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Abstract
The irreducibility, moderate deviation principle and ψ-uniformly exponential er-
godicity with ψ(x) := 1 + ‖x‖0 are proved for stochastic Burgers equation driven
by the α-stable processes for α ∈ (1, 2), where the first two are new for the present
model, and the last strengthens the exponential ergodicity under total variational
norm derived in [7].
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1. INTRODUCTION

In [7], the strongly Feller property and exponential ergodicity have been proved for the sto-
chastic Burgers equation driven by rotationally symmetric α-stable processes with α ∈ (1, 2).
In this paper, we prove a stronger ψ-uniformly exponential ergodicity, the irreducibility, and
the moderate deviation principle for occupation measures. Before stating our main results,
we briefly recall the framework of the study and results derived in [7]. For more research
about asymptotics of stochastic systems driven by Lévy processes, we refer the reader to
[3, 2, 4, 10, 12, 11, 13, 18, 31, 32, 25, 24, 23, 22, 8, 15, 26, 16, 14, 30, 20, 18, 8].

Let H be the space of all square integrable functions on the torus T = [0, 2π) with van-
ishing mean values. Let Au = −u′′ be the second order differential operator. Then A is a
positive self-adjoint operator on H. Let λ2k := λ2k+1 := k2 with k ∈ N and

e2k(x) := π−
1
2 cos(kx), e2k+1(x) := π−

1
2 sin(kx).

It is easy to see that {ek, k ∈ N} forms an orthogonal basis of H and

Aek = λkek, k ∈ N.

The norm in H is denoted by ‖ · ‖0.
For γ ∈ R, let Hγ be the domain of the fractional operator A

γ
2 :

Hγ := A−
γ
2 (H) =

{∑
k

λ
− γ

2
k akek : (ak)k∈N ⊂ R,

∑
k

a2
k < +∞

}
.

It is a separable Hilbert space with the inner product

〈u, v〉γ := 〈A
γ
2 u,A

γ
2 v〉0 =

∑
k

λγk〈u, ek〉0〈v, ek〉0.

1
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For u ∈ H, let ‖u‖γ =
√
〈u, u〉γ if u ∈ Hγ , and ‖u‖γ = ∞ otherwise. The C0-contraction

semigroup e−tA generated by −A reads

e−tAu :=
∑
k

e−tλk〈u, ek〉0ek, t ≥ 0.

Obviously,

‖Aγe−tAu‖0 ≤ sup
x>0

(xγe−x)t−γ‖u‖0 = γγe−γt−γ‖u‖0, γ > 0.SemiSemi (1.1)

Let {W k
t , t ≥ 0}k∈N be a sequence of independent standard one-dimensional Brownian mo-

tion on some probability space (Ω,F ,P). The cylindrical Brownian motion on H is defined
by

Wt :=
∑
k

W k
t ek.

For α ∈ (0, 2), let St be an independent α/2-stable subordinator, i.e., an increasing one
dimensional Lévy process with Laplace transform

Ee−ηSt = e−t|η|
α/2

, η > 0.

The subordinated cylindrical Brownian motion {Lt}t≥0 on H is defined by

Lt := WSt .

Notice that in general Lt does not belong to H.
We are concerned about the following stochastic Burgers equation in the Hilbert space H:

EqEq (1.2) dXt = [−AXt −B(Xt)]dt+QdLt, X0 = x ∈ H,

where B(u) := B(u, u) for the bilinear operator b defined by B(u, v) := uv′ for v ∈ H1 and
u ∈ H, and Q ∈ L(H) is given by

Qu : =
∞∑
k=1

βk〈u, ek〉0ek, u ∈ H,

with β = (βk)k∈N such that there exist some δ ∈ (0, 1) and 3
2
< θ′ ≤ θ < 2 satisfying

δλ
− θ

2
k ≤ |βk| ≤ δ−1λ

− θ
′
2

k , k ∈ N.e:QAssumptione:QAssumption (1.3)

By [21, Lemma 2.1], we have

〈B(u, v), w〉0 ≤ C‖u‖σ1‖v‖σ2+1‖w‖σ3 , σ1 + σ2 + σ3 > 1/2, u, w ∈ H, v ∈ H1.EE2EE2 (1.4)

Moreover, let

ZT0ZT0 (1.5) Zt :=

∫ t

0

e−(t−s)AQdLs t ≥ 0

satisfies Z. ∈ D([0,∞);H1) and

*D*D (1.6) E
[

sup
0≤t≤T

‖Zt‖1

]
<∞, T > 0,

see e.g. [7, (4.5)]. Recall that for a topology space E, C([0,∞);E) (resp. D([0,∞);E))
stands for the space of the continuous (resp. right continuous with left limits) maps from
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[0, T ] to E. We further denote by Bb(E) and Cb(E) the spaces of bounded measurable func-
tions and bounded continuous functions respectively. The following result is due to [7, The-
orem 4.2]. For a σ-finite measure µ on E we denote µ(f) =

∫
E
fdµ, f ∈ L1(µ).

Main Theorem 1.1 ([7]). Let α ∈ (1, 2) and the assumption (1.3) hold for some δ ∈ (0, 1) and
3
2
< θ′ ≤ θ < 2.

(1) For any x ∈ H, (1.2) has a unique solution (Xx
t )t≥0 starting at x, and

Xx
· − Z· ∈ C([0,∞),H) ∩ C((0,∞),H1).

In particular, (t, x) 7→ Xx
t is a Markov process on H.

(2) The Markov semigroup Pt for Xx
t is strongly Feller, and has a unique invariant prob-

ability measure µ0 such that

EGDEGD (1.7) sup
f∈Bb(H),|f |≤1

|Ptf(x)− µ0(f)| ≤ C(1 + ‖x‖0)e−γt, t ≥ 0, x ∈ H

holds for some constants C, γ > 0.

In this paper, we prove the following two theorems on the irreducibility, moderate devia-
tion principle of occupation measures for solutions to (1.2), and the ψ-uniformly exponential
ergodicity for ψ(x) := 1 + ‖x‖0. The first two properties are new for the present model, and
the third strengthen the exponential ergodicity (1.7) with |f | ≤ ψ replacing |f | ≤ 1.

T1.2 Theorem 1.2. In the situation of Theorem 1.1, for any x ∈ H, the solution (Xx
t )t≥0 of (1.2)

is irreducible in H, i.e.

P (‖Xx
T − a‖0 < ε) > 0, ε > 0, T > 0, a ∈ H.

To state our second result, we recall the notion of moderate deviations (MDP). LetMb(H)
be the space of signed σ-additive measures of bounded variation on H, equipped with the τ -
topology τ := σ(Mb(H),Bb(H)) of convergence against all bounded Borel functions, which
is stronger than the usual weak convergence topology σ(Mb(H), Cb(H)). We denoteM1(H)
the space of probability measures on H. Given a ψ : H→ R+, define

Bψ := Bψ(H,R) = {f ∈ B(H,R) : |f(x)| ≤ ψ(x)}.
Let b(t) : R+ → (0,+∞) be an increasing function verifying

eq: scaleeq: scale (1.8) lim
t→∞

b(t) = +∞, lim
t→∞

b(t)√
t

= 0,

and let

Mt :=
1

b(t)
√
t

∫ t

0

(δXs − µ0)ds.

To characterize moderate deviations of Xt from its asymptotic limit µ, one estimates the long
time behaviours of

eq: moderateeq: moderate (1.9) Pµ (Mt ∈ A) ,

where A ∈ τ is a given domain of deviation, and Pµ is the probability measure taken for
the system X with initial distribution µ. This problem refers to the central limit theorem
for b(t) = 1, the large deviation principle (LDP) for b(t) =

√
t, and the moderate deviation

principle (MDP) for b(t) satisfying (1.8), see [6]. We say that Pµ (Mt ∈ ·) satisfies the MDP
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with a rate function I onM1(H), if the following three properties hold for any b satisfying
(1.8):

(a1) for any a ≥ 0, {ν ∈M1(H); I(ν) ≤ a} is compact in (M1(H), τ);
(a2) (the upper bound) for any closed set F in (M1(H), τ),

lim sup
T→∞

1

b2(T )
logPµ(MT ∈ F ) ≤ − inf

F
I;

(a3) (the lower bound) for any open set G in (M1(H), τ),

lim inf
T→∞

1

b2(T )
logPµ(MT ∈ G) ≥ − inf

G
I.

t:MDP Theorem 1.3. In the situation of Theorem 1.1, let ψ(x) = 1 + ‖x‖0. Then the following
statements hold.

(1) The Markov semigroup Pt associated with (1.2) has a unique invariant measure µ0

with µ0(‖ · ‖0) :=
∫
H ‖x‖0µ0(dx) <∞ and

sup
f∈Bψ
|Ptf(x)− µ0(f)| ≤ Ce−γt(1 + ‖x‖0), x ∈ H, t ≥ 0

holds for some constants C, γ > 0.
(2) For any initial distribution µ with µ(‖ · ‖0) < +∞ and any measurable function f

with ‖fψ−1‖∞ := supH |fψ−1| <∞, the limit

σ2(f) := lim
t→∞

1

t
Eµ0

(∫ t

0

(f(Xs)− µ0(f))ds

)2

exists. Moreover, the family {Pµ(Mt ∈ ·) : t ≥ 0} satisfies the MDP with rate
function

I(µ) := sup
{
µ(f)− 1

2
σ2(f) : f ∈ Bb(H)

}
.

To prove the irreducibility by a standard argument developed in [17] for SDEs driven by
cylindrical α-stable process, one needs to solve a control problem for an associated deter-
ministic system, and establish a maximum inequality. Unlike the cylindrical α-stable process
where component processes are independent, the rotationally α-stable process we are consid-
ering has strong correlations between any two components, which leads to essential difficulty
to follow the line of [17]. To overcome the difficulty, we propose a new procedure including
the following three steps: taking a sample path of α/2-stable subordinator `, solving a new
control problem by mollifying ` as in [32], and proving the irreducibility by showing that for
the stochastic systems driven by W`t . With these preparations, Theorems 1.2 and 1.3 will be
proved in Sections 4 and 5 respectively.

2. A CONTROL PROBLEM FOR THE ASSOCIATED DETERMINISTIC SYSTEM

Consider the path space of the subordinator St ([33]):

S = {` : [0,∞)→ [0,∞); ` is strictly increasing, right continuous and has left limit}.
For any ` ∈ S, the set of jumps

J (`) := {t ≥ 0 : `t− 6= `t}
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is at most countable. Let

γt = inf{s ≥ 0 : `s ≥ t}, t ≥ 0.

Consider the following deterministic system in H:

e:xtl-0e:xtl-0 (2.1) dx`t +
[
Ax`t +B

(
x`t
)]

dt = Qdu`t , x`0 = x0,

where u : [0,∞)→ H is the controller to be chosen later. Let

ZT2ZT2 (2.2) z`t =

∫ t

0

e−A(t−s)Qdu`s , y
`
t = x`t − z`t , t ≥ 0.

Then

e:ytlEqne:ytlEqn (2.3)
dy`t
dt

+ Ay`t +B(y`t + z`t ) = 0, x`0 = x0.

Define

e:Teae:Tea (2.4) tε(a, T ) = sup

{
t <

T

2
: ‖e−Ata− a‖0 <

ε

2

}
, T > 0, ε > 0, a ∈ H.

It is easy to see that tε(a, T ) ∈ (0, T/2]. For notational simplicity, we often write tε =
tε(a, T ). The main result in this section is the following.

p:AppCon Proposition 2.1. Let ` ∈ S and x0 ∈ H1. For any ε > 0, T > 0 and a ∈ H, there exist
u ∈ C([0, `T ] ;H2) with bounded total variation and x` ∈ D([0, T ] ;H1) solving (2.1) such
that

‖ x`T − a‖0 ≤ ε, T /∈ J (`).

Moreover,
‖z`t‖2 ≤ CT (1 + ‖e−Atεa‖2

6 + ‖ xtε‖2
6), 0 ≤ t ≤ T,

where tε is defined by (2.4) and xtε is determined by (2.1) with u`t = 0 for t ∈ [0, tε].

To prove this result, we regularize ` ∈ S by

`δt =
1

δ

∫ δ

0

`t+rdr, t ≥ 0, δ > 0,

and prove the assertion for `δt replacing `. It is clear that `δt is strictly increasing and continu-
ous. Let γδt be the inverse of `δt .

l:Gam2Del Lemma 2.2. For all δ > 0, we have

γδt ≤ γt ≤ γδt + δ, ∀ t ≥ 0.

Proof. Denote t0 = γt and t1 = γδt , it is easy to see `δt1 = t and `t0 ≥ t. Observe `δt0 =
1
δ

∫ δ
0
`t0+rdr > t since `t0+r > t for r > 0. If t0 < t1, then t < `δt0 < `δt1 = t. Contradiction.

If t0 > t1 +δ, we have `t1+δ < t, otherwise t0 ≤ t1 +δ. Consequently, `δt1 = 1
δ

∫ δ
0
`t1+rdr < t

since `t1+r < t for all r ∈ [0, δ], but `δt1 = t, contradiction. Hence, t0 ∈ [t1, t1 + δ]. �

l:Con-1 Lemma 2.3. For any T > 0, ε > 0, δ > 0, a ∈ H, let tε = tε(a, T ) be defined by (2.4) and
take

e:xtl-2e:xtl-2 (2.5) ut := 1[`δtε ,`
δ
T ](t)Q

−1F (γδt ), t ∈ [0, `δT ],
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where γδt is the inverse function of `δt and

e:Fte:Ft (2.6) F (t) := x`
δ

t − x`
δ

tε +

∫ t

tε

Ax`
δ

s ds+

∫ t

tε

B(x`
δ

s )ds, t ∈ [tε, T ] .

Then u ∈ C(
[
0, `δT

]
;H2) and F ∈ C([tε, T ] ;H4) with

e:FReg-1e:FReg-1 (2.7) ‖F (t)‖4 ≤ CT (1 + ‖e−Atεa‖2
6 + ‖x`δtε‖

2
6) <∞, t ∈ [tε, T ] ,

e:FReg-2e:FReg-2 (2.8) ‖F (t1)− F (t2)‖4 ≤ CT (1 + ‖e−Atεa‖2
6 + ‖x`δtε‖

2
6)|t1 − t2|, t1, t2 ∈ [tε, T ] .

Moreover, let x`
δ ∈ C ([0, T ] ;H1) solve the system (2.1) with `δ replacing `. Then

‖ x`δT − a‖0 < ε/2.

Proof. We first observe that x`δt has the representation

e:xtle:xtl (2.9) x`
δ

t = e−Atx0 +

∫ t

0

e−A(t−s)B(x`
δ

s )ds, 0 ≤ t ≤ tε,

e:xtl-1e:xtl-1 (2.10) x`
δ

t =
t− tε
T − tε

e−Atεa+
T − t
T − tε

x`
δ

tε , tε ≤ t ≤ T.

Indeed, by (2.5), ut = 0 for all t ∈
[
0, `δtε

]
, the system (2.1) is a deterministic Burgers

equation, which admits a unique solution x`δ ∈ C ([0, tε] ;H1) given by (2.9). On the other
hand, for t ∈ [tε, T ], substituting x`δt with the form (2.10) into the left hand of the system
(2.1), we obtain

Qu`δt = F (t), t ∈ [tε, T ] ,

where F (t) is defined by (2.6). Taking

ut = Q−1F (γδt ), t ∈
[
`δtε , `

δ
T

]
,

we immediately obtain that (x, u) solves the system (2.1) for t ∈ [tε, T ].
Next, since x`δT = e−Atεa and ‖e−Atεa−a‖0 ≤ ε/2, we have ‖ x`δT −a‖0 ≤ ε/2. It remains

to verify the claimed properties of u and F . By the regularity of Burgers equation (see the
detailed proof below) and e−Atε respectively, x`δtε ∈ H6 and e−Atεa ∈ H6. For all t ∈ [tε, T ],
we have

‖x`δt ‖4 ≤ ‖e−Atea‖6 + ‖x`δtε‖
2
6,

‖B(x`
δ

t )‖4 ≤ C‖x`δt ‖2
6 ≤ C

(
‖e−Atεa‖2

6 + ‖x`δtε‖
2
6

)
,

‖Ax`δt ‖4 ≤ C
(
‖e−Atεa‖6 + ‖x`δtε‖6

)
≤ C

(
1 + ‖e−Atεa‖2

6 + ‖xtε‖2
6

)
,

where the second inequality is by [21, Lemma 2.1]. Combining the above inequalities, we
immediately get (2.7) and (2.8), as desired. Therefore, F ∈ C([tε, T ] ;H4), which, together
with the assumption of Q and (2.5), yields u ∈ C(

[
0, `δT

]
;H2).
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Finally, it is easy to see that ‖x`δtε‖6 < ∞. Below we present a proof for completeness.
Noting that x`δt ∈ H1 for all t ∈ [0, tε], letting t1 = tε/3, t2 = 2tε/3, t3 = tε and taking
δ ∈ (0, 1

4
), we have

‖x`δt ‖2 ≤ ‖e−Atx0‖2 +

∫ t

0

‖A1−δe−A(t−s)‖‖B(x`
δ

s )‖2δds

≤ Ct−
1
2‖x0‖1 + C

∫ t

0

(t− s)−1+δ‖x`δs ‖2
1ds

≤ C

(
t−

1
2‖x0‖1 + tδ sup

0≤t≤t3
‖x`δs ‖2

1

)
, t ∈ (0, t3],

(2.11)

where the last inequality is by (1.1) and (1.4). Now taking x`δt1 as the initial data, we obtain

‖x`δt ‖4 ≤ ‖e−A(t−t1)x`
δ

t1
‖4 +

∫ t

t1

‖A1−δe−A(t−t1−s)‖‖B(x`
δ

s )‖2+2δds

≤ C(t− t1)−1‖x`δt1‖2 + C

∫ t

t1

(t− s)−1+δ‖x`δs ‖2
2ds

≤ C

(
(t− t1)−1‖x`δt1‖2 + (t− t1)δ sup

t1≤t≤t3
‖x`δs ‖2

2

)
, t ∈ (t1, t3].

(2.12)

Similarly, taking x`δt2 as the initial data we get

‖x`δt ‖6 ≤ C

(
(t− t2)−1‖x`δt1‖4 + (t− t2)δ sup

t2≤t≤t3
‖x`δs ‖2

4

)
, t ∈ (t2, t3].(2.13)

This completes the proof. �

Lemma 2.4. For all t > 0, let

z`t =

∫ t

0

e−A(t−s)Qdu`s , z`
δ

t =

∫ t

0

e−A(t−s)Qdu`δs .

Then

e:DelZSmalle:DelZSmall (2.14) ‖z`δt − z`t‖2 ≤ CT (1 + ‖e−Atεa‖2
6 + ‖xtε‖2

6)δ, t ∈ [0, T ] \ J (`).

Proof. By (2.5), we have ut = 0 for all 0 ≤ t ≤ `δtε . Since `t ≤ `δt ,

e:Delzte:Delzt (2.15) z`t = z`
δ

t = 0, t ∈ [0, tε] .

Using integration by parts, we get

z`t = Qu`t −
∫ t

0

Ae−A(t−s)Qu`sds.(2.16)

It is easy to see by (2.5) and (2.7) that for all 0 ≤ t ≤ T ,

‖Qu`t‖2 = ‖F (γδ`t)‖2 ≤ sup
0≤t≤T

‖F (γδ`t)‖2 ≤ CT (1 + ‖e−Atea‖2
6 + ‖x`δte ‖

2
6),

and that for all 0 ≤ t ≤ T and 0 ≤ s ≤ t,

‖Ae−A(t−s)Qu`s‖2 = ‖e−A(t−s)Qu`s‖4 ≤ ‖Qu`s‖4 = ‖F (γδ`s)‖4

≤ CT (1 + ‖e−Atea‖2
6 + ‖x`δtε‖

2
6).

(2.17)
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Hence,

‖z`t‖2 ≤ CT (1 + ‖e−Atεa‖2
6 + ‖xtε‖2

6), 0 ≤ t ≤ T.

Similarly,
‖ z`δt ‖2 ≤ CT (1 + ‖e−Atεa‖2

6 + ‖xtε‖2
6), 0 ≤ t ≤ T.

Using integration by parts again, we further get

z`
δ

t − z`t = Q(u`δt − u`t)−
∫ t

0

Ae−A(t−s)Q(u`δs − u`s)ds

which, together with (2.5) and (2.8), yields

‖z`δt − z`t‖2 ≤ ‖F (γδ`δt
)− F (γδ`t)‖2 +

∫ t

0

‖Q(u`δs − u`s)‖4ds

≤ ‖F (γδ`δt
)− F (γδ`t)‖2 +

∫ t

0

‖F (γδ`δs)− F (γδ`s)‖4ds

≤ CT (1 + ‖e−Atεa‖2
6 + ‖xtε‖2

6)

[
|γδ`δt − γ

δ
`t |+

∫ t

0

|γδ`δs − γ
δ
`s|ds

]
= CT (1 + ‖e−Atεa‖2

6 + ‖xtε‖2
6)

[
|t− γδ`t |+

∫ t

0

|s− γδ`s|ds
]
,

where the last equality is by γδ
`δt

= t for all t ≥ 0. By the definition of γ·, if t /∈ J (`), i.e. t is
a continuous point of `, we have γ`t = t. Therefore, by Lemma 2.2, we have

|t− γδ`t | ≤ |t− γ`t |+
∣∣γδ`t − γ`t∣∣ ≤ |t− γ`t |+ δ ≤ δ, t ∈ [0, T ] \ J (`).

Since `· has at most countably infinite jump points, Lebesgue measure of J (`) is zero. Thus,∫ t

0

|s− γδ`s|ds ≤ Tδ, t ∈ [0, T ]

and

‖z`δt − z`t‖2 ≤ CT (1 + ‖e−Atεa‖2
6 + ‖xtε‖2

6)δ, t ∈ [0, T ] \ J (`).

�

We are now at the position to prove Proposition 2.1.

Proof of Proposition 2.1. Let δ > 0 be small enough to be chosen. By Lemma 2.3, the
equation

e:xldelta-0e:xldelta-0 (2.18) dx`
δ

t +
[
Ax`

δ

t +B(x`
δ

t )
]

dt = Qdu`δt , x`
δ

0 = x0

is solved by u ∈ C(
[
0, `δT

]
;H2) and x`δ ∈ C([0, T ] ;H1), which have the forms (2.6)-(2.9)

and
‖ x`δT − a‖0 ≤ ε/2.

We will compare Eq. (2.18) with the following equation:

e:xldeltae:xldelta (2.19) dx`t +
[
Ax`t +B(x`t)

]
dt = Qdu`t , x0 = x0.
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Denote y`t = x`t − z`t and y`δt = x`
δ

t − z`
δ

t . Then

dy`
δ

t

dt
+ Ay`

δ

t +B(x`
δ

t ) = 0, y`
δ

0 = x0,

dy`t
dt

+ Ay`t +B(x`t) = 0, y`0 = x0.

By (2.15), we have
y`
δ

t − y`t = 0, t ∈ [0, tε] .

Write ∆y`t = y`t − y`
δ

t ,∆x
`
t = x`t − x`

δ

t and ∆z`t = z`t − z`
δ

t for t ∈ [tε, T ]. Then

e:DelYe:DelY (2.20) ‖∆y`t‖2
0 + 2

∫ t

tε

‖∆y`t‖2
1ds ≤ 2

∣∣∣∣∫ t

tε

〈∆y`t , B(x`
δ

s )−B(x`s)〉0ds

∣∣∣∣.
Noting that

B(x`s)−B(x`
δ

s ) = B(x`s,∆x
`
s) +B(∆x`s, x

`δ

s )

= B(∆x`s) +B(∆x`s, x
`δ

s ) +B(x`
δ

s ,∆x
`
s)

= B(∆y`s) +B(∆z`s) +B(∆y`s,∆z
`
s) +B(∆z`s,∆y

`
s) +B(∆x`s, x

`δ

s ) +B(x`
δ

s ,∆x
`
s),

and that 〈x,B(x, x)〉0 = 0 for x ∈ H1, we obtain

|〈∆y`s, B(x`s)−B(x`
δ

s )〉0| ≤ ‖∆y`s‖0

[
‖B(∆z`s)‖0 + ‖B(∆y`s,∆z

`
s)‖0 + ‖B(∆z`s,∆y

`
s)‖0

+ ‖B(∆x`s, x
`δ

s )‖0 + ‖B(x`
δ

s ,∆x
`
s)‖0

]
.

Combining this with (1.4) and the inequality 2ab ≤ a2 + b2 for a ≥ 0 and b ≥ 0, we arrive at

|〈∆y`s, B(x`s)−B(x`
δ

s )〉0| ≤ C‖∆y`s‖0

[
‖∆z`s‖2

1 + ‖∆y`s‖1‖∆z`s‖1 + ‖∆x`s‖1‖x`
δ

s ‖1

]
≤ C‖∆y`s‖0

[
‖∆z`s‖2

1 + ‖∆y`s‖1‖∆z`s‖1 + ‖∆y`s‖1‖x`
δ

s ‖1 + ‖∆z`s‖1‖x`
δ

s ‖1

]
≤ ‖∆y`s‖2

1 + C‖∆y`s‖2
0

(
‖∆z`s‖2

1 + ‖x`δs ‖2
1

)
+ C‖∆z`s‖2

1.

This, together with (2.20) and (2.14), implies

‖∆y`t‖2
0 ≤ C

∫ t

tε

‖∆y`s‖2
0

(
‖∆z`s‖2

1 + ‖x`δs ‖2
1

)
ds+ C

∫ t

tε

‖∆z`s‖2
1ds

≤ C

∫ t

te

‖∆y`s‖2
0

(
‖∆z`s‖2

1 + ‖x`δs ‖2
1

)
ds+ CT (1 + ‖ e−Atεa‖4

6 + ‖xtε‖4
6)δ2, t ∈ [tε, T ].

By Gronwall’s inequality, we obtain

‖∆y`T‖2
0 ≤ CT exp

[
C

∫ T

tε

(
‖∆z`s‖2

1 + ‖x`δs ‖2
1

)
ds

]
(1 + ‖e−Atεa‖2

6 + ‖xtε‖2
6)δ2.

On the other hand, (2.10) implies

‖x`δt ‖1 ≤ ‖e−Atεa‖1 + ‖x`δtε‖1 ≤ C
(
‖e−Atεa‖6 + ‖x`δtε‖6

)
, t ∈ [tε, T ],
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which, together with (2.14), leads to∫ T

tε

(
‖∆z`s‖2

1 + ‖x`δs ‖2
1

)
ds ≤ CT (1 + ‖e−Atεa‖4

6 + ‖x`δtε‖
4
6).

Hence,

‖∆y`T‖2
0 ≤ CT exp

[
CT (1 + ‖e−Atεa‖4

6 + ‖x`δtε‖
4
6)
]

(1 + ‖e−Atεa‖4
6 + ‖xtε‖4

6)δ2.

Combining this with (2.14), as long as δ > 0 is chosen to be sufficiently small we obtain

‖∆x`T‖2
0 ≤ 2‖∆y`T‖2

0 + 2‖∆z`T‖2
0 ≤

ε2

4
, T /∈ J (`).

Therefore, it follows from Lemma 2.3 that

‖x`T − a‖0 ≤ ‖∆x`T‖0 + ‖x`δT − a‖0 ≤ ε, T /∈ J (`).

The proof is then complete. �

3. ESTIMATE OF CONVOLUTIONS

For ` ∈ S, T > 0 and u ∈ C([0, `T ]), let z`t be given in (2.2), and define

ZT1ZT1 (3.1) Z`
t :=

∫ t

0

e−(t−s)AQdW`s t ≥ 0.

Lemma 3.1. For any T > 0, γ ∈
[
1, θ′ − 1

2

)
and p ≥ 1, there exists a constant C > 0 such

that

e:ZtpGe:ZtpG (3.2) E
[

sup
0≤t≤T

‖ Z`
t‖pγ
]
≤ C`

p/2
T , ` ∈ S.

Proof. Using integration by parts, we have

Z`
t =

∫ t

0

e−A(t−s)QdW`s = QW`t +

∫ t

0

Ae−A(t−s)QW`sds.

By (1.3) and the martingale inequality, we obtain

E sup
0≤t≤T

‖QW`t‖pγ ≤ E sup
0≤t≤`T

‖QWt‖pγ

≤ Cγ,θ′E sup
0≤t≤`T

‖Wt‖pγ−θ′

≤ Cγ,θ′,pE‖W`T ‖
p
γ−θ′ ≤ Cγ,θ′,p`

p/2
T .
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For γ′ ∈ (γ, θ′ − 1
2
), (2.1) implies

E sup
0≤t≤T

∥∥∥∥∫ t

0

Ae−A(t−s)QW`sds

∥∥∥∥p
γ

≤ E sup
0≤t≤T

(∫ t

0

‖Ae−A(t−s)QW`s‖γds
)p

= E sup
0≤t≤T

(∫ t

0

‖A1+γ−γ′e−A(t−s)QAγ
′−γW`s‖γds

)p
≤ Cγ,γ′E sup

0≤t≤T

(∫ t

0

(t− s)−1−γ+γ′‖QAγ′−γW`s‖γds
)p

≤ Cγ,γ′,θ′E sup
0≤t≤T

(∫ t

0

(t− s)−1−γ+γ′‖W`s‖γ′−θ′ds
)p
.

Since ∫ t

0

(t− s)−1−γ+γ′‖W`s‖γ′−θ′ds ≤ sup
0≤t≤T

‖W`s‖γ′−θ′
∫ t

0

(t− s)−1+γ+γ′ds

≤ Cγ,γ′,T sup
0≤t≤T

‖W`s‖γ′−θ′ ,

by the same argument as the above we get

E sup
0≤t≤T

∥∥∥∥∫ t

0

Ae−A(t−s)QW`sds

∥∥∥∥p
γ

≤ Cγ,γ′,θ′,p,T `
p/2
T .

Collecting the above inequalities, we obtain the desired estimate. �

Lemma 3.2. For any ` ∈ S, T > 0 and ε > 0,

P
(

sup
0≤t≤T

‖Z`
t − z`t‖1 ≤ ε

)
> 0.

Proof. For any N ∈ N, let HN = span{ei : i ≤ N} and let HN be its orthogonal com-
plementary. Let ΠN : H → HN and ΠN : H → HN to be the corresponding orthogonal
projections. We have

P
(

sup
0≤t≤T

‖Z`
t − z`t‖1 ≤ ε

)
≥ P

(
sup

0≤t≤T
‖ΠN(Z`

t − z`t )‖1 ≤
ε

2
, sup

0≤t≤T
‖ΠN(Z`

t − z`t‖1 ≤
ε

2

)
= P

(
sup

0≤t≤T
‖ΠN(Z`

t − z`t )‖1 ≤
ε

2

)
P
(

sup
0≤t≤T

‖ΠN(Z`
t − z`t )‖1 ≤

ε

2

)
,

where the last inequality follows from the independence of ΠNZ
`
t and ΠNZ`

t . Below, we
estimate these two probabilities respectively.

For the first one, using integration by parts, we get

Z`
t − z`t = Q(W`t − u`t) +

∫ t

0

Ae−A(t−s)Q(W`s − u`s)ds.

Obviously, there exist a constant CN > 0 such that

‖ ΠN [Q(W`t − u`t)] ‖1 ≤ CN‖ΠN [W`t − u`t ] ‖0,
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and ∥∥∥∥ΠN

∫ t

0

Ae−A(t−s)Q(W`s − u`s)ds
∥∥∥∥

1

≤
∫ t

0

∥∥∥∥ΠN

∫ t

0

Ae−A(t−s)Q(W`s − u`s)
∥∥∥∥

1

ds

≤ CN

∫ t

0

‖ΠN [W`s − u`s ] ‖0ds

≤ TCN sup
0≤t≤`T

‖ΠN [Wt − ut] ‖0.

Hence,

sup
0≤t≤T

‖ΠN(Z`
t − z`t‖1 ≤ TCN sup

0≤t≤T
‖ΠN [W`t − u`t ] ‖0

≤ TCN sup
0≤t≤`T

‖ΠN [Wt − ut] ‖0.

It is clear (ΠNWt)t≥0 and (ΠNut)t≥0 can be identified with an N dimensional standard
Wiener process and a continuous function in C([0,∞) ;RN). Since the support of a Brownian
motion is the whole continuous function space, we have

P
(

sup
0≤t≤`T

‖ΠN (Wt − ut) ‖0 ≤ δ

)
> 0, δ > 0.

Therefore,

e:PLowe:PLow (3.3) P
(

sup
0≤t≤T

‖ΠN(Z`
t − z`t )‖1 ≤

ε

2

)
> 0.

On the other hand, by (3.2) with γ ∈ (1, θ′ − 1
2
), Chebyshev’s inequality and the spectral

inequality ‖ΠNx‖1 ≤ λγ−1
N ‖x‖γ for x ∈ Hγ , we have

P
(

sup
0≤t≤T

‖ΠN(Z`
t − z`t )‖1 ≥

ε

2

)
≤ P

(
sup

0≤t≤T
‖ (Z`

t − z`t )‖γ ≥
ε

2
λγ−1
N

)

≤
2E
[

sup0≤t≤T ‖ Z`
t‖γ
]

+ 2 sup0≤t≤T ‖z`t‖γ

ελγ−1
N

.

From the previous inequality and (3.2), choose a sufficiently large N , we get

P
(

sup
0≤t≤T

‖ΠN(Z`
t − z`t )‖1 ≥

ε

2

)
< 1,

equivalently,

e:PHighe:PHigh (3.4) P
(

sup
0≤t≤T

‖ΠN(Z`
t − z`t )‖1 <

ε

2

)
> 0.

Combining (3.3) and (3.4), we finish the proof. �
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4. PROOF OF THEOREM 1.2

For ` ∈ S, let Z`
t be in (3.1), and let X`

t solve

XT1XT1 (4.1) dX`
t = [−AX`

t −B(X`
t )]dt+QdW`t , X

`
0 = x0 ∈ H.

Then Y `
t := X`

t − Z`
t satisfies

e:YtlEqne:YtlEqn (4.2)
dY `

t

dt
+ AY `

t +B(Y `
t + Z`

t ) = 0, Y `
0 = x0.

Proof of Theorem 1.2. Since S· ∈ S a.s., it suffices to show that for each ` ∈ S,

4.34.3 (4.3) P(‖X`
T − a‖0 ≤ ε) > 0.

Since X`
t ∈ H1 for t > 0, by the Markov property, we may and do assume that x0 ∈ H1.

Below, we prove (4.3) for x0 ∈ H1.
By Proposition 2.1, there exist u ∈ C([0, T ] ;H4) with bounded total variation and x` ∈

D([0, T ] ;H1) solving

dx`t +
[
Ax`t +B(x`t)

]
dt = Qdu`t , x`0 = x0,

such that
‖x`T − a‖0 ≤ ε/2, T /∈ J (`).

So, when T /∈ J (`) we have

P(‖X`
T − a‖0 ≤ ε) ≥ P

(
‖ X`

T − x`T‖0 ≤
ε

2
, ‖x`T − a‖0 ≤

ε

2

)
= P

(
‖ X`

T − x`T‖0 ≤
ε

2

)
≥ P

(
‖ Y `

T − y`T‖0 ≤
ε

4
, ‖ Z`

T − z`T‖0 ≤
ε

4

)
≥ P

(
‖ Y `

T − y`T‖0 ≤
ε

4
, sup

0≤t≤T
‖ Z`

t − z`t‖0 ≤ ε′
)
, ε′ ∈ (0, ε/4),

e:Irr-1e:Irr-1 (4.4)

where z`t =
∫ t

0
e−A(t−s)Qdu`s and y`t is in (2.2).

Write ∆Y `
t = Y `

t − y`t ,∆X`
t = X`

t − x`t and ∆Z`
t = Z`

t − z`t . Then (2.3) and (4.2) yield

d∆Y `
t

dt
+ A∆Y `

t +B(X`
t )−B(x`t) = 0, ∆Y `

0 = 0,

which clearly implies

‖∆Y `
t ‖2

0 + 2

∫ t

0

‖∆Y `
t ‖2

1ds ≤ 2

∫ t

0

|〈∆Y `
s , B(X`

s)−B(x`s)〉0|ds.

Since 〈x,B(x, x)〉0 = 0 for x ∈ H1, we have

|〈∆Y `
s , B(X`

s)−B(x`s)〉0|
= 〈∆Y `

s , B(∆X`
s)〉0 + 〈∆Y `

s , B(∆X`
s , x

`
s)〉0 + 〈∆Y `

s , B(x`s,∆X
`
s)〉0

= 〈∆Y `
s , B(∆Y `

s ,∆Z
`
s)〉0 + 〈∆Y `

s , B(∆Z`
s,∆Y

`
s )〉0 + 〈∆Y `

s , B(∆Z`
s,∆Z

`
s)〉0

+ 〈∆Y `
s , B(∆X`

s , x
`
s)〉0 + 〈∆Y `

s , B(x`s,∆X
`
s)〉0,
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which, together with (1.4) and the inequality 2ab ≤ a2 + b2 for a, b ≥ 0, implies

|〈Y `
s , B(X`

s)−B(x`s)〉0|
≤ C(‖∆Y `

s ‖0‖∆Y `
s ‖1‖∆Z`

s‖1 + ‖∆Y `
s ‖0‖∆Z`

s‖2
1 + ‖x`s‖1‖∆Y `

s ‖0‖∆X`
s‖1)

≤ C(‖∆Z`
s‖2

1 + ‖x`s‖2
1)‖∆Y `

s ‖2
0 + C‖∆Z`

s‖2
1 +

(
1

2
‖∆Y `

s ‖2
1 +

1

4
‖∆X`

s‖2
1

)
≤ C(‖∆Z`

s‖2
1 + ‖x`s‖2

1)‖∆Y `
s ‖2

0 + ‖∆Y `
s ‖2

1 + C‖∆Z`
s‖2

1

for some constant C > 0. Hence,

‖∆Y `
t ‖2 ≤ C

∫ t

0

(‖∆Z`
s‖2

1 + ‖x`s‖2
1)‖∆Y `

s ‖2
0ds+ C

∫ t

0

‖∆Z`
s‖2

1ds

≤ C( sup
0≤t≤T

‖∆Z`
t‖2

1 + sup
0≤t≤T

‖x`t‖2
1)

∫ t

0

‖∆Y `
s ‖2

0ds+ CT sup
0≤t≤T

‖∆Z`
t‖2

1, 0 ≤ t ≤ T.

When sup0≤t≤T ‖∆Z`
t‖0 ≤ ε′, we have

‖∆Y `
t ‖2 ≤ C((ε′)2 + sup

0≤t≤T
‖x`t‖2

1)

∫ t

0

‖∆Y `
s ‖2

0ds+ CT (ε′)2.

By Gronwall’s inequality,

‖∆Y `
T‖2 ≤ CT exp

[
C(ε′ + sup

0≤t≤T
‖x`t‖1)T

]
(ε′)2, if sup

0≤t≤T
‖∆Z`

t‖0 ≤ ε′.

Since sup0≤t≤T ‖x`t‖1 <∞, when ε′ is sufficiently this implies

‖∆Y `
T‖0 ≤

ε

4
, if sup

0≤t≤T
‖∆Z`

t‖0 ≤ ε′.

Hence, for small enough ε′ > 0,

P
(
‖ Y `

T − y`T‖0 ≤
ε

4
, sup

0≤t≤T
‖ Z`

T − z`T‖0 ≤ ε′
)

= P
(
‖ Z`

T − z`T‖0 ≤ ε′
)
> 0.

This and (4.4) yield that (4.3) holds for T /∈ J (`). Since X`
t is right continuous and the set

[0,∞) \ J (`) is dense, (4.3) holds for all T > 0. Then the proof is finished. �

5. ψ-UNIFORMLY EXPONENTIAL ERGODICITY AND MODERATE DEVIATION

5.1. Galerkin approximation. Recall that {ek}k∈N is an orthonormal basis of H. For any
m ∈ N, let Hm := span{ek : k ≤ m} with orthogonal projection Πm : H → Hm. Then the
Galerkin approximation of (1.2) reads

e:GalEqne:GalEqn (5.1) dX̃m
t + [AX̃m

t +Bm(X̃m
t )]dt = QdLmt , X̃m

0 = xm,

where xm = Πmx, Bm(x) = Πm[B(x)] for x ∈ H, and Lmt = ΠmLt = Wm
St

with Wm
t being

an m-dimensional standard Brownian motion.
Since the Lévy measure of WSt can not be approximated by those of Wm

St
, the approxi-

mation procedure in [26] does not apply. Alternatively, we show that ∆Xm
t = X̃m

t − Xm
t

converges to zero. The advantage of this new procedure is that the approximation of WSt is
avoided.
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Theorem 5.1. For all t > 0, P-a.s.

(5.2) lim
m→∞

‖X̃m
t −Xt‖1 = 0.

Proof. Let Xt solve (1.2) with X0 = x, and denote Xm
t = ΠmXt. Then

e:GalEqn-1e:GalEqn-1 (5.3) dXm
t + [AXm

t +Bm(Xt)]dt = QdLmt , Xm
0 = xm.

By (1.6) and Theorem 1.1,

lim
m→∞

‖Xm
t −Xt‖1 = 0, t > 0.

Combining this with Lemma 5.2 below, we finish the proof. �

l:DelXm Lemma 5.2. Let ∆Xm
t = X̃m

t −Xm
t . Then P-a.s.

lim
m→∞

‖∆Xm
t ‖1 = 0, t ≥ 0.

Proof. (1) We first prove that for some constant C > 0,

RPPRPP (5.4) sup
0≤t≤T,m∈N

‖X̃m
t ‖2

0 ≤ AT , T > 0,m ∈ N,

holds for

AT := 2 exp

(
C

∫ T

0

(1 + ‖Zs‖2
1)ds

)[
‖x‖2

0 + T sup
0≤t≤T

|Zt‖4
1

]
+ 2 sup

0≤t≤T
‖Zt‖2

1.

For ` ∈ S, let

Zm,`
t =

∫ t

0

e−A(t−s)QdWm
`s .

Then
‖Zm,`

t ‖γ ≤ ‖Z`
t‖γ, γ ∈ R.

By (3.2) with γ = 1, we have P-a.s.

e:SupZme:SupZm (5.5) sup
0≤t≤T,m∈N

‖Zm,`
t ‖0 ≤ sup

0≤t≤T,m∈N
‖Zm,`

t ‖1 ≤ sup
0≤t≤T

‖Z`
t‖1 < ∞.

It is easy to see that Ỹ m,`
t := X̃m,`

t − Zm,`
t solves the equation

e:GalEqnYe:GalEqnY (5.6) ∂tỸ
m,`
t + AỸ m,`

t +Bm(Ỹ m,`
t + Zm,`

t ) = 0, X̃m,`
0 = xm.

Applying the chain role to ‖Ỹ m,`
t ‖2

0 gives

YPPYPP (5.7) ‖Ỹ m,`
t ‖2

0 + 2

∫ t

0

‖Ỹ m,`
s ‖2

1ds = ‖xm‖2
0 + 2

∫ t

0

〈Ỹ m,`
s , Bm(Ỹ m,`

s + Zm,`
s )〉ds.

Letting B̃m(x, y) = Bm(x, y) +Bm(y, x), the relation 〈Ỹ m,`
s , Bm(Ỹ m,`

s )〉 = 0 implies∣∣〈Ỹ m,`
s , Bm(Ỹ m,`

s + Zm,`
s )〉

∣∣
=
∣∣ 〈Ỹ m,`

s , B̃m(Ỹ m,`
s , Zm,`

s ) +Bm(Zm,`
s )〉

∣∣
≤ C‖Ỹ m,`

s ‖0‖Ỹ m,`
s ‖1‖Zm,`

s ‖1 + C‖Ỹ m,`
s ‖0‖Zm,`

s ‖2
1

≤ C(1 + ‖Zm,`
s ‖2

1)‖Ỹ m,`
s ‖2

0 + ‖Ỹ m,`
s ‖2

1 + ‖Zm,`
s ‖4

1

≤ C(1 + ‖Z`
s‖2

1)‖Ỹ m,`
s ‖2

0 + ‖Ỹ m,`
s ‖2

1 + ‖Z`
s‖4

1,



16 Z. DONG, F.Y. WANG, AND L. XU

for some constant C > 0 independent of m and T . Combining this with (5.7) and ‖xm‖0 ≤
‖x‖0, we arrive at

‖Ỹ m,`
t ‖2

0 ≤ ‖x‖2
0 + C

∫ t

0

(
1 + ‖Z`

s‖2
1

)
‖Ỹ m,`

s ‖2
0ds+

∫ t

0

‖Z`
s‖4

1ds.

By Gronwall’s lemma this implies

‖Ỹ m,`
t ‖2

0 ≤ exp

(
C

∫ t

0

(1 + ‖Z`
s‖2

1)ds

)
‖x‖2

0 +

∫ t

0

exp

[
C

∫ t

s

(1 + ‖Z`
r‖2

1)dr

]
|Z`

s‖4
1ds,

so that (5.4) holds.
(2) By the equations (5.1) and (5.3), we have

∂t∆X
m
t + AXm

t +Bm(X̃m
t )−Bm(Xt) = 0, ∆Xm

0 = 0.

Then there exists a constant C > 0 such that

‖∆Xm
t ‖0 ≤

∫ t

0

‖e−(t−s)
[
Bm(X̃m

s )−Bm(Xs)
]
‖0ds

=

∫ t

0

‖e−(t−s)
[
B(X̃m

s )−B(Xs)
]
‖0ds

≤ C

∫ t

0

(t− s)−
5
6‖B(X̃m

s )−B(Xs)‖− 5
3
ds

YPP2YPP2 (5.8)

Since B(x) = B(xm + (x− xm)) for x ∈ H1, it follows that

B(X̃m
s )−B(Xs) = B(X̃m

s )−B(Xm
s )− B̃(Xm

s , Xs −Xm
s )−B(Xs −Xm

s ),

where B̃(x, y) = B(x, y) + B(y, x) for x, y ∈ H1. Applying Eq. (1.4) with σ1 = 5
3
, σ2 =

−1, σ3 = 0, we obtain

‖B(X̃m
s )−B(Xm

s )‖− 5
3
≤ ‖B(∆Xm

s , X̃
m
s )‖− 5

3
+ ‖B(Xm

s ,∆X
m
s )‖− 5

3

≤ ‖∆Xm
s ‖0‖X̃m

s ‖0 + ‖∆Xm
s ‖0‖‖Xm

s ‖0

≤
(√

AT + sup
0≤t≤T

‖Xt‖0

)
‖∆Xm

s ‖0.

Combining this with (5.8) gives

‖∆Xm
t ‖2

0 ≤ C

∫ t

0

(t− s)−
5
6

(√
AT + sup

0≤t≤T
‖Xt‖0

)
‖∆Xm

s ‖0ds

+ C

∫ t

0

(t− s)−
5
6

(
‖Xs‖0‖Xs −Xm

s ‖0 + ‖Xs −Xm
s ‖2

0

)
ds.

Noting that

‖∆Xm
t ‖0 ≤ ‖Xm

t ‖0 + ‖X̃m
t ‖0 ≤ sup

0≤t≤T
‖Xt‖0 +

√
AT <∞, t ∈ [0, T ],

by Fatou’s lemma we get

lim sup
m→∞

‖∆Xm
t ‖2

0 ≤ C

∫ t

0

(t−s)−
5
6

(√
AT + sup

0≤t≤T
‖Xt‖0

)
lim sup
m→∞

‖∆Xm
s ‖0ds, 0 ≤ t ≤ T,
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so that by Gronwall’s inequality,

lim sup
m→∞

‖∆Xm
t ‖0 = 0, t ∈ [0, T ].

�

5.2. ψ-uniformly exponential ergodicity and moderate deviation. We will use the follow-
ing exponential ergodicity result in [9].

t:DMT95 Theorem 5.3 (Theorem 5.2 (b), [9]). Let (Xt)t≥0 be an irreducible and aperiodic Markov
process on a Polish space E with Markov semigroup Pt, and let ψ ≥ 1 be a measurable
function on E. If

Ptψ(x) ≤ λ(t)ψ(x) + b1K(x), t ∈ (0, T ], x ∈ E

holds for some constants T, b > 0, a measurable petite setK on E, and a bounded function λ
on [0, T ] with λ(T ) < 1, then Xt is ψ-uniformly ergodic, i.e., there exist constants C, γ > 0
such that

e:PsiExpe:PsiExp (5.9) sup
|f |≤ψ

|Ptf(x)− µ0(f)| ≤ Ce−γtψ(x), t > 0.

Proof of Theorem 1.3 (1). Since 1 + ‖ · ‖0 is comparable with
√
M + ‖ · ‖2

0 for any M ≥ 1,
we will take ψ(x) =

√
M + ‖x‖2

0 instead of 1 + ‖x‖0 for M > 1 large enough to be
determined.

(1) We first observe that it suffices to find out a constant C > 0 such that∣∣∣∣∫
Hm

(ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉01‖y‖0≤1)νm(dy)

∣∣∣∣
≤ C

(
1 +

1√
M

)
, xm ∈ Hm, xm ∈ Hm := span{ei : i ≤ m}.

e:StaIntEste:StaIntEst (5.10)

Let Lm be the generator of X̃m
t given by (5.1). Since 〈xm, Bm(xm)〉 = 0, it is easy to see that

Lmψ(xm) = −〈Axm +Bm(xm),∇ψ(xm)〉0

+

∫
Hm

(ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉01‖y‖0≤1)νm(dy)

= −‖x
m‖2

1

ψ(xm)
+

∫
Hm

(ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉01‖y‖0≤1)νm(dy).

where the last equality is by 〈xm, Bm(xm)〉 = 0. Let Km = {xm ∈ Hm : ‖xm‖1 ≤ M}. By
(5.10) and (5.2), we have

Lmψ(xm) ≤ −‖x
m‖2

1

ψ(xm)
+ C

(
1 +

1√
M

)
≤ −‖x

m‖2
1 +M

ψ(xm)
+

M

ψ(xm)
+ C

(
1 +

1√
M

)
≤ −ψ(xm) +

√
M + C

(
1 +

1√
M

)
, xm ∈ Km.
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On the other hand, if xm /∈ Km, then ‖xm‖1 ≥M and thus,

Lmψ(xm) ≤ −‖x
m‖2

1

ψ(xm)
+ C(1 +

1√
M

)

≤ −
1
2
(M + ‖xm‖2

1)

ψ(xm)
+ C(1 +

1√
M

)

≤ −1

2
ψ(xm) + C(1 +

1√
M

)

≤ −1

4
ψ(xm),

(5.11)

as long as we choose M > 1 sufficiently large. In conclusion, when M > 1 is large enough,
there exists a constant b > 0 such that

Lmψ(xm) ≤ −1

4
ψ(xm) + b1Km(xm), m ≥ 1.

By [9, Theorem 5.1 (d)], this implies

E[ψ(X̃m
t )] ≤ e−t/4ψ(xm) + b1Km(xm), t ≥ 0.

(Note the b in the previous two relations may be different.) Since limm→∞ ‖xm − x‖0 = 0
and limm→∞ ‖X̃m

t −Xt‖1 = 0 a.s. for t > 0, by letting m→∞ we obtain

E[ψ(Xt)] ≤ e−t/4ψ(x) + b1K(x), t ≥ 0,

where K := {x ∈ H : ‖x‖1 ≤M} is a compact (hence petite) set in H. By Theorem 5.3, we
prove the ψ-uniformly exponential ergodicity of Xt.

(2) It remains to prove (5.10). Obviously,∣∣∣∣∫
Hm

(ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉01‖y‖0≤1)νm(dy)

∣∣∣∣
≤
∣∣∣∣∫
‖y‖0≤1

(ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉0)νm(dy)

∣∣∣∣
+

∣∣∣∣∫
‖y‖0>1

(ψ(xm +Qy)− ψ(xm))νm(dy)

∣∣∣∣
YPP4YPP4 (5.12)

By Taylor’s expansion,

|ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉0|

≤ sup
θ∈[0,1]

∣∣∣∣ ‖y‖2
0

ψ(xm + θQy)
− |〈y, x

m + θQy〉0|2

ψ3(xm + θQy)

∣∣∣∣ ≤ 2√
M
‖y‖2

0.

Since νm has a density Cm
‖y‖m+α

0

for y ∈ Hm with Cm =
α2αΓ(m2 +α

2 )
Γ(m2 )Γ( 2−α

2 )
, we have∣∣∣∣∫

‖y‖0≤1

(ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉0)νm(dy)

∣∣∣∣
≤ 2√

M

∫
‖y‖0≤1

‖y‖2
0

Cm
‖y‖m+α

0

dy =
2Cm√
M

∫ 1

0

∫
Sm−1

r1−αdrdσm−1 =
2Cm|Sm−1|
(2− α)

√
M
,
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where |Sm−1| = 2(π)m/2

Γ(m/2)
is the volume of Sm−1. Moreover,

Cm|Sm−1| =
α2αΓ

(
m
2

+ α
2

)
Γ
(
m
2

)
Γ
(

2−α
2

) 2πm/2

Γ(m/2)
≤

α2αΓ
(
m
2

+ 1
)

Γ
(
m
2

)
Γ
(

2−α
2

) 2πm/2

Γ(m/2)

=
α2αm

2
Γ
(
m
2

)
Γ
(
m
2

)
Γ
(

2−α
2

) 2πm/2

Γ(m/2)
≤ sup

m≥1

α2αmπm/2

Γ
(

2−α
2

)
Γ
(
m
2

) =: C ′ <∞.

Hence, ∣∣∣∣∫
‖y‖0≤1

(ψ(xm +Qy)− ψ(xm)− 〈Qy,∇ψ(xm)〉0)νm(dy)

∣∣∣∣ ≤ C ′√
M
.

Similarly, there exist constants CQ > 0 such that∣∣∣∣∫
‖y‖0>1

(ψ(xm +Qy)− ψ(xm))νm(dy)

∣∣∣∣
≤
∣∣∣∣∫
‖y‖0>1

|〈xm + θQy,Qy〉0|
ψ(xm + θQy)

νm(dy)

∣∣∣∣ ≤ ∣∣∣∣∫
‖y‖0>1

‖Qy‖0νm(dy)

∣∣∣∣
≤ CQ

∣∣∣∣∫
‖y‖0>1

‖y‖0νm(dy)

∣∣∣∣ ≤ sup
m≥1

CQ

∫ ∞
1

∫
Sm−1

Cm
rα

drdσm−1 <∞.

Therefore, (5.10) holds for some constant C > 0. �

Proof of Theorem 1.3 (2). We follow the argument in [27, p. 429-431]. Without loss of
generality, we assume Ce−γ = ρ < 1 in (5.9), otherwise one can choose t sufficiently large
so that Ce−γt < 1. Given f ∈ Bb(H), consider the following Feynman-Kac formula

P λf
t g(x) = E

[
exp

(
λ

∫ t

0

f(Xx
s )ds

)
g(Xx

t )

]
, g ∈ Bψ.

For any δ > 0 and |λ| ≤ δ, we have

‖P λf
t g‖ψ ≤ eδ‖f‖t‖g‖ψ.

So, λ→ P λf
1 g ∈ Bψ is holomorphic for all |λ| < δ.

When λ = 0, P1g = E[g(Xx
1 )] with g ∈ Bψ. By the exponential ergodicity result (5.9), we

get that 1 is an isolated simple spectrum of P1 and the constant function is the corresponding
eigenfunction. Denote P0 be the projection with respect to the eigenvalue 1, which is defined
by

P0g = µ0(g), g ∈ Bψ.
The spectrum of the P1(I − P0) has a spectrum radius less than ρ from (5.9).

By Kato’s holomorphic perturbation theorem, for any r ∈
(
ρ, 1+ρ

2

)
, there exist some δ̃ ∈

(0, δ) such that for all Dδ̃ = {λ ∈ C : |λ| ≤ δ̃} the operator P λf
1 acting on Bψ has the

following properties: (1) P λf
1 has a single simple eigenvalue σ(λ) with the largest modulus

of the spectrum, moreover, there exists some number c ∈ (1
2
, 1) such that |σ(λ)| ≥ c; (2)

Pλ is the projection of P λf
1 corresponding to σ(λ), λ ∈ Dδ̃ → Pλ ∈ L(Bψ) is holomorphic

and ‖Pλ1 − P01‖ψ ≤ ε with some sufficiently small ε ∈ (0, 1); (3) the spectral radius of
P λf

1 (I − Pλ) is strictly less than r.
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By (3), the following relation holds

N : = sup
z∈S( 1

r
),λ∈Dδ̃

‖(I − zP λf
1 (I − Pλ))−1‖Bψ→Bψ <∞,

where S(1/r) = {z ∈ C : |z| = 1
r
}.

By Cauchy integral we have

(P λf
1 (I − Pλ))n =

1

n!

∂n

∂nz
(I − zP λf

1 (I − Pλ))−1|z=0

=
1

2πi

∫
S( 1

r
)

(I − zP λf (I − Pλ))−1

zn+1
dz,

from which we get

‖P λf
n − σ(λ)nPλ‖Bψ→Bψ = ‖(P λf

1 (I − Pλ))n‖Bψ→Bψ ≤ Nrn.

Since ‖P λf
t ‖Bψ→Bψ ≤ eλ‖f‖ for 0 ≤ t ≤ 1, by a standard argument and the semigroup

property of P λf
t , we have

e:RtCone:RtCon (5.13) ‖P λf
t − exp (t log σ(λ))Pλ‖Bψ→Bψ ≤ Crt.

For any probability measure µ with µ(ψ) < ∞, by (5.13), for all large t so that Crt < 1,
log
∫
H P

λf
t 1dµ are holomorphic on Dδ̃. Moreover, by the inequality in (2),

lim
t→∞

sup
|λ|<δ̃

sup
µ:µ(ψ)<∞

∣∣∣∣1t log

∫
H
P λf
t 1dµ− log σ(λ)

∣∣∣∣ = 0.

By Cauchy’s theorem for holomorphic function, for any ε ∈ (0, δ̃) we have

lim
t→∞

sup
|λ|<ε

sup
µ:µ(ψ)<∞

∣∣∣∣ dk

dλk
1

t
log

∫
H
P λf
t 1dµ− dk

dλk
log σ(λ)

∣∣∣∣ = 0, k ∈ N.

By the C2-regularity criterion in [27, Theorem 1.2], we have

lim
t→∞

sup
µ:µ(ψ)<∞

∣∣∣∣ 1

b2(t)
logEµ exp

(
b2(t)Mt(f)

)
− 1

2
σ2(f)

∣∣∣∣ = 0,

where Mt(f) := 1
b(t)
√
t

(∫ t
0
f(Xs)ds− µ0(f)

)
with b(t)→∞ and b(t)√

t
→ 0 as t→∞, and

σ2(f) = lim
t→∞

(
d2

dλ2

1

t
log

∫
H
P λf
t 1dµ

)
|λ=0 = lim

t→∞

1

t
Eµ0

(∫ t

0

(f(Xs)− µ0(f))ds

)2

.

By [6, Chapter 6], we immediately obtain the MDP result in the theorem. �
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