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Abstract

By using the Malliavin calculus, the Driver-type integration by parts formula is
established for the semigroup associated to SPDEs with Multiplicative Noise. More-
over, estimates on the logarithmic derivative of the transition probability measure are
obtained. A concrete example to describe evolution of spin systems on discrete lattices
is give to illustrate our main result.
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1 Introduction

A significant application of the Malliavin calculus ([7, 8]) is to describe the density of a
Wiener functional using the integration by parts formula. In 1997, Driver [3] established the
following integration by parts formula for the heat semigroup P; on a compact Riemannian
manifold M:

(1.1) P(Vzf) =E(f(X)N,), feC' (M), ZeX,
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where 2 is the set of all smooth vector fields on M, and N, is a random variable depending
on Z and the curvature tensor. This formula has many applications. For example, we are
able to characterize the derivative w.r.t. the second variable y of the heat kernel p;(z,y),
moreover, if N; is exponentially integrable, (1.1) implies the shift Harnack inequality, see
[13] for details.

So far, there are many results on the Driver-type integration by parts formula for SDEs or
SPDEs. The backward coupling method developed in [13] has been used in [4, 14] for SDEs
driven by fractional Brownian motions and SPDEs driven by Wiener processes. Recently,
using finite many jumps approximation and Malliavin calculus, [10, 11] obtain integration by
parts formulas for SDEs and SPDEs with additive noise driven by subordinated Brownian
motion.

However, all the above results are considered in additive noise case. The aim of this paper
is to derive the integration by parts formula for SPDEs with multiplicative noise by Malliavin
calculus and to derive estimates on the logarithmic derivatives of transition probabilities.

The main difficulty in obtaining the integration by parts formula is to give a represen-
tation of V; in (1.1). Unfortunately, in the multiplicative noise case, the derivative process
(Jocobi operator) J; associated to the solution solves a linear operator-valued SDE instead
of an operator-valued random differential equations in the additive noise case. So we develop
a Duhamel’s formula for the linear SDEs in Lemma 3.3, which is crucial for the representa-
tion for the Malliavin direction derivative process Dy, Jr (see (3.28)). Then we can give an
explicit representation of N;.

Let (H, (,),|-|) be a separable real Hilbert spaces. Consider the following SPDE on H:

(12) dXt = AXtdt + bt(Xt)dt -+ O't(Xt)th, XO = c H,

where b : [0,00) x H — H and o : [0,00) x H — Z(H) are measurable locally bounded
(i.e. bounded on bounded sets), where .Z(H) is the space of bounded linear operators on H
equipped with the operator norm || - ||. Moreover,

(i) (A, 2(A)) is a linear operator generating a Cy-contraction semigroup e’ such that
let||us < oo for any t > 0, and

T
(1.3) op == / e ||Zgdt < 0o, T >0,
0

where ||-||gs is the Hilbert-Schmidt norm. Let non-decreasing positive sequence { A }x>1
with

lim A\, = o
k—o0

be all the spectrum of —A counting by multiples. The corresponding unit eigenvectors
are {eg}r>1, i.e. Aep = —Aex, kK > 1. W is a cylindrical Brownian motion on H
with respect to a complete filtration probability space (2,.%,{%# }i>0,P), ie. W =
> oo we,, where {w"},>1 is a sequence of independent one dimensional Brownian
motions with respect to (Q, %, {.%}i>0,P).



(ii) For any k > 1, let 0®) := ge;. There exists a non-negative non-decreasing function K
on [0, c0) such that

(1.4) IVbs(z)]| V {i HVU@(@W}Q < K(s), s>0,z €H,

and Vb, : HH x H — H and Vo, : H x H — Zys(H) are uniformly continuous on
bounded sets.

For Vb,(z) and Vo™ (z), we shall define
Vbi(z)v = Vubi(x)
Vo (z)v = Vol ().

Assume (i) and (ii). Then the equation (1.2) has a unique non-explosive mild solution X, (z),
and the associated Markov semigroup P, is defined as follows:

Pf(x) :=Ef(X,(z)), f€ By(H),t >0,z ¢ H.

Since for any t > 0, Ker(e*) = {0}, the inverse operator e=4* : Im(e**) — H is well defined.
To establish the integration by parts formula, we also need the following assumptions:

(H1) For any (t,z) € [0,00) x H, there holds Vb,(z) : Im(e?") — Im(e), VoF(z) :
Im(e?t) — Im(e?t), k > 1. Let

Bt( ) o e_AtVb( ) At

1.5
(15) S (z) = e Vol (2 )eAt, k>1,t>0,2¢H.

Assume that By(+) : H — Z(H) is continuously Fréchet differentiable and X (-) : H —
Z(H) is Gateaux differentiable, with

=0,1t>0,2,2 € H,

hmZHvzlz v, =W (e )} |

Yy—x

and there exists a positive function K in L2, ([0, 00)) such that for any ¢ > 0, z € H,

(16) ||Bt<x>uv||VBt<x>uv(i(HEE’%H;vHvz H)) < Kt

(H2) o is invertible, and it holds that
(1.7) o7 (@)|| < A¢), t>0,z€H

for some strictly positive increasing function A on [0, 00).



Remark 1.1. (H2) is a standard non-degenerate assumption, while (H1) comes from [11],
where Y% and V¥ vanish for any k > 1. (1.6) means that |V (b, e;)|, ||V2{bs, e;)|| should

be small enough as i is large enough, and |V<J§k)(x),ei)|, ||V2<U§k)(x),ei>H should be small
enough as i,k are large enough. For example, if there exist nonnegative sequences {fu }r>1,
{m a1, At with 37 (0% + pi +97) < 0o and non-negative function Cy € L, ([0, 00))
and locally bounded function Cy on [0, 00) such that

Ve, (b, €0)| + [V Ve, (br, e3)] < Clt)e” M2 g,

Ve, (o), e + |VVe, (of,e)| < Colt)e Ny t>0,i>1,k>1,5>1,

then (1.6) holds with

K3 (t) =Y (0 + i +2) (Cult) + G5 (0) e [I7zs) -

k>1

In fact, for any y,z € H, t > 0

|1B.(z)y]|* ZZ 20N G, (b )| [y €50

i=1 j=1
< O3S e A 2 e
i=1 j=1
< ) z;@) P
=1
and
o0 2 o0
S el = X T e
k=1 k=1,i=1,j=1
COi) S e et
k—li—lj—l

< C3(t) ||etAHHSZ772 Z’Yk
=1

|VBy(x)| and > -, v (a:)H can be estimated similarly. To illustrate (H1) and our main
result, a concrete example is presented in Section 2.

Finally, we introduce a notation which will be used throughout this paper:

Yi(x)vley B r)v, x,v € H.
[ ;



2 Main results

To state our main results, for any s > 0, we introduce .Z'(H)-valued processes (Js¢);>s and
(J;‘}t)tZs, which solve the following operator-valued SDEs respectively:

(2.1) Ase = Bi(X0) Jopdt + > S (X)) Jypduf, Jou =1
k=1
(2.2) dJ2 = (A+ Vb (X,))JAdt + Z Vo (Xp) JAdwk, JA =1.
k=1

According to (H1) and Lemma 3.1 below, (2.1) and (2.2) are well defined. Denote J; = Jy;
and J/ = Jé“t Since the inverse of J/ is usually an unbounded operator in infinite dimension,
we shall use an auxiliary process J; ' and use the relationship between .J; and J/(see (3.16)
in Remark 3.1) to construct A such that “D,X,” equals to some vector in H (see details in
the proof of Theorem 2.1). By (H1) and Lemma 3.1 below, J; is invertible with

(2.3) dJl=—J! {Bt(Xt) - i (2 (X)) ) }dt . Z JeW (x Jl=1.

k=1

Remark 2.1. Since Z(H) with operator norm is not a UMD Banach space in infinite

dimension space, see [9], to ensure the stochastic integration in (2.1) make sense, we assume
that ¥F(z) € Lys(H) and satisfies (1.6).

The main result is the following.

Theorem 2.1. Assume (H1) and (H2), then the integration formula by parts holds, i.e.
1
(24) PT(VeAva) = f]E{f<XT)M’_¥}7 v e ]HL f S CZ}(H)

where

- </ HX) th,JT_lv> +/ tTr { [(V.By)(Xy) JeJy 0] } dt

(2.5) <Z/ tz ‘”th* (VekE,@)*(Xt)ek}dw{,J;1v>

+/ Tr {" [S(Xy) JeJp o] o7 H(Xy) } dt

_/0 tTr{ tAZzO [(vz )(Xt)JtJTlu}}dt,

Remark 2.2. Every term in (2.5) is well defined by (1.3), (H1), (H2), and Lemma 3.2.
This result extends [13, Theorem 5.1] where o only depends on time, see also [12, Theorem
3.2.4(1)]. Unlike [11], the integrands of stochastic integrations in M3 here is adapted.
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To illustrate Theorem 2.1, we give an example on countable systems of stochastic differ-
ential equations, which can be used to describe evolution of spin systems on discrete lattices,
see for instance [2, 6].

Example 2.2. Let Z be the set of all integers, d € NT, kg € N, \g > 0 and H = [>(Z%). For
v= (%) €29, set |y] = Z;l:l 1V/|. Let {\y},eza be a positive sequence with
A { :/\727 |’71|:|'72|7
n > )‘727 ’71’ > ‘72|7

and Y ;0 ATH < 0o, Let (Ax), = =Ny, v € 2%, x € P(Z?). For each v € Z°, let

,={neZ | |y <nl<|y+k},

and let g, and f, be functions defined on RF” such that f, > Ao, and there are positive
constants (3, and B3, such that 3 ;. (B2+p2) < o0 and

sup (|ng(x)|2 + ]ny(x)|2) < B’%’

z€RMY

sup ([[VVg,(@)[[is +IVVE(@)llLs) < 55

z€R
Define b: H — RZ" and o : H — RZ™>2" 45 follows: for any v,n € Z%, x € H,

bv(ZE) = QW(WFW (35))7

and

o (@) = {Jz(m(x)), v=1,
W 0, Y # 0,

where 7., is a natural projection from H to R' with (mr,(x)), = x,, n € I'y. Then the
equation (1.2) of X; € H satisfies

dX%t = _)\'yX'y,tdt + b,y<Xt)dt + O',y,Y(Xt)th’Y’ v e Zd.
It is a routine mechanical task to check the conditions of Theorem 2.1, so we omit it.

The following corollary is a direct consequence of Theorem 2.1.
Corollary 2.3. Assume (H1) and (H2). Then for any p € (1, 00|, it holds that

5401 Jof

| Pr(Vear, )| < {FT,p%l\/Q,A} ’ ?(Pﬂf\p)%, f€CHH), veH,

where p = oo means -t =1 and (Pﬂf\p)% = sup |f|(x), and
xzeH
Lr,a4=C(q,T, Ky, Kz){)\q(T)é% +(T9+ T3 + )\q(T))d%}
for o7 defined in (1.3) and some constant C(q,T, K1, K3) > 0 depending on q > 2, T, K1, K,.
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Basing on the integration by parts formula, we can study the regularity of transition
probability measure of Pr. A finite measure p on H is called weak Fomin differentiable
along a vector v € H, if there is a finite signed measure 0,u on H such that

/H F(@)0pu(dz) = — / V. f(2)u(dz), f € CL(H).

When H = R?, we may take A = 0 and so that Theorem 2.1 with J#4 = .J covers the result
in [13, Theorem 2.1]. In this case, according to [13], the integration by parts formula implies
that Pr has a density pr(z,y) with respect to the Lebesgue measure, which is differentiable
in y with

2.6) Vologpr(z, )(y) = B (M1 Xr(r) =y), .0 € RY

If O,p0 < p, then we can define the logarithmic derivative of 1 along v by the Radon-Nikodym
derivative dg—z“. Then, we obtain a corollary for the logarithmic derivative of the transition

probability measure pr(z,dy) of Pr from Theorem 2.1 and Corollary 2.3 directly. Moreover,
it is clear that for H = R? and A = 0

dava(fL', )

el Y) = Vologpr(@,)(v), pr(e,dy)-a.s.

Corollary 2.4. Assume (H1) and (H2), v € H, T > 0. Then the transition probability
pr(x,dy) of Pr is weak Fomin differentiable along e *v with logarithmic derivative

daeTAfupT<x’ ) - 1 v _
(W) (y) = ~7E (M7 Xr(z) =y), z,y € H,

and

p

Oeraubrl ) P ), dy) <

(D pva,a) 772 0]
de(.fZ', ) .

TP

J

Particularly, if furthermore, H = R* and A = 0, then for any p > 1, T > 0, it holds that

[v]”

_p_
ﬁ {FT’I,\/270}T’V2 , X € Rd.

/d Vo log pr(z, )P (y)pr(z, y)dy <
R

Remark 2.3. (2.1) and (2.3) mean that M. has the form as exp(X) with a Gaussian random
variable X . This implies that E (exp(d|M}|)) = oo for any 6 > 0. Thus, it can not yield the
shift Harnack inequality with power by Young’s inequality from (2.4) as in [13].

The remainder of the paper is organized as follows. In Section 3, we give some important
lemmas and prove them. The proofs of Theorem 2.1 and corollaries are put in Section 4.



3 Proof of Lemmas

To get the existence and uniqueness of (2.1) and (2.2), we consider the following slightly
general operator-valued SDEs:

(3.1) dG, = AG, + F,Gydt + > RfGyduf,
k=1
(3.2) dg: = figudt + Z ¥ g dwk,
k=1

with A defined as above, F, f, {R*}is1, {r*}is1 are Z(H)-valued progressive strong mea-
surable processes, Gy and gy are strong measurable .Z(H)-valued random variables and
E||Go||* + El|go]|* < oo. Then

Lemma 3.1. (1) If there exists a positive function K3 on (0,00) with

t
(3.3) / K3(s)ds < oo, t >0
0
such that
~ 1/2
(3.4) le"AFy|| + (Z ||eTARinIS) < Ks(r), r>0,t>0,
k=1

then (3.1) has a unique solution {Gy}i>o in L (H). If furthermore,
(3.5) "4 Fl s < Ka(r), r>0,t>0,
then fort >0, Gy € Lus(H) and E||Gy||%g < 0.
(2) If there ezists a positive function Ky on (0,00) with
¢
(3.6) / Ki(s)ds < oo, t >0
0

such that

0o 1/2
(3.7) | fel] + (ZHTinIS’) < Ky(t), t>0,
k=1

then (3.2) has a unique solution {g;}i>o in £ (H) which is invertible, and its inverse

g; " satisfies

(38)  dg=-a” (ft -2 (rff) dt — gty rfduf, gt =1

k=1 k=1



Proof. (1) We shall consider the following form of (3.1):
t 0 t
(3.9) Gy =Gy + / = G ds + Z/ IAREG Ak, t > 0.
0 =1 Jo

Since for .Z(H)-valued progressive strong measurable process {Gs}s>o with for all ¢ > 0,

sup,eo El|Gs|[* < 0o and
t
P (/ 1GL|Pds < o0, t > 0) _1,
0

(3.3) and (3.4) imply that P-a.s.

t
/ |e(t_5)AFSGSx|2ds < oo, t>0, r€H, P-as.,
0

t oo
E / S [l ARG, || ds < oo,
0 k=1

So fot e=9)A[ G,ds defines a strong measurable adapted process and the stochastic integral
can be defined in the Hilbert space Zys(H). Hence the right hand side of (3.9) defines a
Z (H)-valued strong measurable process.
By Minkowski inequality and Holder inequality,
sup E ‘

s 2 s 1
/ e(S*T)AFTGrdr < sup {/ []E ||e(S—T)AFTGr||2] 2 dr)
s€[0,t] 0 s€[0,t] 0
¢ 2
(3.10) < (/ Kg(T')dT') (sup EHG7'H2>
0 rel0,t]
t
= t/ K3(r)dr | sup E|G.|* ] .
0 r€(0,t]

2

[t0’s isometric formula yields that

[e.e] s 2 [e.e] s 2
sup E / ARG, dw”|| < sup E / eTIARKG dw?
s€[0,] = Jo s€[0,t] k=170 HS

(3.11) = sup / ]EZ He(S’T)ARfGTHiIS dr

t
S/ KZ(r)dr | sup E||G,|* | .
0 re[0,t]

Combining (3.10) and (3.11) with the fixed point theorem, we obtain existence and unique-
ness of solutions to (3.1) satisfying sup,c (o E||Gs]|* < 00, t > 0 and

t
IP(/ ||Gs]?ds < oo, tZO) =1.
0
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Moreover, from (3.9), Gronwall’s lemma implies that there exist nonnegative constants cy, ¢z
such that

(3.12) sup E||G|* < ¢

s€[0,t]

Next, if furthermore, (3.5) holds, then by (3.4), we get

s 2 °
/ e(s_T)AFr,«Grdr < sup EHGT||2 S / K??(T)dT
0 HS rel0,s] 0

Thus from (3.9), (3.11) and (3.12), it holds that

|

(3.13) B Gillrs < 8116 s + 3 <sup E|C, H2> [ s

s€[0,t]

< 3l |3 + BClecztt/ K3(s)ds, t > 0.
0

(2) Similarly, from (3.6), (3.7), applying Minkowski inequality and the fixed point the-
orem, it is easy to derive the existence and uniqueness of solutions to (3.2). Denote the
solution by g;.

H is separable, so (Zzozl (rf)z) is also a strong measurable process. Note that

Then, as (3.10), we have

A <f: (rf)2>*Urdr P

k=1

sup E
s€[0,t]

t 2
(/ KZ(T)dT) sup E|U|2 ) .
0 rel0,t]

Thus, repeating the above argument again, the operator-valued SDE
(3.14) AU, = — (ft -y (rf)2> Udt =Y (rf) Udwf, Up=1
k=1 k=1
has a unique solution U; € .Z(H). For all u,v € H, by It6’s formula, it is easy to see that
d(gsu, Upw) = 0.

Thus U}g; = U Jo = I. That means g, is invertible with g, ' = U}, and g, ' satisfies the left
action equation (3.8).

[]
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Remark 3.1. According to (H1), (2.1), (2.2) and Lemma 8.1, {Ji}i>0 and {J/}i>0 are
strong measurable £ (H)-value processes, and J#* € Lys(H), t > 0, P-a.s. Moreover, fiving
s >0, (2.1) implies that for any t > s,

Joids = J, +/ B (X)) (s Js) dr+/ ZW ) (T Js)duwk
which means {Js 1 Js > i a solution to the equation:

(3.15) Ty = By(X,)Twdt + Zz (X)Tedwt, Ty=J, t>s

Combining the definition of J, and (2.1),

J, = J0+/ Jdr+/ »®(X,)J,dwk
0

:Js—l—/ Jdr—i—/ ) Jpdwk,

thus, {Ji}i>s is also a solution to (3.15). By Lemma 3.1, we have P-a.s. J; = Jg,Js due to
the uniqueness of (3.15). Similarly, P-a.s. J{* = J&4J2. On the other hand, (2.1) yields
that

t
etAJtzeAt—i—/ e By(X,) ], ds+/ “‘ZE §)Jdw”
0

t
=M 4 / eIV (X,) (e ) ds + Ze“*s)f‘vag’f)(xs) (e*4J2) dw?
0

..
0 k=1

Again, by the uniqueness of (2.2), for any t > 0, P-a.s. J* = e*AJ,. As a consequence, for
anyt>s >0, P-a.s.

(3.16) Jp=Jouds, J=J8TL, T =

Next, we shall give some estimate of the norm of operator J, and J; '

Lemma 3.2. Assume (H1). Then for any x € H, t > 0, p > 2, it holds that

(3.17) Ssét[log]EllJll’“Sp lexp{?’p 1 “ (/ Kits ) }
8 (/ K2(s )2+(/Oth(S)d8)p”-

11

s€[0,t]

(3.18) sup E|[J; P < 4P lexp {47’_1




Proof. By Burkerholder-Davis-Gundy inequality and Holder inequality, it follows from (1.6)
that

t p
E||Jt||p§3p—1+3p—11a‘/ By(X,)J.ds +3p 'E / ) (X,) Jdw*
0 0 3—1 HS
t
<3ttty (/ K?(s > /]EHJsdes
0
HE (/ ZHE’“) sl |\2ds>
0
t
<l (/ K?(s > /]E||JS||pds
+ 377! (/ K3(s ) / KZ2(s)E||J,||Pds.
Applying Gronwall inequality, we obtain (3.17).
Noting that
Z(z““) ) <ZH2<’“ T K1), t>0zcH,
k=1
we have
/ >:c Jsds (/ K2(s ) / K2(s)E||J,||"ds.
0 k=1
So, we obtain (3.18) similarly to (3.17). O

Next, we introduce a Duhamel’s formula for the solution of a class of semi-linear £ (H)-
valued SDEs.

Lemma 3.3. Let f;, {rF}i>1 satisfy the condition of Lemma 3.1 (2), and let a;, {IF}1>1 be
Z(H)-valued progressive strong measurable processes with

t [e'9)
(3.19) / E <||as||2 + Z ||l§|]qu> ds < oo, t>0.
0 k=1

Then £ (H)-valued SDE

(3.20) dY = qudt + fY,dt + > rfYidwf + ) lfdwf,
k=1 k=1

12



starting from a Fo-measurable £ (H)-valued random variable Yy with E||Yy
unique solution Y;, and

t t e8] t 00
(3.21) Y,=q {Yb +/ g: tasds ~|—/ g;! Zlfdwf — / g, folfds} , =0,
0 0 k=1 0 k=1

where g; and g; * are the solutions of (3.2) and (3.8) respectively.

|> < oo, has a

Proof. The existence and uniqueness of the solution of (3.20) are easy to obtain by (3.6),
(3.7), (3.19) and fixed point theorem. Since the proof is similar to the that of Lemma 3.1
(2), we omit here. Let {g; '}:>0 be the solution of (3.8). Then (3.8) and Itd’s formula yield

6"5) = ! [ gar= Yoot + 3 (a3
k=1 k=1
+g7 ! [adt + fiY,dt+ ) rfYidwf + ) zfdw]:]
k=1 k=1
_ - 2 _ >
_gtlz(rf) tht—gtlzrflfdt
k=1 k=1
= g, ladt + gt Y Ufdwy — g7t Y rfide.
k=1 k=1
Thus (3.21) holds. O

3.1 Proof of Theorem 2.1 and Corollary 2.3

To make the procedure more clear, we shall start with some explanations on the key ideas
of the proof. The proof basises on the integration by parts formula of the Malliavin gradient
operator, see for instance [8, 10, 13]. Let (D, (D)) be the Malliavin gradient operator, and
(D*, 2(D*)) be its adjoint operator (i.e. the Malliavin divergence operator). Fix T > 0. Let
h be a function from [0, T] x Q to H, and let D X7 be the Malliavin derivative of X1 along
h. If D; X7 = eT4v, then

Pr¥Vera, f(x) = EVera, f(Xr) = BV p, x, [ (X1) = ED3(f(X1)) = Ef (X2) D" (R).

If h is adapted, then D*(h) is an It6 integral and the integration by parts formula follows.
However, in the situation of stochastic equations with multiplicative noise, 1 is usually not an
adapted process. Formally, we construct h as follows. Dj X satisfies the following equation

+ 3 Vo (X)) DpXedw] + o(X)dh(t), DiXo =0,

j=1

13



and then we can write it in the integral form

T
Dy X = JA / (T4 Loy (X H (2)dt.
0

Letting h/(t) = Lo, '(X;)JA 5 v, formally, we have

T
1 T
Dy X1 = TJ;‘/ (IO TA I edt = T4,
0

where we use J;t = e Jp(see (3.16) in Remark 3.1). To avoid the trouble caused by the
non-adaptedness of h, we shall rewrite h:

. 1 - 1 —
h'(t) = Tgt Y X)) JA I e = Z (I v en)o  (Xp) Jier = ?ZF hy(t
T k=1
Then hy, is adapted, D; X1 = % Y rey FeDy, Xr, and by the chain rule
EV 14, f(X7) = ZEFkah xof(X7)
=
1 o0
(3.22) = = > _E Dy (Fif(Xr)) = f(Xr) D, (Fi)].
k=1

What we shall do is to make these all rigorous, and prove that

> E Dy, (Fuf(X7)) — f(X7) D (Fr)] = Bf(X7) Y (FD*(hy) — Dy, (Fy))
k=1 k

and give a representation to the right hand side of the equality above.

Proof of Theorem 2.1
From now on, we fix T" > 0.
(1) We shall give a rigorous proof of (3.22). Let

t
(3.23) hk(t):/ o (Xs) I erds, Fy={(Jy'v,ex), k>1,t€[0,T).
0

Then according to [1, Theorem A.2], from (1.2) and (ii), we have
dDp, Xy = (A + Vb (X)) Dy, X, dt

(3.24) +> " Vo (X,) Dy, Xedw] + oo(X)dhy(t),  DyXo =0,

J=1
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and J/'e, satisfies the following equation

dJfer = (A+ Vb(X,) Jlerdt + Y Vo (X,) Jfepduw].
j=1

Let v € H. Then
¢ ¢
/<€(t_S)AVbS(XS)<SJ;46k),’U)dS—|—Z/ s(e"IY(Vod (X)) (T e), v)dW?I
0 = Jo
t t r
:t/(e(t_s)AVbs(Xs)erk,wds—/ / (e =9AVb,(X,) (5] ey,), v)dsdr
0 t | 0 Jo |
Y / S (=94 (T3 (X)) (JAex), v)dIV)
~Jo
j
t r
Y[ [ et wa e, vawiar
= Jo Jo
¢
:t<JtA,v)—/ (e®ATA v)dr.

0

Thus tJ ey, is a mild solution of (3.24). By pathwise uniqueness of (3.24),
(3.25) Dy, X, = tJ ey, t €[0,7T).
Hoélder inequality and (3.17), (3.18) yield that

1
2

0o oo 3 00
EZ|FthkXT| ST{EZM‘]EIU?@CMQ} {EZ‘J?GICP}
k=1 k=1 k=1

< 7o {E| P} {E |2} <.

Hence Y 72 | Fj.Dp, X7 converges in H P-a.s. Moreover, (3.16) implies that
S FDn Xy =T (Jr'v.ep)Jitey = TJPJp v = Te'To.
k=1 k=1

And Fubini theorem implies that

1 [e.e]
E(Vear, f)(Xr) = > EF.Dy (f(X1))
k=1

(3.26) = = S EA(Xr) (FD*hy — Dy, ).
k=1

15



(2) We shall give a representation of the last term of (3.26). Noting that hy is adapted
with E [[7 [, (t)[2dt < oo, we obtain

D* () = / (L (5), AW)
_ /0 (071 (X)) JAer, AW,)

T
= <ek/ [agl(Xs)Jf]*dWS>, k> 1.
0

Since (3.13) and J;'v € H a.s. hold, we have

o0

i:: Fy.D*(hy) = Z(J;lv, ex) <ek, /OT [0 (X,) T2 dWs>

k=1

(3.27)

_ </OT (071 (X,)JA]" AW, JT1U> .

From (2.1) and (H1), for all u € H

Dy, Jou = By(X;) Dy, Jeudt + > S (X,) Dy, Judw]

j=1

+ (Vo xBe) (X Judt + 3 (Vi x,2) (X0 udu]

Jj=1

+ Z S(X0) Jeudhi (), DpyJou = 0,

j=1

where hi/, := (hg, e;), j > 1. By Lemma 3.3, we obtain
T
Dy, Jru =Jp / J! (VthXtBt) (X,)Jyudt
0

(3.28) +Jr /0 Y (VthXt2§])> (X,) Jrudw?
=1
T 00 )
+Jr / T (oM (X Jfer, ) B (X) Jpudt
0 =

—Jr / IS s (thkthgv) (X,) Jyudt.
0 =
Since
<th(‘]il_‘1v>vek> = _<th((‘]il_“1)*ek’)vv> = _<J;th<(‘]il_‘1)*ek)’ ‘]CZ_‘1U>

16



= = (Du ((Jp")ex), Jres)(Jr v, e5)
]:1

= Z(ek, Iz Dy, (Jre;)){(Jr v, €5),
j=1

combining this with (3.25) and (3.28), we get

00 00 T
S DuF=-% / <J;1 (vtjfekBt) (X)) J7 o, ek> dt
k=1 k=10
n T 00
—71113010; < [/0 J; 12 (VUA ) Xt)Jtdwt] JT_lv,ek>
= p
(329) — f: /T io: <0't_1(Xt)JtAeka 6j> <Jt_12§j)<Xt)Jth_11'U7 €k> dt
k=170 j=1
S / ) <J =00 (Vo 20 (X005 k> dt.
k=10 j=1

For the second term. Let m, be the orthogonal projection from H to span{ey,--- ,e,}.
Then

:ég/jt;< 1 (530, 20) (X0 er, ) dud (0.
:gg/;tg< T (V500 58) (X0 et ) dud (1, 1)
222 /0 TtTr{wthl (V50 (X er s dwd (750, e

:f;f’; [ o (i [(950) (60 e o,

. f:i / tfj {e (Imaat [(Vas?) (i) en) p duf (7 v,en)
-5 ([ e () 0oa] () e}t ')
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Since

2

E

S / £y {e_t’\’“ [(vekz?)) (Xt)Jtr (J;l)*wth*ek}dwg

j=m 70 p=1

00 2

{e*w [(vekzgﬁ) (Xt)Jt} Y anfek}

dt

k=1

2
IIJt|\4|!Jt1\\2> dt,

by Lemma 3.2 and dominated convergence theorem, we have

2

g 3 [ e () 0] ) s <o
thus
i / tfj {0 (V=) (03] () mudien} duf
~ i i [ e () (0] 0 s}
holds in L?(P).
Since
00 0o 2
E ;/OTth:{e—”k [(veszﬂ')> (Xt)Jt]* (Jt—l)*(l—wn)Jt*ek}dw{
o0 o0 % 2
:E/OT#; > {e_t)"“ [(vekziﬁ) (Xt)Jt} (Y (]—ﬂn)Jt*ek} dt
T e ? o x 2
<E / t2 (Z e—t*k|<f—7rn>J:ek|> So{[(v=2) (o] (|| e
k=1 Jj=1

by (1.6), Lemma 3.2 and dominated convergence theorem, it holds in L?(IP) that
0o T 0 i) N . .
Jim Y- /0 tZ{e—W [(vekzg ) (Xt)Jt} ) wnJ;ek}dwg
7j=1 k=1
(3.30) = / £y {e—”w; (vekzgﬂ) (Xt)ek}dwg.
j=170 k=1
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Next, by (3.16),
thAek = te! Jyer, = te%A(e%AJt)ek
Then by (3.34) and Lemma 3.2, it is clear that

ZE/ ‘< (VUA Bt> (Xt)JtJT—lv,ek>)dt

T 9 3 T 9 3
[ el (= N

T 3T
< swp ¥y (2 [ 1iPar) & [ kA0SR P < o
0 0

te(0,77]

t
GQAJt

-1 (VS%ABt> (Xt)JtJT‘lv‘

So, by Fubini theorem and (3.16), it holds that

o0 T

ZE F(Xr) / <J;1 (vtjfekBt> (X)) I, ek> dt
(3.31) XT / Z thA ) (Xt)JtJ:,Tlv, 6k> dt

:Ef(XT)/O tTr {" [(V.By)(Xy)JiJp o] } dt.

Similarly, we have that

T o0 00
[0 300 (B 50) 07 e
0

j=1

(3.32) = Ef(XT){ —/0 Tr {etA [Et(Xt)thflv] 0;1(Xt>} dt

/ tTr(tAZZ (X)) [( z@) (Xt)JtJT—ldet}.
3.

Thus (3.26), (3.27), (3.30)-(3.32) and dominated convergence theorem imply that
E(Voar, f)(Xp) = —]E f(X7) (Z FyD*hy, — ZthFk>
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and (2.4) holds.

Proof of Corollary 2.3
(1) For simplicity, letting

O = < /0 o () aws, JT‘lv> :
0= [ 1 e (VBRI

= <fj / Tti {eg; (Ve s?) (Xoer} dud, J;1v> ;
0= [ T (e [0 AT o (X b

O; = — / tTr{ tAZzU (X)) [(v.zgﬁ) (Xt)JtJT—lv}}dt,

we have M7 = Z?:1 ;. For any ¢ > 2, by Burkerholder-Davis-Gundy inequality, Minkowski
inequality, (H2) and Lemma 3.2, we have

3 L
{E \JT‘1|2“’}2

Noticing that A is a negative definite self-adjoint operator, it is easy to see that

T 3
(3.33) E[©:]7 < C(g)A(T)[v| U IIGAtII%sdt} [ S[%I)T]EIIJtIIQQ
0 telo,

331 swp sl < sw / ™25l = / e\ 5dr = 57 < oo.

s€(0,T]

Then Minkowski inequality, (H1) and Lemma 3.2 yield that

| r :
E|O,]? < |v]? ( sup s\|ezA||§{S> (/ Ki(s ) </ HJSH?ds) ||JT_1||q
s€(0,T 0

1/2
(335) < 2T (/ fals d) (prﬂE”Jt'Fq) Bz
€10,

Again by Burkerholder-Davis-Gundy inequality, Minkowski inequality, (H1) and Lemma 3.2,
it holds that

1
2q\ 2

El6y < [ E (E|J5 0 ])

Z/ tz J*V E]) (X)etAek}dwf
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1
q £
o0 2

T 00 )
E / #2 (Z e’\’“t) |7 VEY (X,)[2de (E\J;%Pq)%
1 0

j= k=1

(3.36) m( (/ K2(1) HJtHdt)) (E|J5 0])?

2
1
L (/ K (t) dt> <sup E||Jt||2‘1) (ElJ7 0]?9) 2.
te[0,T

12X e ol g = > 159 (Xe) Tz ol < K3 ()] Tz ol

J=1

Since

it is easy to see that

T q
E|O,’ <E ( / ||efA||Hs||zt<Xt>JtJT—1v||Hsdt)
0

1
T 2 L
(3.37) s( / ||etA||%Isdt) ( (/ K2(1) ||Jt||dt)) (EJJ= o)
1 1
( / K3 (1) dt) <sup qu) (Bl 5 of)
t€[0,T]
and
E|6s? <E ( / e s> ||z£”<xt>||Hs||vz§”<xt>JtJT-1v||dt>
0 =1
(3.38) < (To7)3 (/ K3(t ||Jt||dt) | I )4

mz(/ K2(t) dt) (]E sup ||Jty|2q> (ElJ7 ™).
te[0,T]

Let I'r4 4 be in Corollary 2.3 for T' > 0,¢q > 2. Combining (3.17), (3.18), (3.33)-(3.38), for
any ¢ > 2, it holds that

(3.39) (E|Mz|)r < {5q 1ZE\@ \"} [o] < {Trga}elol.
On the other hand, Jensen inequality yields that
(3.40) (E|Mz|9)s < (E|Mg[)?
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for any 1 < ¢ < 2. Combining (3.39) and (3.40), it follows from (2.4) and Hélder inequality
that for any p > 1,

p—1

1 1 P\
IPr(Vearof)] < = (PrlfP)> (EIM7IT)

p=11,1 |V 1
< o) S i 1 e Clam)
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