IRREDUCIBILITY AND ASYMPTOTICS OF STOCHASTIC BURGERS EQUATION DRIVEN BY $\alpha\text{-STABLE PROCESSES}$

ZHAO DONG, FENG-YU WANG, AND LIHU XU

Abstract

The irreducibility, moderate deviation principle and ψ -uniformly exponential ergodicity with $\psi(x) := 1 + \|x\|_0$ are proved for stochastic Burgers equation driven by the α -stable processes for $\alpha \in (1,2)$, where the first two are new for the present model, and the last strengthens the exponential ergodicity under total variational norm derived in [7].

Keywords: stochastic Burgers equation; α -stable noises; irreducibility, ψ -uniformly ergodicity, moderate deviation

Mathematics Subject Classification (2000): 60F10, 60H15, 60J75.

1. Introduction

In [7], the strongly Feller property and exponential ergodicity have been proved for the stochastic Burgers equation driven by rotationally symmetric α -stable processes with $\alpha \in (1,2)$. In this paper, we prove a stronger ψ -uniformly exponential ergodicity, the irreducibility, and the moderate deviation principle for occupation measures. Before stating our main results, we briefly recall the framework of the study and results derived in [7]. For more research about asymptotics of stochastic systems driven by Lévy processes, we refer the reader to [3, 2, 4, 10, 12, 11, 13, 18, 31, 32, 25, 24, 23, 22, 8, 15, 26, 16, 14, 30, 20, 18, 8].

Let \mathbb{H} be the space of all square integrable functions on the torus $\mathbb{T}=[0,2\pi)$ with vanishing mean values. Let Au=-u'' be the second order differential operator. Then A is a positive self-adjoint operator on \mathbb{H} . Let $\lambda_{2k}:=\lambda_{2k+1}:=k^2$ with $k\in\mathbb{N}$ and

$$e_{2k}(x) := \pi^{-\frac{1}{2}}\cos(kx), \ e_{2k+1}(x) := \pi^{-\frac{1}{2}}\sin(kx).$$

It is easy to see that $\{e_k, k \in \mathbb{N}\}$ forms an orthogonal basis of \mathbb{H} and

$$Ae_k = \lambda_k e_k, \ k \in \mathbb{N}.$$

The norm in \mathbb{H} is denoted by $\|\cdot\|_0$.

For $\gamma \in \mathbb{R}$, let \mathbb{H}^{γ} be the domain of the fractional operator $A^{\frac{\gamma}{2}}$:

$$\mathbb{H}^{\gamma} := A^{-\frac{\gamma}{2}}(\mathbb{H}) = \left\{ \sum_{k} \lambda_{k}^{-\frac{\gamma}{2}} a_{k} e_{k} : (a_{k})_{k \in \mathbb{N}} \subset \mathbb{R}, \sum_{k} a_{k}^{2} < +\infty \right\}.$$

It is a separable Hilbert space with the inner product

$$\langle u, v \rangle_{\gamma} := \langle A^{\frac{\gamma}{2}} u, A^{\frac{\gamma}{2}} v \rangle_{0} = \sum_{k} \lambda_{k}^{\gamma} \langle u, e_{k} \rangle_{0} \langle v, e_{k} \rangle_{0}.$$

For $u \in \mathbb{H}$, let $||u||_{\gamma} = \sqrt{\langle u, u \rangle_{\gamma}}$ if $u \in \mathbb{H}^{\gamma}$, and $||u||_{\gamma} = \infty$ otherwise. The C_0 -contraction semigroup e^{-tA} generated by -A reads

$$e^{-tA}u := \sum_{k} e^{-t\lambda_k} \langle u, e_k \rangle_0 e_k, \ t \ge 0.$$

Obviously,

Semi (1.1)
$$||A^{\gamma}e^{-tA}u||_{0} \leq \sup_{x>0} (x^{\gamma}e^{-x})t^{-\gamma}||u||_{0} = \gamma^{\gamma}e^{-\gamma}t^{-\gamma}||u||_{0}, \quad \gamma > 0.$$

Let $\{W_t^k, t \geq 0\}_{k \in \mathbb{N}}$ be a sequence of independent standard one-dimensional Brownian motion on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The cylindrical Brownian motion on \mathbb{H} is defined by

$$W_t := \sum_k W_t^k e_k.$$

For $\alpha \in (0,2)$, let S_t be an independent $\alpha/2$ -stable subordinator, i.e., an increasing one dimensional Lévy process with Laplace transform

$$\mathbb{E}e^{-\eta S_t} = e^{-t|\eta|^{\alpha/2}}, \ \eta > 0.$$

The subordinated cylindrical Brownian motion $\{L_t\}_{t\geq 0}$ on \mathbb{H} is defined by

$$L_t := W_{S_t}$$
.

Notice that in general L_t does not belong to \mathbb{H} .

We are concerned about the following stochastic Burgers equation in the Hilbert space H:

Eq (1.2)
$$dX_t = [-AX_t - B(X_t)]dt + QdL_t, \quad X_0 = x \in \mathbb{H},$$

where B(u) := B(u, u) for the bilinear operator b defined by B(u, v) := uv' for $v \in \mathbb{H}^1$ and $u \in \mathbb{H}$, and $Q \in \mathcal{L}(\mathbb{H})$ is given by

$$Qu := \sum_{k=1}^{\infty} \beta_k \langle u, e_k \rangle_0 e_k, \quad u \in \mathbb{H},$$

with $\beta = (\beta_k)_{k \in \mathbb{N}}$ such that there exist some $\delta \in (0,1)$ and $\frac{3}{2} < \theta' \le \theta < 2$ satisfying

(1.3)
$$\delta \lambda_k^{-\frac{\theta}{2}} \leq |\beta_k| \leq \delta^{-1} \lambda_k^{-\frac{\theta'}{2}}, \quad k \in \mathbb{N}.$$

By [21, Lemma 2.1], we have

EE2 (1.4)
$$\langle B(u,v), w \rangle_0 \leq C \|u\|_{\sigma_1} \|v\|_{\sigma_2+1} \|w\|_{\sigma_3}, \ \sigma_1 + \sigma_2 + \sigma_3 > 1/2, u, w \in \mathbb{H}, v \in \mathbb{H}^1.$$
Moreover, let

$$\boxed{ exttt{ZTO}}$$
 (1.5) $Z_t := \int_0^t \mathrm{e}^{-(t-s)A} Q \mathrm{d}L_s \quad t \geq 0$

satisfies $Z \in \mathcal{D}([0,\infty); \mathbb{H}^1)$ and

$$\mathbb{E}\left[\sup_{0 \le t \le T} \|Z_t\|_1\right] < \infty, \ T > 0,$$

see e.g. [7, (4.5)]. Recall that for a topology space E, $\mathcal{C}([0,\infty);E)$ (resp. $\mathcal{D}([0,\infty);E)$) stands for the space of the continuous (resp. right continuous with left limits) maps from

[0,T] to E. We further denote by $\mathcal{B}_b(E)$ and $\mathcal{C}_b(E)$ the spaces of bounded measurable functions and bounded continuous functions respectively. The following result is due to [7, Theorem 4.2]. For a σ -finite measure μ on E we denote $\mu(f) = \int_E f d\mu$, $f \in L^1(\mu)$.

Main Theorem 1.1 ([7]). Let $\alpha \in (1,2)$ and the assumption (1.3) hold for some $\delta \in (0,1)$ and $\frac{3}{2} < \theta' \le \theta < 2$.

(1) For any $x \in \mathbb{H}$, (1.2) has a unique solution $(X_t^x)_{t\geq 0}$ starting at x, and

$$X_{\cdot}^{x} - Z_{\cdot} \in \mathcal{C}([0, \infty), \mathbb{H}) \cap \mathcal{C}((0, \infty), \mathbb{H}^{1}).$$

In particular, $(t, x) \mapsto X_t^x$ is a Markov process on \mathbb{H} .

(2) The Markov semigroup P_t for X_t^x is strongly Feller, and has a unique invariant probability measure μ_0 such that

EGD (1.7)
$$\sup_{f \in \mathcal{B}_b(\mathbb{H}), |f| \le 1} |P_t f(x) - \mu_0(f)| \le C(1 + ||x||_0) e^{-\gamma t}, \ t \ge 0, x \in \mathbb{H}$$

holds for some constants $C, \gamma > 0$.

In this paper, we prove the following two theorems on the irreducibility, moderate deviation principle of occupation measures for solutions to (1.2), and the ψ -uniformly exponential ergodicity for $\psi(x) := 1 + ||x||_0$. The first two properties are new for the present model, and the third strengthen the exponential ergodicity (1.7) with $|f| \le \psi$ replacing $|f| \le 1$.

Theorem 1.2. In the situation of Theorem 1.1, for any $x \in \mathbb{H}$, the solution $(X_t^x)_{t\geq 0}$ of (1.2) is irreducible in \mathbb{H} , i.e.

$$\mathbb{P}\left(\|X_T^x - a\|_0 < \varepsilon\right) > 0, \ \varepsilon > 0, T > 0, a \in \mathbb{H}.$$

To state our second result, we recall the notion of moderate deviations (MDP). Let $\mathcal{M}_b(\mathbb{H})$ be the space of signed σ -additive measures of bounded variation on \mathbb{H} , equipped with the τ -topology $\tau := \sigma(\mathcal{M}_b(\mathbb{H}), \mathcal{B}_b(\mathbb{H}))$ of convergence against all bounded Borel functions, which is stronger than the usual weak convergence topology $\sigma(\mathcal{M}_b(\mathbb{H}), \mathcal{C}_b(\mathbb{H}))$. We denote $\mathcal{M}_1(\mathbb{H})$ the space of probability measures on \mathbb{H} . Given a $\psi : \mathbb{H} \to \mathbb{R}_+$, define

$$\mathcal{B}_{\psi} := \mathcal{B}_{\psi}(\mathbb{H}, \mathbb{R}) = \{ f \in \mathcal{B}(\mathbb{H}, \mathbb{R}) : |f(x)| \le \psi(x) \}.$$

Let $b(t): \mathbb{R}^+ \to (0, +\infty)$ be an increasing function verifying

(1.8)
$$\lim_{t \to \infty} b(t) = +\infty, \quad \lim_{t \to \infty} \frac{b(t)}{\sqrt{t}} = 0,$$

and let

scale

$$\mathfrak{M}_t := \frac{1}{b(t)\sqrt{t}} \int_0^t (\delta_{X_s} - \mu_0) \mathrm{d}s.$$

To characterize moderate deviations of X_t from its asymptotic limit μ , one estimates the long time behaviours of

moderate (1.9)
$$\mathbb{P}_{\mu}\left(\mathfrak{M}_{t}\in A\right),$$

where $A \in \tau$ is a given domain of deviation, and \mathbb{P}_{μ} is the probability measure taken for the system X with initial distribution μ . This problem refers to the central limit theorem for b(t) = 1, the large deviation principle (LDP) for $b(t) = \sqrt{t}$, and the moderate deviation principle (MDP) for b(t) satisfying (1.8), see [6]. We say that \mathbb{P}_{μ} ($\mathfrak{M}_t \in \cdot$) satisfies the MDP

with a rate function I on $\mathcal{M}_1(\mathbb{H})$, if the following three properties hold for any b satisfying (1.8):

- (a1) for any $a \geq 0$, $\{\nu \in \mathcal{M}_1(\mathbb{H}); I(\nu) \leq a\}$ is compact in $(\mathcal{M}_1(\mathbb{H}), \tau)$;
- (a2) (the upper bound) for any closed set F in $(\mathcal{M}_1(\mathbb{H}), \tau)$,

$$\limsup_{T \to \infty} \frac{1}{b^2(T)} \log \mathbb{P}_{\mu}(\mathfrak{M}_T \in F) \le -\inf_F I;$$

(a3) (the lower bound) for any open set G in $(\mathcal{M}_1(\mathbb{H}), \tau)$,

$$\liminf_{T \to \infty} \frac{1}{b^2(T)} \log \mathbb{P}_{\mu}(\mathfrak{M}_T \in G) \ge -\inf_G I.$$

Theorem 1.3. In the situation of Theorem 1.1, let $\psi(x) = 1 + ||x||_0$. Then the following statements hold.

(1) The Markov semigroup P_t associated with (1.2) has a unique invariant measure μ_0 with $\mu_0(\|\cdot\|_0) := \int_{\mathbb{H}} \|x\|_0 \mu_0(\mathrm{d}x) < \infty$ and

$$\sup_{f \in \mathcal{B}_{\psi}} |P_t f(x) - \mu_0(f)| \le C e^{-\gamma t} (1 + ||x||_0), \quad x \in \mathbb{H}, t \ge 0$$

holds for some constants $C, \gamma > 0$.

(2) For any initial distribution μ with $\mu(\|\cdot\|_0) < +\infty$ and any measurable function f with $\|f\psi^{-1}\|_{\infty} := \sup_{\mathbb{H}} |f\psi^{-1}| < \infty$, the limit

$$\sigma^{2}(f) := \lim_{t \to \infty} \frac{1}{t} \mathbb{E}^{\mu_{0}} \left(\int_{0}^{t} (f(X_{s}) - \mu_{0}(f)) ds \right)^{2}$$

exists. Moreover, the family $\{\mathbb{P}_{\mu}(\mathfrak{M}_t \in \cdot) : t \geq 0\}$ satisfies the MDP with rate function

$$I(\mu) := \sup \left\{ \mu(f) - \frac{1}{2}\sigma^2(f) : f \in \mathcal{B}_b(\mathbb{H}) \right\}.$$

To prove the irreducibility by a standard argument developed in [17] for SDEs driven by cylindrical α -stable process, one needs to solve a control problem for an associated deterministic system, and establish a maximum inequality. Unlike the cylindrical α -stable process where component processes are independent, the rotationally α -stable process we are considering has strong correlations between any two components, which leads to essential difficulty to follow the line of [17]. To overcome the difficulty, we propose a new procedure including the following three steps: taking a sample path of $\alpha/2$ -stable subordinator ℓ , solving a new control problem by mollifying ℓ as in [32], and proving the irreducibility by showing that for the stochastic systems driven by W_{ℓ_t} . With these preparations, Theorems 1.2 and 1.3 will be proved in Sections 4 and 5 respectively.

2. A CONTROL PROBLEM FOR THE ASSOCIATED DETERMINISTIC SYSTEM

Consider the path space of the subordinator S_t ([33]):

 $\mathcal{S} = \{\ell : [0, \infty) \to [0, \infty); \ell \text{ is strictly increasing, right continuous and has left limit}\}.$ For any $\ell \in \mathcal{S}$, the set of jumps

$$\mathcal{J}(\ell) := \{t \ge 0 : \ell_{t-} \ne \ell_t\}$$

is at most countable. Let

$$\gamma_t = \inf\{s \ge 0 : \ell_s \ge t\}, \ t \ge 0.$$

Consider the following deterministic system in \mathbb{H} :

e:xt1-0 (2.1)
$$dx_t^{\ell} + \left[Ax_t^{\ell} + B\left(x_t^{\ell}\right) \right] dt = Qdu_{\ell_t}, \quad x_0^{\ell} = x_0,$$

where $u:[0,\infty)\to\mathbb{H}$ is the controller to be chosen later. Let

$$z_t^{\ell} = \int_0^t e^{-A(t-s)} Q du_{\ell_s}, \ y_t^{\ell} = x_t^{\ell} - z_t^{\ell}, \ t \ge 0.$$

Then

e:ytlEqn (2.3)
$$\frac{\mathrm{d}y_t^\ell}{\mathrm{d}t} + Ay_t^\ell + B(y_t^\ell + z_t^\ell) = 0, \quad x_0^\ell = x_0.$$

Define

p:AppCon

1:Gam2Del

$$\boxed{\texttt{e:Tea}} \quad (2.4) \qquad t_{\varepsilon}(a,T) \ = \ \sup\left\{t < \frac{T}{2}: \ \|\mathrm{e}^{-At}a - a\|_0 < \frac{\varepsilon}{2}\right\}, \quad T > 0, \varepsilon > 0, a \in \mathbb{H}.$$

It is easy to see that $t_{\varepsilon}(a,T) \in (0,T/2]$. For notational simplicity, we often write $t_{\varepsilon} = t_{\varepsilon}(a,T)$. The main result in this section is the following.

Proposition 2.1. Let $\ell \in \mathcal{S}$ and $x_0 \in \mathbb{H}^1$. For any $\varepsilon > 0$, T > 0 and $a \in \mathbb{H}$, there exist $u \in \mathcal{C}([0,\ell_T];\mathbb{H}^2)$ with bounded total variation and $x^\ell \in D([0,T];\mathbb{H}^1)$ solving (2.1) such that

$$\|x_T^{\ell} - a\|_0 \le \varepsilon, \quad T \notin \mathcal{J}(\ell).$$

Moreover,

$$||z_t^{\ell}||_2 \le C_T (1 + ||\mathbf{e}^{-At_{\varepsilon}}a||_6^2 + ||x_{t_{\varepsilon}}||_6^2), \quad 0 \le t \le T,$$

where t_{ε} is defined by (2.4) and $x_{t_{\varepsilon}}$ is determined by (2.1) with $u_{\ell_t} = 0$ for $t \in [0, t_{\varepsilon}]$.

To prove this result, we regularize $\ell \in \mathcal{S}$ by

$$\ell_t^{\delta} = \frac{1}{\delta} \int_0^{\delta} \ell_{t+r} dr, \quad t \ge 0, \delta > 0,$$

and prove the assertion for ℓ^{δ}_t replacing ℓ . It is clear that ℓ^{δ}_t is strictly increasing and continuous. Let γ^{δ}_t be the inverse of ℓ^{δ}_t .

Lemma 2.2. For all $\delta > 0$, we have

$$\gamma_t^{\delta} \le \gamma_t \le \gamma_t^{\delta} + \delta, \quad \forall \ t \ge 0.$$

Proof. Denote $t_0 = \gamma_t$ and $t_1 = \gamma_t^{\delta}$, it is easy to see $\ell_{t_1}^{\delta} = t$ and $\ell_{t_0} \geq t$. Observe $\ell_{t_0}^{\delta} = \frac{1}{\delta} \int_0^{\delta} \ell_{t_0+r} \mathrm{d}r > t$ since $\ell_{t_0+r} > t$ for r > 0. If $t_0 < t_1$, then $t < \ell_{t_0}^{\delta} < \ell_{t_1}^{\delta} = t$. Contradiction. If $t_0 > t_1 + \delta$, we have $\ell_{t_1+\delta} < t$, otherwise $t_0 \leq t_1 + \delta$. Consequently, $\ell_{t_1}^{\delta} = \frac{1}{\delta} \int_0^{\delta} \ell_{t_1+r} \mathrm{d}r < t$ since $\ell_{t_1+r} < t$ for all $r \in [0, \delta]$, but $\ell_{t_1}^{\delta} = t$, contradiction. Hence, $t_0 \in [t_1, t_1 + \delta]$.

Lemma 2.3. For any $T>0, \varepsilon>0, \delta>0, a\in\mathbb{H}$, let $t_{\varepsilon}=t_{\varepsilon}(a,T)$ be defined by (2.4) and take

$$\boxed{ \texttt{e:xtl-2} } \quad (2.5) \qquad \qquad u_t := \mathbf{1}_{\left[\ell^{\delta}_{tc}, \ell^{\delta}_{T}\right]}(t)Q^{-1}F(\gamma^{\delta}_{t}), \ t \in [0, \ell^{\delta}_{T}],$$

where γ_t^{δ} is the inverse function of ℓ_t^{δ} and

$$\boxed{\texttt{e:Ft}} \quad (2.6) \qquad \qquad F(t) := x_t^{\ell^{\delta}} - x_{t_{\varepsilon}}^{\ell^{\delta}} + \int_{t_{\varepsilon}}^{t} A x_s^{\ell^{\delta}} \mathrm{d}s + \int_{t_{\varepsilon}}^{t} B(x_s^{\ell^{\delta}}) \mathrm{d}s, \quad t \in [t_{\varepsilon}, T] \,.$$

Then $u \in \mathcal{C}([0, \ell_T^{\delta}]; \mathbb{H}^2)$ and $F \in \mathcal{C}([t_{\varepsilon}, T]; \mathbb{H}^4)$ with

e:FReg-1 (2.7)
$$||F(t)||_4 \le C_T (1 + ||e^{-At_{\varepsilon}}a||_6^2 + ||x_{t_{\varepsilon}}^{\ell^{\delta}}||_6^2) < \infty, \quad t \in [t_{\varepsilon}, T],$$

Moreover, let $x^{\ell^{\delta}} \in \mathcal{C}([0,T];\mathbb{H}^1)$ solve the system (2.1) with ℓ^{δ} replacing ℓ . Then

$$\|x_T^{\ell^{\delta}} - a\|_0 < \varepsilon/2.$$

Proof. We first observe that $x_t^{\ell^{\delta}}$ has the representation

$$\underbrace{x_t^{\ell^{\delta}} = \frac{t - t_{\varepsilon}}{T - t_{\varepsilon}} e^{-At_{\varepsilon}} a + \frac{T - t}{T - t_{\varepsilon}} x_{t_{\varepsilon}}^{\ell^{\delta}}, \quad t_{\varepsilon} \le t \le T.$$

Indeed, by (2.5), $u_t=0$ for all $t\in [0,\ell_{t_\varepsilon}^\delta]$, the system (2.1) is a deterministic Burgers equation, which admits a unique solution $x^{\ell^\delta}\in\mathcal{C}\left([0,t_\varepsilon]\,;\mathbb{H}^1\right)$ given by (2.9). On the other hand, for $t\in [t_\varepsilon,T]$, substituting $x_t^{\ell^\delta}$ with the form (2.10) into the left hand of the system (2.1), we obtain

$$Qu_{\ell_t^{\delta}} = F(t), \quad t \in [t_{\varepsilon}, T],$$

where F(t) is defined by (2.6). Taking

$$u_t = Q^{-1}F(\gamma_t^{\delta}), \quad t \in \left[\ell_{t_{\varepsilon}}^{\delta}, \ell_T^{\delta}\right],$$

we immediately obtain that (x, u) solves the system (2.1) for $t \in [t_{\varepsilon}, T]$.

Next, since $x_T^{\ell^\delta} = \mathrm{e}^{-At_\varepsilon}a$ and $\|\mathrm{e}^{-At_\varepsilon}a - a\|_0 \le \varepsilon/2$, we have $\|x_T^{\ell^\delta} - a\|_0 \le \varepsilon/2$. It remains to verify the claimed properties of u and F. By the regularity of Burgers equation (see the detailed proof below) and $\mathrm{e}^{-At_\varepsilon}$ respectively, $x_{t_\varepsilon}^{\ell^\delta} \in \mathbb{H}^6$ and $e^{-At_\varepsilon}a \in \mathbb{H}^6$. For all $t \in [t_\varepsilon, T]$, we have

$$||x_t^{\ell^{\delta}}||_4 \le ||\mathbf{e}^{-At_{\mathbf{e}}}a||_6 + ||x_{t_{\varepsilon}}^{\ell^{\delta}}||_6^2,$$

$$||B(x_t^{\ell^{\delta}})||_4 \le C||x_t^{\ell^{\delta}}||_6^2 \le C\left(||\mathbf{e}^{-At_{\varepsilon}}a||_6^2 + ||x_{t_{\varepsilon}}^{\ell^{\delta}}||_6^2\right),$$

$$||Ax_t^{\ell^{\delta}}||_4 \le C\left(||\mathbf{e}^{-At_{\varepsilon}}a||_6 + ||x_{t_{\varepsilon}}^{\ell^{\delta}}||_6\right) \le C\left(1 + ||\mathbf{e}^{-At_{\varepsilon}}a||_6^2 + ||x_{t_{\varepsilon}}||_6^2\right),$$

where the second inequality is by [21, Lemma 2.1]. Combining the above inequalities, we immediately get (2.7) and (2.8), as desired. Therefore, $F \in \mathcal{C}([t_{\varepsilon}, T]; \mathbb{H}^4)$, which, together with the assumption of Q and (2.5), yields $u \in \mathcal{C}([0, \ell_T^{\delta}]; \mathbb{H}^2)$.

Finally, it is easy to see that $\|x_{t_{\varepsilon}}^{\ell^{\delta}}\|_{6} < \infty$. Below we present a proof for completeness. Noting that $x_{t}^{\ell^{\delta}} \in \mathbb{H}^{1}$ for all $t \in [0, t_{\varepsilon}]$, letting $t_{1} = t_{\varepsilon}/3, t_{2} = 2t_{\varepsilon}/3, t_{3} = t_{\varepsilon}$ and taking $\delta \in (0, \frac{1}{4})$, we have

$$||x_{t}^{\ell^{\delta}}||_{2} \leq ||\mathbf{e}^{-At}x_{0}||_{2} + \int_{0}^{t} ||A^{1-\delta}\mathbf{e}^{-A(t-s)}|| ||B(x_{s}^{\ell^{\delta}})||_{2\delta} ds$$

$$\leq Ct^{-\frac{1}{2}} ||x_{0}||_{1} + C \int_{0}^{t} (t-s)^{-1+\delta} ||x_{s}^{\ell^{\delta}}||_{1}^{2} ds$$

$$\leq C \left(t^{-\frac{1}{2}} ||x_{0}||_{1} + t^{\delta} \sup_{0 \leq t \leq t_{3}} ||x_{s}^{\ell^{\delta}}||_{1}^{2}\right), \ t \in (0, t_{3}],$$

where the last inequality is by (1.1) and (1.4). Now taking $x_{t_1}^{\ell^{\delta}}$ as the initial data, we obtain

$$||x_{t}^{\ell^{\delta}}||_{4} \leq ||\mathbf{e}^{-A(t-t_{1})}x_{t_{1}}^{\ell^{\delta}}||_{4} + \int_{t_{1}}^{t} ||A^{1-\delta}\mathbf{e}^{-A(t-t_{1}-s)}|| ||B(x_{s}^{\ell^{\delta}})||_{2+2\delta} ds$$

$$\leq C(t-t_{1})^{-1} ||x_{t_{1}}^{\ell^{\delta}}||_{2} + C \int_{t_{1}}^{t} (t-s)^{-1+\delta} ||x_{s}^{\ell^{\delta}}||_{2}^{2} ds$$

$$\leq C \left((t-t_{1})^{-1} ||x_{t_{1}}^{\ell^{\delta}}||_{2} + (t-t_{1})^{\delta} \sup_{t_{1} \leq t \leq t_{3}} ||x_{s}^{\ell^{\delta}}||_{2}^{2} \right), \quad t \in (t_{1}, t_{3}].$$

Similarly, taking $x_{t_2}^{\ell^\delta}$ as the initial data we get

$$(2.13) ||x_t^{\ell^{\delta}}||_6 \le C\left((t-t_2)^{-1}||x_{t_1}^{\ell^{\delta}}||_4 + (t-t_2)^{\delta} \sup_{t_2 \le t \le t_3} ||x_s^{\ell^{\delta}}||_4^2\right), \ t \in (t_2, t_3].$$

This completes the proof.

Lemma 2.4. For all t > 0, let

$$z_t^{\ell} = \int_0^t \mathrm{e}^{-A(t-s)} Q \mathrm{d} u_{\ell_s}, \quad z_t^{\ell^{\delta}} = \int_0^t \mathrm{e}^{-A(t-s)} Q \mathrm{d} u_{\ell_s^{\delta}}.$$

Then

DelZSmall

$$(2.14) ||z_t^{\ell^{\delta}} - z_t^{\ell}||_2 \le C_T (1 + ||\mathbf{e}^{-At_{\varepsilon}}a||_6^2 + ||x_{t_{\varepsilon}}||_6^2) \delta, t \in [0, T] \setminus \mathcal{J}(\ell).$$

Proof. By (2.5), we have $u_t = 0$ for all $0 \le t \le \ell_{t_\varepsilon}^{\delta}$. Since $\ell_t \le \ell_t^{\delta}$,

e:Delzt (2.15)
$$z_t^{\ell} = z_t^{\ell^{\delta}} = 0, \quad t \in [0, t_{\varepsilon}].$$

Using integration by parts, we get

(2.16)
$$z_t^{\ell} = Qu_{\ell_t} - \int_0^t A e^{-A(t-s)} Qu_{\ell_s} ds.$$

It is easy to see by (2.5) and (2.7) that for all $0 \le t \le T$,

$$\|Qu_{\ell_t}\|_2 = \|F(\gamma_{\ell_t}^{\delta})\|_2 \le \sup_{0 \le t \le T} \|F(\gamma_{\ell_t}^{\delta})\|_2 \le C_T (1 + \|\mathbf{e}^{-At_e}a\|_6^2 + \|x_{t_e}^{\ell^{\delta}}\|_6^2),$$

and that for all $0 \le t \le T$ and $0 \le s \le t$,

(2.17)
$$||Ae^{-A(t-s)}Qu_{\ell_s}||_2 = ||e^{-A(t-s)}Qu_{\ell_s}||_4 \le ||Qu_{\ell_s}||_4 = ||F(\gamma_{\ell_s}^{\delta})||_4$$
$$\le C_T(1 + ||e^{-At_e}a||_6^2 + ||x_{t_s}^{\ell^{\delta}}||_6^2).$$

Hence,

$$||z_t^{\ell}||_2 \le C_T (1 + ||\mathbf{e}^{-At_{\varepsilon}}a||_6^2 + ||x_{t_{\varepsilon}}||_6^2), \quad 0 \le t \le T.$$

Similarly,

$$\|z_t^{\ell^{\delta}}\|_2 \le C_T (1 + \|\mathbf{e}^{-At_{\varepsilon}}a\|_6^2 + \|x_{t_{\varepsilon}}\|_6^2), \quad 0 \le t \le T.$$

Using integration by parts again, we further get

$$z_t^{\ell^{\delta}} - z_t^{\ell} = Q(u_{\ell_t^{\delta}} - u_{\ell_t}) - \int_0^t A e^{-A(t-s)} Q(u_{\ell_s^{\delta}} - u_{\ell_s}) \mathrm{d}s$$

which, together with (2.5) and (2.8), yields

$$||z_{t}^{\ell^{\delta}} - z_{t}^{\ell}||_{2} \leq ||F(\gamma_{\ell_{t}^{\delta}}^{\delta}) - F(\gamma_{\ell_{t}}^{\delta})||_{2} + \int_{0}^{t} ||Q(u_{\ell_{s}^{\delta}} - u_{\ell_{s}})||_{4} ds$$

$$\leq ||F(\gamma_{\ell_{t}^{\delta}}^{\delta}) - F(\gamma_{\ell_{t}}^{\delta})||_{2} + \int_{0}^{t} ||F(\gamma_{\ell_{s}^{\delta}}^{\delta}) - F(\gamma_{\ell_{s}}^{\delta})||_{4} ds$$

$$\leq C_{T}(1 + ||e^{-At_{\varepsilon}}a||_{6}^{2} + ||x_{t_{\varepsilon}}||_{6}^{2}) \left[|\gamma_{\ell_{t}^{\delta}}^{\delta} - \gamma_{\ell_{t}}^{\delta}| + \int_{0}^{t} |\gamma_{\ell_{s}^{\delta}}^{\delta} - \gamma_{\ell_{s}}^{\delta}| ds \right]$$

$$= C_{T}(1 + ||e^{-At_{\varepsilon}}a||_{6}^{2} + ||x_{t_{\varepsilon}}||_{6}^{2}) \left[|t - \gamma_{\ell_{t}}^{\delta}| + \int_{0}^{t} |s - \gamma_{\ell_{s}}^{\delta}| ds \right],$$

where the last equality is by $\gamma_{\ell_t^\delta}^\delta = t$ for all $t \geq 0$. By the definition of γ , if $t \notin \mathcal{J}(\ell)$, i.e. t is a continuous point of ℓ , we have $\gamma_{\ell_t} = t$. Therefore, by Lemma 2.2, we have

$$|t - \gamma_{\ell_t}^{\delta}| \leq |t - \gamma_{\ell_t}| + |\gamma_{\ell_t}^{\delta} - \gamma_{\ell_t}| \leq |t - \gamma_{\ell_t}| + \delta \leq \delta, \quad t \in [0, T] \setminus \mathcal{J}(\ell).$$

Since ℓ has at most countably infinite jump points, Lebesgue measure of $\mathcal{J}(\ell)$ is zero. Thus,

$$\int_0^t |s - \gamma_{\ell_s}^{\delta}| \mathrm{d}s \le T\delta, \quad t \in [0, T]$$

and

:xldelta-0

e:xldelta

$$\|z_t^{\ell^{\delta}} - z_t^{\ell}\|_2 \le C_T (1 + \|\mathbf{e}^{-At_{\varepsilon}}a\|_6^2 + \|x_{t_{\varepsilon}}\|_6^2)\delta, \quad t \in [0, T] \setminus \mathcal{J}(\ell).$$

We are now at the position to prove Proposition 2.1.

Proof of Proposition 2.1. Let $\delta>0$ be small enough to be chosen. By Lemma 2.3, the equation

(2.18)
$$dx_t^{\ell^{\delta}} + \left[Ax_t^{\ell^{\delta}} + B(x_t^{\ell^{\delta}}) \right] dt = Q du_{\ell_t^{\delta}}, \quad x_0^{\ell^{\delta}} = x_0$$

is solved by $u \in \mathcal{C}(\left[0, \ell_T^{\delta}\right]; \mathbb{H}^2)$ and $x^{\ell^{\delta}} \in \mathcal{C}(\left[0, T\right]; \mathbb{H}^1)$, which have the forms (2.6)-(2.9) and

$$\|x_T^{\ell^{\delta}} - a\|_0 < \varepsilon/2.$$

We will compare Eq. (2.18) with the following equation:

$$(2.19) dx_t^{\ell} + \left[Ax_t^{\ell} + B(x_t^{\ell}) \right] dt = Q du_{\ell_t}, \quad x_0 = x_0.$$

Denote
$$y_t^\ell=x_t^\ell-z_t^\ell$$
 and $y_t^{\ell^\delta}=x_t^{\ell^\delta}-z_t^{\ell^\delta}.$ Then

$$\frac{\mathrm{d}y_t^{\ell^{\delta}}}{\mathrm{d}t} + Ay_t^{\ell^{\delta}} + B(x_t^{\ell^{\delta}}) = 0, \quad y_0^{\ell^{\delta}} = x_0,$$

$$\frac{\mathrm{d}y_t^{\ell}}{\mathrm{d}t} + Ay_t^{\ell} + B(x_t^{\ell}) = 0, \quad y_0^{\ell} = x_0.$$

By (2.15), we have

$$y_t^{\ell^{\delta}} - y_t^{\ell} = 0, \quad t \in [0, t_{\varepsilon}].$$

Write $\Delta y_t^\ell = y_t^\ell - y_t^{\ell^\delta}$, $\Delta x_t^\ell = x_t^\ell - x_t^{\ell^\delta}$ and $\Delta z_t^\ell = z_t^\ell - z_t^{\ell^\delta}$ for $t \in [t_\varepsilon, T]$. Then

Noting that

e:DelY

$$\begin{split} B(x_s^\ell) - B(x_s^{\ell^\delta}) &= B(x_s^\ell, \Delta x_s^\ell) + B(\Delta x_s^\ell, x_s^{\ell^\delta}) \\ &= B(\Delta x_s^\ell) + B(\Delta x_s^\ell, x_s^{\ell^\delta}) + B(x_s^{\ell^\delta}, \Delta x_s^\ell) \\ &= B(\Delta y_s^\ell) + B(\Delta z_s^\ell) + B(\Delta y_s^\ell, \Delta z_s^\ell) + B(\Delta z_s^\ell, \Delta y_s^\ell) + B(\Delta x_s^\ell, x_s^{\ell^\delta}) + B(x_s^{\ell^\delta}, \Delta x_s^\ell), \\ \text{and that } \langle x, B(x, x) \rangle_0 &= 0 \text{ for } x \in \mathbb{H}^1, \text{ we obtain} \end{split}$$

$$\begin{aligned} |\langle \Delta y_{s}^{\ell}, B(x_{s}^{\ell}) - B(x_{s}^{\ell^{\delta}}) \rangle_{0}| &\leq \|\Delta y_{s}^{\ell}\|_{0} \bigg[\|B(\Delta z_{s}^{\ell})\|_{0} + \|B(\Delta y_{s}^{\ell}, \Delta z_{s}^{\ell})\|_{0} + \|B(\Delta z_{s}^{\ell}, \Delta y_{s}^{\ell})\|_{0} \\ &+ \|B(\Delta x_{s}^{\ell}, x_{s}^{\ell^{\delta}})\|_{0} + \|B(x_{s}^{\ell^{\delta}}, \Delta x_{s}^{\ell})\|_{0} \bigg]. \end{aligned}$$

Combining this with (1.4) and the inequality $2ab \le a^2 + b^2$ for $a \ge 0$ and $b \ge 0$, we arrive at

$$\begin{aligned} &|\langle \Delta y_{s}^{\ell}, B(x_{s}^{\ell}) - B(x_{s}^{\ell^{\delta}}) \rangle_{0}| \leq C \|\Delta y_{s}^{\ell}\|_{0} \left[\|\Delta z_{s}^{\ell}\|_{1}^{2} + \|\Delta y_{s}^{\ell}\|_{1} \|\Delta z_{s}^{\ell}\|_{1} + \|\Delta x_{s}^{\ell}\|_{1} \|x_{s}^{\ell^{\delta}}\|_{1} \right] \\ &\leq C \|\Delta y_{s}^{\ell}\|_{0} \left[\|\Delta z_{s}^{\ell}\|_{1}^{2} + \|\Delta y_{s}^{\ell}\|_{1} \|\Delta z_{s}^{\ell}\|_{1} + \|\Delta y_{s}^{\ell}\|_{1} \|x_{s}^{\ell^{\delta}}\|_{1} + \|\Delta z_{s}^{\ell}\|_{1} \|x_{s}^{\ell^{\delta}}\|_{1} \right] \\ &\leq \|\Delta y_{s}^{\ell}\|_{1}^{2} + C \|\Delta y_{s}^{\ell}\|_{0}^{2} \left(\|\Delta z_{s}^{\ell}\|_{1}^{2} + \|x_{s}^{\ell^{\delta}}\|_{1}^{2} \right) + C \|\Delta z_{s}^{\ell}\|_{1}^{2}. \end{aligned}$$

This, together with (2.20) and (2.14), implies

$$\|\Delta y_t^{\ell}\|_0^2 \leq C \int_{t_{\varepsilon}}^t \|\Delta y_s^{\ell}\|_0^2 \left(\|\Delta z_s^{\ell}\|_1^2 + \|x_s^{\ell^{\delta}}\|_1^2 \right) ds + C \int_{t_{\varepsilon}}^t \|\Delta z_s^{\ell}\|_1^2 ds$$

$$\leq C \int_{t_{\varepsilon}}^t \|\Delta y_s^{\ell}\|_0^2 \left(\|\Delta z_s^{\ell}\|_1^2 + \|x_s^{\ell^{\delta}}\|_1^2 \right) ds + C_T (1 + \|\mathbf{e}^{-At_{\varepsilon}}a\|_6^4 + \|x_{t_{\varepsilon}}\|_6^4) \delta^2, \ t \in [t_{\varepsilon}, T].$$

By Gronwall's inequality, we obtain

$$\|\Delta y_T^{\ell}\|_0^2 \leq C_T \exp\left[C \int_t^T \left(\|\Delta z_s^{\ell}\|_1^2 + \|x_s^{\ell^{\delta}}\|_1^2\right) ds\right] (1 + \|\mathbf{e}^{-At_{\varepsilon}}a\|_6^2 + \|x_{t_{\varepsilon}}\|_6^2) \delta^2.$$

On the other hand, (2.10) implies

$$\|x_t^{\ell^{\delta}}\|_1 \le \|\mathbf{e}^{-At_{\varepsilon}}a\|_1 + \|x_{t_{\varepsilon}}^{\ell^{\delta}}\|_1 \le C\left(\|\mathbf{e}^{-At_{\varepsilon}}a\|_6 + \|x_{t_{\varepsilon}}^{\ell^{\delta}}\|_6\right), \quad t \in [t_{\varepsilon}, T],$$

which, together with (2.14), leads to

$$\int_{t_{\varepsilon}}^{T} \left(\|\Delta z_{s}^{\ell}\|_{1}^{2} + \|x_{s}^{\ell^{\delta}}\|_{1}^{2} \right) \mathrm{d}s \leq C_{T} (1 + \|\mathbf{e}^{-At_{\varepsilon}}a\|_{6}^{4} + \|x_{t_{\varepsilon}}^{\ell^{\delta}}\|_{6}^{4}).$$

Hence,

$$\|\Delta y_T^{\ell}\|_0^2 \leq C_T \exp\left[C_T(1+\|\mathbf{e}^{-At_{\varepsilon}}a\|_6^4+\|x_{t_{\varepsilon}}^{\ell^{\delta}}\|_6^4)\right](1+\|\mathbf{e}^{-At_{\varepsilon}}a\|_6^4+\|x_{t_{\varepsilon}}\|_6^4)\delta^2.$$

Combining this with (2.14), as long as $\delta > 0$ is chosen to be sufficiently small we obtain

$$\|\Delta x_T^{\ell}\|_0^2 \le 2\|\Delta y_T^{\ell}\|_0^2 + 2\|\Delta z_T^{\ell}\|_0^2 \le \frac{\varepsilon^2}{4}, \qquad T \notin \mathcal{J}(\ell).$$

Therefore, it follows from Lemma 2.3 that

$$||x_T^{\ell} - a||_0 \le ||\Delta x_T^{\ell}||_0 + ||x_T^{\ell^{\delta}} - a||_0 \le \varepsilon, \quad T \notin \mathcal{J}(\ell).$$

The proof is then complete.

3. ESTIMATE OF CONVOLUTIONS

For $\ell \in \mathcal{S}$, T > 0 and $u \in \mathcal{C}([0, \ell_T])$, let z_t^{ℓ} be given in (2.2), and define

$$Z_t^{\ell} := \int_0^t e^{-(t-s)A} Q dW_{\ell_s} \quad t \ge 0.$$

Lemma 3.1. For any T > 0, $\gamma \in \left[1, \theta' - \frac{1}{2}\right)$ and $p \ge 1$, there exists a constant C > 0 such that

$$\mathbb{E}\left[\sup_{0 \le t \le T} \| Z_t^{\ell} \|_{\gamma}^p\right] \le C\ell_T^{p/2}, \ \ell \in \mathcal{S}.$$

Proof. Using integration by parts, we have

$$Z_t^{\ell} = \int_0^t e^{-A(t-s)} Q dW_{\ell_s} = QW_{\ell_t} + \int_0^t A e^{-A(t-s)} QW_{\ell_s} ds.$$

By (1.3) and the martingale inequality, we obtain

$$\mathbb{E} \sup_{0 \le t \le T} \|QW_{\ell_t}\|_{\gamma}^p \le \mathbb{E} \sup_{0 \le t \le \ell_T} \|QW_t\|_{\gamma}^p$$

$$\le C_{\gamma,\theta'} \mathbb{E} \sup_{0 \le t \le \ell_T} \|W_t\|_{\gamma-\theta'}^p$$

$$\le C_{\gamma,\theta',p} \mathbb{E} \|W_{\ell_T}\|_{\gamma-\theta'}^p \le C_{\gamma,\theta',p} \ell_T^{p/2}.$$

For $\gamma' \in (\gamma, \theta' - \frac{1}{2})$, (2.1) implies

$$\begin{split} \mathbb{E}\sup_{0\leq t\leq T}\bigg\|\int_{0}^{t}A\mathrm{e}^{-A(t-s)}QW_{\ell_{s}}\mathrm{d}s\bigg\|_{\gamma}^{p} &\leq \mathbb{E}\sup_{0\leq t\leq T}\bigg(\int_{0}^{t}\|A\mathrm{e}^{-A(t-s)}QW_{\ell_{s}}\|_{\gamma}\mathrm{d}s\bigg)^{p}\\ &= \mathbb{E}\sup_{0\leq t\leq T}\bigg(\int_{0}^{t}\|A^{1+\gamma-\gamma'}\mathrm{e}^{-A(t-s)}QA^{\gamma'-\gamma}W_{\ell_{s}}\|_{\gamma}\mathrm{d}s\bigg)^{p}\\ &\leq C_{\gamma,\gamma'}\mathbb{E}\sup_{0\leq t\leq T}\bigg(\int_{0}^{t}(t-s)^{-1-\gamma+\gamma'}\|QA^{\gamma'-\gamma}W_{\ell_{s}}\|_{\gamma}\mathrm{d}s\bigg)^{p}\\ &\leq C_{\gamma,\gamma',\theta'}\mathbb{E}\sup_{0\leq t\leq T}\bigg(\int_{0}^{t}(t-s)^{-1-\gamma+\gamma'}\|W_{\ell_{s}}\|_{\gamma'-\theta'}\mathrm{d}s\bigg)^{p}. \end{split}$$

Since

$$\int_{0}^{t} (t-s)^{-1-\gamma+\gamma'} \|W_{\ell_{s}}\|_{\gamma'-\theta'} ds \leq \sup_{0 \leq t \leq T} \|W_{\ell_{s}}\|_{\gamma'-\theta'} \int_{0}^{t} (t-s)^{-1+\gamma+\gamma'} ds
\leq C_{\gamma,\gamma',T} \sup_{0 \leq t \leq T} \|W_{\ell_{s}}\|_{\gamma'-\theta'},$$

by the same argument as the above we get

$$\mathbb{E} \sup_{0 < t < T} \left\| \int_0^t A e^{-A(t-s)} QW_{\ell_s} ds \right\|_{\gamma}^p \le C_{\gamma, \gamma', \theta', p, T} \ell_T^{p/2}.$$

Collecting the above inequalities, we obtain the desired estimate.

Lemma 3.2. For any $\ell \in \mathcal{S}$, T > 0 and $\varepsilon > 0$,

$$\mathbb{P}\bigg(\sup_{0 \le t \le T} \|Z_t^{\ell} - z_t^{\ell}\|_1 \le \varepsilon\bigg) > 0.$$

Proof. For any $N \in \mathbb{N}$, let $\mathcal{H}_N = \text{span}\{e_i : i \leq N\}$ and let \mathcal{H}^N be its orthogonal complementary. Let $\Pi_N : \mathbb{H} \to \mathcal{H}_N$ and $\Pi^N : \mathbb{H} \to \mathcal{H}^N$ to be the corresponding orthogonal projections. We have

$$\begin{split} & \mathbb{P}\bigg(\sup_{0 \leq t \leq T} \|Z_t^{\ell} - z_t^{\ell}\|_1 \leq \varepsilon\bigg) \\ & \geq \mathbb{P}\bigg(\sup_{0 \leq t \leq T} \|\Pi_N(Z_t^{\ell} - z_t^{\ell})\|_1 \leq \frac{\varepsilon}{2}, \sup_{0 \leq t \leq T} \|\Pi^N(Z_t^{\ell} - z_t^{\ell}\|_1 \leq \frac{\varepsilon}{2}\bigg) \\ & = \mathbb{P}\bigg(\sup_{0 \leq t \leq T} \|\Pi_N(Z_t^{\ell} - z_t^{\ell})\|_1 \leq \frac{\varepsilon}{2}\bigg) \mathbb{P}\bigg(\sup_{0 \leq t \leq T} \|\Pi^N(Z_t^{\ell} - z_t^{\ell})\|_1 \leq \frac{\varepsilon}{2}\bigg), \end{split}$$

where the last inequality follows from the independence of $\Pi_N Z_t^{\ell}$ and $\Pi^N Z_t^{\ell}$. Below, we estimate these two probabilities respectively.

For the first one, using integration by parts, we get

$$Z_t^{\ell} - z_t^{\ell} = Q(W_{\ell_t} - u_{\ell_t}) + \int_0^t A e^{-A(t-s)} Q(W_{\ell_s} - u_{\ell_s}) ds.$$

Obviously, there exist a constant $C_N > 0$ such that

$$\| \Pi_N \left[Q(W_{\ell_t} - u_{\ell_t}) \right] \|_1 \le C_N \| \Pi_N \left[W_{\ell_t} - u_{\ell_t} \right] \|_0,$$

and

$$\begin{split} \left\| \Pi_{N} \int_{0}^{t} A \mathrm{e}^{-A(t-s)} Q(W_{\ell_{s}} - u_{\ell_{s}}) \mathrm{d}s \right\|_{1} &\leq \int_{0}^{t} \left\| \Pi_{N} \int_{0}^{t} A \mathrm{e}^{-A(t-s)} Q(W_{\ell_{s}} - u_{\ell_{s}}) \right\|_{1} \mathrm{d}s \\ &\leq C_{N} \int_{0}^{t} \left\| \Pi_{N} \left[W_{\ell_{s}} - u_{\ell_{s}} \right] \right\|_{0} \mathrm{d}s \\ &\leq T C_{N} \sup_{0 \leq t \leq \ell_{T}} \left\| \Pi_{N} \left[W_{t} - u_{t} \right] \right\|_{0}. \end{split}$$

Hence,

$$\sup_{0 \le t \le T} \|\Pi^{N}(Z_{t}^{\ell} - z_{t}^{\ell})\|_{1} \le TC_{N} \sup_{0 \le t \le T} \|\Pi_{N}[W_{\ell_{t}} - u_{\ell_{t}}]\|_{0}$$
$$\le TC_{N} \sup_{0 \le t \le \ell_{T}} \|\Pi_{N}[W_{t} - u_{t}]\|_{0}.$$

It is clear $(\Pi_N W_t)_{t\geq 0}$ and $(\Pi_N u_t)_{t\geq 0}$ can be identified with an N dimensional standard Wiener process and a continuous function in $\mathcal{C}([0,\infty);\mathbb{R}^N)$. Since the support of a Brownian motion is the whole continuous function space, we have

$$\mathbb{P}\left(\sup_{0 \le t \le \ell_T} \|\Pi_N(W_t - u_t)\|_0 \le \delta\right) > 0, \ \delta > 0.$$

Therefore,

$$\mathbb{P}\bigg(\sup_{0 \le t \le T} \|\Pi_N(Z_t^{\ell} - z_t^{\ell})\|_1 \le \frac{\varepsilon}{2}\bigg) > 0.$$

On the other hand, by (3.2) with $\gamma \in (1, \theta' - \frac{1}{2})$, Chebyshev's inequality and the spectral inequality $\|\Pi^N x\|_1 \le \lambda_N^{\gamma-1} \|x\|_{\gamma}$ for $x \in \mathbb{H}^{\gamma}$, we have

$$\mathbb{P}\left(\sup_{0\leq t\leq T}\|\Pi^{N}(Z_{t}^{\ell}-z_{t}^{\ell})\|_{1}\geq \frac{\varepsilon}{2}\right)\leq \mathbb{P}\left(\sup_{0\leq t\leq T}\|(Z_{t}^{\ell}-z_{t}^{\ell})\|_{\gamma}\geq \frac{\varepsilon}{2}\lambda_{N}^{\gamma-1}\right) \\
\leq \frac{2\mathbb{E}\left[\sup_{0\leq t\leq T}\|Z_{t}^{\ell}\|_{\gamma}\right]+2\sup_{0\leq t\leq T}\|z_{t}^{\ell}\|_{\gamma}}{\varepsilon\lambda_{N}^{\gamma-1}}.$$

From the previous inequality and (3.2), choose a sufficiently large N, we get

$$\mathbb{P}\bigg(\sup_{0 < t < T} \|\Pi^N(Z_t^{\ell} - z_t^{\ell})\|_1 \ge \frac{\varepsilon}{2}\bigg) < 1,$$

equivalently,

$$\mathbb{P}\bigg(\sup_{0 < t < T} \|\Pi^N(Z_t^\ell - z_t^\ell)\|_1 < \frac{\varepsilon}{2}\bigg) > 0.$$

Combining (3.3) and (3.4), we finish the proof.

4. Proof of Theorem 1.2

For $\ell \in \mathcal{S}$, let Z_t^{ℓ} be in (3.1), and let X_t^{ℓ} solve

$$[XT1] \quad (4.1) \qquad \qquad \mathrm{d}X_t^\ell = [-AX_t^\ell - B(X_t^\ell)]\mathrm{d}t + Q\mathrm{d}W_{\ell_t}, \quad X_0^\ell = x_0 \in \mathbb{H}.$$

Then $Y_t^{\ell} := X_t^{\ell} - Z_t^{\ell}$ satisfies

e:YtlEqn (4.2)
$$\frac{\mathrm{d}Y_t^{\ell}}{\mathrm{d}t} + AY_t^{\ell} + B(Y_t^{\ell} + Z_t^{\ell}) = 0, \quad Y_0^{\ell} = x_0.$$

Proof of Theorem 1.2. Since $S \in \mathcal{S}$ a.s., it suffices to show that for each $\ell \in \mathcal{S}$,

$$(4.3) (4.3) \mathbb{P}(\|X_T^{\ell} - a\|_0 \le \varepsilon) > 0.$$

Since $X_t^\ell \in \mathbb{H}^1$ for t>0, by the Markov property, we may and do assume that $x_0 \in \mathbb{H}^1$. Below, we prove (4.3) for $x_0 \in \mathbb{H}^1$.

By Proposition 2.1, there exist $u \in \mathcal{C}([0,T];\mathbb{H}^4)$ with bounded total variation and $x^\ell \in$ $\mathcal{D}([0,T];\mathbb{H}^1)$ solving

$$dx_t^{\ell} + \left[Ax_t^{\ell} + B(x_t^{\ell}) \right] dt = Q du_{\ell_t}, \quad x_0^{\ell} = x_0,$$

such that

$$||x_T^{\ell} - a||_0 \le \varepsilon/2, \quad T \notin \mathcal{J}(\ell).$$

So, when $T \notin \mathcal{J}(\ell)$ we have

$$\mathbb{P}(\|X_T^{\ell} - a\|_0 \le \varepsilon) \ge \mathbb{P}\left(\|X_T^{\ell} - x_T^{\ell}\|_0 \le \frac{\varepsilon}{2}, \|x_T^{\ell} - a\|_0 \le \frac{\varepsilon}{2}\right)$$

$$= \mathbb{P}\left(\|X_T^{\ell} - x_T^{\ell}\|_0 \le \frac{\varepsilon}{2}\right) \ge \mathbb{P}\left(\|Y_T^{\ell} - y_T^{\ell}\|_0 \le \frac{\varepsilon}{4}, \|Z_T^{\ell} - z_T^{\ell}\|_0 \le \frac{\varepsilon}{4}\right)$$

$$\ge \mathbb{P}\left(\|Y_T^{\ell} - y_T^{\ell}\|_0 \le \frac{\varepsilon}{4}, \sup_{0 \le t \le T} \|Z_t^{\ell} - z_t^{\ell}\|_0 \le \varepsilon'\right), \ \varepsilon' \in (0, \varepsilon/4),$$

where $z_t^\ell = \int_0^t e^{-A(t-s)}Q\mathrm{d}u_{\ell_s}$ and y_t^ℓ is in (2.2). Write $\Delta Y_t^\ell = Y_t^\ell - y_t^\ell$, $\Delta X_t^\ell = X_t^\ell - x_t^\ell$ and $\Delta Z_t^\ell = Z_t^\ell - z_t^\ell$. Then (2.3) and (4.2) yield

$$\frac{\mathrm{d}\Delta Y_t^{\ell}}{\mathrm{d}t} + A\Delta Y_t^{\ell} + B(X_t^{\ell}) - B(x_t^{\ell}) = 0, \quad \Delta Y_0^{\ell} = 0,$$

which clearly implies

$$\|\Delta Y_t^{\ell}\|_0^2 + 2 \int_0^t \|\Delta Y_t^{\ell}\|_1^2 ds \le 2 \int_0^t |\langle \Delta Y_s^{\ell}, B(X_s^{\ell}) - B(x_s^{\ell}) \rangle_0 |ds.$$

Since $\langle x, B(x, x) \rangle_0 = 0$ for $x \in \mathbb{H}^1$, we have

$$\begin{split} &|\langle \Delta Y_s^\ell, B(X_s^\ell) - B(x_s^\ell) \rangle_0| \\ &= \langle \Delta Y_s^\ell, B(\Delta X_s^\ell) \rangle_0 + \langle \Delta Y_s^\ell, B(\Delta X_s^\ell, x_s^\ell) \rangle_0 + \langle \Delta Y_s^\ell, B(x_s^\ell, \Delta X_s^\ell) \rangle_0 \\ &= \langle \Delta Y_s^\ell, B(\Delta Y_s^\ell, \Delta Z_s^\ell) \rangle_0 + \langle \Delta Y_s^\ell, B(\Delta Z_s^\ell, \Delta Y_s^\ell) \rangle_0 + \langle \Delta Y_s^\ell, B(\Delta Z_s^\ell, \Delta Z_s^\ell) \rangle_0 \\ &+ \langle \Delta Y_s^\ell, B(\Delta X_s^\ell, x_s^\ell) \rangle_0 + \langle \Delta Y_s^\ell, B(x_s^\ell, \Delta X_s^\ell) \rangle_0, \end{split}$$

which, together with (1.4) and the inequality $2ab \le a^2 + b^2$ for $a, b \ge 0$, implies

$$\begin{split} &|\langle Y_{s}^{\ell},B(X_{s}^{\ell})-B(x_{s}^{\ell})\rangle_{0}|\\ &\leq C(\|\Delta Y_{s}^{\ell}\|_{0}\|\Delta Y_{s}^{\ell}\|_{1}\|\Delta Z_{s}^{\ell}\|_{1}+\|\Delta Y_{s}^{\ell}\|_{0}\|\Delta Z_{s}^{\ell}\|_{1}^{2}+\|x_{s}^{\ell}\|_{1}\|\Delta Y_{s}^{\ell}\|_{0}\|\Delta X_{s}^{\ell}\|_{1})\\ &\leq C(\|\Delta Z_{s}^{\ell}\|_{1}^{2}+\|x_{s}^{\ell}\|_{1}^{2})\|\Delta Y_{s}^{\ell}\|_{0}^{2}+C\|\Delta Z_{s}^{\ell}\|_{1}^{2}+\left(\frac{1}{2}\|\Delta Y_{s}^{\ell}\|_{1}^{2}+\frac{1}{4}\|\Delta X_{s}^{\ell}\|_{1}^{2}\right)\\ &\leq C(\|\Delta Z_{s}^{\ell}\|_{1}^{2}+\|x_{s}^{\ell}\|_{1}^{2})\|\Delta Y_{s}^{\ell}\|_{0}^{2}+\|\Delta Y_{s}^{\ell}\|_{1}^{2}+C\|\Delta Z_{s}^{\ell}\|_{1}^{2}\end{split}$$

for some constant C > 0. Hence,

$$\begin{split} &\|\Delta Y_t^{\ell}\|^2 \leq C \int_0^t (\|\Delta Z_s^{\ell}\|_1^2 + \|x_s^{\ell}\|_1^2) \|\Delta Y_s^{\ell}\|_0^2 \mathrm{d}s + C \int_0^t \|\Delta Z_s^{\ell}\|_1^2 \mathrm{d}s \\ &\leq C (\sup_{0 \leq t \leq T} \|\Delta Z_t^{\ell}\|_1^2 + \sup_{0 \leq t \leq T} \|x_t^{\ell}\|_1^2) \int_0^t \|\Delta Y_s^{\ell}\|_0^2 \mathrm{d}s + CT \sup_{0 \leq t \leq T} \|\Delta Z_t^{\ell}\|_1^2, \quad 0 \leq t \leq T. \end{split}$$

When $\sup_{0 \le t \le T} \|\Delta Z_t^{\ell}\|_0 \le \varepsilon'$, we have

$$\|\Delta Y_t^{\ell}\|^2 \le C((\varepsilon')^2 + \sup_{0 \le t \le T} \|x_t^{\ell}\|_1^2) \int_0^t \|\Delta Y_s^{\ell}\|_0^2 ds + CT(\varepsilon')^2.$$

By Gronwall's inequality,

$$\|\Delta Y_T^\ell\|^2 \leq CT \exp\left[C(\varepsilon' + \sup_{0 \leq t \leq T} \|x_t^\ell\|_1)T\right] (\varepsilon')^2, \text{ if } \sup_{0 \leq t \leq T} \|\Delta Z_t^\ell\|_0 \leq \varepsilon'.$$

Since $\sup_{0 \le t \le T} \|x_t^{\ell}\|_1 < \infty$, when ε' is sufficiently this implies

$$\|\Delta Y_T^{\ell}\|_0 \le \frac{\varepsilon}{4}$$
, if $\sup_{0 < t < T} \|\Delta Z_t^{\ell}\|_0 \le \varepsilon'$.

Hence, for small enough $\varepsilon' > 0$,

$$\mathbb{P}\bigg(\parallel Y_T^\ell - y_T^\ell \parallel_0 \leq \frac{\varepsilon}{4}, \sup_{0 < t < T} \parallel Z_T^\ell - z_T^\ell \parallel_0 \leq \varepsilon'\bigg) = \mathbb{P}\bigg(\parallel Z_T^\ell - z_T^\ell \parallel_0 \leq \varepsilon'\bigg) > 0.$$

This and (4.4) yield that (4.3) holds for $T \notin \mathcal{J}(\ell)$. Since X_t^{ℓ} is right continuous and the set $[0, \infty) \setminus \mathcal{J}(\ell)$ is dense, (4.3) holds for all T > 0. Then the proof is finished.

- 5. ψ -uniformly exponential ergodicity and moderate deviation
- 5.1. Galerkin approximation. Recall that $\{e_k\}_{k\in\mathbb{N}}$ is an orthonormal basis of \mathbb{H} . For any $m\in\mathbb{N}$, let $\mathcal{H}_m:=\operatorname{span}\{e_k:k\leq m\}$ with orthogonal projection $\Pi_m:\mathbb{H}\to\mathcal{H}_m$. Then the Galerkin approximation of (1.2) reads

$$\mathrm{d}\tilde{X}_t^m + [A\tilde{X}_t^m + B^m(\tilde{X}_t^m)]\mathrm{d}t = Q\mathrm{d}L_t^m, \quad \tilde{X}_0^m = x^m,$$

where $x^m = \Pi_m x$, $B^m(x) = \Pi_m[B(x)]$ for $x \in \mathbb{H}$, and $L^m_t = \Pi_m L_t = W^m_{S_t}$ with W^m_t being an m-dimensional standard Brownian motion.

Since the Lévy measure of W_{S_t} can not be approximated by those of $W_{S_t}^m$, the approximation procedure in [26] does not apply. Alternatively, we show that $\Delta X_t^m = \tilde{X}_t^m - X_t^m$ converges to zero. The advantage of this new procedure is that the approximation of W_{S_t} is avoided.

Theorem 5.1. For all t > 0, \mathbb{P} -a.s.

(5.2)
$$\lim_{m \to \infty} \|\tilde{X}_t^m - X_t\|_1 = 0.$$

Proof. Let X_t solve (1.2) with $X_0 = x$, and denote $X_t^m = \Pi_m X_t$. Then

(5.3)
$$dX_t^m + [AX_t^m + B^m(X_t)]dt = QdL_t^m, \quad X_0^m = x^m.$$

By (1.6) and Theorem 1.1,

$$\lim_{m \to \infty} ||X_t^m - X_t||_1 = 0, \qquad t > 0.$$

Combining this with Lemma 5.2 below, we finish the proof.

1:DelXm

Lemma 5.2. Let $\Delta X_t^m = \tilde{X}_t^m - X_t^m$. Then \mathbb{P} -a.s.

$$\lim_{m \to \infty} \|\Delta X_t^m\|_1 = 0, \qquad t \ge 0.$$

Proof. (1) We first prove that for some constant C > 0,

RPP

(5.4)
$$\sup_{0 \le t \le T, m \in \mathbb{N}} \|\tilde{X}_t^m\|_0^2 \le A_T, \ T > 0, m \in \mathbb{N},$$

holds for

$$A_T := 2 \exp\left(C \int_0^T (1 + \|Z_s\|_1^2) \mathrm{d}s\right) \left[\|x\|_0^2 + T \sup_{0 \le t \le T} |Z_t\|_1^4 \right] + 2 \sup_{0 \le t \le T} \|Z_t\|_1^2.$$

For $\ell \in \mathcal{S}$, let

$$Z_t^{m,\ell} = \int_0^t e^{-A(t-s)} Q dW_{\ell_s}^m.$$

Then

$$||Z_t^{m,\ell}||_{\gamma} \le ||Z_t^{\ell}||_{\gamma}, \quad \gamma \in \mathbb{R}.$$

By (3.2) with $\gamma = 1$, we have \mathbb{P} -a.s.

e:SupZm

(5.5)
$$\sup_{0 \le t \le T, m \in \mathbb{N}} \|Z_t^{m,\ell}\|_0 \le \sup_{0 \le t \le T, m \in \mathbb{N}} \|Z_t^{m,\ell}\|_1 \le \sup_{0 \le t \le T} \|Z_t^{\ell}\|_1 < \infty.$$

It is easy to see that $ilde{Y}_t^{m,\ell} := ilde{X}_t^{m,\ell} - Z_t^{m,\ell}$ solves the equation

e:GalEqnY

(5.6)
$$\partial_t \tilde{Y}_t^{m,\ell} + A \tilde{Y}_t^{m,\ell} + B^m (\tilde{Y}_t^{m,\ell} + Z_t^{m,\ell}) = 0, \quad \tilde{X}_0^{m,\ell} = x^m.$$

Applying the chain role to $\|\tilde{Y}_t^{m,\ell}\|_0^2$ gives

$$||\tilde{Y}_t^{m,\ell}||_0^2 + 2 \int_0^t ||\tilde{Y}_s^{m,\ell}||_1^2 \mathrm{d}s = ||x^m||_0^2 + 2 \int_0^t \langle \tilde{Y}_s^{m,\ell}, B^m(\tilde{Y}_s^{m,\ell} + Z_s^{m,\ell}) \rangle \mathrm{d}s.$$

Letting $\tilde{B}^m(x,y) = B^m(x,y) + B^m(y,x)$, the relation $\langle \tilde{Y}_s^{m,\ell}, B^m(\tilde{Y}_s^{m,\ell}) \rangle = 0$ implies $|\langle \tilde{Y}_s^{m,\ell}, B^m(\tilde{Y}_s^{m,\ell} + Z_s^{m,\ell}) \rangle|$ $= |\langle \tilde{Y}_s^{m,\ell}, \tilde{B}^m(\tilde{Y}_s^{m,\ell}, Z_s^{m,\ell}) + B^m(Z_s^{m,\ell}) \rangle|$ $\leq C \|\tilde{Y}_s^{m,\ell}\|_0 \|\tilde{Y}_s^{m,\ell}\|_1 \|Z_s^{m,\ell}\|_1 + C \|\tilde{Y}_s^{m,\ell}\|_0 \|Z_s^{m,\ell}\|_1^2$ $\leq C(1 + \|Z_s^{m,\ell}\|_1^2) \|\tilde{Y}_s^{m,\ell}\|_0^2 + \|\tilde{Y}_s^{m,\ell}\|_1^2 + \|Z_s^{m,\ell}\|_1^4$ $\leq C(1 + \|Z_s^{\ell}\|_1^2) \|\tilde{Y}_s^{m,\ell}\|_0^2 + \|\tilde{Y}_s^{m,\ell}\|_1^2 + \|Z_s^{\ell}\|_1^4$,

for some constant C > 0 independent of m and T. Combining this with (5.7) and $||x^m||_0 \le ||x||_0$, we arrive at

$$\|\tilde{Y}_{t}^{m,\ell}\|_{0}^{2} \leq \|x\|_{0}^{2} + C \int_{0}^{t} (1 + \|Z_{s}^{\ell}\|_{1}^{2}) \|\tilde{Y}_{s}^{m,\ell}\|_{0}^{2} ds + \int_{0}^{t} \|Z_{s}^{\ell}\|_{1}^{4} ds.$$

By Gronwall's lemma this implies

$$\|\tilde{Y}_{t}^{m,\ell}\|_{0}^{2} \leq \exp\left(C\int_{0}^{t}(1+\|Z_{s}^{\ell}\|_{1}^{2})\mathrm{d}s\right)\|x\|_{0}^{2}+\int_{0}^{t}\exp\left[C\int_{s}^{t}(1+\|Z_{r}^{\ell}\|_{1}^{2})\mathrm{d}r\right]|Z_{s}^{\ell}\|_{1}^{4}\mathrm{d}s,$$

so that (5.4) holds.

(2) By the equations (5.1) and (5.3), we have

$$\partial_t \Delta X_t^m + A X_t^m + B^m (\tilde{X}_t^m) - B^m (X_t) = 0, \quad \Delta X_0^m = 0.$$

Then there exists a constant C>0 such that

$$\|\Delta X_{t}^{m}\|_{0} \leq \int_{0}^{t} \|\mathbf{e}^{-(t-s)} \left[B_{m}(\tilde{X}_{s}^{m}) - B_{m}(X_{s})\right] \|_{0} ds$$

$$= \int_{0}^{t} \|\mathbf{e}^{-(t-s)} \left[B(\tilde{X}_{s}^{m}) - B(X_{s})\right] \|_{0} ds$$

$$\leq C \int_{0}^{t} (t-s)^{-\frac{5}{6}} \|B(\tilde{X}_{s}^{m}) - B(X_{s})\|_{-\frac{5}{3}} ds$$

Since $B(x) = B(x^m + (x - x^m))$ for $x \in \mathbb{H}^1$, it follows that

$$B(\tilde{X}_{s}^{m}) - B(X_{s}) = B(\tilde{X}_{s}^{m}) - B(X_{s}^{m}) - \tilde{B}(X_{s}^{m}, X_{s} - X_{s}^{m}) - B(X_{s} - X_{s}^{m}),$$

where $\tilde{B}(x,y)=B(x,y)+B(y,x)$ for $x,y\in\mathbb{H}^1$. Applying Eq. (1.4) with $\sigma_1=\frac{5}{3},\sigma_2=-1,\sigma_3=0$, we obtain

$$||B(\tilde{X}_{s}^{m}) - B(X_{s}^{m})||_{-\frac{5}{3}} \leq ||B(\Delta X_{s}^{m}, \tilde{X}_{s}^{m})||_{-\frac{5}{3}} + ||B(X_{s}^{m}, \Delta X_{s}^{m})||_{-\frac{5}{3}}$$

$$\leq ||\Delta X_{s}^{m}||_{0}||\tilde{X}_{s}^{m}||_{0} + ||\Delta X_{s}^{m}||_{0}|||X_{s}^{m}||_{0}$$

$$\leq \left(\sqrt{A_{T}} + \sup_{0 \leq t \leq T} ||X_{t}||_{0}\right) ||\Delta X_{s}^{m}||_{0}.$$

Combining this with (5.8) gives

$$\|\Delta X_t^m\|_0^2 \le C \int_0^t (t-s)^{-\frac{5}{6}} \left(\sqrt{A_T} + \sup_{0 \le t \le T} \|X_t\|_0\right) \|\Delta X_s^m\|_0 ds + C \int_0^t (t-s)^{-\frac{5}{6}} \left(\|X_s\|_0 \|X_s - X_s^m\|_0 + \|X_s - X_s^m\|_0^2\right) ds.$$

Noting that

$$\|\Delta X_t^m\|_0 \le \|X_t^m\|_0 + \|\tilde{X}_t^m\|_0 \le \sup_{0 \le t \le T} \|X_t\|_0 + \sqrt{A_T} < \infty, \ t \in [0, T],$$

by Fatou's lemma we get

$$\limsup_{m \to \infty} \|\Delta X_t^m\|_0^2 \le C \int_0^t (t-s)^{-\frac{5}{6}} \left(\sqrt{A_T} + \sup_{0 \le t \le T} \|X_t\|_0 \right) \limsup_{m \to \infty} \|\Delta X_s^m\|_0 \mathrm{d}s, \quad 0 \le t \le T,$$

so that by Gronwall's inequality,

e:PsiExp

StaIntEst

$$\lim_{m \to \infty} \sup \|\Delta X_t^m\|_0 = 0, \qquad t \in [0, T].$$

5.2. ψ -uniformly exponential ergodicity and moderate deviation. We will use the following exponential ergodicity result in [9].

Theorem 5.3 (Theorem 5.2 (b), [9]). Let $(X_t)_{t\geq 0}$ be an irreducible and aperiodic Markov process on a Polish space E with Markov semigroup P_t , and let $\psi \geq 1$ be a measurable function on E. If

$$P_t \psi(x) \leq \lambda(t) \psi(x) + b 1_{\mathcal{K}}(x), \quad t \in (0, T], x \in E$$

holds for some constants T,b>0, a measurable petite set K on E, and a bounded function λ on [0,T] with $\lambda(T)<1$, then X_t is ψ -uniformly ergodic, i.e., there exist constants $C,\gamma>0$ such that

(5.9) $\sup_{|f| \le \psi} |P_t f(x) - \mu_0(f)| \le C e^{-\gamma t} \psi(x), \qquad t > 0.$

Proof of Theorem 1.3 (1). Since $1 + \|\cdot\|_0$ is comparable with $\sqrt{M + \|\cdot\|_0^2}$ for any $M \ge 1$, we will take $\psi(x) = \sqrt{M + \|x\|_0^2}$ instead of $1 + \|x\|_0$ for M > 1 large enough to be determined.

(1) We first observe that it suffices to find out a constant C > 0 such that

(5.10) $\left| \int_{\mathcal{H}^m} (\psi(x^m + Qy) - \psi(x^m) - \langle Qy, \nabla \psi(x^m) \rangle_0 1_{\|y\|_0 \le 1}) \nu_m(\mathrm{d}y) \right|$ $\leq C \left(1 + \frac{1}{\sqrt{M}} \right), \quad x^m \in \mathcal{H}^m, \quad x^m \in \mathcal{H}_m := \mathrm{span}\{e_i : i \le m\}.$

Let \mathcal{L}^m be the generator of \tilde{X}_t^m given by (5.1). Since $\langle x^m, B_m(x^m) \rangle = 0$, it is easy to see that

$$\mathcal{L}^{m}\psi(x^{m}) = -\langle Ax^{m} + B_{m}(x^{m}), \nabla \psi(x^{m}) \rangle_{0} + \int_{\mathcal{H}^{m}} (\psi(x^{m} + Qy) - \psi(x^{m}) - \langle Qy, \nabla \psi(x^{m}) \rangle_{0} 1_{\|y\|_{0} \leq 1}) \nu_{m}(\mathrm{d}y) = -\frac{\|x^{m}\|_{1}^{2}}{\psi(x^{m})} + \int_{\mathcal{H}^{m}} (\psi(x^{m} + Qy) - \psi(x^{m}) - \langle Qy, \nabla \psi(x^{m}) \rangle_{0} 1_{\|y\|_{0} \leq 1}) \nu_{m}(\mathrm{d}y).$$

where the last equality is by $\langle x^m, B_m(x^m) \rangle = 0$. Let $\mathcal{K}_m = \{x^m \in \mathcal{H}^m : \|x^m\|_1 \leq M\}$. By (5.10) and (5.2), we have

$$\mathcal{L}^{m}\psi(x^{m}) \leq -\frac{\|x^{m}\|_{1}^{2}}{\psi(x^{m})} + C\left(1 + \frac{1}{\sqrt{M}}\right)$$

$$\leq -\frac{\|x^{m}\|_{1}^{2} + M}{\psi(x^{m})} + \frac{M}{\psi(x^{m})} + C\left(1 + \frac{1}{\sqrt{M}}\right)$$

$$\leq -\psi(x^{m}) + \sqrt{M} + C\left(1 + \frac{1}{\sqrt{M}}\right), \ x^{m} \in \mathcal{K}_{m}.$$

On the other hand, if $x^m \notin \mathcal{K}_m$, then $||x^m||_1 \geq M$ and thus,

$$\mathcal{L}^{m}\psi(x^{m}) \leq -\frac{\|x^{m}\|_{1}^{2}}{\psi(x^{m})} + C(1 + \frac{1}{\sqrt{M}})$$

$$\leq -\frac{\frac{1}{2}(M + \|x^{m}\|_{1}^{2})}{\psi(x^{m})} + C(1 + \frac{1}{\sqrt{M}})$$

$$\leq -\frac{1}{2}\psi(x^{m}) + C(1 + \frac{1}{\sqrt{M}})$$

$$\leq -\frac{1}{4}\psi(x^{m}),$$

as long as we choose M>1 sufficiently large. In conclusion, when M>1 is large enough, there exists a constant b>0 such that

$$\mathcal{L}^m \psi(x^m) \leq -\frac{1}{4} \psi(x^m) + b 1_{\mathcal{K}_m}(x^m), \quad m \geq 1.$$

By [9, Theorem 5.1 (d)], this implies

$$\mathbb{E}[\psi(\tilde{X}_t^m)] \leq e^{-t/4}\psi(x^m) + b1_{\mathcal{K}_m}(x^m), \quad t \geq 0.$$

(Note the b in the previous two relations may be different.) Since $\lim_{m\to\infty} \|x^m - x\|_0 = 0$ and $\lim_{m\to\infty} \|\tilde{X}_t^m - X_t\|_1 = 0$ a.s. for t > 0, by letting $m \to \infty$ we obtain

$$\mathbb{E}[\psi(X_t)] \le e^{-t/4}\psi(x) + b1_{\mathcal{K}}(x), \quad t \ge 0,$$

where $\mathcal{K} := \{x \in \mathbb{H} : ||x||_1 \leq M\}$ is a compact (hence petite) set in \mathbb{H} . By Theorem 5.3, we prove the ψ -uniformly exponential ergodicity of X_t .

(2) It remains to prove (5.10). Obviously,

$$\left| \int_{\mathcal{H}^{m}} (\psi(x^{m} + Qy) - \psi(x^{m}) - \langle Qy, \nabla \psi(x^{m}) \rangle_{0} 1_{\|y\|_{0} \leq 1}) \nu_{m}(\mathrm{d}y) \right|$$

$$\leq \left| \int_{\|y\|_{0} \leq 1} (\psi(x^{m} + Qy) - \psi(x^{m}) - \langle Qy, \nabla \psi(x^{m}) \rangle_{0}) \nu_{m}(\mathrm{d}y) \right|$$

$$+ \left| \int_{\|y\|_{0} > 1} (\psi(x^{m} + Qy) - \psi(x^{m})) \nu_{m}(\mathrm{d}y) \right|$$

By Taylor's expansion,

$$|\psi(x^{m} + Qy) - \psi(x^{m}) - \langle Qy, \nabla \psi(x^{m}) \rangle_{0}|$$

$$\leq \sup_{\theta \in [0,1]} \left| \frac{\|y\|_{0}^{2}}{\psi(x^{m} + \theta Qy)} - \frac{|\langle y, x^{m} + \theta Qy \rangle_{0}|^{2}}{\psi^{3}(x^{m} + \theta Qy)} \right| \leq \frac{2}{\sqrt{M}} \|y\|_{0}^{2}.$$

Since ν_m has a density $\frac{C_m}{\|y\|_0^{m+\alpha}}$ for $y \in \mathcal{H}_m$ with $C_m = \frac{\alpha 2^{\alpha} \Gamma\left(\frac{m}{2} + \frac{\alpha}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{2-\alpha}{2}\right)}$, we have

$$\left| \int_{\|y\|_{0} \le 1} (\psi(x^{m} + Qy) - \psi(x^{m}) - \langle Qy, \nabla \psi(x^{m}) \rangle_{0}) \nu_{m}(\mathrm{d}y) \right|$$

$$\le \frac{2}{\sqrt{M}} \int_{\|y\|_{0} \le 1} \|y\|_{0}^{2} \frac{C_{m}}{\|y\|_{0}^{m+\alpha}} \mathrm{d}y = \frac{2C_{m}}{\sqrt{M}} \int_{0}^{1} \int_{\mathbb{S}_{m-1}} r^{1-\alpha} \mathrm{d}r \mathrm{d}\sigma_{m-1} = \frac{2C_{m} |\mathbb{S}_{m-1}|}{(2-\alpha)\sqrt{M}},$$

where $|\mathbb{S}_{m-1}| = \frac{2(\pi)^{m/2}}{\Gamma(m/2)}$ is the volume of \mathbb{S}_{m-1} . Moreover,

$$C_{m}|\mathbb{S}_{m-1}| = \frac{\alpha 2^{\alpha} \Gamma\left(\frac{m}{2} + \frac{\alpha}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{2-\alpha}{2}\right)} \frac{2\pi^{m/2}}{\Gamma(m/2)} \le \frac{\alpha 2^{\alpha} \Gamma\left(\frac{m}{2} + 1\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{2-\alpha}{2}\right)} \frac{2\pi^{m/2}}{\Gamma(m/2)}$$
$$= \frac{\alpha 2^{\alpha} \frac{m}{2} \Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{2-\alpha}{2}\right)} \frac{2\pi^{m/2}}{\Gamma(m/2)} \le \sup_{m \ge 1} \frac{\alpha 2^{\alpha} m \pi^{m/2}}{\Gamma\left(\frac{2-\alpha}{2}\right) \Gamma\left(\frac{m}{2}\right)} =: C' < \infty.$$

Hence,

$$\left| \int_{\|y\|_0 \le 1} (\psi(x^m + Qy) - \psi(x^m) - \langle Qy, \nabla \psi(x^m) \rangle_0) \nu_m(\mathrm{d}y) \right| \le \frac{C'}{\sqrt{M}}.$$

Similarly, there exist constants $C_Q > 0$ such that

$$\left| \int_{\|y\|_0 > 1} (\psi(x^m + Qy) - \psi(x^m)) \nu_m(\mathrm{d}y) \right|$$

$$\leq \left| \int_{\|y\|_0 > 1} \frac{|\langle x^m + \theta Qy, Qy \rangle_0|}{\psi(x^m + \theta Qy)} \nu_m(\mathrm{d}y) \right| \leq \left| \int_{\|y\|_0 > 1} \|Qy\|_0 \nu_m(\mathrm{d}y) \right|$$

$$\leq C_Q \left| \int_{\|y\|_0 > 1} \|y\|_0 \nu_m(\mathrm{d}y) \right| \leq \sup_{m \geq 1} C_Q \int_1^\infty \int_{\mathbb{S}_{m-1}} \frac{C_m}{r^\alpha} \mathrm{d}r \mathrm{d}\sigma_{m-1} < \infty.$$

Therefore, (5.10) holds for some constant C > 0.

Proof of Theorem 1.3 (2). We follow the argument in [27, p. 429-431]. Without loss of generality, we assume $Ce^{-\gamma} = \rho < 1$ in (5.9), otherwise one can choose t sufficiently large so that $Ce^{-\gamma t} < 1$. Given $f \in \mathcal{B}_b(\mathbb{H})$, consider the following Feynman-Kac formula

$$P_t^{\lambda f} g(x) = \mathbb{E}\left[\exp\left(\lambda \int_0^t f(X_s^x) ds\right) g(X_t^x)\right], \quad g \in \mathcal{B}_{\psi}.$$

For any $\delta > 0$ and $|\lambda| \leq \delta$, we have

$$||P_t^{\lambda f}g||_{\psi} \le e^{\delta||f||t}||g||_{\psi}.$$

So, $\lambda \to P_1^{\lambda f} g \in \mathcal{B}_{\psi}$ is holomorphic for all $|\lambda| < \delta$. When $\lambda = 0$, $P_1 g = \mathbb{E}[g(X_1^x)]$ with $g \in \mathcal{B}_{\psi}$. By the exponential ergodicity result (5.9), we get that 1 is an isolated simple spectrum of P_1 and the constant function is the corresponding eigenfunction. Denote \mathcal{P}_0 be the projection with respect to the eigenvalue 1, which is defined

$$\mathcal{P}_0 g = \mu_0(g), \quad g \in \mathcal{B}_{\psi}.$$

The spectrum of the $P_1(I - \mathcal{P}_0)$ has a spectrum radius less than ρ from (5.9).

By Kato's holomorphic perturbation theorem, for any $r \in (\rho, \frac{1+\rho}{2})$, there exist some $\tilde{\delta} \in (0, \delta)$ such that for all $D_{\tilde{\delta}} = \{\lambda \in \mathbb{C} : |\lambda| \leq \tilde{\delta}\}$ the operator $P_1^{\lambda f}$ acting on \mathcal{B}_{ψ} has the following properties: (1) $P_1^{\lambda f}$ has a single simple eigenvalue $\sigma(\lambda)$ with the largest modulus of the spectrum, moreover, there exists some number $c \in (\frac{1}{2}, 1)$ such that $|\sigma(\lambda)| \geq c$; (2) \mathcal{P}_{λ} is the projection of $P_1^{\lambda f}$ corresponding to $\sigma(\lambda)$, $\lambda \in D_{\tilde{\delta}} \to \mathcal{P}_{\lambda} \in \mathcal{L}(\mathcal{B}_{\psi})$ is holomorphic and $\|\mathcal{P}_{\lambda}1 - \mathcal{P}_{0}1\|_{\psi} \leq \varepsilon$ with some sufficiently small $\varepsilon \in (0,1)$; (3) the spectral radius of $P_1^{\lambda f}(I - \mathcal{P}_{\lambda})$ is strictly less than r.

By (3), the following relation holds

$$N := \sup_{z \in S(\frac{1}{r}), \lambda \in D_{\tilde{\delta}}} \| (I - z P_1^{\lambda f} (I - \mathcal{P}_{\lambda}))^{-1} \|_{\mathcal{B}_{\psi} \to \mathcal{B}_{\psi}} < \infty,$$

where $S(1/r) = \{z \in \mathbb{C} : |z| = \frac{1}{r}\}.$

By Cauchy integral we have

$$(P_1^{\lambda f}(I - \mathcal{P}_{\lambda}))^n = \frac{1}{n!} \frac{\partial^n}{\partial^n z} (I - z P_1^{\lambda f}(I - \mathcal{P}_{\lambda}))^{-1}|_{z=0}$$
$$= \frac{1}{2\pi i} \int_{S(\frac{1}{z})} \frac{(I - z P^{\lambda f}(I - \mathcal{P}_{\lambda}))^{-1}}{z^{n+1}} dz,$$

from which we get

$$||P_n^{\lambda f} - \sigma(\lambda)^n \mathcal{P}_{\lambda}||_{\mathcal{B}_{\psi} \to \mathcal{B}_{\psi}} = ||(P_1^{\lambda f} (I - \mathcal{P}_{\lambda}))^n||_{\mathcal{B}_{\psi} \to \mathcal{B}_{\psi}} \leq Nr^n.$$

Since $||P_t^{\lambda f}||_{\mathcal{B}_{\psi} \to \mathcal{B}_{\psi}} \le e^{\lambda ||f||}$ for $0 \le t \le 1$, by a standard argument and the semigroup property of $P_t^{\lambda f}$, we have

e:RtCon

For any probability measure μ with $\mu(\psi) < \infty$, by (5.13), for all large t so that $Cr^t < 1$, $\log \int_{\mathbb{H}} P_t^{\lambda f} 1 \mathrm{d}\mu$ are holomorphic on $D_{\tilde{\delta}}$. Moreover, by the inequality in (2),

$$\lim_{t \to \infty} \sup_{|\lambda| < \tilde{\delta}} \sup_{\mu: \mu(\psi) < \infty} \left| \frac{1}{t} \log \int_{\mathbb{H}} P_t^{\lambda f} 1 d\mu - \log \sigma(\lambda) \right| = 0.$$

By Cauchy's theorem for holomorphic function, for any $\varepsilon \in (0, \tilde{\delta})$ we have

$$\lim_{t\to\infty} \sup_{|\lambda|<\varepsilon} \sup_{\mu:\mu(\psi)<\infty} \left| \frac{\mathrm{d}^k}{\mathrm{d}\lambda^k} \frac{1}{t} \log \int_{\mathbb{H}} P_t^{\lambda f} 1 \mathrm{d}\mu - \frac{\mathrm{d}^k}{\mathrm{d}\lambda^k} \log \sigma(\lambda) \right| = 0, \quad k \in \mathbb{N}.$$

By the C^2 -regularity criterion in [27, Theorem 1.2], we have

$$\lim_{t \to \infty} \sup_{\mu: \mu(\psi) < \infty} \left| \frac{1}{b^2(t)} \log \mathbb{E}^{\mu} \exp \left(b^2(t) \mathfrak{M}_t(f) \right) - \frac{1}{2} \sigma^2(f) \right| = 0,$$

where $\mathfrak{M}_t(f) := \frac{1}{b(t)\sqrt{t}} \left(\int_0^t f(X_s) ds - \mu_0(f) \right)$ with $b(t) \to \infty$ and $\frac{b(t)}{\sqrt{t}} \to 0$ as $t \to \infty$, and

$$\sigma^{2}(f) = \lim_{t \to \infty} \left(\frac{\mathrm{d}^{2}}{\mathrm{d}\lambda^{2}} \frac{1}{t} \log \int_{\mathbb{H}} P_{t}^{\lambda f} 1 \mathrm{d}\mu \right) |_{\lambda=0} = \lim_{t \to \infty} \frac{1}{t} \mathbb{E}^{\mu_{0}} \left(\int_{0}^{t} (f(X_{s}) - \mu_{0}(f)) \mathrm{d}s \right)^{2}.$$

By [6, Chapter 6], we immediately obtain the MDP result in the theorem.

REFERENCES

Ap09

[1] Applebaum D. (2009) Lévy processes and stochastic calculus. Second edition. Cambridge Studies in Advance Mathematics, 116, Cambridge University Press.

BGL18

[2] Brzeźniak Z., Goldys B. and Le Gia, Q. T. (2018) Random attractors for the stochastic Navier-Stokes equations on the 2D unit sphere. J. Math. Fluid Mech. 20, no. 1, 227-253.

BF18

[3] Budhiraja A. and Friedlander E. (2018) Diffusion approximations for controlled weakly interacting large finite state systems with simultaneous jumps. Ann. Appl. Probab. 28, no. 1, 204-249.

ChWa18

[4] Chen Z. Q. and Wang J. M. (2018) Perturbation by non-local operators. Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 2, 606-639.

[5] Da Prato G. and Zabczyk J. (1996) Ergodicity for infinite-dimensional systems. London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge.

DΖ

-Xu-Zh-14

DXZ09

DMT95

FuXi09

Gou2

Gou1

Mas

PeZa07

PXZ10

PZ11

sato Rie15

Te

Wa

Wa-Wa

WXX17

Wu95

Wu01

Zhang2010

Xu

Wa-Wa-15

WaXuZh13

Rez2005

[6] Dembo A. and Zeitouni O. (1998) Large deviations techniques and applications. Second edition, Applications of Mathematics, 38, Springer-Verlag.

[7] Dong Z., Xu L. and Zhang X. (2014) Exponential ergodicity of stochastic Burgers equations driven by α -stable processes. J. Stat. Phys. 154, no. 4, 929-949.

[8] Dong Z., Xu T. and Zhang T. (2009) Invariant measures for stochastic evolution equations of pure jump type. Stochastic Process. Appl., 119, 410-427.

[9] Down D., Meyn S. P. and Tweedie R. L. (1995) Exponential and uniform ergodicity of Markov processes. Ann. Probab., 23, 1671-1691.

[10] Funaki T. and Xie B. (2009) A stochastic heat equation with the distributions of Lévy processes as its invariant measures. Stochastic Process. Appl., 119, 307-326.

[11] Gourcy M. (2007) A large deviation principle for 2D stochastic Navier–Stokes equation. Stochastic Process. Appl., 117(7):904–927.

[12] Gourcy M. (2007) Large deviation principle of occupation measure for stochastic Burgers equation. Ann. Inst. H. Poincaré Statist. Probab., 43(4):441–459.

[13] Masuda H. (2007) Ergodicity and exponential β -mixing bounds for multidimensional diffusions with jumps. Stochastic Process. Appl., 117, 35-56.

[14] Peszat S. and Zabczyk J. (2007) Stochastic partial differential equations with Lévy noise. An evolution equation approach. Encyclopedia of Mathematics and its Applications, 113, Cambridge University Press, Cambridge.

[15] Priola E., Shirikyan A., Xu L. and Zabczyk J. (2012) Exponential ergodicity and regularity for equations with Lévy noise. Stochastic Process. Appl., 122, 106-133.

[16] Priola E., Xu L. and Zabczyk J. (2011) Exponential mixing for some SPDEs with Lévy noise. Stoch. Dyn., 11, 521-534.

[17] Priola E. and Zabczyk J. (2011) Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Related Fields, 149, 97-137.

[18] M. Reznikoff and E. Vanden-Eijnden (2005) Invariant measures of stochastic partial differential equations and conditioned diffusions. C.R. Acad. Sci. Paris, Ser. I, (340):305–308.

[19] Sato K. (1999) Lévy processes and infinite divisible distributions. Cambridge University Press, Cambridge.
 [20] Riedle M. (2015) Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Analysis, 42, 809-838.

[21] Temam R. (1995) Navier-Stokes equations and nonlinear functional analysis, second ed., CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[22] Wang F.Y. (2011) Gradient estimate for Ornstein-Uhlenbeck jump processes. Stoch. Proc. Appl., Vol.121, 3, 466-478.

[23] Wang F.Y. and Wang J. (2013) Coupling and strong Feller for jump processes on Banach spaces. Stochastic Process. Appl. 123, no. 5, 1588-1615.

[24] Wang F.Y. and Wang J. (2015) Functional inequalities for stable-like Dirichlet forms. J. Theoret. Probab. 28, no. 2, 423-448.

[25] Wang F.Y., Xu L. and Zhang X. (2015) Gradient estimates for SDEs driven by multiplicative Lévy noise. J. Funct. Anal. 269, no. 10, 3195-3219.

[26] Wang R., Xiong J. and Xu L. (2017) Irreducibility of stochastic real Ginzburg-Landau equation driven by α -stable noises and applications. Bernoulli 23, no. 2, 1179-1201.

[27] Wu L. (1995) Moderate deviations of dependent random variables related to CLT. The Annals of Probability 23, no. 1, 420-445.

[28] Wu L. (2001) Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems. Stochastic Process. Appl., 91(2):205–238.

[29] Xu L.(2013) Ergodicity of stochastic real Ginzburg-Landau equation driven by α -stable noises. Stochastic Process. Appl. 123, no. 10, 3710-3736.

[30] Zhang T. (2010) White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities. Potential Anal., 33:137–151.

ZhZh17

[31] Zhai J. and Zhang T. (2017) Large deviations for stochastic models of two-dimensional second grade fluids. Appl. Math. Optim. 75, no. 3, 471-498.

Zh

[32] Zhang X. (2013) Derivative formula and gradient estimate for SDEs driven by α -stable processes. Vol. 123, (4), pp.1213-1228 .

Zh2

[33] Zhang X. (2014) Densities for SDEs driven by degenerate Îś-stable processes. Ann. Probab. 42, no. 5, 1885-1910.

Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, 100080, China *Email address*: dzhao@amt.ac.cn

- 1. CENTER FOR APPLIED MATHEMATICS, TIANJIN UNIVERSITY, TIANJIN 300072, CHINA; 2. DE-PARTMENT OF MATHEMATICS, SWANSEA UNIVERSITY, SINGLETON PARK, SA2 8PP, UK Email address: wangfy@tju.edu.cn, F.-Y.Wang@swansea.ac.uk
- 1. DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, UNIVERSITY OF MACAU, TAIPA, MACAU, CHINA; 2. UM ZHUHAI RESEARCH INSTITUTE, ZHUHAI, CHINA *Email address*: lihuxu@umac.mo