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ABSTRACT
Exploiting sparsity in the image gradient magnitude has
proved effective in preserving sharp edges and reducing nois-
es for many image processing tasks. Based on observation,
we build up a novel piecewise smooth segmentation model
by utilizing a generalized total variation (TV) prior with p-th
power for 0 < p < 1 and a `1 data fidelity. We present an
efficient algorithm based on the alternating direction method
of multipliers (ADMM), where all subproblems can be solved
by either one-step Gauss-Seidel iteration or the closed-form
solution. Numerical experiments show that the proposed
model can achieve more accurate segmentation results than
the classical TV based segmentation model.

Index Terms— Image segmentation, intensity inhomo-
geneity, total variation regularization, `p minimization, AD-
MM

1. INTRODUCTION

Image segmentation is an important task in image processing,
which decomposes the image domain into local regions ac-
cording to the features such as intensities, edges, colors and
so on. Intensity inhomogeneity is a commonly seen artifact
in natural image and medical image due to the spatial vari-
ation in illuminations and imperfection of imaging devices.
The existence of intensity inhomogeneity makes the segmen-
tation algorithms that relying on the assumption of uniform
intensity impossible to identify the regions correctly.

Mumford and Shah [1] proposed the most fundamental
region-based model for image segmentation, which can deal
with intensity inhomogeneous images. Let Ω ∈ R2 be open
and bounded, and Γ be a closed subset in Ω. Given an ob-
served image I : Ω → R, the MS model finds its piecewise
smooth approximation u by solving the following minimiza-
tion problem

min
u,Γ

λ

∫
Ω

(I − u)2dx+ β

∫
Ω\Γ
|∇u|2dx+ |Γ|, (1)

where λ and β are positive parameters and |Γ| denotes the
length of Γ. Because the Mumford-Shah functional is non-
convex and the integral regions of last two terms are dis-
continuous, finding the minimizers is not straightforward and
may trap into local minima.
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Many variants have been proposed for efficient imple-
mentation of the MS model. Chan and Vese [2] sought for
a binary approximation of the given image through a level
set formulation [3], which has also been extended for multi-
phase segmentation in [4]. Lie et al. [5] proposed the piece-
wise constant level set method to identify curves separating
regions into different phases. Chan et al. [6] reformulated
the CV model into an equivalent convex minimization, which
makes convex optimization techniques be applicable for im-
age segmentation problems. Similar idea has been utilized
for multi-phase segmentation in [7, 8]. Because such piece-
wise constant models approximate the image domain by a set
of homogeneous regions, they fail in segmenting images with
intensity inhomogeneity.

Piecewise smooth (PS) segmentation models perform bet-
ter for intensity inhomogeneous images. Le and Vese [9] pro-
posed a piecewise smooth segmentation model by expressing
the true intensity as a summation of a piecewise constant com-
ponent and a smooth component, i.e.,

g =

N∑
i=1

ciχi + b, (2)

where b : Ω→ R is a spatially smooth function modeling the
intensity inhomogeneity, χi is the characteristic function of
set Ωi and {ci}Ni=1 are constant values representing the mean
value of intensity inside {Ωi}Ni=1. Based on (2), Jung [10]
used the `1 data fidelity to reformulate the energy functional
for better segmentation of images with low contrast or out-
liers. Indeed, the relationship between the piecewise constant
function and the smooth function may be modelled in a mul-
tiplicative intrinsic [11, 12].

The aforementioned methods are all based on the total
variation (TV) semi-norm, which is defined as the `1 norm of
the image gradient magnitude. It is well-known the `1 norm
promotes sparsity in its arguments by preserving the edges of
the images as well as eliminating the noises. Indeed, a better
choice to enhance the sparsity is to employ the `p quasi-norm
for 0 < p < 1, which has already been used for image restora-
tion [13], image reconstruction [14] etc. As only the bound-
aries between adjacent regions need to be measured for seg-
mentation tasks, we propose a novel PS segmentation mod-
el by minimizing the `p norm of image gradient magnitudes,
the so-called TVp norm. We adopt the `1 data fidelity as it
was proven efficient in dealing with images with low contrast



[10]. An effective algorithm is developed based on the AD-
MM strategy, where all subproblems can be solved by either
one-step Gauss-Seidel iteration or closed-form solution. Nu-
merical experiments on two-phase and multiphase segmenta-
tion are presented, which demonstrate the superiority of the
TVp regularization over the classical TV based model.

2. PROBLEM FORMULATION

Without loss of generality, we assume u as a grayscale image
of the size d × d and have the following definition of TVp
regularization in the discrete setting

TVp(u) :=

d×d∑
i=1

‖(∇u)i‖p2, with 0 < p < 1. (3)

Based on the image model (2), we propose the following TVp
regularized minimization problem for piecewise smooth im-
age segmentation

min
u,b,c

λ

N∑
i=1

〈|I − ci − b|, Ri〉+

m∑
l=1

‖∇ul‖p2 + µ‖∇b‖22, (4)

where ul ∈ [0, 1], ∀l = 1, . . . ,m and Ri represents the sub-
region Ωi satisfying

∑N
i=1Ri = 1 with N = 2m. More

specifically, we have R1 = u, R2 = (1 − u) for N = 2, and
R1 = u1u2, R2 = u1(1 − u2), R3 = (1 − u1)u2, R4 =
(1− u1)(1− u2) for N = 4, and so forth.

The natural way to compute the solution of (4) is to use an
alternative scheme to minimize each variable iteratively and
alternatively.

2.1. Sub-minimization problem w.r.t. (c, b)

We use the variable splitting technique to separate the `1 norm
and `2 norm in the minimization, where an auxiliary variable
p = (p1, . . . , pN ) is introduced as follows

min
c,b,p

λ

N∑
i=1

〈|pi|, Ri〉+ µ‖∇b‖22, s.t. p = I − c− b, (5)

which can be reformulated into a saddle-point problem based
on the augmented Lagrangian method

L(c, b, q;η) = λ
N∑
i=1

〈|pi|, Ri〉+ µ‖∇b‖22

−
N∑
i=1

(
〈ηi, pi − (I − ci − b)〉 − τ

2‖pi − (I − ci − b)‖22
)
,

where η is the Lagrange multiplier and τ is a positive param-
eter. We employ the splitting technique by calculating c, b
and p separately as follows

min
c

τ

2

∥∥c− (I − b− p+
η

τ
)
∥∥2

2
, (6)

for given b and p, and

min
b

µ‖∇b‖22 +
τ

2

N∑
i=1

‖pi − (I − ci − b)−
ηi
τ
‖22, (7)

for given p and c, and

min
p

N∑
i=1

(
λ〈|pi|, Ri〉+

τ

2
‖pi − (I − ci − b)−

ηi
τ
‖22
)
, (8)

for given b and c.
The optimality condition of (6) gives us the following

closed-form solution

ci =

∫
Ω
I − b− pi + ηi

τ dx∫
Ω
dx

, for i = 1, . . . , N. (9)

For (7), the Euler-Lagrange equation gives a linear equa-
tion

(τN − 2µ∆)b = τ

N∑
i=1

(I − ci − pi +
ηi
τ

), (10)

which can be solved by the discrete Fast Fourier transform
(FFT) under the periodic boundary condition, i.e.,

b = F−1

(F(τ∑N
i=1(I − ci − pi + ηi

τ )
)

(τN − 2µF(∆))

)
. (11)

For (8), after the elementary calculations of the optimality
condition, we can obtain a closed-form solution as

pi = shrink
(
I − ci − b+

ηi
τ
,
λRi
τ

)
, (12)

where shrink(sα, tα) = sα
|sα| max(|sα| − tα, 0).

2.2. Sub-minimization problem w.r.t. u

The subproblem of u is a constrained minimization problem
as follows

min
u

λ

N∑
i=1

〈fi, Ri〉+

m∑
l=1

‖∇ul‖p2, ul ∈ [0, 1], (13)

where fi = |f − ci − b|. The energy functional in (13) has
multi-variables u1, . . . , um, which can be solved individually.
Thus, we compute each ul by minimizing the functional with
respect to ul while the others are fixed

min
ul∈[0,1]

λ〈rl, ul〉+ ‖∇ul‖p2, for l = 1, . . . ,m, (14)

where r1 = f1− f2 for N = 2 and r1 = (f1− f3)u2 + (f2−
f4)(1−u2), r2 = (f1−f2)u1 +(f3−f4)(1−u1) forN = 4,
and so forth.

For simplicity, we denote r = rl and u = ul. By intro-
ducing a new variable q, the subproblem (14) becomes

min
u∈[0,1]

λ〈r, u〉+ ‖q‖p2, s.t. q = ∇u. (15)

Based on the augmented Lagrangian method, we can refor-
mulate the constrained optimization problem (15) into an e-
quivalent saddle-point problem as follows

Lu(u, q; ξ) = λ〈r, u〉+ ‖q‖p2−〈ξ, q−∇u〉+
γ

2
‖q−∇u‖22,



where ξ is the Lagrange multiplier and γ is a positive pa-
rameter. Similarly, two subproblems are solved instead of the
saddle-point problem

min
u

λ〈r, u〉+
γ

2
‖q −∇u− ξ

γ
‖22, (16)

for a given q and ξ, and

min
q
‖q‖p2 +

γ

2
‖q −∇u− ξ

γ
‖22, (17)

for a given u.
For (16), the optimality condition gives the following lin-

ear equation

γ∆u = λr + γdiv(q − ξ
γ

), (18)

which can be efficiently solved by one-step Gauss-Seidel iter-
ation. Denote Ti,j = qx,ki,j +qx,ki−1,j +qy,ki,j +qy,ki,j−1− 1

γ (ξx,ki,j +

ξx,ki−1,j + ξy,ki,j + ξy,ki,j−1). The solution of u is achieved by

uk+1
i,j =

1

4

(
(uk+1
i+1,j+uk+1

i−1,j+uk+1
i,j+1 +uk+1

i,j−1)−Ti,j−
λ

γ
ri,j
)

(19)
with a projection step on uk+1 to restrict its value to [0, 1].

In the end, we calculate (17) explicitly according to the
following proposition.

Proposition 2.1 ([13]) Let 0 < p < 1. The solution to mini-
mization problem (17) is given by

q = η∗(∇u+
ξ

γ
), where η∗ ∈ [0, 1], (20)

with 
η∗ = 0, if ω ≤ ω,

η∗ =
p(p− 2) + ω

p(p− 1) + ω
, if ω > ω,

where we set

ω := γ
∥∥∇u+

ξ

γ

∥∥2−p
2

, ω :=
(2− p)2−p

(2− 2p)1−p .

We conclude this section with the alternating minimiza-
tion algorithm for solving (4); see Algorithm I.

Algorithm I: Alternating minimization algorithm for (4)

Initialize: choose λ, µ, τ , γ > 0, and let b = p0
i = η0

i = 0
for i = 1, . . . , N ; q0

l = ξ0
l = 0, for l = 1, ...,m; u0

l = 1 in
some reign, u0

l = 0 otherwise.
Iterate for k = 0, 1, 2, . . .:

- With pk, bk and ηk, solve ck+1 from (9);
- With pk, ck+1 and ηk, solve bk+1 from (11);
- With uk, ck+1, bk+1 and ηk, solve pk+1 from (12);
- With qk and ξk, solve uk+1 from (19);
- With uk+1 and ξk, solve qk+1 from (20);
- Update Lagrange multiplier η and ξ from

ηk+1 = ηk − τ(pk+1 − (I − ck+1 − bk+1));

ξk+1 = ξk − γ(qk+1 −∇uk+1).

3. NUMERICAL EXPERIMENTS

This section presents the numerical results of the proposed PS
model of TVp regularization and compare the results with the
PS model of TV regularization [10]1, which are denoted as
TVp model and TV model, respectively. We give the follow-
ing two remarks before illustrating our results:

1. We use the Jaccard Similarity (JS) to quantitatively e-
valuate the segmentation accuracy, which is defined as
JS(S1, S2) = |S1∩S2|

|S1∪S2| , where S1 is the region seg-
mented by the algorithm and S2 is the corresponding
region in the ground truth.

2. Both algorithms are terminated when either the maxi-
mum iteration number exceeds K = 1000, or the rela-
tive error is reached as ‖c

k+1−ck‖2
‖ck+1‖2 < ε with ε = 10−6.

3.1. Two-phase segmentation

Firstly, we test our model on two grayscale images. As shown
in Fig. 1 and Fig. 2, different intensity inhomogeneities from
small to large are introduced into the test images. We set p
as p = 1/3, p = 1/2, p = 2/3 in the TVp model. We can
observe that both TVp model and TV model can well segmen-
t the images when the intensity inhomogeneity is small. As
the degree of nonuniformity increases, the superiority of the
TVp model becomes more pronounced, which can preserve
corners and curves of the images. Meanwhile, we tabulate the
JS values of both TVp model and TV model in Table 1, the
values of which correspond to the visual results. Better JS val-
ues can be achieved by TVp model and JS values are slightly
improved as the sparsity increases. Thus, we can select p as
p = 1/3 in the applications.

Table 1. JS of synthetic images.

Methods Fig. 1 Fig. 2
1st row 2nd row 3rd row 1st row 2nd row 3rd row

p = 1/3 100 99.95 99.71 97.79 97.76 97.40
p = 1/2 100 99.85 99.71 97.79 97.74 97.36
p = 2/3 100 99.85 99.71 97.74 97.72 97.29
TV model 100 99.71 97.83 97.73 97.70 95.10

Secondly, we present an example of our TVp model on
noisy image. Fig. 3 illustrates that the proposed model can
achieve better or comparable segmentation results as TV
model when the original images are corrupted by both noises
and intensity inhomogeneity.

3.2. Multi-phase segmentation
In this subsection, we test our model on two brain images,
both of which have slowly varying intensities inside the brain.
As there mainly exists three different tissues, i.e., white matter
(WM), gray matter (GM) and cerebrospinal fluid (CSF), we
implement a four phase segmentation model. In Fig. 4 and
Fig. 5, we present the original image, the initialization of

1 The authors would like to thank Prof. Miyoun Jung from Hankuk University
of Foreign Studies for providing us with MATLAB code of L1 model [10].



Fig. 1. From left to right: the original image, the segmenta-
tion results of TVp model with p=1/3, 1/2, 2/3 and TV model.

Fig. 2. From left to right: the original image, the segmenta-
tion results of TVp model with p=1/3, 1/2, 2/3 and TV model.

Fig. 3. From left to right: the original image, the segmenta-
tion results of TVp model with p=1/3, 1/2, 2/3 and TV model.

level set functions, the piecewise smooth image g, the final
membership functions u1, u2, and the segmentation results of
WM, GM, CSF generated by u1 and u2.

As shown by 4, the TV model struggles to segment the
left part of the brain, while our model can achieve a better
segmentation of WM. Simultaneously, the JS values in Table
2 demonstrate that the segmentation result of our TVp model
is more accurate than TV model. In Fig.5, obvious inhomoge-
neous intensities can be observed in the top part of the brain.
The comparison shows that TV model classified the top part
as GM while our TVp model correctly identified the bound-
ary between WM and GM. Compared to the TV model, much
better JS values are obtained by our model. Both examples
demonstrate that TVp regularization functions better than TV
regularization for segmentation of image corrupted by inten-
sity inhomogeneity.

(a) Input (b) Initial (c) TVp g (d) TV g

(e) TVp model

(f) TV model

Fig. 4. From left to right: u1, u2, WM, GM and CSF.

(a) Input (b) Initial (c) TVp g (d) TV g

(e) TVp model

(f) TV model

Fig. 5. From left to right: u1, u2, WM, GM and CSF.

Table 2. JS of brain MR images.

Methods Fig. 4 Fig. 5
WM GM CSF WM GM CSF

TVp model 97.40 91.92 92.61 96.38 89.58 89.12
TV model 91.00 83.53 90.86 78.82 66.79 81.71

4. CONCLUSION

In this paper, we presented a novel piecewise smooth seg-
mentation approach by modeling the true image as a sum of
a piecewise constant function and a smooth function. The
sparsity was enforced on both image gradient and data fideli-
ty. An efficient minimization algorithm based on the ADMM
strategy has been developed to solve the proposed model. Ex-
periments have demonstrated its good performance.



5. REFERENCES

[1] David Mumford and Jayant Shah, “Optimal approxi-
mations by piecewise smooth functions and associated
variational problems,” Communications on Pure and
Applied Mathematics, vol. 42, no. 5, pp. 577–685, 1989.

[2] Tony F Chan and Luminita A Vese, “Active contours
without edges,” IEEE Transactions on Image Process-
ing, vol. 10, no. 2, pp. 266–277, 2001.

[3] Stanley Osher and James A Sethian, “Fronts propagat-
ing with curvature-dependent speed: algorithms based
on hamilton-jacobi formulations,” Journal of Computa-
tional Physics, vol. 79, no. 1, pp. 12–49, 1988.

[4] Luminita A Vese and Tony F Chan, “A multiphase level
set framework for image segmentation using the mum-
ford and shah model,” International Journal of Comput-
er Vision, vol. 50, no. 3, pp. 271–293, 2002.

[5] Johan Lie, Marius Lysaker, and Xue-Cheng Tai, “A vari-
ant of the level set method and applications to image
segmentation,” Mathematics of Computation, vol. 75,
no. 255, pp. 1155–1174, 2006.

[6] Tony F. Chan and Mila Nikolova, “Algorithms for find-
ing global minimizers of image segmentation and de-
noising models,” SIAM Journal on Applied Mathemat-
ics, vol. 66, no. 5, pp. 1632–1648, 2006.

[7] Egil Bae, Jing Yuan, and Xue Cheng Tai, “Global min-
imization for continuous multiphase partitioning prob-
lems using a dual approach,” International Journal of
Computer Vision, vol. 92, no. 1, pp. 112–129, 2011.
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