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Abstract

Rician noise and intensity nonuniformity are two common artifacts and usually coex-

ist in magnetic resonance imaging (MRI) data. Many methods have been proposed in

the literature dealing with either Rician noise or intensity nonuniformity individually.

We numerically verify that the existence of intensity nonuniformity may lead to the

underestimation of noise, which means intensity nonuniformity influences the perfor-

mance of denoising and vice versa. Thus, we propose a novel restoration model via

a Maximum a Posteriori (MAP) estimator by regarding MRI data as a combination

of two multiplicative components, namely, the true intensity and the bias field, and a

noise followed a Rician distribution. We also guarantee that the proposed model has

at least one positive nontrivial solution theoretically. An efficient algorithm based on

alternating minimization method is developed, all subproblems of which can be solved

effectively by either Newton’s method or closed-form solutions. Intensive numerical

results on synthetic and real MRI data confirm the robustness of the method and its

better performance for MRI data restoration.
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1. Introduction

Magnetic resonance images may be affected by several sources of degeneration

during image acquisition and transmission, where Rician noise and intensity nonuni-

formity are two kinds of commonly seen artifacts in MRI data. Signal measured in

MRI is a complex data and magnitude data is most common to avoid the the problem5

of phase artifacts [1]. In single-coil system, both real and imaginary part are corrupted

by zero mean uncorrelated Gaussian noise with equal variance in the k-space domain,

and the magnitude of the complex signal follows a stationary Rician distribution. In-

tensity nonuniformity is usually caused by a number of factors such as B1 and B0

field inhomogeneity, poor radiofrequency coil uniformity and patient dependent inter-10

actions. Although these are not serious problems for radiological quality diagnosis,

they challenge the performance of the automated quantitative methods relying on the

assumption of uniform intensity for the same tissue, such as registration and segmen-

tation, etc. Thus, it is an important preprocessing step for the quantitative MRI data

analysis to correct Rician noise and intensity nonuniformity.15

According to the summarization of [2, 3] and the references contained therein,

the image models for modeling the intensity nonuniformity can be classified into three

categories depending on the relationship among the inhomogeneity-free image function

u(x), bias field function b(x), and noise function n(x). The most common model

assumes the true intensity function is corrupted by small perturbation induced by the

bias field function, and the noise arises from the scanner is independent of the bias field

[4]

Model I: f(x) = u(x)b(x) + n(x). (1)

The second image model keeps the hypothesis of biological noise, which is caused due

to variations in tissue properties and modulated by the bias field [5, 6]

Model II: f(x) = (u(x) + n(x))b(x). (2)

The third model comes from Model I, which applies the logarithmic transform to the

MRI data to transfer the multiplicative bias field into additive effect in the log-space
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[7, 8]. In this case, a biological noise is usually introduced in the log-space as

Model III: log f(x) = log u(x) + log b(x) + n(x). (3)

Regarding to the above three image decomposition models, there are the following

assumptions:

� u represents the true intensity function, which characterizes a physical property

of the tissue being imaged and has the same value on the same type tissue.

� b represents the bias field function, which is a spatially smooth function and20

usually follows certain paths.

� n is assumed to follow the Gaussian distribution in the three image models.

Various methods have been developed for intensity nonuniformity correction. One

main group of methods realizes bias field estimation in a segmentation process. Pham

and Prince [9] proposed an adaptive fuzzy c-means method by replacing the constant25

cluster centers with spatially varying functions to segment images in the presence of in-

tensity nonuniformity. Ahmed et al. [10] presented a modified fuzzy c-means method

by introducing a neighborhood term to influence the class membership of each pixel by

its neighbors. Li et al. [11] derived a local intensity clustering property and used it to

reformulate the Chan-Vese model for the segmentation of MRI images with intensity30

nonuniformity. Li et al. [12] proposed a segmentation model by representing the bias

field by a linear combination of a given set of smooth basis functions to ensure its s-

moothly varying property. These methods usually rely on the assumptions of the image

characteristics, most commonly, the number of tissues and location, and eliminate the

small details and structures of the true intensity during tissue segmentation.35

Another category of methods only estimates the bias field by directly working with

the data. Sled et al. [13] proposed the nonparametric nonuniform normalization (N3)

approach, which estimated the bias field by sharpening the image histogram using a

Gaussian deconvolution and smoothing it with a B-spline strategy. The N3 algorithm

was improved in [14] by a robust B-spline approximation routine and a modified hier-40

archical optimization scheme. Ashburner and Friston [15] used a linear combination of
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low frequency discrete cosine transform basis functions to model the bias field, the co-

efficients of which are estimated by minimizing a weighted sum of squared differences

between the data and the model. Vovk et al. [16] used a four-step iterative procedure

to conduct a non-parametric inhomogeneity correction method, which was built on the45

characteristic space generated by the intensities and its second order derivatives. Man-

jón et al. [17] proposed an entropy-related cost function based on the combination of

intensity and gradient image features for homogeneity measurement. Although these

methods are able to estimate the bias field when images are corrupted by noise, the bias

corrected data still contain noise, that means an additional denoising step is required50

before further quantitative analysis. Recently, Chang et al. [18] presented a high-order

and L0 regularized variational model based on model III (3) to simultaneously recover

the true intensity and estimate the bias field. However, the method failed to remove the

noise in the true intensity, the reason of which is twofold: the logarithmic transform

changes the distribution of noise and the L0 norm is sensitive to noise.55

On the other side, the noise distribution of MRI data depends on the configuration

of the acquisition system and the image reconstruction algorithm [19]. Considered

the simplest system, single-coil systems, the noise of the magnitude MRI data follows

a stationary Rician distribution. Although the Gaussian distribution can approximate

Rician noise in high SNR regions, it is unable to model the noise distribution in low60

SNR regions [20]. There is around 60% underestimation of the true noise if we assume

the the noise in MRI data follows a Gaussian distribution [1]. It is clear that modeling

the noises in MRI data following a Rician distribution is more reasonable.

Since the pioneer work of Henkelman [21], numerous methods have been devel-

oped for MRI denoising. Gerig et al. [22] applied the nonlinear anisotropic filtering65

for MRI denoising, which may wipe the small features during denoising. Fernández

et al. [23] proposed a denoising method by using the linear minimum mean square

error estimator for images that follows a Rician noise. Krissian and Aja-Fernández

[24] combined local linear minimum mean square error filters and partial differential

equations for MRI denoising, which was extended to nonlocal version [25]. Wavelet70

transform-based approaches have also been developed for Rician denoising. Nowak

[26] presented wavelet-domain filtering methods for Rician noise removal, which are
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able to adapt to variations in both the signal and the noise. Getreuer et al. [27] used

total variation regularization with a fidelity term involving the Rician probability. Liu

et al. [28] developed a generalized total variation based denoising method, and used75

a local variance estimator method to calculate the spatially adaptive regularization pa-

rameters. Chen and Zeng [29] designed a strictly convex variational model for Rician

denoising by adding an additional data fidelity term into the non-convex model [27].

Kang et al. [30] incorporated the convex fidelity term and a nonconvex high-order

regularization term for denoising piecewise smooth images corrupted by Rician nois-80

es. Martin et al. [31] studied the properties of the TV-based Rician denoising model,

and solved the nonsmooth noncovex minimization problem as the difference of convex

functions. Although the aforementioned methods can deal with the Rician noise, they

all ignore the intensity nonuniformity that may exist in the MRI data.

1.1. Goals of the Proposed Methodology85

Based on the above discussion, our aim is to pursue a methodology that provides

the same advantages of aforementioned methods but also overcomes their limitations.

To be specific, the proposed method should not only be able to remove the noise, but

also correct the intensity nonuniformity. Moreover, the noise need be modeled as a

signal-dependent Rician noise rather than the additive Gaussian noise in model I (1), II90

(2) and III (3). Besides, it should be built up in the originally spatial domain as model

I (1) or II (2), as the logarithmic transformation changes the distribution of noise.

1.2. Contributions and Organization

We propose a novel restoration model for MRI data, which are corrupted by both

Rician noise and intensity nonuniformity. Following a MAP estimator, we derive an en-95

ergy minimization problem under some mild assumptions. The proposal directly works

on the multiplicative intrinsic relation of the true intensity and bias field to ensure the

noise distribution is consistent with the real MRI data. For fast computation, we devel-

op an alternating minimization algorithm by taking advantage of the separable structure

of the proposed energy minimization problem. The solutions of all sub-minimization100

problems can be obtained by either the primal-dual splitting method or the closed-form
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solution. We compared the proposed method with the state-of-the-art Rician denoising

methods on the bias corrected MRI data showing a remarkably better behavior.

The paper is organized as follows. In Section 2, we introduce the notations and

review the primal-dual algorithm for general convex optimization problem. In Section105

3, we describe the proposed model, prove the existence of minimizers for the proposed

model, and discuss its numerical algorithm. Numerical experiments details of the pro-

posal were provided in Section 4 and Section 5. Finally, we concluded the paper by

summarizing our contributions and discussing possible future works in Section 6.

2. Settings and Primal-Dual Algorithm110

2.1. Discretization

Without loss of generality, we present a grayscale image as a two dimension matrix

of size N ×N , the size of matrix here can also be M ×N . We denote X the Euclidean

space R
N×N , which is equipped with the usual inner product and Euclidean norm as

〈·, ·〉 and ‖ · ‖2, respectively. The discrete gradient operator is a mapping ∇ : X → Y,

where Y = X ×X . For u ∈ X , ∇u is given by

(∇u)j,k =
(
(D̊+

x u)j,k, (D̊
+
y u)j,k

)
,

with

(D̊+
x u)j,k =

{
uj,k+1 − uj,k, 1 ≤ k ≤ N − 1,

uj,1 − uj,N , k = N,

(D̊+
y u)j,k =

{
uj+1,k − uj,k, 1 ≤ j ≤ N − 1,

u1,k − uN,k, j = N,

where j, k = 1, . . . , N . Here we use D̊+
x and D̊+

y to denote forward difference opera-

tors with the periodic boundary conditions.

We also equip the space Y with the inner product 〈p, q〉 = 〈p1, q1〉+ 〈p2, q2〉 and

the norm ‖p‖1 =
∑

1≤j,k≤N

√
(p1j,k)

2 + (p2j,k)
2, and ‖p‖2 =

√〈p,p〉. The discrete

divergence operator div = −∇∗ is a mapping Y → X , where ∇∗ is the adjoint of ∇.

Given p ∈ Y , we have

(divp)j,k = (D̊−
x p

1)j,k + (D̊−
y p

2)j,k
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with

(D̊−
x p

1)j,k =

⎧⎨
⎩

p1j,k − p1j,k−1, 2 ≤ k ≤ N,

p1j,1 − p1j,N , k = 1,

(D̊−
y p

2)j,k =

⎧⎨
⎩

p2j,k − p2j−1,k, 2 ≤ j ≤ N,

p21,k − p2N,k, j = 1,

where D̊−
x and D̊−

y to denote backward difference operators with the periodic boundary

conditions115

2.2. The Primal-Dual Algorithm

In [32], Chambolle and Pock proposed a first-order primal dual algorithm for the

following general optimization problem

min
v∈X

F (Kv) +G(v), (4)

the primal-dual formulation of which is

min
v∈X

max
p∈Y

〈Kv,p〉+G(v)− F ∗(p), (5)

where K : X → Y is a continuous linear operator, G : X → [0,+∞], F : Y → [0,∞]

are proper, convex, lower-semicontinuous functions, and F ∗ being itself the convex

conjugate of F .

Both primal and dual variable are solved by the resolvent operator, which is defined

for F as

x = (I + τ∂F )−1(y) = argmin
x

{
F (x) +

1

2τ
‖x− y‖22

}
.

The primal-dual algorithm for (5) is summarized in Algorithm 1.120

We take the ROF model [33] for image denoising as an example, and derive its

primal-dual scheme. The primal-dual formulation of ROF model is defined as follows

min
v

max
‖p‖∞≤1

− α〈v, divp〉+ 1

2
‖f − v‖22,

where ‖p‖∞ denotes the L∞ vector norm. For the primal variable, the resolvent oper-

ator is equivalent to solve the following minimization problem, which is trivially given
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Algorithm 1 The Primal-Dual Algorithm
1. Initialization: Choose τ, ν > 0, θ ∈ [0, 1], v0 ∈ X , p0 ∈ Y and v̄0 = v0;

2. Iterations (k ≥ 0): Update vk+1, pk+1, v̄k+1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pk+1 = (I + ν∂F ∗)−1(pk + νKv̄k),

vk+1 = (I + τ∂G)−1(vk − τK∗pk+1),

v̄k+1 = vk+1 + θ(vk+1 − vk).

as

v = argmin
v

{
− α〈v, divp〉+ 1

2
‖f − v‖22 +

1

2τ
‖v − vk‖22

}
=

ṽ + τf

1 + τ
, (6)

where ṽ = vk + ταdivpk+1.

For the dual variable, the resolvent operator is equivalent to solve the following

maximization problem

p = arg max
‖p‖∞≤1

α〈∇v̄,p〉 − 1

2ν
‖p− pk‖22

= P(p̃),

(7)

where p̃ = pk + να∇v̄, and P is projector onto the L2-normed unit ball, i.e.,

P(p̃) =
p̃

max(1, |p̃|) .

Remark 2.1. The primal-dual algorithm 1 is convergent if τνα2 < 1
8 [34]. In our125

numerical experiments, we tune α empirically, and fix τ = 0.015/α and ν = 8/α.

Besides, we also fix θ = 1 for all implementations.

3. Rician Noise and Intensity Nonuniformity Correction (NNC) Model

3.1. The Proposed MAP-based model

Assume the observed MRI data are corrupted by a Rician distributed noise as

p(f |v, σ) = f

σ2
e−

v2+f2

2σ2 I0

(vf
σ2

)
, (8)
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where f denotes the value in obtained magnitude signal, v represents the noise-free

signal, σ is the standard deviation of Gaussian noise in complex domain, and I0 is the

modified Bessel function of the first kind with order zero. We aim to maximize P (v|f),
which gives us the following maximum a posterior (MAP) estimator

v̂ = argmax
v

P (v|f) = argmax
v

P (f |v)P (v)

P (f)

Since P (f) is a constant and maximizing P (v|f) amounts to minimizing the log-

likelihood, we have

v̂ = argmin
v

− log
(
P (f |v))− log

(
P (v)

)
According to (8), the additive noise in each pixel following a Rician distribution, we

have

− log
(
P (f |v)) = ∫

Ω

1

2σ2
v2(x)− log I0

(f(x)v(x)
σ2

)
dx, (9)

and we assume v follows a TV prior [35], i.e.,

P (v) ∝ exp(−α

∫
Ω

|∇v|dx). (10)

Meanwhile, we assume that the noise-free image v is a multiplicative intrinsic com-

bination of a true intensity function u and a bias field function b, i.e., v = ub. There

is

P (v) = P (v|ub)P (ub).

Suppose the difference between v and ub follows a Gaussian distribution, that is

P (v|ub) ∝ exp
(− λ

2

∫
Ω

(v − ub)2dx
)
, (11)

where λ is a positive scalar. Furthermore, we assume that u and b are independent

and identically distributed (i.i.d). Since u represents the true intensity, which can be

approximated by a piecewise constant function, it follows a TV prior. Due to the spatial

smoothness of the bias field function b, there should not present discontinuities across

lines in the solution of b. Thus, we assume the derivative of b is square integrable [36].

Therefore, we have

P (u) ∝ exp
(− β

∫
|∇u|dx), and P (b) ∝ exp

(− γ

2

∫
|∇b|2dx), (12)
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where β, γ are positive constants. Together with (9), (10), (11) and (12), we are able

to obtain the following restoration model for MRI data

inf
v,u,b

∫
Ω

(
1

2σ2
v2 − log I0

(fv
σ2

))
dx+ α

∫
Ω

|∇v|dx

+
λ

2

∫
Ω

(v − ub)2dx+ β

∫
Ω

|∇u|dx+
γ

2

∫
Ω

|∇b|2dx.
(13)

By denoting

D(v) :=
1

2σ2
‖v‖22 −

〈
log I0

(fv
σ2

)
, 1
〉
,

the proposed model (13) can be rewritten as the following discrete formula

min
0≤v≤255

0≤u≤255,b

E(v, u, b) := D(v)+
λ

2
‖v−ub‖22+α‖∇v‖1+β‖∇u‖1+ γ

2
‖∇b‖22+ τ

2
‖b‖22, (14)

where the box constraints on v and u are widely used in image processing [29], and130

the last term is introduced with a positive parameter τ for the theoretical setting.

Although the energy functional (14) is non-convex, it is still available to show the

existence of minimizers. Inspired by the work in [31] on Rician noisy data term, we

have

Lemma 3.1. Let Ω be an open, bounded domain in R
N (N ≥ 2) with Lipschitz bound-135

ary. Assume f(x) ≥ 0, a.e. x ∈ Ω and fixed parameters λ, α, β, γ, τ > 0 and σ2 �= 0,

then the functional E(v, u, b) defined in (14) is coercive.

Proof. According to Lemma 2 in [31], D(v) is coercive in L2(Ω). We can verify that

E(v, u, b) → ∞ as ‖(v, u, b)‖2 → ∞ 1. Thus, the functional E(v, u, b) is coercive in

BV (Ω)×BV (Ω)×H1(Ω).140

The proof of coerciveness can be used to show that the energy minimization prob-

lem (14) has, at least, one positive, nontrivial solution, that is

Theorem 3.1. Suppose f ∈ L2(Ω) is nonnegative and λ, α, β, γ, τ > 0, then the

problem (14) has at least one solution (v∗, u∗, b∗) ∈ BV (Ω)×BV (Ω)×H1(Ω).

Proof. See Appendix.145

1‖(·, ·, ·)‖2 is the usual �2 norm defined as ‖(v, u, b)‖2 =
√
v2 + u2 + b2.
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3.2. Primal-Dual based Alternating Minimization Algorithm

Since the variables v, u and b are coupled together, an accurate joint minimization

can be costly. Thus, we adopt the alternating direction minimization to utilize the sep-

arability structure of (14), through which one can obtain the minimizer approximately

[37, 38]. We propose an alternating minimization algorithm to solve (14). Starting

from initial guesses of u0 and b0, the algorithm computes a sequence of iterates as

v1, u1, b1, v2, u2, b2, . . . , vk, uk, bk, . . .

see Algorithm 2.

Algorithm 2 Alternating Minimization of the NNC Model
1. Initialization: v0, u0, b0;

2. For k = 0, 1, . . .: compute vk+1, uk+1 and bk+1 from⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vk+1 = arg min
0≤v≤255

D(v) +
λ

2
‖v − ukbk‖22 + α‖∇v‖1; (15)

uk+1 = arg min
0≤u≤255

λ

2
‖vk+1 − ubk‖22 + β‖∇u‖1; (16)

bk+1 = argmin
b

λ

2
‖vk+1 − uk+1b‖22 +

γ

2
‖∇b‖22 +

τ

2
‖b‖22; (17)

3. Measure the relative residuals and stop iteration if they are small than the toler-

ance

max(
‖uk+1 − uk‖22

‖uk+1‖22
,
‖bk+1 − bk‖22

‖bk+1‖22
) ≤ tol.

Remark 3.1. A multi-resolution scheme was implemented to accelerate the algorithm,

which estimated the the variables on coarse resolution layers and used the correspond-

ing interpolation values as initialization for the next layer [39]. Three resolution layers150

were used for all experiments. We set tol = 5e − 4 on coarse layers, tol = 5e − 5 on

the fine layer for synthetic MRI data, and tol = 5e− 3 on coarse layers, tol = 1e− 4

on the fine layer for real MRI data.

Now we are left the minimization problems (15), (16) and (17) to address. The sub-

minimization problem (15) and (16) are of the same kind and could be solved efficiently155

by many optimization methods, such as the split Bregman method, the augmented
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Lagrangian method and the primal-dual method. We adopt the primal-dual Algorithm

1, which yields a simple iteration scheme for our problem.

3.2.1. Sub-minimization with respect to v

The primal-dual formulation of (15) is given as

min
0≤v≤255

max
‖p‖∞≤1

D(v) +
λ

2
‖v − ukbk‖22 − α〈v, divpk〉.

For the primal variable v, it gives a nonlinear minimization problem

min
0≤v≤255

D(v) +
λ

2
‖v − ukbk‖22 − α〈v, divpk〉+ 1

2τv
‖v − vk−1‖22,

which can be solved by Newton’s method [38, 27]. Denote

g(v) =
1

σ2
v −

I1

(
vf
σ2

)
I0

(
vf
σ2

) f

σ2
+ λ(v − ukbk)− αdivpk +

1

τv
(v − vk−1),

where I1 is the first-order modified Bessel function of the first kind. As only one

iteration of Newton’s method is used, the solution to v can be expressed as follows

vk+1 = vk − g(vk)

g′(vk)
. (18)

For the dual variable p, it is exactly the same minimization as the dual problem of ROF

model, the solution of which is given as

pk+1 = P(pk + νpα∇vk+1).

Here, τv and νp are two positive constants, which are set as τv = 0.015/α and νp =160

8/α.

Remark 3.2. For efficiency, we approximate I1/I0 by a cubic rational polynomial as

[27] in the numerical implementation, i.e.,

I1(t)

I0(t)
≈ t3 + 0.950037t2 + 2.38944t

t3 + 1.48937t2 + 2.57541t+ 4.65314
.
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3.2.2. Sub-minimization with respect to u

The sub-minimization problem of u can also be solved by the primal-dual algorith-

m, which is rewritten as

min
0≤u≤255

max
‖q‖∞≤1

λ

2
‖vk+1 − ubk‖22 − β〈u, divqk〉.

For the primal variable u, we can directly obtain its minimizer as follows

uk+1 =
uk + τuλb

kvk+1 + τuβdivq
k

1 + τuλ(bk)2
, (19)

Similarly, the solution to the dual variable q can be achieved according to (7), i.e.,

qk+1 = P(qk + νqβ∇uk+1).

Similarly, τu and νq are two positive constants, which are chosen as τu = 0.015/β and

νq = 8/β.

3.2.3. Sub-minimization with respect to b165

We apply a fixed-point approach to the mix term of ub to linearize the coefficient

of b and reformulate the sub-minimization problem as follows

min
b

λ〈uk+1b, uk+1bk − vk+1〉+ γ

2
‖∇b‖22 +

τ

2
‖b‖22 +

1

2η
‖b− bk‖22.

The Euler-Lagrange equation associated with (3.2.3) gives us a linear equation

(
(1 + ητ)I − ηγΔ

)
b = ηλuk+1(vk+1 − uk+1bk) + bk,

where I is the identity operator. Relying on the periodic boundary condition, it allows

us to use the fast Fourier transform (FFT) to solve the above equation. Denoting F(b)

as the Fourier transform of b, we have the solution to b as follows

bk+1 = F−1

(
ηλF(uk+1)F(vk+1)− ηλF(

(uk+1)2bk
)
+ F(bk)

(1 + ητ)I − ηγF(Δ)

)
, (20)

where F(Δ) = D̊−
x D̊

+
x + D̊−

y D̊
+
y and η is a positive constant fixed as η = 0.1.

4. Material and Methods

In this section, we introduce the MRI data sets, and the implementation details of

our method and the comparison methods used in the validation.
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4.1. Materials170

The following data sets are used for comparison:

• Synthetic MRI data: Three MRI slices from Brainweb simulated database [40]

with different modalities, i.e., PD-, T1- and T2-weighted MRI data, are used

for evaluation. More specifically, the noise level=[5%, 7%, 9%] for three types

MRI data. On the other side, all MRI data are also contaminated by intensity175

nonuniformity (INU), i.e., the PD-weighted MRI data is with INU of 40%; the

T1-weighted MRI data is with INU of 100% and the T2-weighted MRI data is

with two additional bias field profiles, which are denoted as INU 1 and INU 2.

• Realistic MRI data: We select one slice of 7T T1-weighted scan acquired by

Turbo Field Echo (TFE) sequence, which is downloaded from http://multimodal.180

projects.nitrc.org/MMRR- 3T7T-2-1 multimodal.tar.gz. Another two 2D MRI

images “Lumbar spine” and “Liver” are also tested.

4.2. Methods

We discuss the performance of proposal in Rician noise removal by comparing it

with 4 other methods, the implementation details of which are provided as follows185

• MSE: linear minimum mean square error estimator [23]. The local neighbor-

hood of 5× 5 voxels was used for PD-, T1- and T2-weighted MRI data.

• TVM: total variation based variational model [27]. We tuned the data fidelity

term parameter λ in λ ∈ [4, 14] according to the noise level and the strength of

bias field.190

• LGTV: locally generalized total variation [28]. We fixed the parameter ε =

1, the maximum iteration as 1000, and the step size as 0.05. The exponents

parameter γ was chosen as γ = 0.8 for the PD- and T1-weighted MRI data,

γ = 0.85 for the T2-weighted MRI data of INU 1 and γ = 0.75 for the T2-

weighted MRI data of INU 2, respectively.195
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• CTV: convex total variation based model [29]. We set β = 8/γ, τ = 0.015/γ

and tuned the regularization parameter γ in γ ∈ [0.08, 0.4] depending on the

noise level.

• NNC: There are several parameters in our model, some of which can be fixed,

i.e., λ = 0.04, τ = 1e − 5 for all experiments and γ = 14, γ = 4, γ = 7.5,200

γ = 10 for PD-, T1-, T2-weighted and real MRI data, respectively. The left

parameters α and β are closely related to the severity of noise and intensity

nonuniformity, which will be specified in the experiments.

For a fair comparison, we use N4 algorithm [14] to remove the bias field before

applying the denoising methods for T1- and T2-weighted MRI data, which is performed205

using Advanced Normalization Tools (ANTs). The parameters are kernel fwhm= 0.15;

Wiener filter noise= 0.1; number of iterations= 50; and fitting levels= 4.

For quantitative analysis, we use the Peak Signal-to-Noise Ratio (PSNR) and Mean

Structural Similarity index (MSSIM) [41] for evaluating the denoising results. The

Coefficient of Variations (CV) is used to quantify the degree of intensity nonuniformity,

which is defined on tissue T as

CV(T) =
σ(T)
μ(T)

,

where σ and μ denote the standard deviation and the mean of the intensities.

4.3. Noise Estimation

Automatic methods have been developed for stationary and non-stationary Rician210

noise estimation. We refer the interested readers to see Ref. [42] and the references

therein for more information. Figure 1 depicts the standard variation σ obtained by the

the object-based method [43] for a T1-weighted MR image corrupted by different lev-

els of Rician noise and INU. It reveals that σ increases as noise increases and decreases

as INU increases. Figure 2 provides the estimated noise maps using the non-stationary215

noise estimation method [44] for the same images, where the trend of the change on σ

follows the same pattern as the case of stationary noise estimation. It straightforward

to conclude that the existence of intensity nonuniformity may lead to the under-

estimation of the noise. Due to the existence of intensity nonuniformity influences
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the estimation of noise, we simply use the stationary noise estimation model in the220

numerical experiments unless noted otherwise.
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Figure 1: The estimated stationary noise σ for a T1-weighted image with different noise levels and INU.
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Figure 2: The estimated non-stationary noise σ for a T1-weighted image with different noise levels and

INU. Row one to three are of noise 5%, 7%, and 9%, respectively.

5. Experiments and Results

5.1. Synthetic MRI Experiments

As the first experiment, we compare the NNC with the aforementioned MRI de-

noising methods on PD-weighted MRI data. The comparison results of 5% Rician are225
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displayed in Figure 3. Although the intensity nonuniformity is not apparent visually,

we can figure out its existence in the 1D profiles. It is obviously shown that the in-

tensity values obtained by the NNC model is more structurally similar to the ground

truth, especially in the pink inset. The denoising accuracy is quantitatively verified by

evaluating results in terms of PSNR, MSSIM and the CV of white matter obtained, as230

shown in Table 1. Both visual results and the CV values of white matter demonstrate

that all compared algorithms fail to remove the bias field, while the NNC model is able

to remove the noise and intensity nonuniformity simultaneously.

(a) Original image (b) MSE (c) TVM

(d) LGTV (e) CTV (f) NNC

Figure 3: The recovered results and their associated 1D profiles of PD-weighted MRI data with noise 5%

and INU 40%, where the red line denotes the ground truth. The parameter for TVM model is λ = 8; CTV

model is γ = 0.15 and our NNC model is α = 0.12, β =0.003.

Secondly, we carry out the experiments on T1-weighted images, where more inten-

sive intensity nonuniformity are employed. For a fair comparison, we implement N4235

algorithm to correct the intensity nonuniformity, the results of which are used as the
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Table 1: PSNR, MSSIM and CV of white matter of PD-weighted MRI data with different Rician noises and

40% INU.

Methods
5% 7% 9%

PSNR MSSIM CV PSNR MSSIM CV PSNR MSSIM CV

Original 16.3238 0.8154 8.7391 14.7227 0.7412 10.5060 13.6349 0.6719 12.4232

MSE 21.1140 0.9033 6.7615 19.3569 0.8736 6.9257 16.8242 0.8328 7.2321

TVM 22.8612 0.9054 6.2598 22.4652 0.8849 6.2521 21.9853 0.8588 6.4309

LGTV 21.2072 0.8707 6.5656 20.3295 0.8514 6.4307 18.2572 0.8224 6.8260

CTV 22.4421 0.8994 6.4885 21.8129 0.8871 6.6294 21.1968 0.8654 6.9145

NNC 26.1919 0.9170 4.0239 25.2063 0.9003 4.1097 24.5553 0.8797 4.3789

input for all algorithms except NNC. The PSNR, MSSIM and CV are listed in Table

2, which indicate that N4 algorithm is able to remove the bias field to a certain extent.

However, when the noise increases, the improvement of N4 algorithm becomes limit-

ed. On the other hand, we conduct a comparative experiment using σ obtained by both240

the stationary and non-stationary noise estimation method. Table 2 reveals that there is

no significant difference in PSNR, MSSIM and CV for all algorithms no matter what

noise estimation method is used. Thus, we can just use the stationary noise estimation

method when images are corrupted by both noise and intensity nonuniformity.

Figure 4 depicts the visual results and the surface plots of 7% Rician noise obtained245

using the stationary noise estimation. We see that, the MSE, TVM, LGTV and CTV

model produce similar visual results, which still exhibit the intensity nonuniformity

in the middle region (marked by the red box). On the other side, the NNC model is

capable to provide denoising result with homogenous intensity, which gives the most

similar surface plot as obtained from the ground truth (Figure 4 (c)). Although the250

results of comparative algorithms are obtained based on bias corrected data, the best

PSNR and MSSIM are still achieved by our NNC model. Since the NNC, TVM and

CTV model share the same regularization term, the comparison results are readily to

demonstrate the advantages of modeling noise and bias field simultaneously.

Thirdly, we conduct another experiment on T2-weighted MRI data, in which we255

further amplify the bias fields. Similarly, we use N4 algorithm to correct the inten-

sity nonuniformity before implement the compared denoising algorithms. As shown

in Table 3, N4 algorithm totally lose its effect when the bias field is increased from

18



(a) Original image (b) N4 corrected
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Figure 4: The recovered images and their associated surface plots of T1-weighted MRI data with noise 7%

and INU 100%. The parameter for the TVM is λ = 8, the CTV model is γ = 0.18, the NNC model is

α = 0.11, β = 0.002.

INU 1 to INU 2. Meanwhile, the PSNR, MSSIM and CV significantly drop for all

compared algorithms, while the values obtained by the NNC model only slightly de-260

creases. Figure 5 and 6 presents the original images, N4 corrected images, the true

and the estimated bias field, and the restoration results. Apparently, the estimated ba-

sis field is very close to the ground truth of INU, which indicates that our proposal

can correctly estimate distribution of the INU. Both restored results and the difference

images between the restored images illustrate that significant bias fields are left in the265

difference images of the compared methods. As observed, when the bias field becomes

intense, the performance of the N4 algorithm is far from being satisfied. Happily, our

NNC model is shown to be robust with noise and bias field by both quantitative and vi-

sual results. Thus, it is a good way to consider both noise and intensity nonuniformity
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Table 2: PSNR, MSSIM and CV of white matter of T1-weighted MRI data with estimated stationary and

non-stationary Rician noises and 100% INU, where N4 denotes the image corrected by the N4 algorithm.

INU Methods
5% 7% 9%

PSNR MSSIM CV PSNR MSSIM CV PSNR MSSIM CV

Stationary

Original 19.2471 0.7507 12.9733 18.2573 0.6966 14.8417 17.7518 0.6540 16.5297

N4 22.8128 0.7935 9.6305 20.8579 0.7393 12.2887 19.5991 0.6893 14.4233

MSE 23.6754 0.8224 7.6191 22.0643 0.7893 8.7053 21.1621 0.7628 9.1400

TVM 25.3463 0.8542 6.5555 24.8452 0.8410 7.2671 24.7781 0.8288 7.3330

LGTV 23.8220 0.8193 6.1189 23.2543 0.8086 6.6827 22.6086 0.7905 7.6223

CTV 25.4766 0.8587 6.4084 25.2772 0.8423 6.9673 24.9513 0.8335 7.2977

NNC 26.7530 0.8854 5.9711 25.8609 0.8665 6.5305 25.4795 0.8571 6.9870

Non-

Stationary

MSE 23.7224 0.8238 7.4736 22.0438 0.7888 8.7328 21.1157 0.7613 9.2455

TVM 25.6274 0.8541 6.3921 25.0627 0.8426 7.2384 24.8383 0.8304 7.3061

LGTV 23.8199 0.8193 6.1202 23.2521 0.8086 6.6834 22.6219 0.7908 7.6357

CTV 25.7635 0.8584 6.2324 25.3209 0.8451 6.9318 25.0045 0.8354 7.2534

NNC 26.6294 0.8824 6.0929 26.0230 0.8676 6.6224 25.4898 0.8566 7.1022

simultaneously for MRI image restoration.270

Table 3: PSNR, MSSIM and CV of white matter of T2-weighted MRI data with different Rician noises and

INU, where N4 denotes the image corrected by the N4 algorithm.

INU Methods
5% 7% 9%

PSNR MSSIM CV PSNR MSSIM CV PSNR MSSIM CV

1

Original 20.7964 0.8702 20.7081 18.8857 0.8165 25.8893 17.6169 0.7661 30.5574

N4 22.3763 0.8903 18.8371 19.1328 0.8267 24.7748 17.8761 0.7768 29.8008

MSE 23.3333 0.9145 12.8938 20.0636 0.8667 15.0745 18.9240 0.8310 16.4763

TVM 24.6692 0.9165 10.3348 22.0283 0.8715 10.8940 20.6052 0.8312 11.1495

LGTV 22.9047 0.8865 10.1494 20.7786 0.8510 10.7599 19.5785 0.8232 11.2603

CTV 24.2946 0.9264 11.4358 21.4414 0.8736 12.8785 19.9485 0.8420 14.2576

NNC 26.6807 0.9351 9.1038 24.9930 0.9150 10.0893 23.2241 0.8919 11.1251

2

Original 18.6426 0.8295 26.8615 17.5107 0.7789 31.4133 16.6272 0.7317 35.4346

N4 18.4949 0.8207 26.3754 17.3157 0.7698 31.0898 16.4062 0.7218 34.7547

MSE 18.6563 0.8320 22.8199 17.6048 0.7910 25.0835 16.7504 0.7519 25.8876

TVM 18.9192 0.8280 20.1225 18.1695 0.7931 20.6308 17.4990 0.7569 19.9863

LGTV 18.2038 0.8120 20.8612 17.3678 0.7790 21.3264 16.7184 0.7481 21.6085

CTV 18.6296 0.8256 21.3165 17.7538 0.7752 21.9710 17.1476 0.7544 22.1311

NNC 25.4554 0.9281 9.4243 24.0328 0.9043 10.2049 22.1206 0.8683 11.5281

In the end, we present the outputs of the NNC method for PD-, T1- and T2-weighted

MRI images of 7% Rician noise in Figure 7, which primely shows that the noise-
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Figure 5: The recovered images and their associated difference images of T2-weighted MRI data with noise

9% and INU 1. The parameter for the TVM is λ = 10, the CTV model is γ = 0.12, and the NNC model is

α = 0.08, β = 0.0002.

free image v has been well decomposed into the true intensity u and the smooth bias

field b for all image modalities. The improvement of the image quality can also be

demonstrated by comparing the histograms of the original images and the solution u,275

as shown in Figure 7 (e). There are separated peaks in the histograms of the solution

u, corresponding to the background, cerebrospinal fluid, gray matter and white matter,

while the histograms of the original images do not have such well-defined peaks due to

the existence of the bias field. Besides, we use the T1-weighted MRI image in Figure 7

as an example, and plot the relative errors in Figure 8. It is shown that both the relative280

error of v, u and b decay as the iteration increase, which demonstrate that our model

converges well numerically.
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(a) Original image (b) N4 corrected
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Figure 6: The recovered images and their associated difference images of T2-weighted MRI data with noise

9% and INU 2. The parameter for the TVM is λ = 10, the CTV model is γ = 0.12, and the NNC model is

α = 0.11, β = 0.002.

5.2. Real MRI Experiments

The last subsection is devoted to test our method on realistic MRI data. For 7T

SENSE MRI data, we add the Rician noise of 5%, where the estimated σ is σ = 2.285

Results are depicted in Figure 9, which demonstrate that all denoising methods can

remove the noise quite well. In particular, the contour plot indicates that there exists

both noise and bias field in the original image as the isolines can not completely identify

the boundary of the white matter in the magnified region. It is obvious shown that our

NNC method gives the most satisfactory denoising result, the isolines of which are290

complete, clear and smooth. Other methods, such as the MSE, TVM and CTV model,

fail to identify the boundary of white matter from gray matter. The contour plot of
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Figure 7: The recovered results and histograms of the NNC model for PD-, T1-, and T2-weighted MRI data

with noise 7%.
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Figure 8: The relative error of v, u and b of the NNC model for T1-weighted MRI data in 7.

LGTV shows that the LGTV gives a over-smooth denoising result.

Another experiment is conducted on two MRI images of Liver and Lumbar spine,

both of which exhibit obvious intensity nonuniformity. For the liver MRI experiment295

in Figure 10, we can find that the intensities within each tissue become more homo-
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(f) NNC

Figure 9: Visual inspection for real 7T SENSE MRI, where λ = 4 for the TVM, γ = 0.4 for the CTV

model and α = 0.4, β = 0.01 for the NNC model.

geneous for the result obtained by the NNC model, especially the liver region (inside

the red box). For Lumbar spine in Figure 11, the NNC model can not only gives more

homogeneous result, but also recover the structures in the background.

In the end, we display both the bias corrected images and the estimated bias field for300
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(a) Original image (b) MSE (c) TVM

(d) LGTV (e) CTV (f) NNC

Figure 10: Visual inspection for real Liver MRI, where λ = 10 for the TVM, γ = 0.12 for the CTV and

α = 0.12, β = 0.0001, γ = 4 for the NNC.

(a) Original image (b) MSE (c) TVM

(d) LGTV (e) CTV (f) NNC

Figure 11: Visual inspection for real Lumbar spine MRI. , where λ = 10 for the TVM, γ = 0.12 for the

CTV and α = 0.12, β = 0.02 for the NNC.
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the real MRI data in Figure 12. Obviously, the intensities become more homogeneous

for the bias corrected images and the estimated bias fields are spatially smooth as we

assumed.

(a) 7T brain (b) Liver (c) Lumbar spine

Figure 12: The bias corrected images and estimated bias field of images in Figure 9, 10 and 11.

6. Conclusion

The Rician noise and intensity nonuniformity are two main factors leading to the305

degradation of MRI data. Although they may coexist in MRI data, current denoising

methods can not deal with the intensity nonuniformity. In this paper, we proposed

a novel restoration model for MRI data, which can handle the aforementioned prob-

lem. In our proposal, we modeled the noise-free image as a multiplication of the true

intensity and the bias field, both of which are regularized based on suitable prior infor-310

mation. The numerical experiments show that the proposed method can achieve better

results than the comparison methods and support different contrast type MRI data, i.e.,

PD-, T1-, and T2-weighted MRI data. Moreover, satisfactory results can be achieved

on real MRI data. Future works includes to further improve the performance of NNC

model by using more powerful regularization techniques, such as the total generalized315

variation, nonlocal total variation, etc.. Although we use experiments demonstrate that

26



the existence of intensity nonuniformity will lead to the underestimation of the Rician

noise for both stationary and non-stationary approaches, there is still lack of quantita-

tive evaluation of such effect. Thus, a possible and meaningful future work is to model

the intensity nonuniformity in noise estimation for accurate image restoration.320
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Appendix : Proof for Theorem 3.1

Proof. According to [31], the Rician data fidelity term is bounded below. Since the

other terms in E are positive and proper, the infimum of E(v, u, b) is finite. Let us pick

a minimizing sequence (vn, un, bn) ∈ BV (Ω)×BV (Ω)×H1(Ω). Then, there exists330

a constant M > 0 such that E(vn, un, bn) ≤ M . Thus, each term in E(vn, un, bn) is

bounded, i.e.,∫
Ω

1

2σ2
(vn)2 − log I0

(vnf
σ2

)
dx ≤ M,

∫
Ω

(vn − unbn)2dx ≤ M,∫
Ω

|∇vn|dx ≤ M,

∫
Ω

|∇un|dx ≤ M,

∫
Ω

|∇bn|2dx ≤ M,

∫
Ω

|bn|2dx ≤ M.

Since vn ∈ [0, 255], ‖vn‖L1(Ω) =
∫
Ω
|vn|dx ≤ 255|Ω|, where |Ω| is the area of Ω.

Hence, ‖vn‖BV (Ω) is uniformly bounded. By the compactness property of BV (Ω)

and the relative compactness of BV (Ω) in L1(Ω), up to a subsequence also denoted

by {vn} after relabeling, there exists a function v∗ ∈ BV (Ω) such that (a) vn → v∗

strongly in L1(Ω), (b) vn → v∗ a.e. x ∈ Ω, (c) ∇vn ⇀ ∇v∗ in the sense of measure.

Due to the lower semi-continuity of the L2 norm and total variation, it yields∫
Ω

(v∗)2dx ≤ lim inf
n→∞

∫
Ω

(vn)2dx,∫
Ω

|∇v∗|dx ≤ lim inf
n→∞

∫
Ω

|∇vn|dx.
(21)
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Since the sequence {vnf} is weakly convergent in L1(Ω), it is equi-integrable. Thus,

it follows from the estimate

log I0
(vnf
σ2

) ≤ 1

σ2
f |vn|,

that the sequence
{
log I0

(
vnf
σ2

)}
is equi-integrable. Applying the compact embedding

of W 1,1(Ω) into L1(Ω), we will assume that

vn(x) → v∗(x), pointwise a.e. in Ω,

which implies

log I0
(vn(x)f(x)

σ2

) → log I0
(v∗(x)f(x)

σ2

)
, a.e. in Ω. (22)

Since un ∈ [0, 255], ‖un‖L1(Ω) =
∫
Ω
|un|dx ≤ 255|Ω|. Hence, ‖un‖BV (Ω) is uni-

formly bounded. Similarly, up to a subsequence also denoted by {un} after relabeling,

there exists a function u∗ ∈ BV (Ω) such that (a) un → u∗ strongly in L1(Ω), (b)

un → u∗ a.e. x ∈ Ω, (c) ∇un ⇀ ∇u∗ in the sense of measure. The lower semi-

continuity of the total variation yields∫
Ω

|∇u∗|dx ≤ lim inf
n→∞

∫
Ω

|∇un|dx. (23)

Without loss of generality, we can assume that bnΩ :=
∫
Ω
bndx = |Ω|. By the general-

ized Poincaré inequality in Ω, we have all n,

‖bn‖L2(Ω) = ‖bn − bnΩ‖L2(Ω) ≤ C1‖∇bn‖L2(Ω) ≤ C2,

for some constant values C1 and C2. This implies that the sequence {bn} is bound-

ed in H1(Ω). By the L2-weak compactness of the bounded H1 sequence, there is a

subsequence that is also denoted by {bn} after relabeling, and a function b∗ ∈ H1(Ω)

satisfying (a) bn → b∗ strongly in L1(Ω), (b) bn → b∗ a.e. x ∈ Ω, (c) bn ⇀ b∗ weakly

in H1(Ω). By the lower semi-continuity of L2 norm and H1 norm, we have∫
Ω

|b∗|2dx ≤ lim inf
n→∞

∫
Ω

|bn|2dx∫
Ω

|∇b∗|2dx ≤ lim inf
n→∞

∫
Ω

|∇bn|2dx.
(24)
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Since vn → v∗ a.e. x ∈ Ω, un → u∗ a.e. x ∈ Ω, bn → b∗ a.e. x ∈ Ω, Fatou’s

lemma gives that∫
Ω

(v∗ − u∗b∗)2dx ≤ lim inf
n→∞

∫
Ω

(vn − unbn)2dx. (25)

Combining inequalities from (21) to (25), we deduce that

E(v∗, u∗, b∗) ≤ lim inf
n→∞ E(vn, un, bn) = inf E(v, u, b),

which indicates that (v∗, u∗, b∗) is a minimizer of problem (14). This completes the

proof.
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