s
2

)

(t− s)5/2

× (E|∇η′Z
s,x
t+s
2

|4)1/2
(∫ t+s

2

s

E|∇ηZ
s,x
r |4dr

)1/2

+
P 0
s,tf

2(x)

(t− s)2
‖∇σ−1‖2

T,∞

∫ t+s
2

s

(E|∇η′Z
s,x
r |4)1/2(E|∇ηZ

s,x
r |4)1/2dr

+
P 0
s,tf

2(x)

(t− s)2
‖σ−1‖2

T,∞

∫ t+s
2

s

E|∇η′∇ηZ
s,x
r |2dr

}
≤ Λ̃T,σ|η|2|η′|2

P 0
s,tf

2(x)

(t− s)2
,

(2.14)

where Λ̃T,σ > 0 is defined as in (2.6).

Set f̃(·) := f(·)− f(x) for fixed x ∈ Rn and f ∈ Bb(Rn) which verifies

(2.15) |f(x)− f(y)| ≤ φ(|x− y|), x, y ∈ Rn

for some φ ∈ D . For f ∈ Bb(Rn) such that (2.15), (2.14) implies that

|∇η′∇ηP
0
s,tf |2(x) = |∇η′∇ηP

0
s,tf̃ |2(x) ≤ Λ̃T,σ|η|2|η′|2

(t− s)2
E|f(Zs,x

t )− f(x)|2

≤ Λ̃T,σ|η|2|η′|2

(t− s)2
φ2(‖σ‖T,∞(t− s)1/2),

(2.16)
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where in the second display we have used that

Zs,x
t − x =

∫ t

s

σr(Z
s,x
r )dWr,

and utilized Jensen’s inequality as well as Itô’s isometry.
Let ft = bt+∇btu

λ
t . For any λ ≥ 9πΛ2

T,σ‖b‖2
T,∞+4(‖b‖T,∞+ΛT,σ)2, note from (ii), (2.12)

and (2.14) that

|ft(x)− ft(y)| ≤ (1 + ‖∇uλ‖T,∞)φ(|x− y|) + ‖b‖T,∞‖∇uλt (x)−∇ut(y)‖1{|x−y|≥1}

+ ‖b‖T,∞‖∇uλt (x)−∇ut(y)‖1{|x−y|≤1}

≤ 3

2
φ(|x− y|) + ‖b‖T,∞

√
|x− y|1{|x−y|≥1}

+ 10
(

ΛT,σ +

√
Λ̃T,σ

)
‖b‖2

T,∞

√
|x− y|

√
|x− y| log

(
e +

1

|x− y|

)
1{|x−y|≤1}

≤
{

3 + 2‖b‖T,∞ + 28
(

ΛT,σ +

√
Λ̃T,σ

)
‖b‖2

T,∞

}
φ̃(|x− y|)

with φ̃(s) :=
√
φ2(s) + s, s ≥ 0, where in the second inequality we have used [23, Lemma

2.2 (1)], and the fact that the function [0, 1] 3 x 7→
√
x log(e + 1

x
) is non-decreasing. As a

result, (iii) follows from (2.16).

Remark 2.2. By checking carefully the argument of Lemma 2.1, the concave property of
φ2 can be removed whenever φ(x) = xβ for x ≥ 0 and β ∈ (0, 1], i.e., the drift b is Hölder
continuous.

3 Proof of Theorem 1.1

With Lemma 2.1 in hand, we now in a position to complete the

Proof of Theorem 1.1. Throughout the whole proof, we assume λ ≥ 9πΛ2
T,σ‖b‖2

T,∞ +
4(‖b‖T,∞ + ΛT,σ)2 so that (i)-(iii) in Lemma 2.1 hold. For any t ∈ [0, T ], applying Itô’s
formula to x+ uλt (x), x ∈ Rn, we deduce from (2.1) that

Xt + uλt (Xt) = x+ uλ0(x) + λ

∫ t

0

uλs (Xs)ds+

∫ t

0

{In×n + (∇uλs )(·)}(Xs)σs(Xs)dWs,(3.1)

where In×n is an n× n identity matrix, and that

Yt + uλt (Yt) = x+ uλ0(x) + λ

∫ t

0

uλs (Ys)ds+

∫ t

0

{In×n + (∇uλs )(·)}(Ys)σsδ(Ysδ)dWs

+

∫ t

0

{In×n + (∇uλs )(·)}(Ys){bsδ(Ysδ)− bs(Ys)}ds

+
1

2

∫ t

0

∑
k,j

〈{(σsδσ∗sδ)(Ysδ)− (σsσ
∗
s)(Ys)}ek, ej〉(∇ek∇eju

λ
s )(Ys)ds.

(3.2)

11



For notational simplicity, set

(3.3) Mλ
t := Xt − Yt + uλt (Xt)− uλt (Yt).

Using the elementary inequality: (a + b)2 ≤ (1 + ε)(a2 + ε−1b2) for arbitrary ε, a, b > 0, we
derive from (ii) that

|Xt − Yt|2 ≤ (1 + ε)(|Mλ
t |2 + ε−1|uλt (Xt)− uλt (Yt)|2)

≤ (1 + ε)
(
|Mλ

t |2 +
ε−1

4
|Xt − Yt|2

)
.

In particular, taking ε = 1 leads to

|Xt − Yt|2 ≤
1

2
|Xt − Yt|2 + 2|Mλ

t |2.

As a consequence,

(3.4) E
(

sup
0≤s≤t

|Xs − Ys|2
)
≤ 4E

(
sup

0≤s≤t
|Mλ

s |2
)
.

In what follows, our goal is to estimate the term on the right hand side of (3.4). Observe
from the definition of the Hilbert-Schmidt norm that∫ t

0

E
∣∣∣∑
k,j

〈[(σsδσ∗sδ)(Ysδ)− (σsσ
∗
s)(Ys)]ek, ej〉(∇ek∇eju

λ
s )(Ys)

∣∣∣2ds

.T ‖∇2uλ‖2
T,∞

∫ t

0

E‖(σsδσ∗sδ)(Ysδ)− (σsσ
∗
s)(Ys)‖2

HSds.

(3.5)

Thus, by Hölder’s inequality, Doob’s submartingale inequality and Itô’s isometry, it follows
from (3.1), (3.2) and (3.5) that

E
(

sup
0≤s≤t

|Mλ
s |2
)
≤ CT

{
λ2

∫ t

0

E|uλs (Xs)− uλs (Ys)|2ds

+ (1 + ‖∇u‖2
T,∞)

∫ t

0

E|bsδ(Ys)− bsδ(Ysδ)|2ds

+ (1 + ‖∇u‖2
T,∞)

∫ t

0

E|bs(Ys)− bsδ(Ys)|2ds

+

∫ t

0

E‖{(∇uλs )(Xs)− (∇uλs )(Ys)}σs(Xs)‖2
HSds

+ (1 + ‖∇u‖2
T,∞)

∫ t

0

E‖σsδ(Xs)− σsδ(Ysδ)‖2
HSds

+ ‖∇2uλ‖2
T,∞

∫ t

0

E‖{σsδ(Ys)− σsδ(Ysδ)}σ∗sδ(Ysδ)‖
2
HSds

12



+ ‖∇2uλ‖2
T,∞

∫ t

0

E‖σs(Ys){σ∗sδ(Ys)− σ
∗
sδ

(Ysδ)}‖2
HSds

+ (1 + ‖∇u‖2
T,∞)

∫ t

0

E‖σs(Xs)− σsδ(Xs)‖2
HSds

+ ‖∇2uλ‖2
T,∞

∫ t

0

E‖σs(Ys){σ∗s(Ys)− σ∗sδ(Ys)}‖
2
HSds

+ ‖∇2uλ‖2
T,∞

∫ t

0

E‖{σs(Ys)− σsδ(Ys)}σ∗sδ(Ysδ)‖
2
HSds

}
=: CT

( 10∑
i=1

Ii(t)
)

for some constant CT > 0. Also, applying Hölder’s inequality and Itô’s isometry, we deduce
from (A1) that

(3.6) E|Yt − Ytδ |2 ≤ βT δ

for some constant βT ≥ 1. By Taylor’s expansion, it is readily to see that

(3.7) I1(t) + I4(t) . {λ2‖∇uλ‖2
T,∞ + ‖∇2uλ‖2

T,∞‖σ‖2
T,∞}

∫ t

0

E|Xs − Ys|2ds.

From (A3) and due to the fact that φ(·) is increasing and δ ∈ (0, 1), one has

(3.8) I3(t) +
10∑
i=8

Ii(t) .T {1 + ‖∇uλ‖2
T,∞ + ‖∇2uλ‖2

T,∞‖σ‖2
T,∞}φ2(

√
δ).

In view of (A2), we derive that

I2(t) +
7∑
i=5

Ii(t)

. {1 + ‖∇uλ‖2
T,∞}

∫ t

0

Eφ(|Ys − Ysδ |)2ds

+ {1 + ‖∇uλ‖2
T,∞}‖∇σ‖2

T,∞

∫ t

0

E|Xs − Ys|2ds

+ {1 + ‖∇uλ‖2
T,∞ + ‖∇2uλ‖2

T,∞‖σ‖2
T,∞}‖∇σ‖2

T,∞

∫ t

0

E|Ys − Ysδ |2ds.

(3.9)

Thus, taking (3.6)-(3.9) into account and applying Jensen’s inequality gives that

E
(

sup
0≤s≤t

|Mλ
s |2
)
.T CT,σ,λ{δ + φ2(βT

√
δ)}+ CT,σ,λ

∫ t

0

E|Xs − Ys|2ds,

13



where

CT,σ,λ := {1 + ‖∇σ‖2
T,∞}

{5

4
+ (1 + λ2)‖∇2uλ‖2

T,∞‖σ‖2
T,∞

}
.(3.10)

Owing to φ ∈ D , we conclude that φ(0) = 0, φ′ > 0 and φ′′ < 0 so that, for any c > 0 and
δ ∈ (0, 1),

φ(cδ) = φ(0) + φ′(ξ)cδ ≥ φ′(c)cδ,

where ξ ∈ (0, cδ). This further implies that

E
(

sup
0≤s≤t

|Mλ
s |2
)
.T CT,σ,λφ

2(βT
√
δ) + CT,σ,λ

∫ t

0

E|Xs − Ys|2ds.

Substituting this into (3.4) gives that

E
(

sup
0≤s≤t

|Xs − Ys|2
)
.T CT,σ,λφ

2(βT
√
δ) + CT,σ,λ

∫ t

0

E|Xs − Ys|2ds.

Thus, Gronwall’s inequality implies that there exists C̃T > 0 such that

E
(

sup
0≤s≤t

|Xs − Ys|2
)
≤ C̃TCT,σ,λe

C̃TCT,σ,λφ2(βT
√
δ).(3.11)

So the desired assertion holds immediatelly.

4 Proof of Theorem 1.3

We shall adopt the cut-off approach to finish the

Proof of Theorem 1.3. Take ψ ∈ C∞b (R+) such that 0 ≤ ψ ≤ 1, ψ(r) = 1 for r ∈ [0, 1]
and ψ(r) = 0 for r ≥ 2. For any t ∈ [0, T ] and k ≥ 1, define the cut-off functions

b
(k)
t (x) = bt(x)ψ(|x|/k) and σ

(k)
t (x) = σt(x)ψ(|x|/k), x ∈ Rn.

It is easy to see that b(k) and σ(k) satisfy (A1). For fixed k ≥ 1, consider the following SDE

(4.1) dX
(k)
t = b

(k)
t (X

(k)
t )dt+ σ

(k)
t (X

(k)
t )dWt, t > 0, X

(k)
0 = X0 = x.

The corresponding continuous-time EM of (4.1) is defined by

(4.2) dY
(k)
t = b

(k)
tδ

(Y
(k)
tδ

)dt+ σ
(k)
tδ

(Y
(k)
tδ

)dWt, t > 0, Y
(k)

0 = X0 = x.

Applying BDG’s inequality, Hölder’s inequality and Gronwall’s inequality, we deduce from
(A1’) that

(4.3) E
(

sup
0≤t≤T

|Xt|4
)

+ E
(

sup
0≤t≤T

|Yt|4
)

+ E
(

sup
0≤t≤T

|X(k)
t |4

)
+ E

(
sup

0≤t≤T
|Y (k)
t |4

)
≤ CT
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for some constant CT > 0. Note that

E
(

sup
0≤t≤T

|Xt − Yt|2
)
≤ 2E

(
sup

0≤t≤T
|Xt −X(k)

t |2
)

+ 2E
(

sup
0≤t≤T

|X(k)
t − Y

(k)
t |2

)
+ 2E

(
sup

0≤t≤T
|Yt − Y (k)

t |2
)

=: I1 + I2 + I3.

For the terms I1 and I3, in terms of the Chebyshev inequality we find from (4.3) that

I1 + I3 . E
(

sup
0≤t≤T

|Xt −X(k)
t |21{sup0≤t≤T |Xt|≥k}

)
+ E

(
sup

0≤t≤T
|Yt − Y (k)

t |21{sup0≤t≤T |Yt|≥k}

)

.
√
E
(

sup
0≤t≤T

|Xt|4
)

+ E
(

sup
0≤t≤T

|X(k)
t |4

)√E
(

sup0≤t≤T |Xt|2
)

k

+

√
E
(

sup
0≤t≤T

|Yt|4
)

+ E
(

sup
0≤t≤T

|Y (k)
t |4

)√E
(

sup0≤t≤T |Yt|2
)

k

.T
1

k
,

where in the first display we have used the facts that {Xt 6= X
(k)
t } ⊂ {sup0≤s≤t |Xs| ≥ k}

and {Yt 6= Y
(k)
t } ⊂ {sup0≤s≤t |Ys| ≥ k}. Observe from (A1’) that 9πΛ2

T,σ(k)‖b(k)‖2
T,∞ +

4(‖b(k)‖T,∞ + ΛT,σ(k))2 ≤ eck
2

for some c > 0. Next, according to (3.11), by taking λ = eck
2

there exits CT > 0 such that

I2 ≤ e
CTCT,σ(k),λφ2

k(βT
√
δ).

Herein, CT,σ(k),λ > 0 is defined as in (3.10) with σ and uλ replaced by σ(k) and uλ,k, re-

spectively, where uλ,k solves (2.3) by writing b(k) instead of b. Consequently, we conclude
that

(4.4) E
(

sup
0≤t≤T

|Xt − Yt|2
)
≤ c̄0

k
+ c̄0e

CTCT,σ(k),λφ2
k(βT
√
δ)

for some c̄0 > 0. For any ε > 0, taking k = 2c̄0
ε

and letting δ go to zero implies that

lim
δ→0

E
(

sup
0≤t≤T

|Xt − Yt|2
)
≤ ε.

Thus, (1.4) follows due to the arbitrariness of ε.
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For φk(s) = eec0k
4

sα, s ≥ 0, with α ∈ (0, 1], we deduce from Lemma 2.1 (iii) and Remark
2.2 that

(4.5) ‖∇2uλ,k‖T,∞ ≤
1

2

whenever

λ ≥
{

2ΥT,σ(k)

(
eec0k

4

‖σ(k)‖αT,∞Γ(α/2) + ‖σ(k)‖1/2
T,∞Γ(1/4)

)}2/α

+ 9π(ΛT,σ(k))2‖b(k)‖2
T,∞ + 4(‖b(k)‖T,∞ + ΛT,σ(k))2.

(4.6)

Since the right hand side of (4.6) can be bounded by eeC̄T k
4

for some constant C̄T > 0 due

to (A1’), we can take λ = eeC̄T k
4

so that (4.5) holds. Thus, (4.4), together with (4.5) and
(A1’), yields that

E
(

sup
0≤t≤T

|Xt − Yt|2
)
≤ ĈT

k
+ ĈT eeC̃T k

4

δα

for some constants ĈT , C̃T > 0. Thus, (1.5) follows immediately by taking

k = (C̃T log log δ−αε)
1
4 .

5 Proof of Theorem 1.5

For simplicity, for any f : Rm1 → Rm2 , let

[f ]L = sup
x 6=y

|f(x)− f(y)|
|x− y|

, ‖f‖∞ = sup
x∈Rm1

|f(x)|,

[·]L is the Lipschitz constant of f .
The proof of Theorem 1.5 relies on regularization properties of the following R2n-valued

degenerate parabolic equation

(5.1) ∂tu
λ
t + L b,σ

t uλt + bt = λuλt , uλT = 02n, t ∈ [0, T ], λ > 0,

where 02n is the zero vector in R2n,

bt :=

(
b

(1)
t

b
(2)
t

)
and L b,σ

t uλ :=
1

2

n∑
i,j=1

〈(σtσ∗t )(·)ei, ej〉∇(2)
ei
∇(2)
ej
uλ +∇(1)

b
(1)
t

uλ +∇(2)

b
(2)
t

uλ.

The following lemma on regularity estimate of solution to (5.1) is taken from [24, Theorem
3.10, (4.4)] and is an essential ingredient in analyzing numerical approximation.
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Lemma 5.1. Under (C1)-(C3), (5.1) has a unique solution uλ ∈ C([0, T ];C1
b (R2n;R2n))

such that for all t ∈ [0, T ],

‖∇uλt ‖∞ + ‖∇(2)∇(2)uλt ‖∞ + [∇(2)ut]L ≤ C

∫ T

0

e−λt
φ(t

1
2 )

t
dt,(5.2)

where C > 0 is a constant.

From now on, we move forward to complete the

Proof of Theorem 1.5. For notational simplicity, set

Xt :=

(
X

(1)
t

X
(2)
t

)
, Yt :=

(
Y

(1)
t

Y
(2)
t

)
and bt(x) :=

(
b

(1)
t (x)

b
(2)
t (x)

)
, x ∈ R2n.

Then (1.6) and (1.7) can be reformulated respectively as

dXt = bt(Xt)dt+

(
0n×n
σt

)
(Xt)dWt, t > 0, X0 = x =

(
x1

x2

)
∈ R2n,

where 0n×n is an n× n zero matrix, and

dYt = btδ(Ytδ)dt+

(
0n×n
σtδ

)
(Ytδ)dWt, t > 0, Y0 = x ∈ R2n.

Note from (5.2) that there exists λ0 > 0 sufficiently large such that for any t ∈ [0, T ],

(5.3) ‖∇uλt ‖∞ + ‖∇(2)∇(2)uλt ‖∞ + [∇(2)uλt ]L ≤
1

2
, λ ≥ λ0.

Applying Itô’s formula to x+ uλt (x) for any x ∈ R2n, we deduce that

(5.4) Xt+u
λ
t (Xt) = x+uλ0(x)+λ

∫ t

0

uλs (Xs)ds+

∫ t

0

(
0n×n
σs

)
(Xs)dWs+

∫ t

0

(∇(2)
σsdWs

uλs )(Xs),

and that

Yt + uλt (Yt) = x+ uλ0(x) + λ

∫ t

0

uλs (Ys)ds

+

∫ t

0

{I2n×2n + (∇us)(·)}(Ys){bsδ(Ysδ)− bs(Ys)}ds

+

∫ t

0

(
0n×n
σsδ

)
(Ysδ)dWs +

∫ t

0

(∇(2)
σsδ (Ysδ )dWs

uλs )(Ys)

+
1

2

∫ t

0

n∑
k,j=1

〈{(σsδσ∗sδ)(Ysδ)− (σsσ
∗
s)(Ys)}ek, ej〉(∇(2)

ek
∇(2)
ej
uλs )(Ys)ds,

(5.5)
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where I2n×2n is an 2n × 2n identity matrix. Thus, using Hölder’s inequality, Doob’s sub-
martingale inequality and Itô’s isometry and taking (3.5) into consideration gives that

E
(

sup
0≤s≤t

|Mλ
s |2
)
≤ C0,T

{∫ t

0

E|uλs (Xs)− uλs (Ys)|2ds

+ (1 + ‖∇uλ‖2
T,∞)

∫ t

0

E|bsδ(Ys)− bsδ(Ysδ)|2ds

+ (1 + ‖∇uλ‖2
T,∞)

∫ t

0

E|bs(Ys)− bsδ(Ys)|2ds

+

∫ t

0

E‖{(∇(2)uλs )(Xs)−∇(2)uλs (Ys)}σs(Xs)‖2
HSds

+ (1 + ‖∇(2)uλ‖2
T,∞)

∫ t

0

E‖σsδ(Xs)− σsδ(Ysδ)‖2
HSds

+ (1 + ‖∇(2)uλ‖2
T,∞)

∫ t

0

E‖σs(Xs)− σsδ(Xs)‖2
HSds

+ ‖∇(2)∇(2)uλ‖2
T,∞

∫ t

0

E‖{σsδ(Ys)− σsδ(Ysδ)}σ∗sδ(Ysδ)‖
2
HSds

+ ‖∇(2)∇(2)uλ‖2
T,∞

∫ t

0

E‖σs(Ys){σ∗sδ(Ys)− σ
∗
sδ

(Ysδ)}‖2
HSds

+ ‖∇(2)∇(2)uλ‖2
T,∞

∫ t

0

E‖σs(Ys){σ∗s(Ys)− σ∗sδ(Ys)}‖
2
HSds

+ ‖∇(2)∇(2)uλ‖2
T,∞

∫ t

0

E‖{σs(Ys)− σsδ(Ys)}σ∗sδ(Ysδ)‖
2
HSds

}
=: C0,T

( 10∑
i=1

Ji(t)
)

for some constant C0,T > 0, where Mλ
t is defined as in (3.3). By using Hölder’s inequality

and the BDG inequality, (C1) implies that

(5.6) E|Yt − Ytδ |p . δ
p
2 , p ≥ 1.

Utilizing Taylor’s expansion, one gets from (3.6), (5.3) and (5.6) that

J1(t) + J4(t) + J5(t) . {1 + ‖∇uλ‖2
T,∞ + ‖∇∇(2)uλ‖2

T,∞‖σ‖2
T,∞}

∫ t

0

E|Xs − Ys|2ds

+ {1 + ‖∇(2)uλ‖2
T,∞}

∫ t

0

E|Ys − Ysδ |2ds

. δ +

∫ t

0

E|Xs − Ys|2ds.

Next, (C1), (C5) and (5.3) yield that

J3(t) + J6(t) + J9(t) + J10(t) . φ2(
√
δ),
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where we have also used that φ(·) is increasing and δ ∈ (0, 1). Additionally, by virtue of
(C1), (C2), and (5.3), we infer from (C3) that

J2(t) + J7(t) + J8(t) . δ +

∫ t

0

E|bsδ(Y (1)
s , Y (2)

s )− bsδ(Y (1)
sδ
, Y (2)

s )|2ds

+

∫ t

0

E|bsδ(Y (1)
sδ
, Y (2)

s )− bsδ(Y (1)
sδ
, Y (2)

sδ
)|2ds

≤ C1,T

{
δ +

∫ t

0

E|b(1)
sδ

(Y (1)
s , Y (2)

s )− b(1)
sδ

(Y (1)
sδ
, Y (2)

s )|2ds

+

∫ t

0

E|b(2)
sδ

(Y (1)
s , Y (2)

s )− b(2)
sδ

(Y (1)
sδ
, Y (2)

s )|2ds

+

∫ t

0

E|b(1)
sδ

(Y (1)
sδ
, Y (2)

s )− b(1)
sδ

(Y (1)
sδ
, Y (2)

sδ
)|2ds

+

∫ t

0

E|b(2)
sδ

(Y (1)
sδ
, Y (2)

s )− b(2)
sδ

(Y (1)
sδ
, Y (2)

sδ
)|2ds

}
=: C1,T

(
δ +

4∑
i=1

Λi(t)
)

for some constant C1,T > 0. From (C2), (C3), (5.6) and φ ∈ Dε, we derive from Hölder’s
inequality and Jensen’s inequality that

Λ1(t) + Λ2(t) .
2∑
i=1

∫ t

0

E
(
|b(i)
sδ (Y

(1)
s , Y

(2)
s )− b(i)

sδ (Y
(1)
sδ , Y

(2)
s )|

|Y (1)
s − Y (1)

sδ |
2
3φ(|Y (1)

s − Y (1)
sδ |)

1{Y(1)
s 6=Y

(1)
sδ
}

× |Y (1)
s − Y (1)

sδ
|

2
3φ(|Y (1)

s − Y (1)
sδ
|)
)2

ds

.
∫ t

0

E(|Y (1)
s − Y (1)

sδ
|

2
3φ(|Y (1)

s − Y (1)
sδ
|))2ds

.
∫ t

0

(
Eφ(|Y (1)

s − Y (1)
sδ
|)2(1+ε)

) 1
1+ε
(
E|Y (1)

s − Y (1)
sδ
|

4(1+ε)
3ε

) ε
1+ε

ds

. δ
2
3φ2(C2,T

√
δ)

(5.7)

for some constant C2,T > 0. With regard to the term Λ3(t), (C1) and (5.6) leads to

(5.8) Λ3(t) . ‖∇(2)b(1)‖2
T,∞

∫ t

0

E|Y (1)
s − Y (1)

sδ
|2ds . δ.

Due to (C3), observe from Jensen’s inequality and (5.6) that

Λ4(t) .
∫ t

0

E
(
|b(2)
sδ (Y

(1)
sδ , Y

(2)
s )− b(2)

sδ (Y
(1)
sδ , Y

(2)
sδ )|

φ(|Y (2)
s − Y (2)

sδ |)
1{Y (2)

s 6=Y
(2)
sδ
} × φ(|Y (2)

s − Y (2)
sδ
|)
)2

ds

.
∫ t

0

Eφ(|Y (2)
s − Y (2)

sδ
|)2ds

. φ2(C3,T

√
δ)
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for some constant C3,T > 0. Consequently, we arrive at

E
(

sup
0≤s≤t

|Xs − Ys|2
)
.T φ

2(C4,T

√
δ) +

∫ t

0

E sup
0≤r≤s

|Xr − Yr|2ds

for some constant C4,T ≥ 1. Thus, the desired assertion follows from the Gronwall inequality.
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[5] Gyn̈gy, I., Rásonyi, M., A note on Euler approximations for SDEs with Hölder continuous
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