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Abstract

Let M be a complete Riemannian manifold possibly with a boundary 9M.
For any Cl-vector field Z, by using gradient/functional inequalities of the (re-
flecting) diffusion process generated by L := A + Z, pointwise characterizations
are presented for the Bakry-Emery curvature of L and the second fundamental
form of OM if exists. These extend and strengthen the recent results derived
by A. Naber for the uniform norm ||Ricz||« on manifolds without boundary. A
key point of the present study is to apply the asymptotic formulas for these two
tensors found by the first named author, such that the proofs are significantly
simplified.
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1 Introduction

Let M be a d-dimensional complete Riemannian manifold possibly with a boundary
OM. Let L = A+Z for a C! vector field Z. We intend to characterize the Bakry-Emery
curvature Ricy := Ric — VZ and the second fundamental form I of the boundary oM
using the (reflecting) diffusion process generated by L. When OM = (), we set T = 0.
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There are many equivalent characterizations for the (pointwise or uniform) lower
bound of Ricz and I using gradient /functional inequalities of the (Neumann) semigroup
generated by L, see e.g. [18] and references within. However, the corresponding upper
bound characterizations are still open. It is known that for stochastic analysis on the
path space, one needs conditions on the norm of Ricy, see [3, 4], [l [7, 10, 15, I7] and
references within. Recently, A. Naber [12], 0] proved that the uniform bounded condi-
tion on Ricy for Z = —V f is equivalent to some gradient /functional inequalities on the
path space, and thus clarified the necessity of bounded conditions used in the above
mentioned references. In this paper, we aim to present pointwise characterizations for
the norm of Ricz and T when M # (), which allow these quantities unbounded on the
manifold.

Let (X[ )10 be the (reflecting if OM exists) diffusion process generated by L = A+Z
on M starting at point z, and let (U)o be the horizontal lift onto the frame bundle
O(M) := UzenO, (M), where O, (M) is the set of all orthonormal basis of the tangent
space T, M at point x. It is well known that (X7, U})i>o can be constructed as the
unique solution to the SDEs:

AX? = V2U? o dW, + Z(XF)dt + N(X2)dIF, X& =z,

(1.1)
dUF = V2 Hy: (UF) o AW, + Hy(UF)dt + Hy(UF)AIE, U € O, (M),

where W; is the d-dimensional Brownian motion on a complete filtration probability
space (2, {%# }i>0,P), N is the inward unit normal vector field of OM, H. : TM —
TO(M) is the horizontal lift, H, := (Hye,)1<i<a for u € O(M) and the canonical or-
thonormal basis {e;}1<;<q on R%, and [; is an adapted increasing process which increases
only when X} € OM which is called the local time of X} on M. In the first part
of this paper, we assume that the solution is non-explosive, so that the (Neumann)
semigroup F; generated by L is given by

Pf(z) =Ef(X7), =€ M,fe By(M),t>0.

For a fixed T' > 0, consider the path space Wy (M) := C([0,T]; M) and the class of
smooth cylindric functions

FCF = {F() = [+ )+ m 21, 7 € We(M),
O<ty <ty ---<t,<T, feC’go(Mm)}.

Let
T
e = e COTERY s 10) =0, il = [ iPas <o
0

For any F € ZC% with F(v) = f(y(t1), - ,7(tm)), the Malliavin gradient DF(X{ 1)



is an Hyp-valued random variable satisfying
DsF(X[o,T]) = &DF(X[O,T})

=Y (Ui (X7 X2 ), s €0,

ti>s

(1.2)

where V; is the (distributional) gradient operator for the i-th component on M™, and
P, :R? — R? is the projection along u~'N, i.e.

(Pya,b) == (ua, NY(ub, N), a,b € R u € UyeqrOy(M).

Note that
For K € C(M;[0,00)) and o € C(OM;[0,00)), we introduce the following random
measure /i, 7 on [0,77:

(13) /"L-’E,T(ds) = efos K(Xf)dT—l—f; U(Xf)dlf{K(X;E)dS 4 U(X:)dlf}

For any ¢ € [0, 7], consider the energy form

T
&5 () =B (U a0 TD) (IDF Gl + [ 1D () parlas)) |
for F € #C%. Our main result is the following.
Theorem 1.1. Let K € C(M;[0,00)) and o € C(OM;[0,00)) be such that
(1.4) Ee(2te) Jo {K(XDds+o(XDAITY — 0 for some e, T>0.

For any p,q € [1,2], the following statements are equivalent each other:

(1) For anyx € M andy € OM,

|Ricz||(x) := sup }Ric(X, X) —(VxZ,X)|(z) < K(z),

XeT,M,|X|=1
i) = sw YY) < o).
(2) Forany fe C(M), T >0, andx € M,
[VPrfPP(2) < B[(1+ par(0, TV S1P(X5)].
Vi) - 59Pes @) < B| (14 pan(0.7)"

"y @D )|

< (Vs - suswn v e[+ 2=
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(3) Forany F e ZC¥,x e M andT > 0,

VLEF( OTV<EBLH%AWHD

T
X (\DOF(X[%,T])\‘]Jr /0 \DSF(X[%,T])\qux,T(ds))].

(4) For any to,t; € [0, T] with t; > to, and any x € M, the following log-Sobolev
inequality holds:

E [E(Fz(X[%,T]ﬂﬁtl) logE(Fz(X[%,T})Lgtl)}

t1
—E [E(FX(X{1)| Fy) log E(FA(X 17)| Foy)] < 4 / E8C(F F)ds, F e FOy.

to

(5) For anyt € [0,T] and x € M, the following Poincaré inequality holds:
2 t
[{E Xior)| 7o)} } - {E[F(Xm)}} < 2/ EX7(F.F)ds, Fe ZCY¥.
0

Remark 1.1. (1) When OM =0, Z = —V f and K is a constant, it is proved in [12
Theorem 2.1] that ||Ricz|lw < K is equivalent to each of (3)-(5) with ¢ = 0 and a
slightly different formulation of @@5{2’10. Comparing with these equivalent statements us-
ing references functions on the path space, the statement (2) only depends on reference
functions on M and is thus easier to verify.

(2) An important problem in geometry is to identify the Ricci curvature, for in-
stance, to characterize Einstein manifolds where Ric is a constant tensor. According
to Theorem [[.T], Ric is identified by VZ if and only if all/some of items (2)-(5) hold
for K = 0.

We will prove this result in the next section. In Section 3, the equivalence of (1), (4)
and (5) are proved without condition (I4]) but using the class of truncated cylindrical
functions replacing .# C7°.

2 Proof

We first introduce some known results from the monograph [18] which hold under a
condition weaker than (L4]).

Let f € C3°(M) with |V f(x)] = 1 and Hess¢(x) = 0. According to [I8, Theorem
3.2.3], if z € M\ OM then for any p > 0 we have

Ries (V1.9 (0] — tim 2P = [VAIP(a)

@.1) 10 pt
- o 1(PfAx) — (Pf) () Ay
_%g?( . —wvafuﬂ),
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and by [I8, Theorem 3.2.3], if z € OM and V f € T,,0M then

U(V£.9f)(z) = lim ﬂ{awﬂp(x) - VR

(2.2) v 27’\/’_5

We note that in [18 (3.2.9)], /7 is misprinted as .
Next, let Ricz(u) for u € O(M) and I(u), P, for u € UzegnO,M are matrix-valued
functions with

(P,a,b) = (ua, N)(ub, N),

(Ricz(u)a,b) := Ricz(ua, ub),

(I(u)a, b) :=I(ua — (ua, N)N,ub— (ub, N)N), a,b€R"
According to [18, Lemma 4.2.3], for any F' € ZC® with F(y) = f(vy, 5 Yn ) f €
COOO(M) andOStl <<y,

(23)  (U)TVLE[F(Xf)] = D E[QG, (U Vil (X5, X5,

where V, denotes the gradient in x € M and V; is the gradient with respect to the
i-th component, and for any s > 0, (Q?,t)tzs is an adapted right-continuous process on
R? @ R* satisfies Q7 ,Pyz = 0 if X € M and

(2.4) T, = < / Q" {Ric (U7)dr +I[(Uf)dl;‘?}) (1 . 1{X§€aM}PUg).

The multiplicative functional QF, was introduced by Hsu [I1] to investigate gradient
estimate on P,. For convenience, let Qf := Qf,. In particular, taking F'(y) = f(v;) in

[23), we obtain
(2.5) VP, f(z) = USE[Q; (U) 'V (X])], z€ M, feCr(M),t>0.

Finally, for the above F' € .ZC, let

(2.6) =Y QI UIVF(XE, - X)), te0,T).
1t >t
Then [I8, Lemma 4.3.2] (see also [17]) implies that
t
(2.7) B(F(X§0)| ) = BIF(X{0)] +V2 /0 <E(D8F(X§)7T})|¢%),dWS>, t e 0, 7).

b}



Proof of Theorem[11. 1t is well known that the log-Sobolev inequality in (4) implies
the Poincaré inequality in (5), below we prove the theorem by verifying the following
implications respectively: (1) = (3) for all ¢ > 1; (3) = (2) for all p = ¢; (2) for some
p>landge[l,2]= (1); (5) = (1); and (1) = (4).

For simplicity, below we will write F' and f for F(Xf ) and f(XG, -, X[)
respectively.

(a) (1) = (3) for all ¢ > 1. By ([2), 23] and 24) we have

Uy 'V E[F] {ZQt Uy 1Vf}

— E{i ([ — /0 i Q:Ricz(Us)ds — /Oti QfHUSzdlf) (Uf‘;)_lvz'f]
i=1
N

E[Z (U)'Vif
i / Q°Ricy (U%)ds + / Qfﬂmdzr)(m) av f]

. T . T .
= E[DOF —/ {Q*Ricz(UF)DyF }ds —/ {Q;CH(U;”)DSF}dZﬁ}.
0 0

By [18, Theorem 3.2.1], we have

W) (29) |WﬂﬁwﬂfK@Whﬁ[d&W4.

Combining these with (1), (I3, and using Hélder’s inequality twice, we obtain

T q
|V.E[F]|? < {E|D0F| +E/ \DSFW,T(ds)}
0

q

T
gE{|D0F|+/ |D5F|,Ux,T(dS)}
0

o () IDF X )l r(ds))? o
—E{ODJW+ (o (10, T )“*“Mﬂ@ﬂ” }

<&{ (1Dor + /ﬁDF<oﬂm%ﬂmQu+mﬂMTM“}.

Thus, the inequality in (3) holds.
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(b) (3) = (2) for all p = g. Take F(y) = f(yr). Then EF(X{ ;) = Prf(z) and
by [32), |DF| < |Vf(Xr)| for s € [0,T]. So, the first inequality in (2) with p = ¢
follows from (3) immediately. Similarly, by taking F(v) = f(y) — 5f(yr), we have
EF = f(z) — $Prf(z) and

DoF| = [V £() — SUR (U VA3,
D.F| < JIVAXF), s € (0.7)

Then the second inequality in (2) is implied by (3).

(c) (2) for some p > 1 and q € [1,2] = (1). Let x € M \ OM. There exists r > 0
such that B(z,r) :={y € M : p(z,y) < r} C M\ OM, where p is the Riemannian
distance. Let 7. = inf{t > 0: p(z, X7) > r}. By [18, Lemma 3.1.1] (see also [2| Lemma
2.3]), there exists a constant ¢ > 0 such that

(2.9) P(r, <T) < e ¥T T €(0,1].
Then P(I2 > 0) < e~“/T so that for each n > 1
(2.10) %{%T I7=0, P—a.s..

Combining this with (I3]) we obtain

. par([0,T])
(2.11) flplg%) — = K(x).

Therefore, by the dominated convergence theorem due to (LL4]), the first inequality in

(2) and (21 yield

Riey (V15 ) — tim YL — PrIVSP)

(2.12) T—0 pT
| < g B2 OTVP “UTIPCDS _

where f € C§°(M) with Hessy(x) = 0 and |V f(z)| = 1. This implies Ricz (X, X) >
—K(z) for any X € T, M with | X| = 1.

Next, we prove that the second inequality in (2) implies Ric; < K. By Hélder’s
inequality, the second inequality in (2) for some ¢ € [1,2] implies the same inequality
for ¢ = 2:

1 2
V1) - 5VPr ()

< |+ 010|950 - jupon s + B w o e)|



Then
IV Prf(x)]* = Pr|Vf(z)

< %E{Wf( VP f(x) — EIUZ(UE) 'V F(XE)

4T
(2.13) i (0, TV () = SUS R V()|
+ (1 + /~L:B,T([07 Z]))Mm,T([Ov T]) |Vf(X%)|2}

Combining this with (1)) and ([ZI1), we arrive at
— 5Ricz(V [, V)(z)

K(@)|V (@) +limsup E(Vf(x), ¥ Prf () ~ BIU (UF) VS (X))

| =N =

<

Since by (Z3), (Z4) and (ZIT) we have
(VF(2), VPr(x) - BIUE (UF) 'V F(X)])
_ / (Vf(2), UsRicz(UZ) (U£) "V £(X3))dr = —TRicz(V, V f)(x) +o(T)
for small 7' > 0, this implies Ricz(V £, Vf)(z) < K(x).

On the other hand, to prove the desired bound on ||I||, we let x € OM, f € C§*(M)
with (Vf, N)(z) =0, |V f(z)] =1 and Hess(x) = 0. By [I8, Lemma 3.1.2],

T |
NS
for all A > 0 and small 7" > 0. Combining this with (L3), (L)), and (29), we obtain

X EILLLT([O,T]) o 20’(1') im [EMI7T([O7T])]2
(2.14) flplg%) T =/ %1_)0 T

Then repeating the above argument with (2.2) replacing (2.1]), we prove
IV, V()] < olx).
Indeed, by ([22) and ([2I4), instead of ([ZI2) we have

VA o [9PEfP@) = PrV (@)
2 T—oo p\/T

while multiplying (2.13) by VT and letting T — oo leads to

EeMNtan < oo, Elf,, = O(T3/2)

= 0.

IV, Vf)(x) < = o(x),

I(V/, V1)) < %) A

8
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(d) (5) = (1). Let F(v) = f(yr). Then (5) implies

(2.15) Prf*(z) — (Prf(x))* < 2/0 E[(1 + payr([s, T]))*IV F(X7)*] ds.

For f in (21, combining this with (21]) and (2I1]) we obtain

<PTf2(93) — (Prf)*(z)
2T

Ricz(Vf,Vf)(x) = %igb%

- |VPTf|2)

< 11 [ (BI04 ue DRIV - (9P s

T T—0

:ggno%{zaﬂwﬁ(x)—\vaf\2<x>+2'VJ;' (@) / <T—s>f<<x>ds}

= 2Ricz(Vf, Vf)(z) + K(2)|V f[*(=).

This implies Ricz(Vf,Vf)(z) > —K(z)|Vf(z)|?>. Next, for f in (22)), combining
(ZI3) with (22) and (ZI4), we obtain

V1.V )(o) = fiy 207 (PO DB - o)

< i V2L [ BI04 ulls TPV - (9P ds

B[ o iy 2 AVF@R [T 20T~ y5)
_%1%8\/T{PT|VJ”| (x) — |VPrf|*(x) + T /0 Nz ds+0(ﬁ)}
= DU/, V1)) + 5o(o).

Hence, I(V f,Vf)(z) > —o(2)|V f(z)]*
On the other hand, to prove the upper bound estimates, we take F/(y) = f(7.) —
5/ (yr) for e € (0,7). By (L2,

. 1 1
DF| = |V £(X0) = SURUR) 1) 1o (1) + 597 (XD L (1),

Then (5) implies

L =E[f(x2) ~ SEGXDIZ)] — (Pof@) - 5Pri(w)

210 < 28{ (ka0 1) (9500 - juzwn V)|
+ Nx,T([O,T]Qvf(X%)P} + 082 — JE’ o= (O,T)



IV2

IV3

for some constant ¢ > 0. Obviously,

iy % = B{ (1 4 (01D (V50 - 30500V x|
(2.17)
# QDo ) |
On the other hand, we have
Ia_Pefz_(Pa.f)2 1 x 2 2
B CEHE((XDIZ) ) - (Prf)(@)

L EUGXD{PA (@) = F(XDY
€

Let f € C5° (M) satisty the Neumann boundary condition, we have

P€f2_(P€f)2
9

(2.19) lim = 2|V f|*(z).

Next, (2.8) and ([Z7) yield
220)  BUOGRIF) = Prfle) + V2 [ (BQi(UF) " VFXP|Z). L)

Then
E[E(f(X3)|.Z.)7 = (Prf)? +2 / E|Q3 (U2)" 'V £(X3)ds.

This together with ([2.5]) leads to

tim 1B [{E(f(XF)|22)}* — (Prf ()]

(2.21) e 2
— 5 [E[Qt R VI (XD)]| = SIVPrs (@)

Finally, by It6’s formula we have
Pf(x) — F(XF) = Pof(e) — fla) - / LA(XT)ds — V2 / (VF(X7), UV,
— V2 [(vie. v,
0

Combining this with (Z20)) and (2Z3]), we arrive at
EIF(X)PA() — fXD)]

e—0 9

—2(V[f(x), VEf(x)).

10



Substituting this and (ZI9)-(221) into ([Z.IF)), we obtain

1. 1 2
ll_{%; =2\Vf(z )—§VPTf(SC)
Combining this with (2.I6]) and (2.17]), we prove the second inequality in (2) for ¢ = 2,
which implies Ricy; < K and I < ¢ as shown in step (c).

(e) (1) = (4). According to (271),

eq2.27| (2.22) G, = E(F?|.%) = E(F?) +f/ (E(D,F?.Z,),dW,), te€[0,T].

By It6’s formula,

[E(D,F?|.7,)|”
Gy
< (1 +1log G)dG, + 4E(|D,F|?|.7,)dt

d(Gelog Gy) = (1 +1og G,)dG, + dt

eq2.28| (2.23)

Then
11 B
TST] (2.24) E[G,, 1og Gy ] — E[Gy, log Gy, ] < 4 / E| D, F|ds.
to
By (26]) we have
~ N
D,F = Z Lisat Q% (US)T'Vif

B Z Hesu }( / @ro{Ricy (U7)dt + HUZ“’dlf}) (I - 1{X2”ieaM}PUg;) (U ~'Vif

_ DyF — / Q7 [Ricz(U)dt + I(UZ)dIE ).

Combining this with (1), (2.8) and (2.11), and using the Schwarz inequality, we prove

225) PP < (Wt D) (100 + [ 1D Praa(as) ).

This together with (Z24]) implies the log-Sobolev inequality in (4).

11



3 Extension of Theorem 1.7

In this section, we aim to drop the condition (4] in Theorem [[I] and allow the
(reflecting) diffusion process generated by L to be explosive. The idea is to make a
conformal change of metric such that the condition (L4)) holds on the new Riemannian
manifold. Since both Ricy and T are local quantity, they doe not change at x if the
new metric coincides with the original one around point z.

Let (M, g) be a Riemannian manifold with boundary, and let N be the inward
pointing unit normal vector field of OM. Let ¢ € C§°(M) be non-negative with non-
empty My := {¢ > 0}. Then, M is a complete Riemannian manifold under the metric
gs = ¢ %g. Let V¢ A? Ric” and I? be the associated Laplacian, gradient, Ricci
curvature and the second fundamental form of OM,. By e.g. [6] Theorem 1.159 d)],

VY = VxY — (X, Viegd)Y — (Y, Vlog¢) X + (X,Y)Vlog ¢.

Moreover, according to [I8, Theorem 1.2.4] and the proof of [18, Theorem 1.2.5], we
have

Ricg = Ric + (d — 2)¢ "Hessy + (¢~ ' A¢ — (d — 3)|V1og d|)g,
I = ¢ '+ (Nlog¢)g.

Noting that |X| =1 if and only if g,(¢X, $X) = 1, we obtain

Ll = sup  [I4(¢X, ¢X)| < o0,
XeToMy,|X|=1

and for Riciz the curvature of L? := A? + ¢Z,

IRic),lle =  sup  [Ric®(¢X,0X) — go(Vox (02), 6X)| < occ.

XeTMy,|X|=1

Therefore, Theorem [I1] applies to L? on the manifold M. In particular, by taking
¢ such that ¢ = 1 around a point x, we have Ricy = Ric® and I = I? at point ,
so that in this way we characterize these two quantities at x. To this end, we will
take ¢ = {(p,), where p, is the Riemannian distance to x and ¢ € C§°(R) is such that
0<¢<1,{s)=1for s <randl(s) =0 for s > 2r for some constant r > 0 with
compact Ba,.(z) := {p, < 2r}.

Obviously, before exiting the ball B,.(x) the diffusion process generated by L coin-
cides with that generated by L?. So, to use the original diffusion process in place of
the new one, we will take references functions which vanishes as soon as the diffusion
exits this ball. To this end, we will make truncation of cylindrical functions in terms
of the uniform distance

pz(7) = sup p((t), ).
te[0,1]

12



To make the manifold M, complete, let § : M — (0,00) be a smooth function such
that Br(z) is compact for any R < ¢,. Consider the class of truncated cylindrical
functions

(31)  FCE,, = {Ff(p;) L FeZ0P zeM, {eCPR), suppl C [o,ax)}.

To define éjf;”(F F) for F' = Fl(p,) € FCF,,, we take ¢ € C§°(M) such that
0<¢ <1, ¢=1forlp,) >0, and ¢ = 0 for p, > 0,. Then My is complete with
bounded Riciz and I°. Let X fg’% be the (reflecting) diffusion process generated by L?.

Similarly to the proof of [4, Lemma 2.1] for the case without boundary, we see that
|DsF (X ff)%)| is well defined and bounded for s € [0,7]. Noting that F' is supported

on {{(p,) >0} C Wp(M?) and X[:g‘,f}] = X if E(px(X[:g‘,f}])) > 0 (see ([B.4) below), we
conclude that |D,F(X o) = |D,F(X?T o })| is well defined and bounded in s € [0, 7T

as well, which does not depend on the choice of ¢. Again since F is supported on
{0(p,) > 0} C Wy (M?) and M? is relatively compact in M, we have

85 (P F) = Bf (L (0.7) (1DF O ) ) DE X ) Pn(@9) | < o

Theorem 3.1. Let K € C(M;[0,00)) and o0 € C(0M;[0,00)). The following state-
ments are equivalent each other:

(1) Foranyx € M andy € OM,
|IRicz||(x) := sup  |Ric(X, X) — (VxZ, X)|(x) < K(x),
XeT, M,|X|=1

IMi(y) == sup  [I(Y,Y)[(y) < o(y).

YET,oM,|Y|=1

(2) For any to,t; € [0,T] with t; > to, and any x € M, the following log-Sobolev
inequality holds:

E [E(F*(X{)| 20 ) g E(F (X[ 71)| 72, )]

t1
_E [E(FQ(X@T])\%O) logE(Fz(X[%’T])\?to)} <4 / (gf;f;”(F, F)ds, F e ZCg,,.

to

(3) For anyt e [0,T] and x € M, the following Poincaré inequality holds:

E[{E(F (X120 )| - {E[F(Xom)] }2 <2 /0 (P F)s, F e O,

13



Proof. Since (2) = (3) is well known, we only prove (1) = (2) and (3) = (1).
(a) (1) = (2). Fixz € M. For any I':= F(p,) € FCF,,., there exists R € (0,d,)

locy

such that supp(¢(p,)) C Br(x) :={y € M : p(z,y) < R}. Let ¢pr € C5°(M) such that
®r|Brz) = 1 and 0 < ¢r < 1. We consider the following Riemannian metric on the
manifold Mg :={y € M : ¢r(y) > 0}:

9r = OR’G.
As explained above that (Mg, gr) is a complete Riemannian manifold with

(3.2) Kg :=sup ||Ric}|| < 00, 0og :=sup ||If| < oc.
Mp Mpg

We consider the SDE (L)) on M,

(33) { dUF = /2 Hy: (UF) o AW, + H(UF)dt + Hy (UF)dIZ,

U() = Ug-

Then X, := 7(U,;) is the (reflecting if OM exists) diffusion process on M generated by
L=A+Z.

Similarly, let {H; g}, and Hy,z g be the orthonormal basis of horizontal vector
fields and horizontal lift of ¢rZ under the metric gr. Since gr = g and ¢r = 1 on
Bg(z), for u € O(Mpg) with mu € Bg(z) we have H; gp(u) = H;(u) and Hyz r(u) =
Hyz(u). For Wy and ug in (83]), we consider the following SDE on the manifold Mg:

dUpp =Y Hip(Ur) 0 AW + Hypz p(UF)dt + Hy (UF)dl,
=1
U07R = Up-

Then X% := 7(U. g) is the (reflecting if 9Mp, exists) diffusion process on M generated

)

by Lr := Agr + ¢rZ, where Ay is the Laplacian on Mpg. Obviously,
(3.4) Ur="U, I, =1 fort <7p:=inf{t >0:X; ¢ Bp(r)}.

Denote by P, , the distribution of the process X [98”};]. By [1§] and (2.24]), we have the
damped logarithmic Sobolev inequality holds

(3.5) E[Gy, log G1,] — E[Gy, log Gy ] < 4657°(G,G), G e FC,

where G; := E(Gz(X[“’g’%ﬂﬁt) and

g}? to (H, G) — / / <l)f}77 DfG)dePg7m
WI(Mg) Jto
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According to [I8], the form (&5, FC%) is closable in L*(PF,,). Let (&7, 2(&4"))
be its closure. Let p be the Riemannian distance on Mg and

o () o= u pR(y(t),z), € WI(Mpg).
t€|0,

We have g,"(v) = pu(7) for each v € WT (M) C WI(M) satisfying pZ(v) < R. Then
[4, Lemma 2.1] implies that ((p,) is in Z(&pr ), and so is F' := F{(p,). Combining
this with (3.4]) and ([B.3]), we get
B[ (P (X)) log B () 22)|
- BB ) Fa) I8 B (X )1 %)
36) = E[E(POGHIR) g B G
[IE(FQ(X[“’S )| F1,) log B(F? (X7 )|Jt0)]

E
<4/ / (DEF, DEF)dsdPh —4/ / (D,F, D,F)dsdP? .
WI(Mg) WI'(M)

Combining this with ([2Z25]), we prove (2).

(a) (3) = (1). We first prove the lower bound estimates. When x € M \ 9M,
there exists 7 € (0,26,) such that By, (z) C M\ OM. Let ® = {(j,), where £ € C5°(R)
such that 0 < ¢ <1, ¢(s) =1 for s < r and ¢(s) = 0 for s > 2r. Let 7, = inf{t > 0 :
p(z, XF) > s} for s > 0. Consider F(vy) = (®F)(y) = ®(y)f(yr) for f in @I). Then
(3) and (29) imply

E[(F@)?( X[%,T])] _ {E[(F(I))(X[O,T])] }2 <9 /0 ' ERC(F, F)dt
2 [ TE{(l el 7) (1D OGP + / ID.F (X Par(d))

2 [ B[t om (1 (8. TD) VSOt + OB, < T)

(3.7)

IN

=2 [ B[l (1 + (6 TD) IV (KPPt +0(7%,

where C' > 0 is a constant depending on f and ®. On the other hand, by (ZI]) and

15



1 (E[F20X(XE )] — {E[FO(X(0m)]} )
%ﬁ%?( 2T ~ VP )
L (Pefe) — (Prh)(a) :

—%gr%]T( 5T —|VPTf|)

= Ricz(Vf, V[)(z).

Since I* = 0 for s < 7,., these two estimates together with (29) and (L3) lead to

E[(F®)2(XZ )] — {E[(F®)(Xpr)]}
RicZ(Vf,Vf)(!E):%jgb%< [(F®)*(X{5,1)] 2; [(F®)(Xpm)] }

- |VPTf|2)

{1 [ {E[l{mﬂ}(l (s TDPIT AP = [9Pr ) ds

T—0 T
< o (B ORI o I8 Bl om0+ p((s TP UV G
— TS50 T T2

= 2Ricz(Vf, Vf)(x) + K(z)|Vf[*(2).

Therefore, Ricz(Vf,Vf)(z) > —K(x)|Vf(x)[*
Next, let x € OM. For f in (22), by ([2:9) we have

3y (El(FO2(XE )] - {E[(FO)(Xjom)] }* ,
pm 8\/_< 2T ~IVPr] )
(3.8) 1 3V (Prf(x) = (Prf)* (o) )
T—>0 8\/_( 2T —IVPr] )
=I(Vf,V[)(x).
Combining this with ([3.7)) and (2I4]), we obtain
E[(F®)* (X} 1 E[(F®)(X 2
IV V(@) = lim :g( (e 2; (P9 Xom)]) - |VPTf(x)\2)
3T ([T E{L ey (1 (8 T))IVE(XE)2) )
S T( /0 dt—|VPTf<x>|)
3

T
Jr s AVF@E [T 20T — )
L a1 (o) - (9 pegp(o) + TELEL [P g,

1
= iﬂ(Vf, Vi)x)+ 50’(3:).
Therefore, I(V f,V f)(z) > —o(x)|V f(z)|?.
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To prove the upper bound estimates, we take F(v) = f(v.) — 5 f(yr) for e € (0,T).

By (L2),

. 1 - N
DeF| = |VF(X) = JUEUR) T VF(XF)
Moreover, by (3) and (2.9), we may find a constant C' > 0 depending on f and ¢ such
that for any ¢, 7 € (0,1),
2
7))

1
Lo (t) + §|Vf(X%)|1[s,T}(t)-

I = B[E(@(Xj) FXZ) — 58(X0)f (XF)

~ [B(e0am 70— S FXD) |
) <2 [ 8{(1+ paa e 1) 00 ) DT
+ /t : \(I)(ng,T])DSFFuLT(ds)) }dt +CeT,
Then
msup = < B @(5)(1+ o (0.7)([770) = 303079703
(3.10)

q)(X[aT]),ux,T([O? T])
* 1

VPKD) | ol

for small 7" > 0. On the other hand, according to (d) of proof in Theorem [[T], we have
[s P, f _ (P f)
= B[{E(

£
(3.11) | EUCXRP, o) - FX2)]

= 2|V f(e) = GVPrf@)| +o(T?).

2IZ) Y (Prf)()

+o(T?

Combining this with (3.I0), we arrive at

2

2|V 1)~ 5V P

19 <B{e0G) 0+ (0.1 (|V50) - sUswn V|
(X0 1) a1
+ 2%, ])’; 0I5 pp <XT>)}+0<T3>

With this estimate, we may repeat the last part in the proof of (2) = (1) of Theorem
[Tl to derive the desired upper bound estimates on Ricz and I at point x. O
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