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Coupling by Change of Measure, Harnack

Inequality and Hypercontractivity

Feng-Yu Wang

Abstract The coupling method is a powerful tool in analysis of stochastic processes.1

To make the coupling successful before a given time, it is essential that two marginal2

processes are constructed under different probability measures. We explain the main3

idea of establishing Harnack inequalities for Markov semigroups using these new4

type couplings, and apply the coupling and Harnack inequality to the study of hyper-5

contractivity of Markov semigroups.6

Keywords ���7

AQ1

1 Coupling Method for Harnack Inequality8

In 1887, Carl Gustav Axel Harnack found out the following inequality: for an open

domain D ⊂ R2 and a compact set K ⊂ D, there exists a constant C(D, K ) such

that for any positive harmonic function u on D,

sup
K

u ≤ C(D, K ) inf
K

u.

This inequality can be reformulated as follows: for any open domain D there exists

a locally bounded positive function C on D × D such that

u(x) ≤ C(x, y)u(y), x, y ∈ D

holds for all positive harmonic functions u on D. This type of inequality is called9

Harnack inequality and has been extended and applied to positive solutions of many10

other elliptic or parabolic PDEs.11

In this part, we introduce the main idea of establishing Harnack inequalities for12

Markov semigroups using the coupling method. Let Pt be a Markov semigroup on13
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396 F.-Y. Wang

a Polish space E . Let B
+
b (E) be the class of all non-negative bounded measurable14

functions on E . Given t > 0 and x, y ∈ E , we aim to compare Pt f (x) and Pt f (y)15

uniformly in f ∈ B
+
b (E).16

To apply the coupling method, we assume that the semigroup Pt is associated to a17

strong Markov process. For fixed x, y ∈ E , we consider the processes X x (t), X y(t)18

on the same probability space starting from x and y respectively such that19

Pt f (x) = E[ f (X x (t))], Pt f (y) = E[ f (X y(t))], t ≥ 0, f ∈ B
+
b (E). (1)20

Let τ = inf{t ≥ 0 : X x (t) = X y(t)} be the coupling time. By the strong Markov

property, we may and do let X x(t) = X y(t) for t ≥ τ. If P(τ > t) = 0 then

X x (t) = X y(t) P-a.s., so that (1) gives

Pt f (x) = Pt f (y), f ∈ B
+
b (E).

This is, however, too strong to be true. Indeed, in general τ is an unbounded random21

variable such that P(τ > t) > 0 for t > 0. But if P(X x (t) �= X y(t)) > 0, then (1)22

does not provide any non-trivial comparison of Pt f (x) and Pt f (y) up to a constant23

independent of f , since, when X x (t) �= X y(t), a function f may be zero at X x (t)24

but arbitrarily large at X y(t). Therefore, to derive the Harnack inequality of Pt using25

coupling, it seems essential that τ ≤ t , which is however impossible as explained26

above. To avoid the contradiction, we will construct the coupling under different27

probability measures, which is called coupling by change of measure.28

From now on, we fix a complete probability space (Ω,F , P). We shall define29

the coupling by change of measure for stochastic processes. Let L (X)|P denote the30

law of a process X (t) under the probability P.31

Definition 1.1 Let X (t) and Y (t) be two stochastic processes on E . A stochastic32

process (X̄(t), Ȳ (t)) on E × E is called a coupling by change of measure for X (t)33

and Y (t) with changed measure Q, if L (X)|P = L (X̄)|P and Q is a probability34

measure on (Ω,F ) such that L (Y )|P = L (Ȳ )|Q. If, in particular, Q = P, we call35

(X̄(t), Ȳ (t)) a coupling for X (t) and Y (t).36

In applications, we assume that Q is absolutely continuous with respect to P. In37

this case, with a coupling by change of measure satisfying X̄(T ) = Ȳ (T ) Q-a.s for a38

fixed T > 0, one may compare the distributions of X (T ) and Y (T ) using the density39

R := dQ

dP
(we also denote Q = RP).40

The following is a general result on Harnack type inequalities using coupling by41

change of measure.42

Theorem 1.1 Let Pt be the Markov semigroup and let x, y ∈ E, T > 0 be fixed.43

Suppose there is a coupling by change of measure (X̄(t), Ȳ (t))t∈[0,T ] with Q := RP44

such that X̄(T ) = Ȳ (T ) Q-a.s. Then for any f ∈ B+(E),45

(PT f )p(y) ≤
{

PT f p(x)
}{

E[R p/(p−1)]
}p−1

, p > 1,

(PT log f )(y) ≤ log(PT f )(x) + E[R log R].
46
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Coupling by Change of Measure, Harnack Inequality and Hypercontractivity 397

Proof By the definition of coupling by change of measure, we have PT f (x) =47

E f (X̄(T )), E[R f (Ȳ (T ))] = PT f (y). Combining with X̄(T ) = Ȳ (T ) Q-a.s. and48

using the Hölder inequality, we obtain49

(PT f )p(y) =
{
E[R f (Y (T ))]

}p
=

{
E[R f (X (T ))]

}p

≤
{
E[ f p(X (T ))]

}{
ER p/(p−1

}p−1
=

{
PT f p(x)

}{
E[R p/(p−1)]

}p−1
.

50

Moreover, the Young inequality ([2, Lemma 2.4]) see implies51

(PT log f )(y) = E[R log f (Y (T ))] = E[R log f (X (T ))]52

≤ log E[ f (X (T ))] + E[R log R] = log(PT f )(x) + E[R log R].53
54

�55

The Harnack inequality with a power p > 1 was first found in [16] for diffusion56

semigroups on manifolds with curvature bounded below using gradient estimates,57

and was then extended in [1, 2, 18] to unbounded below curvatures using coupling by58

change of measure. The log-Harnack inequality was introduced in [14, 19] for semi-59

linear SPDEs and Neumann semigroups on manifolds respectively. Both inequalities60

have been intensively investigated and applied for many other models, see e.g. [9,61

10, 18, 25] for non-linear SPDEs, [12–14, 28] for semi-linear SPDEs, [3, 5, 15, 27]62

for functional SDEs, [8, 22, 26] for degenerate SDEs, and [6, 24] for SDEs driven63

by Lévy and fractional noises. We refer to the survey paper [17] and the monograph64

[21] for more applications of coupling by change of measure and the above type65

Harnack inequalities.66

In the next section, we introduce a general result on the hypercontractivity using67

coupling and Harnack inequality. Then we apply this result to degenerate SDEs and68

functional SPDEs in Sects. 3 and 4 respectively.69

2 Hypercontractivity Using Coupling and Harnack70

Inequality71

Let (E,B, μ) be a probability space, and let Pt be a Markov semigroup on Bb(E)

such that μ is Pt -invariant, i.e. μ(Pt f ) = μ( f ) for f ∈ L1(μ) and t ≥ 0. Pt

is called hypercontractive with respect to the invariant probability measure μ, if

‖Pt‖L2(μ)→L4(μ) = 1 for large enough t > 0. By the interpolation theorem, one may

replace the operator norm ‖ · ‖L2(μ)→L4(μ) by ‖ · ‖L p(μ)→Lq (μ) for any q > p > 1.

This property was found by Nelson [11] for the Ornstein-Uhlenbeck semigroup. In

general, the hypercontractivity of Pt implies the exponential convergence in entropy,

i.e.

Entμ(Pt f ) ≤ ce−λt Entμ( f ), t ≥ 0, f ∈ B
+
b (E)
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398 F.-Y. Wang

holds for some constants c, λ > 0, where Entμ( f ) := μ
(

f log
f

μ( f )

)
, see [23] and

references therein. According to L. Gross (see e.g. [7]), the hypercontractivity of Pt

follows from the log-Sobolev inequality

μ( f 2 log f 2) − μ( f 2) log μ( f 2) ≤ Cμ(− f L f ), f ∈ D(L)

for some constant C > 0, where (L , D(L)) is the generator of Pt in L2(μ). When72

Pt is symmetric in L2(μ), the hypercontractivity and the log-Sobolev inequality73

are equivalent. However, in the non-symmetric case, the log-Sobolev inequality is74

essentially stronger than the hypercontractivity, see Sects. 3 and 4 for hypercontrac-75

tive semigroups for which the log-Sobolev inequality is not available.76

We introduce below a general result on hypercontractivity using coupling and77

Harnack inequality. A process (X (t), Y (t)) on E × E is called a coupling of the78

Markov process with semigroup Pt , if79

(Pt f )(X (0)) = E
[

f (Xt )
∣∣X (0)

]
, (Pt f )(Y (0)) = E

[
f (Y (t))

∣∣Y (0)
]
, f ∈ Bb(E), t ≥ 0.

80

Theorem 2.1 ([23]) Assume that the following three conditions hold for some81

measurable functions ρ : E × E → (0,∞) and φ : [0,∞) → (0,∞) with82

limt→∞ φ(t) = 0:83

(i) There exist two constants t0, c0 > 0 such that

(Pt0 f (ξ))2 ≤ (Pt0 f 2(η))ec0ρ(ξ,η)2

, f ∈ Bb(E), ξ, η ∈ E;

(ii) For any (X (0), Y (0)) ∈ E × E, there exists a coupling (X (t), Y (t)) associated

to Pt such that

ρ(X (t), Y (t)) ≤ φ(t)ρ(X (0), Y (0)), t ≥ 0;

(iii) There exists ε > 0 such that (μ × μ)(eερ2

) < ∞.84

Then μ is the unique invariant probability measure and Pt is hypercontractive. Con-85

sequently, Pt is compact in L2(μ) for large t > 0 and is exponentially convergent in86

entropy.87

Proof (Sketch) The Harnack inequality implies that Pt has a density with respect88

to μ, so that besides the exponential convergence in entropy, the hypercontractivity89

also implies the compactness of Pt in L2(μ) for large t > 0, see [23] and references90

therein for details.91

According to [27, Proposition 3.1], (i) implies that μ is the unique invariant92

probability measure for Pt0 , and Pt0 has a density with respect to μ. It remains to prove93

‖Pt‖
4
L2(μ)→L4(μ)

< 2 for large enough t > 0, which implies the hypercontractivity94

according to [23, Proposition 2.2].95
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Coupling by Change of Measure, Harnack Inequality and Hypercontractivity 399

Let f ∈ Bb(E) with μ( f 2) ≤ 1. By (i) and (i i) we have96

(Pt+t0 f (ξ))2 ≤ E[Pt0 f (X (t))]2 ≤ E

[
{Pt0 f 2(Y (t))}ec0ρ(X (t),Y (t))2

]
97

≤ (Pt0+t f 2(η))ec0φ(t)2ρ(ξ,η)2

, t ≥ 0, (ξ, η) ∈ E × E .98
99

Equivalently,

(Pt0+t f (ξ))2e−c0φ(t)2ρ(ξ,η)2

≤ Pt0+t f 2(η), t ≥ 0, (ξ, η) ∈ E × E .

Integrating with respect to μ(dη) gives100

(Pt0+t f (ξ))2

∫
E

e−c0φ(t)2ρ(ξ,η)2

μ(dη)101

≤

∫
E

Pt0+t f 2(η)μ(dη) = μ( f 2) ≤ 1, t ≥ 0, ξ ∈ E .102

103

Thus,

(Pt0+t f (ξ))4 ≤
1( ∫

E
exp[−c0φ(t)2ρ(ξ, η)2]μ(dη)

)2
, μ( f 2) ≤ 1, t ≥ 0, ξ ∈ E .

Then by Jensen’s inequality, for t ≥ 0104

sup
μ( f 2)≤1

∫
E

(Pt+t0 f (ξ))4μ(dξ) ≤

∫
E

μ(dξ)

(
∫

E
exp[−c0φ(t)2ρ(ξ, η)2]μ(dη))2

≤

∫
E

(∫
E

ec0φ(t)2ρ(ξ,η)2

μ(dη)

)2

μ(dξ) ≤

∫
E×E

e2c0φ(t)2ρ(ξ,η)2

μ(dξ)μ(dη).

(2)105

Since limt→∞ φ(t) = 0, it follows from (i i i) that

lim
t→∞

∫
E×E

e2c0φ(t)2ρ(ξ,η)2

μ(dξ)μ(dη) = 1.

Combining this with (2) we prove ‖Pt‖
4
2→4 < 2 for large enough t > 0. �106

3 Hypercontractivity for Degenerate SDEs107

We only consider finite-dimensional stochastic Hamiltonian systems, see [23] for108

extensions to infinite-dimensions and typical examples.109
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400 F.-Y. Wang

Consider the following degenerate SDE for (X (t), Y (t)) on Rm × Rd :110

{
dX (t) = (AX (t) + BY (t)) dt,

dY (t) = Z(X (t), Y (t))dt + σdW (t),
(3)111

where W (t) is a d-dimensional Brownian motion, and112

(A1) A is an m × m-matrix, B is a d × m-matrix, σ is a d × d-matrix, such that σ113

is invertible and Rank[B, AB, · · · , Am−1 B] = m.114

(A2) Z : Rm+d → Rd is Lipschitz continuous.115

(A3) There exist constants r, θ > 0 and r0 ∈ (−‖B‖−1, ‖B‖−1) such that116

〈
r2(x − x̄) + rr0 B(y − ȳ), A(x − x̄) + B(y − ȳ)

〉
+

〈
Z(x, y) − Z(x̄, ȳ), y − ȳ + rr0 B∗(x − x̄)

〉
≤ −θ(|x − x̄ |2 + |y − ȳ|2), (x, y), (x̄, ȳ) ∈ Rm+d .

117

Theorem 3.1 ([23]) Assume (A1), (A2) and (A3). Let Pt be the Markov semigroup118

associated with (3). Then Pt has a unique invariant probability measure μ and it119

is hypercontractive. Consequently, Pt is compact in L2(μ) for large t > 0, and is120

exponentially convergent in entropy.121

Proof (Sketch). Firstly, by (A1) and (A2) we may construct a coupling by change

of measure such that Theorem 3.1 gives the following Harnack inequality: for any

t0 > 0,

(Pt0 f )2(ξ) ≤ (Pt0 f 2(η))ec0|ξ−η|2 , f ∈ Bb(R
m+d), ξ, η ∈ Rm+d

holds for some constant c0 > 0.122

Secondly, if (A3) holds then we may find out two constants c, λ > 0 such that

for any two solutions (X (t), Y (t)) and (X(t),Y(t)) of (3),

|X (t)−X(t)|2+|Y(t)−Y(t)|2 ≤ ce−λt(|X(0)−X(0)|2+|Y(0)−Y(0)|2), t ≥ 0.

Finally, if (A3) holds then the standard argument using a Lyapunov condition123

implies that Pt has an invariant probability measure μ such that μ(eε|·|2) < ∞ for124

some constant ε > 0.125

Therefore, the proof is finished by Theorem 2.1. �126

4 Hypercontractivity for Functional SPDEs127

We will only consider non-degenerate functional semi-linear SPDEs, see [4] for128

results on degenerate functional SPDEs and specific examples.129
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Coupling by Change of Measure, Harnack Inequality and Hypercontractivity 401

Let H be a separable Hilbert space. For a fixed constant r0 > 0, consider

the path space C = C([−r0, 0]; H) equipped with the uniform norm ‖ f ‖∞ :=

sup−r0≤θ≤0 | f (θ)|. For a map h(·) : [−r0,∞) → H), we define its segment func-

tional h· : [0,∞) → C by letting

ht (θ) = h(t + θ), θ ∈ [−r0, 0].

Consider the following SPDE on H:130

dX (t) = {AX (t) + b(Xt )}dt + σdW (t), t > 0, X0 = ξ ∈ C , (4)131

where W (t) is a cylindrical Brownian motion on H; is,

W (t) =

∞∑
i=1

Bi (t)ei , t ≥ 0

for an orthonormal basis {ei }i≥1 on H and a sequence of independent one-dimensional132

Brownian motions {Bi (t)}i≥1. Moreover:133

(H1) (−A,D(A)) is a self-adjoint operator on H with discrete spectrum 0 < λ1 ≤

λ2 ≤ · · · counting multiplicities such that λi ↑ ∞, such that for some constant

δ ∈ (0, 1), ∫ 1

0

‖e−t (−A)1−δ

σ‖2
H Sdt < ∞, t > 0,

where ‖ · ‖H S stands for the Hilbert-Schmidt norm.134

(H2) b : C → H is such that

|b(ξ) − b(η)| ≤ L‖ξ − η‖∞, ξ, η ∈ C

holds for some constant L > 0.135

(H3) (σ, D(σ )) is an invertible linear operator on H, i.e. there exists bounded oper-136

ator σ−1 such that σ−1H ⊂ D(σ ) and σσ−1 = I , the identity operator.137

It is easy to see that (H1) and (H2) imply

∫ 1

0

‖et Aσ‖
2(1+ε)
H S dt < ∞

for some ε > 0. So, according to e.g. [21, Theorem 4.1.3], for any initial point ξ ∈ C ,

the equation (4) has a unique continuous mild solution (X ξ (t))t≥0. Let {X
ξ
t }t≥0 be the

corresponding segment solution. Then the associated Markov semigroup is given by

Pt f (ξ) := E f (X
ξ
t ), f ∈ Bb(C ), ξ ∈ C .
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402 F.-Y. Wang

Theorem 4.1 ([4]) Let (H1)–(H3) hold. If λ := sups∈(0,λ1]

(
s − Lesr0

)
> 0, then Pt138

has a unique invariant probability measure and is hypercontractive. Consequently,139

Pt is compact in L2(μ) for large t > 0 and is exponentially convergent in entropy.140

Proof (Sketch) By constructing a suitable coupling by change of measure in terms of

(H1) and (H2), we establish the following Harnack inequality according to Theorem

3.1: for any t0 > r0, there exists a constant c0 > 0 such that (see [21, Theorem

4.2.4]):

(
Pt0 f (η)

)2
≤ (Pt0 f 2(ξ)))ec0‖ξ−η‖2

∞ , ξ, η ∈ C , f ∈ Bb(C ).

Next, by (H1) and (H2) we have141

eλ1t |X ξ (t) − Xη(t)| ≤ |ξ(0) − η(0)| + L

∫ t

0

eλ1s‖X ξ
s − Xη

s ‖∞ds.142

By Gronwall’s inequality this implies

‖X
ξ
t − X

η
t ‖∞ ≤ eλ1r0 e−λt‖ξ − η‖∞, t ≥ 0, ξ, η ∈ C .

According to Theorem 2.1, it remains to verify μ(eε‖·‖2
∞) < ∞ for some constant143

ε > 0. This can be done by applying an infinite-dimensional Fernique inequality. �144
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