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Abstract

The irreducibility, moderate deviation principle and -uniformly exponential er-
godicity with ¢(z) := 1 + ||z||o are proved for stochastic Burgers equation driven
by the a-stable processes for « € (1, 2), where the first two are new for the present
model, and the last strengthens the exponential ergodicity under total variational
norm derived in [7].
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1. INTRODUCTION

In [7], the strongly Feller property and exponential ergodicity have been proved for the sto-
chastic Burgers equation driven by rotationally symmetric a-stable processes with o € (1, 2).
In this paper, we prove a stronger -uniformly exponential ergodicity, the irreducibility, and
the moderate deviation principle for occupation measures. Before stating our main results,
we briefly recall the framework of the study and results derived in [7]. For more research
about asymptotics of stochastic systems driven by Lévy processes, we refer the reader to
[3,2,4,10, 12, 11, 13, 18, 31, 32, 25, 24, 23, 22, 8, 15, 26, 16, 14, 30, 20, 18, 8].

Let H be the space of all square integrable functions on the torus T = [0, 27) with van-
ishing mean values. Let Au = —u” be the second order differential operator. Then A is a
positive self-adjoint operator on H. Let Ao, := Aojy1 := k% with k£ € N and

eor () == T cos(kx), egri1(x) = ms sin(kx).
It is easy to see that {ey, &k € N} forms an orthogonal basis of H and
Aek = )\kek, k e N.

The norm in H is denoted by || - [|o.
For v € R, let H” be the domain of the fractional operator Az :

HY = A_%(H) = {Z )\;%akek : (ak)keN C R, ZCL% < +OO} .
k k
It is a separable Hilbert space with the inner product

(u,v), = (AZu, AZv)y = Z M(u, ex)o(v, exo-
k
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For u € H, let ||ul|, = /(u,u), if u € H?, and ||lu||, = oo otherwise. The Cj-contraction
semigroup e 4 generated by — A reads

e My = Ze’”k (u, ex)oex, t>0.
k

Obviously,
(L1) ¢ o < sup(ae )t ulo = 77e 7 ulo, 7> 0.
x>

Let {WF ¢ > 0},cn be a sequence of independent standard one-dimensional Brownian mo-
tion on some probability space (2, F,P). The cylindrical Brownian motion on H is defined
by

Wt = Z Wtkek.
k

For @ € (0,2), let S; be an independent «/2-stable subordinator, i.e., an increasing one
dimensional Lévy process with Laplace transform

Ee "5t = ¢~y > 0.
The subordinated cylindrical Brownian motion {L; };>o on H is defined by
Lt = WSt.

Notice that in general L; does not belong to H.
We are concerned about the following stochastic Burgers equation in the Hilbert space H:

Eq| (1.2) dX, = [AX, — B(X,)|dt + QdL;, X, =z € H,

where B(u) := B(u, u) for the bilinear operator b defined by B(u,v) := uv’ for v € H' and
u € H, and Q € L(H) is given by

Qu L= Zﬁk<u7 ek)Oeku u € H7
k=1
with # = (8k)ren such that there exist some 6 € (0,1) and 3 < ¢ < 6 < 2 satisfying

_0 o
\ssumption| (1.3) N2 < 1Bk < (571)\,C 2, k € N.

By [21, Lemma 2.1], we have

1

2] (1.4)  (B(u,v),w)o < Cllullo, |0lons1llwlloss o1 + 00 + 03 > 1/2,u,w € H,v € H'.

Moreover, let

t
z70| (1.5) Zy = / e =40QdL, t>0
0
satisfies Z. € D([0, 00); H') and
(1.6) E [ sup HZtHll < oo, T >0,
0<t<T

see e.g. [7, (4.5)]. Recall that for a topology space E, C([0,00); E) (resp. D([0,00); E))
stands for the space of the continuous (resp. right continuous with left limits) maps from
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[0, 7] to E. We further denote by B,,(E) and C,(E) the spaces of bounded measurable func-
tions and bounded continuous functions respectively. The following result is due to [7, The-
orem 4.2]. For a o-finite measure 1, on E we denote u(f) = [, fdu, f € L'(n).

Theorem 1.1 ([7]). Let o € (1,2) and the assumption (1.3) hold for some § € (0,1) and
s<o <<

(1) Forany x € H, (1.2) has a unique solution (X[)>¢ starting at x, and
X — Z € C([0,00),H) NC((0, 00), H).

In particular, (t,z) — X[ is a Markov process on H.
(2) The Markov semigroup P, for X[ is strongly Feller, and has a unique invariant prob-
ability measure g such that

(1.7) sup  |Pf(x) — po(f)] SO+ ||zllo)e™, t>0,x € H
feBb(H)v‘.ﬂSl

holds for some constants C',~ > 0.

In this paper, we prove the following two theorems on the irreducibility, moderate devia-
tion principle of occupation measures for solutions to (1.2), and the )-uniformly exponential
ergodicity for ¢)(z) := 1 + ||z||o. The first two properties are new for the present model, and
the third strengthen the exponential ergodicity (1.7) with | f| < ¢ replacing | f| < 1.

Theorem 1.2. In the situation of Theorem 1.1, for any x € H, the solution (X7 )i>o of (1.2)
is irreducible in H, i.e.

P(| X% —allo<e) >0, e>0,T>0,acH.

To state our second result, we recall the notion of moderate deviations (MDP). Let M, (H)
be the space of signed o-additive measures of bounded variation on H, equipped with the 7-
topology 7 := (M, (H), By(H)) of convergence against all bounded Borel functions, which
is stronger than the usual weak convergence topology o (M, (H), C,(H)). We denote M, (H)
the space of probability measures on H. Given a ¢ : H — R, , define

By := By(H,R) = {f € BH,R) : | f(z)| < ¢(z)}.
Let b(t) : RT™ — (0, 400) be an increasing function verifying

(1.8) lim b(t) = 400, lim —= =0,

t—o0 t—o0o t

and let
1

M, = b(t)\/l_f/o (0x, — f0)ds.

To characterize moderate deviations of X, from its asymptotic limit 11, one estimates the long
time behaviours of

(1.9) P, (M, € A),

where A € 7 is a given domain of deviation, and P, is the probability measure taken for
the system X with initial distribution p. This problem refers to the central limit theorem
for b(t) = 1, the large deviation principle (LDP) for b(t) = /%, and the moderate deviation
principle (MDP) for b(¢) satisfying (1.8), see [6]. We say that P, (; € -) satisfies the MDP
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with a rate function I on M (H), if the following three properties hold for any b satisfying
(1.8):
(al) forany a > 0, {v € M (H);I(v) < a} is compact in (M (H), 7);
(a2) (the upper bound) for any closed set F' in (M (H), 7),
1
: 1 < _infT.
ll;njip T loglP,(Mr € F) < I%f I
(a3) (the lower bound) for any open set G in (M, (H), 7),
o 1
e

Theorem 1.3. In the situation of Theorem 1.1, let 1(x) = 1 + ||x||o. Then the following
statements hold.

logP,(Mr € G) > —igf[.

(1) The Markov semigroup P, associated with (1.2) has a unique invariant measure io
with io(([ - lo) = [y, zllopto(dz) < o0 and
sup |Pof (z) — po(f)| < Ce (1 + ||zllo), = €H,t >0
fqu/,
holds for some constants C',~y > 0.
(2) For any initial distribution p with (i(]] - ||o) < 400 and any measurable function f
with || f1 ™|« := supy | fU ] < oo, the limit
2

t—o00

()=t 12 ([0 = ol e )

exists. Moreover, the family {P,(0, € -) : t > 0} satisfies the MDP with rate
function

1(s) o= swp { () — 50°(1) + f € By(ED) )

To prove the irreducibility by a standard argument developed in [17] for SDEs driven by
cylindrical a-stable process, one needs to solve a control problem for an associated deter-
ministic system, and establish a maximum inequality. Unlike the cylindrical a-stable process
where component processes are independent, the rotationally a-stable process we are consid-
ering has strong correlations between any two components, which leads to essential difficulty
to follow the line of [17]. To overcome the difficulty, we propose a new procedure including
the following three steps: taking a sample path of a//2-stable subordinator ¢, solving a new
control problem by mollifying ¢ as in [32], and proving the irreducibility by showing that for
the stochastic systems driven by W,,. With these preparations, Theorems 1.2 and 1.3 will be
proved in Sections 4 and 5 respectively.

2. A CONTROL PROBLEM FOR THE ASSOCIATED DETERMINISTIC SYSTEM
Consider the path space of the subordinator S; ([33]):
S = {£:]0,00) — [0, 00); { is strictly increasing, right continuous and has left limit}.
For any ¢ € S, the set of jumps
TW) = {t>0: 0 £0)
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1s at most countable. Let

v =1inf{s > 0: ¢, > t}, t>0.
Consider the following deterministic system in H:
(2.1) dat + [Axf + B (xf)} dt = Qduy,, xf = o,

where u : [0, 00) — H is the controller to be chosen later. Let

t
(2.2) zf = / e_A(t_s)Qdugs, yf = azf — zf, t>0.
0
Then
dyf ¢ ¢ ¢ ¢
(2.3) E—l—Ayt + By, +2,) =0, z5=xo.
Define

2 2

It is easy to see that t.(a,7") € (0,7/2]. For notational simplicity, we often write t. =
t-(a,T). The main result in this section is the following.

T
(2.4) te(a,T) = sup {t <= |leMa—alo < E} , T'>0,e>0,a € H.

Proposition 2.1. Let ¢ € S and xy € H'. Foranye > 0, T > 0 and a € H, there exist
u € C([0, 7] ; H?) with bounded total variation and z* € D([0,T];H") solving (2.1) such
that
lo7—alo <&, T¢I
Moreover,
2l < Cr(1+ lle™allf + || .. [15), 0<t<T,

where t. is defined by (2.4) and x,_ is determined by (2.1) with uy, = 0 for t € [0, t.].
To prove this result, we regularize ¢ € S by

1 é
E?ZSAEHM“ t>0,6>0,

and prove the assertion for £ replacing /. It is clear that £ is strictly increasing and continu-
ous. Let 7? be the inverse of 9.

Lemma 2.2. Forall § > 0, we have
N<u<AH+6, V=0

Proof. Denote t, = v, and t; = 7}, it is easy to see () = ¢ and {,, > ¢. Observe (; =

%foa lopdr > tsince by >t forr > 0. If tg < ¢y, thent < Kfo < €f1 = t. Contradiction.

If ty > ¢+ 9, we have {;, 45 < t, otherwise ¢y < ¢; + 4. Consequently, £} = %fo‘s Oy ppdr < t

since £y, 4, < t forall r € [0, 0], but £ = ¢, contradiction. Hence, to € [t1,t; + ). O
Lemma 2.3. Forany T > 0,¢ > 0,0 > 0,a € H, let t. = t.(a,T) be defined by (2.4) and
take

(2.5) ug:H@@ﬂQQAFWS,temJ%,
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where ! is the inverse function of (¢ and

t t
(2.6) F(t) = xfé—xf:—i—/ Axf;“ds+/ B(z")ds, te[t.,T].
te

le

Thenu € C([0,¢5] ;H?) and F € C([t., T];H*) with

2.7 IF®)la < Cr(1+ [le™*=allg + a7 §) < 00, ¢ € [, T],

28)  [F(t) = F(t2)lla < Cr(1+ e~ *=all§ + |2 1))t — ta], 1,2 € [t2,T).

Moreover, let z*° € C ([0, T]; H') solve the system (2.1) with (° replacing (. Then
| 2 — allo < /2.

Proof. We first observe that xfé has the representation

S

t
(2.9) 2l = e Mg+ / e A B s, 0<t <L,
0

eé t_teefAtEa_'_T_t 86

2.10 - L<t<T
(210 T T, T—t 't ==t=

Indeed, by (2.5), u; = 0 for all t € [O,Efj, the system (2.1) is a deterministic Burgers
equation, which admits a unique solution =% € C ([0, t.]; H') given by (2.9). On the other
hand, for ¢ € [t., T], substituting /" with the form (2.10) into the left hand of the system
(2.1), we obtain

Quff =F(t), telt., 1],

where F'(t) is defined by (2.6). Taking

w=Q 'F(v)), telf. 4],

we immediately obtain that (x, u) solves the system (2.1) for ¢ € [t., T].

Next, since 25 = e =g and |le~*=a — al|o < £/2, we have || z& — al|o < £/2. It remains
to verify the claimed properties of u and F'. By the regularity of Burgers equation (see the
detailed proof below) and e~ respectively, xfj € H° and e~4%=q € H°. Forall ¢ € [t., T),

we have
5 _ S5
2y [l4 < lle™*alls + [z |3,

9 4 _ 9
1BGE s < Cllf' iR < ¢ (e =al + 2 1R)

|4z 4 < € (e a 3+l

s+ llztllls) < € (1+]le™*a

6)
where the second inequality is by [21, Lemma 2.1]. Combining the above inequalities, we

immediately get (2.7) and (2.8), as desired. Therefore, F' € C([t.,T];H*), which, together
with the assumption of @ and (2.5), yields u € C([0, (5] ; H?).
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Finally, it 1s easy to see that Hact l¢ < oo. Below we present a proof for completeness.
Noting that a:t € H! for all t € [0,¢.], letting t; = t./3,ty = 2t./3, t3 = t. and taking
§ € (0, 1), we have

t
28 ]l2 < [leMaolls + / | A6 A=) ||| B(22) | a5ds
0
t
@2.11) < Ct—%||x0||1+c/ (t — )02 ||2ds
0

< o (tH ¢ s [o1R) s te .t
t

<t<ts

where the last inequality is by (1.1) and (1.4). Now taking xfé as the initial data, we obtain

laf e < Nl ag Ly +/ | A0 AT Bl ) lo42sds

t
(2.12) < O(t—tl)‘1||xff||2+0/ (t— )7 )|2% | 3ds

t1

< (0=t el =) sup [1E) . e€ (ot

t1<t<ts

Similarly, taking xfj as the initial data we get

@ laf'le £ € (-0 Nl ¢ s 1R e (]

to<t<ts

This completes the proof. U
Lemma 2.4. Forallt > 0, let

t t
Zf:/ eiA(tfs)Qduew Zf§ :/ efA(t*s)QdUgg-
0 0
Then

DelzSmall| (2.14) 128 = 2y < Cr(1+ |le*all + ||z |2)5, te[0,T]\T(0).
Proof. By (2.5), we have u; = 0 forall 0 < ¢ < ¢! . Since {;, < (2,

(2.15) d=2=0, telot].

Using integration by parts, we get

t
(2.16) 2t = Quy, — / Ae= M=) Quy ds.
0
It is easy to see by (2.5) and (2.7) that forall 0 < ¢t < T,
— 5
1Quell2 = IIF(v)ll2 < sup [[F(vy)ll2 < Cr(1+ [le”all§ + [l 117,
0<t<T
and thatforall 0 < ¢ <Tand 0 < s <t
| Ae™ ) Quy, || = |le” 1 < [|Quy,

< Cp(1+ [le™al2 + |22 |12).

s
@17 (72) |




xldelta-0

e:xldelta

8 Z. DONG, EY. WANG, AND L. XU
Hence,

Izl < Cr(L+[le™*allg + |z, F), 0<t<T.
Similarly,

§ —

2 ll2 < Cr(L+ le™all§ + [lee [l§), 0<t<T.

Using integration by parts again, we further get
t
1 — —
7 — 2 = Qug — uy,) —/ AeQ(ugs — uy,)ds
0

which, together with (2.5) and (2.8), yields
s t
Iaf' = =l < IFOR) = PG+ [ 1QGu: e ads
t
< IFOY) - ORI+ [ IFOR) - FOLlds
0
t
< oLt e al} + o) |y =561+ [ by =k
0

t
= o1+ e al} + o) [ =8 1+ [ 15 = ks
0
where the last equality is by 735 =t for all £ > 0. By the definition of 7., if t ¢ J({), i.e. t is
t
a continuous point of ¢, we have 7, = t. Therefore, by Lemma 2.2, we have
t—l < ft=v0l+ |, =] < lt—7el+d <6, tel0,TI\T)

Since /. has at most countably infinite jump points, Lebesgue measure of 7 (¢) is zero. Thus,
t
/ s =70 |ds < T6, te[0,T)
0

and

l2f = 20l < Cr(L+ lle™<allf + [l 13)5, ¢ € [0, T]\ T (0).

We are now at the position to prove Proposition 2.1.

Proof of Proposition 2.1. Let 6 > 0 be small enough to be chosen. By Lemma 2.3, the
equation

(2.18) o‘lggf‘S + [Aa:fé + B(xf‘s) dt = Qdu@, xff = Xy

is solved by u € C([0,¢}] ;H?) and 2" € C([0,T];H'), which have the forms (2.6)-(2.9)
and

|2 allo < /2
We will compare Eq. (2.18) with the following equation:

(2.19) doy + [Azy + B(z))] dt = Qduy,, o = 0.
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S §
Denote ¢ = ¢ — 2{ and y*’ = 2’ — 2", Then

d
j;; + Ay’ + Blal) =0,y =,

dyt

& + Ayt + B(xt) 0, yé = 2.

By (2.15), we have
5
yt —yt =0, telo,t.].
Write Ay = yf — y¥ Azt = 2! — 2 and Azl = 2! — 22 for t € [t., T]. Then

t t
(2.20) 1Ayl + 2/ Ay |[Fds < 2 / (Ayf, B(at) — B(af))ods|.
te te

Noting that
B(z') — B(z") = B(z!,Az) + B(A:c 2

S S? S

= B(Awl) + B(Aal,al) + Bl Axf)

S

= B(AyY) + B(AZY) + B(AY, AZY) + B(AZ, AyY) + B(Az!, 2") + B2, Axb),

§)7s S

and that (x, B(z, z))o = 0 for x € H', we obtain

(Ays, Blat) = B(al))ol < [ Aytlo [HB(AZﬁ)Ilo +[1B(Ay;, Azg)llo + |1B(AzZ, Ayg)llo

§1s

B 2o+ 1B Al
Combining this with (1.4) and the inequality 2ab < a® + b? for a > 0 and b > 0, we arrive at
[(Ayl, B(af) = Bzl )l < CIIAyfllo[IIAZ§II?+ 1Ay [l Azl + IIAﬂfﬁlllllxﬁélll}
< CllAyllo {HAZﬁH? + I AG A + 1Ay 124 | + HAszlele]
< AGE + CIAGLIS (1AZEIE + 122'13) + Cl AL
This, together with (2.20) and (2.14), implies

t t
3
18001 < € [ Nyl (18540% + 25 1) ds+ € [ facliias
te te

t
<C [ 1808 (1AZIE + Jaf'I7) ds + Or(1 + | e alld+ [ln )62, ¢ € [tT)
te

By Gronwall’s inequality, we obtain

T
|yl < Crexp [O | (st + 1 12) ds} (L4 e all? + o, 3)6°
t

(3

On the other hand, (2.10) implies

5 _ S _ 5
lz 1 < lle™all + lailly < C(Ile Atsa||6+||$f€||6>, t €t T],
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which, together with (2.14), leads to
g g A 0
—Ate 4 4
| (aa 4128 1) ds < Crl+ e all + [af13)
te
Hence,

6+ [l [16)0%.

— 3 _
1Azl < Crexp [CT(HHe Heallg + =i 15) | (1 + le™a

Combining this with (2.14), as long as ¢ > 0 is chosen to be sufficiently small we obtain

62

|A2zl§ < 2lApzllg+20A2205 < 7. T¢I
Therefore, it follows from Lemma 2.3 that
laf—allo < A%l + laF —alo < &, T ¢IT(0).
The proof is then complete. U

3. ESTIMATE OF CONVOLUTIONS
For/ € S, T > 0andu € C([0,£7]), let z be given in (2.2), and define

t
zT1] (3.1) VA ::/e‘(t‘s)AQdW@g t>0.
0

Lemma 3.1. ForanyT > 0, v € [1, 0 — %) and p > 1, there exists a constant C' > 0 such
that

(32) E[Oi%” zfug] <ce ics

Proof. Using integration by parts, we have

t t
Z! = / e A=QdW,, = QW,, + / Ae A QW, ds.
0 0
By (1.3) and the martingale inequality, we obtain

E sup QW[5 <E sup [[QW:f
0<t<T 0<t<tr

< CyoE sup (W%,
0<t<lr

2
< Cp Bl WerlP g < Coor .
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For+' € (v,0' — 3), (2.1) implies

t p t p
E sup /AC_A(t_S)QWngS <E sup (/ ||AC_A(t_S)QWgS||7dS>
o<t<r || Jo N o<t<t \ Jo
t p
=F sup (/ HAlJrv'y/eA(ts)QA'y"YWZSH'YdS)
o<t<T \ Jo
t , , p
< s (-9 QT as)
0<t<T 0
t , p
< oo sup ([ (=9 W )
o<t<T \ Jo
Since

t

t
[ 7 W sas < sup W lo [ (@970
0 0<t<T 0
S C’Yv’ylvT Sup ||W€s||’7'—9"
0<t<T

by the same argument as the above we get

t
/ Ae A QW, ds
0

P
p/2
< O%'y’ﬂ’,p,TgT :

~

E sup

0<t<T

Collecting the above inequalities, we obtain the desired estimate. U

Lemma 3.2. Forany( € S, T > 0ande > 0,

IP’( sup || Zf — 2| < 5) > 0.

0<t<T

Proof. For any N € N, let Hy = span{e; : i < N} and let H be its orthogonal com-
plementary. Let Iy : H — Hy and IIV : H — H” to be the corresponding orthogonal
projections. We have

P( sup 12 — 2|l sf-:)
0<t<T

19
> p( sup (!~ Dl < 5. sup 102 - 541, < 5)
0<t<T 0<t<T

o

€ €
:P( sup [Tly(Z{ — =)l < 5)1@( sup [11Y(Z{ — =) < 5),
0<t<T <t<T
where the last inequality follows from the independence of I1yZ/ and IV Z{. Below, we
estimate these two probabilities respectively.
For the first one, using integration by parts, we get

0

t
20— 2t = QWi — ) + / Ae QW — ug,)ds.
0

Obviously, there exist a constant C'yy > 0 such that
| Ty [Q(We, — ug,)] |1 < Cn|[[Hn [We, — ug,] [lo,
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and
t t t
HHN/ AC_A(t_S)Q(WgS — Ugs)ds S / HN/ AC_A(t_S)Q(WgS — ’LLgs) dS
0 1 0 0 1
t
<o [ W, = ) ods
0
<TCx sup |y [Wi— u|lo-
0<t<lp
Hence,

sup [[TYV(Z{ — 2{[ly < TCx sup [[TIx [We, —ug,] llo
0<t<T 0<t<T

<TCy sup ||y [Wr—w]lo.

0<t<lp

It is clear (IIxyW})i>0 and (IInut)s>o can be identified with an N dimensional standard
Wiener process and a continuous function in C([0, 00) ; RY). Since the support of a Brownian
motion is the whole continuous function space, we have

]P’( sup [Ty (We — ) |lo < 5) >0, 6 >0.

0<t<br
Therefore,
¢ ¢ €
(3.3) ]P( sup |[IIn(Z; — 2|1 < —) > 0.
0<t<T 2

On the other hand, by (3.2) with v € (1,6 — 1), Chebyshev’s inequality and the spectral
inequality || TTVz||; < A} '||z||, for 2 € H, we have

g e _
P( sup V(2 — )] > —) < P( sup | (20— D)l = A% )
2 0<t<T 2

o<t<T

2E {SUpogtST I Zf”v] + 28upg<i<r HZfH'y
< .

EAN

From the previous inequality and (3.2), choose a sufficiently large IV, we get

p(sup (20 =2l > 5 ) <1,

0<t<T

equivalently,

(3.4) ]P’( sup |[II¥(ZE — 29| < f) > 0.
0<t<T 2

Combining (3.3) and (3.4), we finish the proof. O
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4. PROOF OF THEOREM 1.2
For ¢ € S, let Z; be in (3.1), and let X solve

(4.1) dX} = [-AX] — B(X))]dt + QdW,,, X =o€ H.

Then Y/ := X} — Z/ satisfies

4.2) %ﬂ + A+ B+ 2 =0, Y!=a.

Proof of Theorem 1.2. Since S. € S a.s., it suffices to show that foreach ¢ € S,
(4.3) P(|| X5 —allo < &) > 0.

Since X} € H! for t > 0, by the Markov property, we may and do assume that x, € H'.
Below, we prove (4.3) for 2y € H!.

By Proposition 2.1, there exist u € C([0,77];H*) with bounded total variation and z‘ €
D([0,T]; H') solving

such that
lo —allo <e/2, T ¢ T(0).
So, when T' ¢ J (¢) we have

3 3
POIX — all <€) > P11 X5~ ohl < 5.l - all < 5)
¢ ¢ £ 00 £ ¢ ¢ £
v =P(IxE bl <) 2P(IE - obllo < 5.0 25— o< 5)
_P(H Vi-oblo 5 s 112 - sflo< ), £ € (0.2/)
4" o<i<T

where z{ = fot —A(t=s) Qd’LLg and ! is in (2 2).
Write AY) =Y}/ — y!, AX! = X! — 2l and AZ! = Z! — 2!. Then (2.3) and (4.2) yield
dAY;Z
dt
which clearly implies

+ AAYY + B(X{) = B(z;) =0, AYy =0,

s

t t
N / JAY?|2ds < 2 / (AYY, BX) — B(a%))olds.

Since (x, B(x,))o = 0 for z € H', we have
[(AY], B(X,) — B(x))ol
= (A, B(AX{))o + (AYf?B(AXf? z))o + (A, B(x, AX{))o
= (AY), B(AYY, AZ£)>o + (AY], B(AZ;, AY[))o + (AYY, B(AZ,, AZ))o
+(AYY, BAX], 7))o + <AY B(x, AX))o,

S
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which, together with (1.4) and the inequality 2ab < a® + b? for a, b > 0, implies
(Y, B(X;) — B(x{))ol

S

< C(IAY oA IAZ 1 + AV o IAZENT + llrg 1 JAY o AX 1)
1 1
< C(IAZNT + [l IDNAYL(E + ClIAZR + (5\!&2@!@ + ZHAXfH?)

< CIAZIE + g IDIAYSE + 1AV + ClIAZ
for some constant C' > (. Hence,
t t
|AYF]? SC/ (HAZfIIf+I|x§||?)HAYfII3dS+C/ 1AZ; [ ds
0 ) 0
< C(sup [|AZ{]T+ sup vafH?)/ |AY|[5ds + CT sup [AZ{|[], 0<t<T.
0<t<T 0<t<T 0 0<t<T

When supg,<p [|AZ{||o < €/, we have
t
IAYS|P* < C((e)* + sup Hmfﬂf)/ IAY[l3ds + CT ().

0<t<T 0

By Gronwall’s inequality,
IAYZ][* < CTexp [0(6’ + sup Hflfle)T] (), if sup [[AZ{]lo <€

0<t<T 0<t<T

Since supy<,<¢ ||zf][1 < oo, when €’ is sufficiently this implies
[AYllo < . if sup [AZ{o <
4" o<t

Hence, for small enough &’ > 0,

£
]P’<H Y —ybllo < 7 Sup | Z& — 250 < g'> = ]P’(H Zh — 250 < g’) > 0.
0<t<T

This and (4.4) yield that (4.3) holds for T' ¢ J(¢). Since X/ is right continuous and the set
[0,00) \ J(¢) is dense, (4.3) holds for all T > 0. Then the proof is finished. O

5. Y-UNIFORMLY EXPONENTIAL ERGODICITY AND MODERATE DEVIATION

5.1. Galerkin approximation. Recall that {ej }cn is an orthonormal basis of H. For any
m € N, let H,, := span{e; : k& < m} with orthogonal projection I1,,, : H — #,,. Then the
Galerkin approximation of (1.2) reads

(5.1) dX[" + [AX]" + B™(X™)dt = QdL, X' = 2™,

where 2™ = Il 2, B™(z) = I1,,[B(z)] for v € H, and L}* = II,,,L, = W' with W™ being
an m-dimensional standard Brownian motion.

Since the Lévy measure of W, can not be approximated by those of Wg, the approxi-
mation procedure in [26] does not apply. Alternatively, we show that AX;" = )~(tm - X"

converges to zero. The advantage of this new procedure is that the approximation of W, is
avoided.
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Theorem 5.1. For allt > 0, P-a.s.
(5.2) Tim [IX7 = X[y = 0.
Proof. Let X, solve (1.2) with X, = z, and denote X;" = II,,,X;. Then
(5.3) dX{" + [AX]" + B™(Xy)]dt = QdL}", X' =z2™.
By (1.6) and Theorem 1.1,

77liiréOHXl[”—XtHl:0, t>0.
Combining this with Lemma 5.2 below, we finish the proof.
Lemma 5.2. Let AX" = X" — X!, Then P-a.s.

nll_{I;OHAXthl =0, t>0.

Proof. (1) We first prove that for some constant C' > 0,
(5.4) sup || X2 < Ap, T>0,meN,

0<t<T,meN

holds for
T
Ap = 2exp <C’/ (1+ \|Zs||f)ds) {HxHS—i—T sup |Z||T| +2 sup [|Z]|3.
0 0<t<T 0<t<T
For/ € S, let

t
zZMt = / e QAW
0

Then
m,f
1z Ny < 121y, veR.
By (3.2) with v = 1, we have P-a.s.

(5.5) sup ||Zgn’£||0 < sup HZtm’e||1 < sup HZle < 00.
0<t<T,meN 0<t<T,meN 0<t<T

It is easy to see that Y;™" := X" — Z™* solves the equation
(5.6) Y™ + AY™ + BV + 2 =0, XM =am
Applying the chain role to ||Y;"*||2 gives

t t
6D TR [ R = a2 [ B s 2
0 0

Letting B™(x,y) = B™(x,y) + B™(y, x), the relation (Y;™¢, B™(Y™*)) = 0 implies
(Y4 B (Y™ + Z0)|

| (Y4 B (Y™ 20 + B (Z0)]

CIY oY 125 + CIY™ ol 25113

CA+Z DIV NG + 1T + 1221t

C+NZADIYTNE + Y13 + 12201,

IN N IA
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for some constant C' > 0 independent of m and 7. Combining this with (5.7) and ||z™]|¢ <
|||, we arrive at

t t
105 < llellf+C [ (L 1Z23) 1Y eds + [ 1Z2]3ds.
0 0

By Gronwall’s lemma this implies

t t t
1942 s<mp<cié<1+uzﬂﬁxw)uxm—%[:am[c:/<1+nzﬂﬁkv}uﬁMda

so that (5.4) holds.
(2) By the equations (5.1) and (5.3), we have

OHAX™ + AX™ + B™(X™) — B™(X,) =0, AX=0.

Then there exists a constant C' > 0 such that

t
IAXP o < [ e [Bu(R2) = B,(X)] ods

t
(5.8) _ / e~ [BE) — BX,)] flods
0
t
< ¢ [ -9 IBED - B s
0
Since B(x) = B(z™ + (z — 2™)) for x € H', it follows that

B(X") — B(X,) = B(X!") — B(X") — B(XI", X, — XI") — B(X, — X",

(
where B(z,y) = B(z,y) + B(y, ) for z,y € H'. Applying Eq. (1.4) with 01 = 2,0, =
—1,03 = 0, we obtain

IBXY) = BXD)lls < (1BAXT, X)) + | BX" AXT)]| s
< [[AX ol X o + [[AX ol X" o

s@%+wwm@mm%
0<t<T

Combining this with (5.8) gives
t
2x71 < ¢ 0= o7 (VA + sup [Pl ) 18X ods

t
+c/a—$*ummw&—mWMW&—Xm®®
0

Noting that
IAXE o < 16" lo + 1 X7 [l0 < sup [[Xiflo + / Ar < 0o, €0, 7],
0<t<

by Fatou’s lemma we get

t
limsup [|AX]"]|2 < C/ (t—s)_% (x/AT + sup ||Xt||0) limsup [[AX|lods, 0<t<T,
0 o<t<T m—o0

m—0o0
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so that by Gronwall’s inequality,
limsup [|AX["||o = 0, t € 10,77.

m—o0

g

5.2. vy-uniformly exponential ergodicity and moderate deviation. We will use the follow-
ing exponential ergodicity result in [9].

Theorem 5.3 (Theorem 5.2 (b), [9]). Let (X;)i>0 be an irreducible and aperiodic Markov
process on a Polish space E with Markov semigroup P;, and let 1) > 1 be a measurable
function on E. If

Pap(z) < A)(x) + blc(z), t€(0,T],z€E
holds for some constants T';b > 0, a measurable petite set K on E, and a bounded function \
on [0, T] with \(T') < 1, then X, is 1-uniformly ergodic, i.e., there exist constants C,~y > 0
such that
(5.9) sup |Pof(@) = po(f)] < Ce™(x),  t>0.
fl<y

Proof of Theorem 1.3 (1). Since 1+ || - ||o is comparable with \/M + || - |2 for any M > 1,

we will take 1(x) = /M + ||z||? instead of 1 + ||z|o for M > 1 large enough to be
determined.

(1) We first observe that it suffices to find out a constant C' > 0 such that

/ (™ + Qy) — (&™) — (Qys V(@™o o )vm(dy)
(5.10) "

1
<Cll+—|, 2" eH™, 2™ € H,, =spanie; : i < m}.
< ( W) pan{ }

Let £™ be the generator of X" given by (5.1). Since (™, B,,,(z™)) = 0, it is easy to see that
LmP(x™) = —(Az™ + B (z™), Vip(z™))o
+ / (W (=™ + Qy) — (™) = (Qu, VY (2"™))oLjyjo<1)Vim(dy)

e

b /m(w(xm +Qy) = (™) = (Qy, V(@™ )oljyjo<1)Vm(dy).

where the last equality is by (z™, B,,,(z™)) = 0. Let K,,, = {z™ € H™ : ||z™||; < M}. By
(5.10) and (5.2), we have

Lrab(z™) < —w(xm)+o(1+m)
™M M R
R R G/

< —(z™) + \/M+C(

™ e K,,.

L),
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On the other hand, if 2™ ¢ KC,,, then ||z™||; > M and thus

o =™ 13 1
L™p(x™) < RTeD) +C(1+ m)

s(M + Jl2™1}) 1
R—eTy +C(1+ \/M>

(5.11)

" 1
< —§¢($ )+ C(1+ \/_M)
< — ™),

as long as we choose M > 1 sufficiently large. In conclusion, when M > 1 is large enough
there exists a constant b > 0 such that

L) < o

)+ bl (™), m > 1.
By [9, Theorem 5.1 (d)], this implies

E[(X™)] < e Mp(a™) + blk,, (z™), t>0.

(Note the b in the previous two relations may be different.) Since lim,, . ||z
and lim,,, . || X}

" —zlo=0
— X¢|ly = 0as. fort > 0, by letting m — 0o we obtain
E[p(X,)] < e”*y(x) +blc(x), =0,

where K := {z € H : ||z]|; < M} is a compact (hence petite) set in H. By Theorem 5.3, we
prove the ¥-uniformly exponential ergodicity of X,

(2) It remains to prove (5.10). Obviously,

(5.12) <

[0 @)~ 0™~ (@ Vot (d)

/H H <1<¢($m +Qy) — (™) —(Qy, Vi (™)) )Vm(d?/)‘
x™ — (™)), (d
! ‘/Ilynoxw( +Qy) — (™)) vm( y)‘

By Taylor’s expansion,
(@™ + Qy) — ¥(a™)

Iyl
Y™+ 0Qy)

[y, 2™ 4+ 0Qy)o|?

3™+ 0Qy)

Since v, has a density ”yﬁjT”qa for y € H,, with C
0

< sup
0€l0,1]

2

— \/MHZ/HU

201“(&+

= ——224 we have
r(g)r()’

’/” | <1(¢(£Bm + Qy) - @Z)(l'm) — <Qy7 V¢($m)>0)l/m(dy)’

on 20, ISt
lyl-—Sm gy = 2 _// FOdrday, y = —CmBmoil
lyllo<1 % ylla* Sm_1 2—a)vVM

)
< —
- VM
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where |S,,_1| = 2(”) /2) is the volume of S,,,_;. Moreover,
S| = a2°T (2 + &) 27m/2 a2°T (2 +1) 27/
TR T ()T (35) Tm/2) T T ()T (52) Dm/2)
20T (%) om/2 a2%mm™/? /
— S —— =: (" < 0.
T (5 T2 = o T T (3) .
Hence,
C/
m4 - ) — ,V m m (d < .
[ @0 = o) — T e ()| < S

Similarly, there exist constants C'g > 0 such that

‘/|y|0>1(¢(xm +Qy) - W“’m))ym(dy)'
’/ (2 +6Qy,czy> |
lyllo>1

um<dy>\ < \ /” . ||@y||oum<dy>]

(™ + 0Qy)
00 Cm
= Cq [yllovm(dy)| < sup Cq —drdoy, - < oo.
llyllo>1 m>1 1 Sm_1 T
Therefore, (5.10) holds for some constant C' > (. U

Proof of Theorem 1.3 (2). We follow the argument in [27, p. 429-431]. Without loss of
generality, we assume C'e™” = p < 11in (5.9), otherwise one can choose ¢ sufficiently large
so that C'e™"" < 1. Given f € B,(H), consider the following Feynman-Kac formula

t
Pota) = & o (3 [ s0eas) g0xn)| . g€ B
0
For any 6 > 0 and |\| < 4, we have
1PMglly < eM1|g]y.

So, A = P} g € B, is holomorphic for all || < 4.

When A = 0, Pg = E[g(X{)] with g € B,,. By the exponential ergodicity result (5.9), we
get that 1 is an isolated simple spectrum of P; and the constant function is the corresponding
eigenfunction. Denote P, be the projection with respect to the eigenvalue 1, which is defined
by

Pog = 1olg), g € By.
The spectrum of the P; (I — Py) has a spectrum radius less than p from (5.9).

By Kato’s holomorphic perturbation theorem, for any r € (p, 1? ) there exist some 6 €

0,0) such that for all Dz = {\ € C : |\ < 5} the operator P A acting on B, has the
5 P g Y

following properties: (1) Pf ! has a single simple eigenvalue o(\) with the largest modulus
of the spectrum, moreover, there exists some number ¢ € (%, 1) such that [o(A)| > ¢ (2)
P, is the projection of P,/ corresponding to o(\), A € D; — Py € L(By) is holomorphic
and [|Pr1 — Pol||, < e with some sufficiently small ¢ € (0, 1); (3) the spectral radius of

PM (I — P,) is strictly less than .
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By (3), the following relation holds

N := sup (I — zPl’\f(I — 77,\))71“%%&/} < 00,
zeS(1),xeD;
where S(1/r) = {z € C: |z| = 1}.
By Cauchy integral we have

n Lo ~
(PMN(I—Py))" = E%U_ 2P (I = P) om0
1 - Af . -1
_ 1 (=PI =P
2mi Js(1y Zntl

from which we get
1P = oA\ Palls, -8, = I(PY (I = Pa)"lls,m, < N

Since HPtAfHBwﬁBw < el for 0 < ¢t < 1, by a standard argument and the semigroup
property of Pt’\f , we have

(5.13) |1 — exp (tlog a(N)) Palls,—5, < Cr'.

For any probability measure p with u(¢)) < oo, by (5.13), for all large ¢ so that Cr* < 1,
log fH PtAf 1dy are holomorphic on Dj;. Moreover, by the inequality in (2),

1
lim sup sup ‘—log/Pt)‘fld,u—loga()\)‘ = 0.
H

00\ <8 () <o
By Cauchy’s theorem for holomorphic function, for any € € (0, §) we have

d—kllo /P”ld —d—klo c(\)| =0, keN

lim sup sup
F700 X <e pzp() <oo

By the C?-regularity criterion in [27, Theorem 1.2], we have

1 1
lim  sup log B exp (b?(O)M,(f)) — =0*(f ‘ =0,
E=00 1 pu(h) <oo b2<t) ( (> t( )) 2 ( )
where 9, (f) = W (fot f(Xs)ds — Mo(f)) with b(t) — oo and ng — 0ast — oo, and
2(7) = 1im (£ L1og [ PM1 = i e ([ ex) - d 2
o’ (f) = el I 0g o 1) h=o = P ; (f(Xs) = po(f))ds
By [6, Chapter 6], we immediately obtain the MDP result in the theorem. U
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