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Abstract. In this paper, we consider the n-dimensional (n = 2,3) Camassa-
Holm equations with fractional Laplacian viscosity in the whole space. In con-
trast to the Camassa-Holm equations without any nonlocal effect, much less has
been known on the large time behavior and convergences of solutions. Here we
study first the large time behavior of solutions, then consider the relation be-
tween the equations under consideration and the imcompressible Navier-Stokes
equations with fractional Laplacian viscosity (INSF). By applying the fraction-
al Leibniz chain rule and the fractional Gagliardo-Nirenberg-Sobolev type es-
timates, the high and low frequency splitting method and the Fourier splitting
method, we shall establish the large time non-uniform decays and algebraic

rate decays of solutions. In the critical case s = —, the nonlocal version of

Ladyzhenskaya’s inequality along with the smallness of initial data in suitable
Sobolev spaces are needed. In addition, by estimates for the fractional heat ker-
nels, we prove that the solutions to the Camassa-Holm equations with nonlocal
viscosity converge strongly as the filter parameter « — 0 to solutions of the
equations (INSF).
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1 Introduction

In this article, we investigate the following Camassa-Holm equations with fractional Laplacian vis-
cosity in R" (n = 2, 3):

Vi+u-Vv+v-Vul +Vp=—v(-APv, (t,x) e R xR",
u-—ca’Au=v, (1.1)

divv=divu=0,
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together with the initial condition
v(0, x) = vo(x), u(0, x) = up(x), x € R™. (1.2)

Here, v, u denotes the fluid velocity field and the filtered fluid velocity, respectively, and p the scalar
pressure. « is a length scale parameter representing the width of the filter, and v > 0 is the viscosity
coeflicient which is fixed in our discussions. In particular, the divergence free condition div v = 0
indicates the imcompressibility of the fluid, (—~A)? denotes the fractional power of the Laplacian in
R", g < B < 1 and n = 2,3. Recall that the Camassa-Holm equations with Laplacian viscosity

(equations (I.I) with 8 = 1) read
v,+u-Vv+v-Vul +Vp =vAy, (t,x) e R* xR",
u-a?Au=v, (1.3)
divv =0.

As it is well-known that the system (I.3)) rose from work on shallow water equations [8]. Specif-
ically, it was introduced in [26] as a natural mathematical generalization of the integrable inviscid
one-dimensional Camassa-Holm equation discovered in [§]] through a variational formulation and
with a lagrangian averaging. It could be used as a closure model for the mean effects of subgrid
excitations, and be also viewed as a filtered Navier-Stokes equations with the parameter « in the
filter, which obeys a modified Kelvin circulation theorem along filtered velocities [26]. Numerical
examples that seem to justify this intuition were reported in [10]. Formally, the system (1.3)) reduces
to the imcompressible Navier-Stokes equations as @ — 0:

V;+V-Vv+Vp=vAy,
(1.4)

divv =0.

For the fractional Laplacian in the whole space, there are several ways to define it [5. 36, 42].
For example, for a function f € .7, the integral fractional Laplacian (~A)? at the point x can be
defined as o

Ipf(x) £ (APf() = Cup PV. [, fLDae,

= Cog BV, f )= f©
R

n |x = &+2B (1.5)
. Jx+8) - f(x)
=Cupl ————d¢,
’ SE(I)L |é>e |§|n+2ﬁ f
or equivalently
C, 2 - — -
I5/(0) £ (=AY f(x) = —F f ,1 S -] (I); |:+y2; SO =) g, (1.6)

where the parameter £ is a real number with 0 < 8 < 1, P.V. is a commonly used abbreviation for
”in the principle value sense” (as defined by the latter equation), and C, g is some normalization
constant depending only on n and g given by

_ 1 —cos(£y) -l
corl [ 1]

Before going further, we collect several definitions and basic facts concerning the fractional
Sobolev spaces WAP(R") and H#(R"), as well as the fractional Laplacian [42].
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Definition 1.1. In the whole space, for B € (0,1), if f € L(RY), let AY = (-A) withy = 23, and

NBfE) = (—DPF(€) = 1€ F(&),

the domain of definition of the fractional Laplacian, D (Aﬁ ) is endowed with a natural norm ||-|| D(AF)
and is a Hilbert space. The norm of u in D (Aﬂ) is defined by

lellpamy == |APul| o g - (1.8)

It should be pointed out that in the whole space, if any function y € . R"), D (A'B) is equivalent to
the fractional Sobolev space HP(R™), defined as the completion of Cy (R™) with the norm

1.9

||¢||H5(Rn)=( fR e Iﬂzdf) = |-y

On the other hand, the norm |\ul|gsgny in the fractioal Laplacian Sobolev space HPR") is given by

12 (R"

_ 2
Il sy = 2C 00, B ([ AU oy + Ml - (1.10)
In particular, the norm of D (AZ) = D(—A) is equivalent to the H*(R™) norm. O
Definition 1.2. Let 8 € (0, 1). For any p € [1, 00), we define WAP(R") as follows
WAP(R") :=du e LP(RY) : Julx) = uG)l e LPR"xRM}, (1.11)
e =yl

i.e., an intermediary Banach space between LP(R") and WP (R"), endowed with the natural norm

1
) |u(x) — u(y)l »
”u”Wﬁ,p(Rn) = (L;n |u|pdx + fﬂ - dedy . (112)
where the term 1
) |u(x) — u(y)|P »
[u]Wﬁyp(Rn) = (f,, . dedy (113)

is the so-called Gagliardo (semi) norm of u.

However, there is another case for B € (1,00) and 8 is not an integer. In this case, we write
B =m+m', where m is an integer and m’ € (0, 1). The space WPP(R") consists of those equivalence
classes of functions u € W™P(R") whose distributional derivatives D%u, with || = m, belong to
W -P(R™), namely

WAP(RY) = {u e W"P(R"Y) : D% e W"PR") for any a s.t. |o| = m},
and this is a Banach space with respect to the norm

lellsoery 2= [l + D 1Dl n | - (1.14)

lal=m

Clearly, if B = m is an integer, the space WBP(R") coincides with the Sobolev space W™P(R™).
Note that for any B > 0, the space C°(R") of smooth functions with compact support is dense
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in WBP(R™), and Wg’p (R™) = WBP(R™), where Wg’p (R") denotes the closure of C7(R") in the space
WAPR™).

In particular, for B € (0, 1) and p = 2, the fractional Sobolev spaces WP (R") and Wg’Z(R”) turn
out to be Hilbert spaces, which are usually labeled by WA2(R") = HP(R") and Wg’z(R”) = Hg (R™).
That is,
|u(x) — u(y)|

HPR") := {u e >R : _
lx —y|2*F

e L*(R" x R”)}, (1.15)

i.e., an intermediary Hilbert space between L*(R™) and H'(R™), endowed with the natural norm

1
— 2 lu(x) — u(y)? :
||M||Hﬁ(R}l) = (jl;n |I/l| dx+ fn o WdXdy . (116)
where the term 1
Ju(x) — u(y)P? ?
[u]HB(R”) = (f,, f,, decly (117)

is the so-called seminorm of u.
There is an alternative definition of the space H?(R") via the Fourier transform. For any real
B = 0, we may define

HP(R") := {u e LA(R"): f (1+ 1£%)IF u@)PPde < oo}. (1.18)
Rﬂ
In the same manner, for B < 0 there is an analogous definition for HP(R"):
HPR") := {u e (R : f (1+ |§|2)B |Fu(@)dé < oo}. (1.19)
Rﬂ

On the other hand, let B € (0,1) and let (-AY : . — L*(R") be the fractional Laplacian operator
defined by (L.6). Then
(1) For any u € %,
(-AYu=F P (Fu)|. véer" (1.20)

(2) The fractional Sobolev space HP(R") defined in (T.13) coincides with HP(R") defined in
(TIR). In particular, for any u € HP(R")

wmwfnawwi&m%ﬁ@W%, (1.21)

where C(n, B) is defined by (1.7).

(3) For u € H3(R"), )
(1.22)

2 _ 1|, a\E
[y = 268 |-,
where C(n,B) is defined by (1.7). O

Recently, a great attention has been paid to the study of nonlocal problems driven by fractional
Laplacian type operators in the literature. Partially it is because of the fact that fractional Laplacian
(=AY as a spatial integro-differential operator can be used to describe the spatial nonlocality and
power law behaviors in various science and engineering problems. For example, it has been utilized
to model energy dissipation of acoustic propagation in human tissue [7]], turbulence diffusion [9],
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contaminant transport in ground water [44], non-local heat conduction [4, 12} 41]], and electromag-
netic fields on fractals [49].

For the system (1.3), the non-uniform decay and algebraic decay of solutions were considered in
[3]. Concerning the convergence of solutions of (I.3) to that of the imcompressible Navier-Stokes
equations (T.4)), in [19] 22] it is shown that solutions of (I.3)) approach to solutions of (I.4)) weakly
when the filter parameter @ tends to zero. In a work of Bjorland and Schonbek [3]], the conver-
gence in strong norms are proved provided solutions of (I.4)) are sufficiently regular. In a follow
up work [2], Bjorland investigated further the relationship between solutions of the Navier-Stokes
equations (I.4) and the Camassa-Holm equations (I.3)) by computing the first and second order de-
cay asymptotics for solutions with small initial data. Decay ratess for solutions of (I.4) have been
studied by various authors earlier, see e.g., [0} (19} 22| 47, [48]. The asymptotic behavior of the 2-D
vorticity equation for (T.4) has been investigated in [6, (19, 22]. For examples, in [6], Carpio stud-
ied the asymptotic behavior for the vorticity equation for (I.4)) in two and three space dimensions;
Gallay and Wayne in [19] calculated the asymptotics by applying invariant manifold technique to
the semiflow governing the vorticity equation for (I.4). The large time behavior of the vorticity of
two-dimensional viscous flow for (T.4)) was established by Giga and Kambe in [22].

In contrast to those works on the Camassa-Holm equations (L.3)), less has been known when
equations contain nonlocal spatial fractional viscosity despite non-standard diffusions are very nat-
ural also for these problems. The Camassa-Holm equations with fractional Laplacian viscosity (I.1))
is technically more challenging due to the vector integral expressions and nonlocal property.

The aim of this paper is twofold. We first want to establish the large time behavior and the
non-uniform decay and algebraic decay of solutions to the nonlocal Camassa-Holm equations (I.1).
Our second goal is to show the connections betweem the nonlocal equations under study and the
incompressible Navier-Stokes equations with fractional Laplacian viscosity:

vi+v-Vv+Vp = —v(-APv,
(1.23)

divv =0.

To achieve these results, we have to use some basic properties of the fractional Laplacian as for-
mulated in [5} [11]]. In particular, we need a fractional Leibniz chain rule and fractional Gagliardo-
Nirenberg-Sobolev type estimates. To establish the large time behavior with non-uniform decays
and algebraic decays of solutions to the nonlocal equations, we use the so-called high and low
frequency splitting method” introduced in [40] and the Fourier splitting method as in [30, 31]. In
the critical case s = E, we showed a nonlocal version of Ladyzhenskaya’s inequality; with the s-

mallness of initial data in Sobolev spaces we can show the desired global estimates. In addition,
by sharp estimates on the fractional heat kernels [13]] and on the Leray projector, we can prove the
convergence of solutions of the nonlocal equations (1)) to that of imcompressible viscous nonlocal
Navier-Stokes equations (1.23)) strongly as the filter parameter @ — 0.

A couple remarks on the nonlocal Camassa-Holm equations (I.1)) are in order.

Remark 1.3. Problems involving a fractional power of Laplacian have been appeared in many s-
tudies, see for examples [[1, |5, 14}, [15,[29] 38}, [39} 50]. When the spatial dimension is one, in [25] the
followings are proved:

o Global well-posedness and blow-up of solutions to the Camassa-Holm equations with frac-
tional dissipation under the supercritical case: y € [%, 1).

e The zero filter limit of the Camassa-Holm equation with fractional dissipation, as well as the
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possible blow-up of solutions in the sub-critical cases: 0 <y < % Here we study the related issues
in both two and three dimensions.

Remark 1.4. As it is well-known for the Navier-Stokes equations, the scalling invariants played a
crucial role. Adding a filter to a Camassa-Holm equation with a fractional viscousity does introduce
a smoothing effect on the solution. But the filter-equations do not scale well with the original
dynamical equations, and the resulting nonlinear terms do have a dependence on the scalings. The
latter complicates the matter substantially and results in various difficulties in analysis.

The following notations will be used thoughout this paper.
Notations
Z(R") denotes the Schwartz calss. The i component of v - Vu’ is denoted by (V . VuT)l_ =

n
2. vjOiuj. Let (u,v) = f u-vdxand X = {¢ eCyRNV-¢ = 0} . LS(R”) denotes the closure of
j=1

Cy’(R™) in the space LP(R") and Hj'(R") the completion of Ci°(R") in the norm ||-||ggn(zr). We denote
by LP(R") the standard Lebesgue space, and LZ.(R") the completion of ¥ in the norm || - || rr®ny. The
completion of £ under the D (Aﬁ) (R™)-norm is denoted by D, (Aﬂ ) (R™) and (Z)(, (AB ))’ (R™) is its
dual space. The completion of X under the H”(R")-norm will be denoted by H}(R") and (H}(R"))’
be the corresponding dual space. 7 (¢) or ¢ denotes the Fourier transform of a function ¢, with
F~1(¢) or ¢ the inverse Fourier transform. For a < b, we mean that there is a uniform constant C,
which may be different on different lines, such thata < Cb. For 8 = 1, D(-A) = H ZRMH N Hé R™
and D(A)R"?) = I-'Ié (R™). Generally, the letter C will denote a generic constant. O

The rest of the paper is organized as follows: in Section 2 we collect some preliminaries. In
Section 3 the non-uniform decay is established. Subsequently, in Section 4 we show the algebraic
decay. In the last section (Section 5), we prove the convergence from the solution of (I.1)-(T.2) to
the imcompressible Navier-Stokes equations with nonlocal viscosity (1.23).

2 Preliminaries

In this section, we collect several preliminary results.

Lemma 2.1. Let u and v be smooth divergence free functions with compact support. Then one has

u~VV+ZvjVuj= —ux (VxV)+V(v-u),
=1
(ua-Vv,u) + <V-VuT,u> =0,

ax(Vxv),u)=0.
Proof. By direct calculation, it is easy to achieve these expected identities. O

Lemma 2.2. Forn = 2,3 and 0 < 8 < 1, let u and v be smooth divergence free functions with
compact supports. Then if (v,u) solves (I.I)-(I.2) , there holds

|

(<u, w) + aX(Vu, Vu)) + v((Aﬁu, Aﬁu) +a? (VAﬁu, VAﬁu)) =0, 2.1)

| =
U

t
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and

G, DIz + @ NVUC DI g

! !
+2vf ”Aﬁu(.,l)”iz(Rn) dt + 2vg2f ||VAﬁu(.,t)“iz(Rn) dt (2.2)
0 0

2
12 (R")

2

2
ta ”VuOHLZ(Rn)'

< luol|

Proof. Thanks to div v = div u = 0, making inner product with u on the both sides in the first
equation in (L.T)) gives

(vy,u) + <u -Vv+v-val, u> +(Vp,u) + v<(—A)ﬂv, u> =0.
Note that Lemma 2.1} one deduces by integrating by parts
(v, u) + V<(—A)ﬁV, u> ={(v,u) + v(Aﬁv, Aﬁu> =0.
This together with the second equation in (I.T]) concludes that
<u, — azAu,, u> +v <(—A)ﬁ(u - a/ZAu), u>
= %dit ((u, u) + aQ<Vu, Vu}) +v (<Aﬁu, Aﬁu> +a? <VAﬁu, VAﬁu>)
=0.

This is the equality (2.1)). (2.2) follows by integrating both sides of (2.1]) with respect to ¢. o

Before going further, we introduce the following notion of weak solutions to the Camassa-Holm
equations with fractional Laplacian viscosity (I.I)-(I.2) in R" (n = 2, 3).

Definition 2.3. Let § < 8 < 1 with n = 2,3. A weak solution to (L1)-(1.2)) is a pair of functions
(v,u) such that

v e L= ([0, T; LZ(®™M) N L* ([0, T]; HH(R")),
ovel?([0,T];8),

u e L™ ([0, 7]; HZ®R") N L2 ([0, T]: Hy P(®™))
v(0, x) = vo(x).

Here, B = H’g.(R"). In addition, for every ¢ € L? ([O, T]; H(I,(R")) with ¢(T) = 0, there holds

T T T T
- f v,0,0) ds + f (u-Vv,¢)ds + f (¢-Vu,v)ds +v f (APv, NPg)ds
0 0 0 0

= (v0, ¢(0)).
In particular, for t € [0, T] there holds

(u, @) + @* (Vu, Vo) = (v, §). O
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Let .(R") be the Schwartz class. The nonlocal operator (-A) is defined for any g € S (R")
through the Fourier transform: if (~A)’g = h, then

hE) = Ege). (D-1)

It should be pointed out that if ¥ and ¢ belong to the Schwartz class . (R"), (D-1) together with
Plancherel’s theorem yields

f (~AYydx = f P ygde = f (-A)TY(—A)? gdx.
R~ R~ R»

Thanks to Theorem 3.1 and Theorem 4.1 in [20] (see also [21]]), using the energy method and a
bootstrap argument, we obtain the following proposition concerning the existence, uniqueness and
regularity of a weak solution to (I.T)-(T.2):

Proposition 2.4. Let § < B < 1 with n = 2,3. Assume that

(])forg <B <1, voe HYR"), M >0,
and n
(2) for B = T Vo € Hé‘,” R™), M > 0, and in addition, there exists an €* = £*(«a, v, n) sufficiently

small such that ”V()“H(/]\/I(Rn) <&

Then there exists a unique weak solution to (LI)-(1.2)) in the sense of Definition In addition,
this solution satisfies the energy estimate (2.2), and for all m + 2k3 < M there holds

T
1059V g, + v fo 10597 APV g d < C (1. 5. v, INolL ) 2.3)

where A = Héw (R™), m and k are both non-negative integers. O

By applying the Gagliardon-Nirenberg-Sobolev inequality to the bound (2.3)) in Proposition 2.4}
we achieve a corollary which describes the action of the filter.

Corollary 2.5. For j < g < 1 with n = 2,3, let (v,u) be the solution to the Cauchy problem
(TI)-(T:2) constructed in Proposition [2.4] Then the following estimates hold for all m + 2k8 < M:

R e L R e Y | FARCR)
R R L O N % Y A L A )
t
10590 1 ) + fo 16597 APu 5, ds < € (.o cv, v, m, ke IOl ) (2.6)
Here, m and k are both non-negative integers.
]

We then claim a lemma concerning the Helmholtz equation u — o*Au = v.
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Lemma 2.6. Letn =2,3and 7 < < 1. Givenv € wPP(R™) with 1 < p < oo, there exists a weak
solution u € W2P(R") to the Helmholtz equation u — o>Au = v such that the following estimates
hold:

[allzreey < 1VIzrn),

Cn,p,q)
llallzarmy < T”VHU’(R”),

C(n,p,q)
a1+2‘yz

Cn,p,q)
a2+2vsB

IVullzarn) < \217%: 0%

1AW oger) < 1Ay

“LI’(]R”) ’

where w*?(R") is defined by Definition [1.2} y1 = 4(1-1) < 1, 3o = 4(1-1) < §, v =
n(l

5 (— - —) £ In particular, there holds that for 0 < a < 1:
P4

C(n, p,q)
1+y
C(n, p,q)

(IVual|La@n) < _—||V||Lp(Rn),

>

lallzarry < ¥l 2y,

lAQ||Logny < M” Py ”Lp(Rn .
a'

In addition, if n (% - 1) < 3, then the solution is unique.

Proof. Note that 1 — @A is a strictly positive, compact and self-adjoint operator, using standard
elliptic theory and making suitable scaling on spatial variables, Sobolev embedding theorem and
interpolation inequalities deduce the expected estimates. O

Lemma 2.7. For ; <g < 1,n=2,3, let
E(t) € C' ([0, 0)), y € C' ([0, 00),C' N L*RM), ¢ € C' ([0,00), LYR")).

Solutions of (T.I)-(T.2) constructed in Proposition [2.4] admit the following genearlized energy in-
equalities:

E@) l(0) % VO 2z,
!
= E(5) W(5) * V2, + f E'@) () * YOI} 2y 47
+2 f E(@) (0/(2) # ¥(0), () 5 () dt
' ) (2.7)
—2v f E@) |APy() = v(D)|| 2 47
!
—2f E(@)u- Vv, (1) = (1) * V(1)) dT

3
-2 f E@) (v Vul ,y(0) « y(7) + v(0)) dr,
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and

E) [# @82,
= EO OO+ [ EO IO

+2 f E@) ( (0)¥(1), §(1)%(1)) d
” I 2.8)
-2y f E@ ||Eu@v@)| o AT

-2 f E@ (Fu- VWi (%) dr

-2 f E@ (F(v- Va ) (0)¥()) .

Proof. Multiplying the first equation in (I.I)) by E(#)y = ¢ * v and integrating in space variable
x yields, after some integration by parts,

n

atV'E(l‘)l,l/*l,//*de+f u-Vv-E@tW = * vdx

Rn

+f v-VuT-E(t)¢*w*vdx+f Vp - EW = * vdx 2.9)
n R)l
+vf (-APv - E@®y =y« vdx = 0.
RYI
Rearranging (2.9) gives rise to
d
— (EO W@ VOl )
= E'(t) lly(1) * V(t)lliz(Rn) +2E(1) f (W' @) = v) (W (1) * V(1)) dx
R (2.10)
—2vE(f) f |APy() = v(:)|2 dx — 2E(7) f u - Vvg(t) = y(f) = v(n)dx
R}'l Rn
—2E(t) f v - Vul () = y(t) = v(t)dx.
Rﬂ

Integrating (2.10) over (s, ) concludes (2.7)). To attain (2.8)), note that div v = 0, making the Fourier
transform on the both sides of the first equation in (I.T)) with respect to the space variable x, then
multiplying the resulting equation by E(1)y?(£)¥(t), one can deduce (2.8). o

Lemma 2.8 ([23] 24] 28]). Let A = (—A)g be the standard Riesz potential of order 8 € R, 8 > 0,
1 < p, p1, P2, P3, Pa < oo, and % =L 4L - L, L Then the following bilinear estimate holds

pr o p2 T ps o ops
forall f,g € S (R"):

[N gy < CIAE o oy N8lEr2ny + CULAlr R

Ng HLM(R”) : =

Lemma 2.9 ([18]]). Let A? = (—A)g be the standard Riesz potential of order 8 € R, 81,5, € [0, 1],
B = P14+ B2, and p, p1, p2 € (1,00) such that 1—17 = ﬁ + i. Then the following bilinear estimate

holds for all f, g € S (R") withn > 1:

1A°(F9) = 1N = AP |y < C AP s e

Aﬁzg”va(Rn) : O
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We now give a nonlocal Sobolev type imbedding result.
Lemma 2.10. Let 0 < 8 < 1 and n = 2, 3. Then the inclusion Hg(R") — L2(R") is compact.

Proof. It is easy to check it by using standard functional analysis method (see also [42]). O

Lemma 2.11. For § < < 1 withn=2,3,letA = 5 + 1 — 2. Direct calculation gives

~2 2-1 1 28-1 1 A

O Bx1-8"2"%< pot 1261 1 4

2n n n n 2 n
g—1<A<1<g<2f0rn:3,
g—1<A<1=g<2f0rn=2.

a1 DuetozﬁL_1 = %,for% <B < lwithn:3,andg < B < 1 with n = 2, we have the

following fractional Sobolev-type continuous imbedding between Hﬁ(R”) and L% R™):
HAR") — LFBT(R"). O

The following Lemma concerns the nonlocal version of the known estimates given in Ladyzhenskaya-
Shkoller-Seregin [32} 33} 34, [35]].

Lemma 2.12. Forn = 2,3 and u(x) € H& R, Y & > 0, the following estimates hold:

ellF gy < ENVUIT 2 gy + & Ml oy forn =2, (E-1)
-1 5 -1
el gy < 373 V28IVl gy + V2037 8) Sl forn = 3. (E-2)

The above inequalities (E-1) and (E-2) can be generalized to the following nonlocal version (frac-
tional power Sobolev-type) estimates.

Q For Z <B<landuce H’g R™), the following estimates hold:

2 _
el gy < €[NP ul| oy + & Nty Sorn =2, (E-3)
Nl < CBE | NPU|[ s s + C@NMlP s forn =3 (E - 4)
L4(R”) — LZ(R”) LZ(R”) _

Here,ls, C(B) and C(g) are constants;, C(B) depends only on spatial dimensions and 3, and C(g) =
O(e73).
Q For the critical case s = Z and u € Hg (R™), the following estimates hold.:

n 2
10y < Co (Il + o)) o= 2.3, (E-5)

Here, C,, is a constant depending only on space dimensions n. O



12 Z.H. GaN, Y. HE & L. H. MencG

3 Non-Uniform Decay

In this section we consider the non-uniform decay of the Cauchy problem for the Camassa-Holm
equations (T.T)-(T-2) in R” if the initial data is assumed only in L?(R"). In particular, if vo € H} (R")
for Z < B < 1, then one deduces that the L?>-norm of the solution to (T.1)-(T.2)) decays to zero as

time ¢ tends to infinity. Unfortunately, we can’t determine the decay rate without more information
on the initial data. We now formulate the non-uniform decay result as follows.

Theorem 3.1. For ; < B < 1,n = 2,3, let v be the solution to the Cauchy problem (I.I)-(I.2)
constructed in Proposition[2.4] Then

(@) Ifvg € HL(R"), then Tim [1v(®)ll 2z = 03
1 f
an Ifvge H},(R”)’ then t]im " f ||V(T)||L2(R")d7' =0;
—00 O

) Ifvye H},(R”) for g <B<1l,andif vg € H},(R”) for B = g with [|voll;2gn) < & for an
& = £*(a, v, n) sufficiently small, then there exists no function G(z, s) : R* x R* — R* admitting
the following two properties simultaneously:

(1) IVOllz2@n < G (¢ IVoll2n) ) - and (2) for all s, lim Gz, 5) = 0.

Proof. We shall follow the idea introduced in [40} 43]]. The idea is to split the energy into low
and high frequency parts firsty used in [40]], to use a cut-off function and the generalized energy
inequalities, and then to show that both the high and low frequency terms approach zero.

We first show (I).

Due to |[V()ll2wny = [¥(Dllr2rny, it suffices to show that lim [[V(?)|| 2z = 0. Splitting the
—00
energy into low and high frequency parts gives rise to

VIl 2Ry < NVl 220y + (1 = IVl 2 () (3.1

—vigPP

where ¢ = e . In the following, we shall divide the proof into two steps.

Step 1.  Estimate the low frequency part of the energy |[V||,2gn).

Fix ¢ temporarily, then make the choice of E = 1 and y/(7) = ¥ ! [e“"f |2ﬁ(f+1‘7)] in (2.7). Note
that ¥ and F () are rapidly decreasing functions for T < ¢ + 1, the relation ¢’ () = v|¢|2y assures
that the third and fourth terms on the right hand side of (2.7)) add to zero. By Plancherel’s theorem,
it follows from and ¢ = e = j(¢) that

2

N —yEPB(t— N
IO gy < e pi05)

t
N

L2(Rn
=) (3.2)

<J>2 s (u Vv+v. VuT) , e_zv(_A)ﬁ('_T)V(T )>’ dr.
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Due to Lemma 2.7, by the aid of Hélder’s inequality, Young’s inequality and Gagliardo-Nirenberg-
Sobolev inequality, we have for Z <p<l

|<g52 su-Vy, e 2 ("T)V(T)>|

—20(—=AYP(1-7) V(T)

< ”52 us VV“H(R") e

< [|67 # 0| ey IV VIl 2y IVl 22 (3.3)
< [0, 25 g 10, 255 ) 19V IV

< C(P) IVl 2y ||A'8“||L2(Rn) IVVllz2 e -

L2(R™)

In the same manner, one deduces
|<$2 xv-Vul, e‘z"(‘A)ﬁ(t‘T)v(T)>|

< COIIVII2@ny

(3.4)

N[ 19Vl 2 ey

Thanks to the triangle inequality, Holder’s inequality, Proposition [2.4] (2.2)) and (3:2)), one achieves

A —&128
9O ey < [l 2505

L2(R")
! ; L 3.5)
+2C(@)C (IVoll 2 ( f AU, dr) ( f ||VV||22(Rn)dr) .
Since
e (1-s) _
hm H ¥(s ) L2(R") ’
letting ¢t — oo gives rise to
hnl)i:)lp ||¢V(t)”L2(R"
1 1
< C(¢) (”VOIILZ(R")) (‘fs\ ||A u”LZ(Rn) dT) (f; ”VV“LZ(Rn) ) .
Recall Proposition for vg € HJ,(R”) with % < B < 1, there holds
T
VI gy + fo IAPYI gyt < C (1, B, @, v, Vol )
T (3.6)
VI gy + ¥ fo IV APV o gydt < C (1, B, @, v, Vol ) -
Here, A; = L§(R"), and Ay = Hy(R").
By interpolation inequality and Young’s inequality, we have
2-2
IVVIG 2 gyt < IAPYIS L IVASVIESE (3.6-a)

Hence, note that Holder’s inequality and Cauchy-Schwartz inequality, (3.6) yields that

f VYR g < ( f APV, g, dt) ( f ||VAﬁv||zzﬁRn)dt) . (3.6 — b)



14 Z.H. GaN, Y. HE & L. H. MencG

. : o 2 .
This together with (2.2) and (2.3)) implies that ||Aﬁu|| 2 and ||VV||i2 @) A€ both integrable on the

positive real line. Letting s — oo then gives

Lim sup |9 (0|7 gy = 0. 3.7

t—o0

Step 2 We now estimate the high-frequency part of the energy |[v(1)l|2(gn)-

Puty = 1-e"¥” =1 - ¢ in @B). Let Bo(r) = {£ : 1] < G(1)}, where G(1) will be determined
later. Note that (u - Vv, v) = 0, replacing ¢ by 1 — ? in the fourth term on the right hand side of

(2.8) yields

EQ) 08O 2 ,

< E) [F9)][2my + f E'(7) fB ()IJ(T)V(T)IZdé’dT
!
, ~ A 2
+ f (E'(0) - 2vE(G# (1) fB " (@) dédr 3.8)
t
+2f E(T)‘(T(U'VV+V'VUT),(1 —ZZ(T))‘A’(T)»dT

+2 f t E(7) |(¢ (v-vu’), V(T)>| dr.

Since

w0 =7 [, g = e = ),
U=1-¢, §a)=F |1 - ee¥e1-0]

F(@)=1-y>and ¢ = 1 - are rapidly decreasing functions, applying Holder’s inequality, the
Plancherel’s Theorem, Young’s inequality and Gagliardo-Nirenberg-Sobolev inequality, we obtain

’(7—' (u Vv+v- VuT) , (1 - Jz(T)) V(T)>‘
(0 -Peolr v
<|t- ZZ(T)HLz(Rn) V(D2

(17 @ Py + 7 (v v (3.9)

LOO(R)I))
< C(#) (110 % 9l oquny + 19 5 80l oogrn)) IVl 2y
< COIVH 2y (18 % E91| vy + 19 * £l o))

< C(¢)||V||L2(Rn) (||u||L2(R")”VV||L2(R") + ||V||L2(R")”Vu||L2(R”))'
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In the same manner, using interpolation inequality one concludes

K(F (v- VuT),ff(‘r)>’ <|v- VllTHLz(Rn INIFRT

IIV IILﬁ(Rn 1Vl 22y
SC”Aﬁu”LZ(Rn) 38 V2 ey (3.10)
SC”Aﬁu”B(Rn) Aﬁu”i/j(_él) APVu ”z;(;vZﬁHVHy(R"

<C ||Aﬁv||iZ(Rn) VIl 2Ry

k
Choosing E(f) = (1 + ¥, and G?(r) = m in (3.8) such that E’ — 2vEG* = 0, then taking
%

k > O sufficiently large yields
IC1 = VO g

S+ 9t A
< T - AN(O)] 7

k(1 + 1)k ! o
. f e fB 0= o dede

"1+ T)k
s (L+0fF

HIVll2 @IVl 2@y + ||Aﬁ"||22(w>)dt

+ClIvoll 2 - (Il 2y 19 W1 2

For ¢ € B(t) and ¢ sufficiently large, there holds that va =|1-¢| < vlflzﬂ. In particular, |1 — (/)I2 <
k2

m. Thus the second term on the right hand side of the above inequality is bounded as follows:

t k3 1 -3
f Fa+o~ f W(DPdédr
s 4 Bo(7)

K 3
Sf i“ (T)”LZ(R”

K 2 ' -3
< Z”VOlle(R’l)v[(l +T) dT
3
< = IVollZs g (1 + )72
8 L*(R™)

Letting t — oo gives rise to

lim sup (1 = PV, 5,

—00
K 2 2
< g Vol gy (1 + 9)7 (3.11)

e 2
+C||vO||Lz<Rn>( f 1990+ [ AP + f V012, g )
S S S
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Recall Proposition for vo € HL(R") with Z < B < 1, there holds

T
2
||v||§2(R,7) + Vfo ||A/3v||L2(R,,) dr<C (n,,B, a,v, ||vo||H3(Rn)). (3.12)
Thanks to (2.2)), and (3.12)), by interpolation inequality, one deduces that ”ABV“i2 ®")’ ||VV||i2 -
and ||Vu||i2 (& T€ all integrable on the real line. Letting s — oo gives

lim sup [[(1 = $¥(DI72z, = 0.

—o0

By the aid of the Plancherel’s theorem, combining this with (3.1) and (3.7) finishes the proof of (I).
We next show (II).

According to (I), given an € > 0 we can choose s large enough such that ||v||;2gn) < & for 7> 5.
Thus there holds

1 !
! f T
t Jo

1 s 1 d
: f IVt + 7 f VOl2nd 3.13)
0 s

IA

1 [ t—s
- f ||V(T)||L2(R”)dT +E&E—.
t Jo t

Since € can be chosen arbitrarily, letting t — oo finishes the proof of (II).
We are now in the position to show (III).

Let ug(x) be any smooth function with compact support, and ugj(x) = s%uo(sx). In addition, let
vé = u¢ — @?Aug and v¢ be the solution of (T-I)-(T:2) given by Proposition corresponding to the
initial data vg. For any € > 0, a straightforward computation shows that

o5l 2z, = M00ll2enys ([ 05| 2y = 8" IV OOl 2y (3.14)
”VSHiZ(Rn) = ““SHEZ(R") +a’ HVUEHEZ(R@ +a' “A“g“im&n)
(3.15)
= 01172 gy + @& V0I5 + @& 1AWOI o 5
and
“VV8||i2(R") = ”VUSHEZ(R”) + 207 ”V2“8“i2a&") +at ”VAUEH;(R") (3.16)
= & |V2u|, T 2078 1AU0I ) + @& VAU -

It follows from (3.13)), (3.16) and Corollarythat there exists a constant C = C (lluollil3 (R")) such
that for all € > 0,
Vel e < Co [I9¥E ] sy < CE 3.17
VO LZ(R”) = V() LZ(R”) sLég. ( . )

We then claim 4
it (I, + 0 [0 ) 2~ (.18)
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which is equivalent to

01 gy + @ IVOE]

L2(R") L2(R")
2 2
2 ey + 07 190G e, — € 1o
= 0172 gy + @€ VU0l ,) — CEP1
> |jugll?,,..,. — C2t.

12 (R")

Thanks to (3.18) and (3.19), we conclude that there is not a function G(t, s) continuous and ap-
proaching zero in ¢ for each fixed s, such that

VIl 2y < G (5 I0ll 2z - (3.20)

Otherwise, if there were such a function, then at some ¢ it would admit the bound
1
G (10- Inollz2ze) < 5 Ioll2qey. (3.21)

2
||u0||L2(R")

, one deduces that
4C to

Choosing ¢ sufficiently small in (3.19), in particular, % <

G (10, 0117 2 gy ) = V172 ) = ||uo||L2(Rn)

This is contradictory to (3.21).
Once we have shown (3.18)) or (3.19), the proof of (III) will be finished. The proof of (3.18)
will be given in Appendix A.

4 Algebraic Decay

Motivated by these works concerning the algebraic decay of the imcompressible Navier-Stokes
equations [27, 37], in this section we shall establish the algebraic decay estimate for the solutions
of the Cauchy problem (L.I)-(I.2). From Section 3, we have known that there is no uniform rate

of decay for solutions with data exclusively in H(IT(R”) for g < B < 1. However, we claim here
that there is a uniform rate of decay depending on H}T(R") and L'(R") norms of the initial data for
Z < B < 1. We first in this section establish the decay rate for the filtered velocity u by applying

the Fourier splitting argument introduced in [30, 31] to the natural energy relation (2.2). This decay
rate is then applied with an inductive argument to achieve deacy rates for the unfiltered velocity v
and all of its derivatives. It should be pointed out that the Fourier splitting method was originally
applied to parabolic conservation laws in [45]], and later to Navier-Stokes equations in [46].

The algebraic decay result is the following.

Theorem 4.1. For n < B < 1,n=2,3, let v be the solution of the Camassa-Holm equations with
fractional Laplacian viscosity (I.1)-(I.2) constructed in Proposition[2.4] Then we have

D) Ifvy e H ®R"NLY(RY) for <B<1,and vy € H.R")NL'(R") forB = - w1th an additional
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assumption that there exists an €* = £*(a, v, n) sufficiently small such that ||vy|| HY (R < &%, then the
solution satisfies the “energy” decay rate

f veudy = [l g, + @IV, g, < OO+ 1) 5,

(II)  Under the condition of (I), the solution satisfies the decay rate

IVv])? <C(l+1n el

2Ry =

(IIT)  Under the condition of (I), then

d-1)  FWI<C [Fwl<C,

(-2) VI, g, <C(1+1)%.

(IV)  Let [[V"wollf2@gn) < co. Given an energy inequality of the form

B dt ”Vm ”Lz(R") + vHAﬂV’"w”iz(Rﬂ) <C( +1y, 4.1

and the bound [W(¢&, #)| < C(1 + )7 which holds for Iflzﬁ < we then achieve

v(1+z) ’

972y < € [(1 407 F 524 (14 091]. 4.2)

R =

(V) Letvyge H.(R"NL'(R". For P> 1,ifforall p< Pandm =0, 1,

079" ey < €155,

then for |£]% < there holds

= v(1+t)’

lorv@)| <ca+n".

(VD) Ifvy € HKX®RMHNL'(RY) for = pr <B < 1,and vg € HX@®R")NL'(R") for § = g with an addition-

al assumption that there exists an €™ = £"*(, v, n) sufficiently small such that ||v|| HE (R < &, then

(VI-1) For all m < K, the solution satisfies the following decay

V" 2y < €L+ 07575

(VI-2) For all m + 2pB < K, the solution satisfies the decay estimate

2 Qp_m_n
0797 |[ 2y < CCL+ 2P 7575
Here, m, p and P are all non-negative integers in (IV), (V) and (VI), the constant C in (I)-(VI)
depends only on the initial data, the dimension of space, and the constants in (I.1)), which may be

different on different lines.

We shall apply the Fourier splitting method and the bootstrap argument to show Theorem
Before going further, we first establish an estimate on [[V]|zo(gn).
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Lemma 4.2. Let v be the solution of (I.I)-(I.2) constructed in Proposition [2.4] corresponding to

vo € (L2 N L") (R"). Then
t L )
1+( fo ||u(s)||iz(R,,)ds) ( fo ||Vv<s)||§2(Rn)ds) |

Here, C depends only on the initial data, the dimension of space and the constants in (1.1), but not
on a.

IFVI<C (4.3)

Proof. Note that

n n n
D V) = wiVvi+ Y viVuy =u- Vv +v- V', (4.4)
i=1 i=1 i=1

taking the Fourier transform with respect to x for the first equation in (1.1) yields

V=-F(w-Vv-u-W)-F lv [Z wv; + p] — VIEPES.
i=1
A straightforward computation shows that
P s
FW =+ [ Iy gas 45)
0

where .
;l/(f,t):—{;“T(p+Zu,-v,-)—?‘(u-Vv—u-VvT). (4.6)

i=1

We first deal with the term y/(&, 1).
Thanks to [|7 ()l g < ll¢llL1rsy and Young’s inequality, one deduces that

|¢(u . VV)l < ||u . VVHLl(R”) < C”ul|L2(Rn)||VV||L2(Rn). (47)
In the same manner, one achieves
7 (0 93| < Il 2 19V 2 4.8)

On the other hand, taking the divergence for both sides of the first equation in (I.1]) leads to

n

—A [p + Z uivi) = div(u- Vv —u- Wv'). (4.9)
i=1

Combining ({@.6) with @.7), (#.8)) and (4.9) yields that
(&, DI < Cllall 2@ VY2 @

Taking the supremum over ¢ for (4.4) and applying Cauchy-Schwarz inequality, one obtains

, L )
|¢(v>|s|¢<vo)|+C( fo ||u<s)||i2(Rn)ds) ( fo ||Vv<s)||§2(Rn)ds) |

In view of || (Vo)ll =®n) < |IVollL1gn). the above inequality deduces the desired estimate (.3). O
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In the following, we start the proof of Theorem {.1]
Proof of Theorem 4.1
We first show (I).

Note that the assumption of (I), by Proposition [2.4] one obtains

t
2
fo VAPV 2z ds < C,

t
j; APV 2y ds < €

which imply by interpolation inequality that

and

!
LﬂWWMQMMSC

where C depends only on n, 8, @, v and ||vg|| HY &) Lemmathen gives rise to

1 1
t 3 t 3
1+(£nmmﬁwﬂﬂ(lhwwm@wﬁﬁ

M <C
(4.10)
1 3
<C|l+ ( f ||u(s)||§2(Rn)ds)
0
Thanks to the Plancherel’s theorem, the energy equality (2.1) is equivalent to
2 28 2
r (1+a ¢*)a d§+2vf €17 (1 + o?I) 6%dé = 0.
2+ 1
Let B(p) be the ball of radius p with p% = m Put
E* =9 =(1+2)) 0% 4.11)
Then
= | E%*dé+2vp* f E%d¢ <0,
dt Rl‘l BC(p)
or d
Ezdg + 2vp% f E%d¢ < 2vp* f E%de. (4.12)
The equation u — @®>Au = v implies that & = ﬁ This together with (4.10) and {@.11) yields
a
that )
192y

1+]Wmmmw ]
!
1+LMMM@W¢4,

2
”E ”L""(R” = 1+a2|§|2 =
With this, (4.12)) then leads to

d

— | E%*d¢+2vp* f E%d¢ < 2vpPn
dt Rn Rn




LARGE TiME BEHAVIOR AND CONVERGENCE 21

which yields a differential inequality by using the integrating factor f = (1 + t)%Jrl

d e+ +n +
7 ((1 +1)5t! f E2d§) < 29?1 + t)Zﬂ ! [1 + f ||u(s)||L2(Rn ]

Integrating this differential inequality in time ¢ from O to r gives rise to

(1 + 3+ f EX(&, r\de

(2” +1 5+1 4.13)
< f EX¢,0)dé + ~2— f (1 + f ||u(s)|IL2 ®") )
R7 (2v)2ﬁ
By the Tonelli theorem, a simple calculation shows that
f (r = IS s
- rf ||u(s)||L2(R" f ”u(t)”LZ(R" dt|6 +f f ||u(t)”L2(R" dtds
> ISz sl
j(; f(; LX(RM)
Furthermore, it is a simple exercise to obtain the following estimate
r t ) r 3 5
[t [ s} < [ [ o, dsa
r
<r+ fo (r = IS 2 gy s
Dueto <p<1, @=L E2b d E2d if follows f
ue to 1 <p<l1, 6= +—2|§|2 < y @.11)) an ||u(s)||L2(Rn) < £, if follows from
@.13) that
1+ r)%+1 f E2(§, rdé<C(+r)+ Cf (r- s)f Ez(f, s)déds. 4.14)
R" 0 "
Letp(r) = (1 + r)%+1 f Ez(.f, r)dé. (4.14) has the following equivalent form:
Rﬂ
¢<C(l+r)+ cf d(s)(r — s)(1 + 5) % 'ds
0
The Gronwall inequality implies that
-
(1+r)s* f E2(&,r)dé < C(1 + rexp (cf (r—s)(1+ s)‘zﬁ“ds). (4.15)
R” 0

-
Thanks to the fact that g < 2n_ﬁ < 2 for ﬁ < B < 1and n = 2,3, the integral f (r—s(01 +
0

s)_ﬁ_lds is bounded independent of r. Applying the Plancherel’s theorem finishes the proof of (I).

We next prove (II).
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Recalling that Av is divergence free, thanks to the identity (4.4)) and Holder’s inequality, multi-

plying the first equation in (I.I)) by Av, we obtain

< (u- Vv, Av) + C(u . VVT,AV>

d
5 2 IV 4 [PV
(4.16)

A’BVV”LZ(R") .

S ”Al_ﬁ(“ : VV)”LZ(Rn)
There are two cases to consider for estimating the term HAI"B(u . VV)H L@
n
Case (I) 7 <B<lforn=23;

Case (I) S8 = Z forn = 2,3.

© We first deal with Case (I) n B < 1forn = 2,3. The following auxiliary computations

will be needed for Case (I).

n 2n 1 n-2 n-28 3
Z_ , == < <= for n =3,
B n-2m-2B3)/2 2 2 2 4

-2 -2 1
0="2 %0 for n =2, (.17)

-2
p=""%+ 2ﬁ+1—,6’—g+1—2ﬁ, g—1<B<1 for n=2,3.

A straightforward computation shows that
1-
A" VV)“U(R")
< HAl_ﬁ(u -Vv) - A'7Pu - Vv - llAl_'BVV||L2(R,,) (4.18)

+[|A"*u- VV“LZ(R”) + ”“Al_ﬁv"“LZ(R")‘

Note that interpolation inequality and Young’s inequality, in view of Lemma [2.9] Lemma [2.10]
and 0 < 1 — B < B < 1, the first term on the

1
L 2.11)and ,for - = — + ——
emma and (4.17), for >~ B + O
right hand side of (#.18) can be bounded as follows:
AP Vv) —uA VY = A Pavy|

i IVVIL 20
LF (R™) L7=28 (R")

< C”A2+1 2'8“”L2(Rn N VV“LZ(R" (4.19)

5+1-28
L2(R")

< C||A1‘ﬁu

< C||u|| [Vul| ||A VV||L2(R")

LZ(Rn
< C(|Iu||L2(R") + ||V“||L2(R”)) HA'BVV”LZ(R”)'

Here, we have used interpolation inequality in the last line. Due to Lemma[2.11] a similar estimate
to (4.19) holds for the second term on the right hand side of #.18)
1- 1-
Ay < ARl 1991,
(4.20)

<C (||11||L2(Rn) + ||V“||L2(R”)) ”A VV”LZ(]R"
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In a same manner, recall (4.17) again, we deduce the estimate for the third term on the right hand

side of @.18)
”“Al_ﬁvv”y(w

e T
2o IV 2 @21)

<C ”AA“”LZ ABVV“B(R'!)

®"
< C (Il 2y + 1Vl 2y [[AP VY]] 2y

where A = 7 + 1 - 28 is given by Lemma Note that (T) of this theorem, combining (4.16)) with
@.17),@.18), (4.19), (@.20) and (@.21)) yields that

||VV|| + 20 [ APVY 1oy < €A+ 075 [ APVY - (4.22)

12 (R”

© we next consider Case (II) 8 = g forn =2,3.

In this case, “Al_%(u . VV)“ 12(zmy €N be bounded as follows:

[ASICE VV)”LZ(Rn
< “Al 4(u - Vv) — Al-ia- Vv — uAl_%VV”Lz(R,,) (4.23)

AR IV gy + ATV

We first bound the first term on the right hand side of estimate (¢.23). By Lemma [2.9] one attains
that forO < By <1 -

n
r
[A-i(m- Vv) —uA!"iVy - Al-Hu- VV“LZ(R")

<C ||A1—?z’—ﬂlu||” R AVY||
A (g

2n
Ln—2(n/4—ﬁ]) R?
= (4.24)

< C|[Vull 2y [|[AT VY

|L2(R”)

< Ivollz2gny A% VV“LZ(R") ’

1 1
where we have used the fact that 8; € (O, E) , 1—%—/31 € (O, —) ,

1 1
= —+— with p1, ps € (1, ),
2 D2

1
5 2 p
n n

, = . Thanks to L. 2.1
n—2m/A+p) T i amia—pyy e o emma ’

. . . . . . n
inequality and the interpolation inequality, note that 0 < 1 — = 2(n 7Pt (2.4) and the

p1 = 2| Agmon’s inequality, Young’s

assumption of (II) for 5 = Z, the second and the third terms on the right hand side of (@.23)) enjoy
the similar estimates to (4.24):
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For n = 2, we have

”AI_%“ : VV”LZ(Rn) + “uAl_%VV”LZ(R")

< C[[A" 5|y g 19Vl 3¢ry + C 0l Al_%VV”LZ(R”)

nan . (4.25)
< C [ E 5 1T 9Y] 2 + ||u||H1(Rn ||u||H2(Rn AV 2y
< ||V||L(2)(Rn) A%VVHLZ(Rn)‘
For n = 3, we also achieve
”Al_%“ : VV“U(RH) + ”“Al_%VVHLZ(R")
< C [N 5|y g 19Vl sy + € hall, 2 A9V,
(4.25a)

< C|Vullp2gn ”A£VV||L2

+ ClIVull 2y AT VY] 2,

®")

S VIl ”AgVV“LZ(R") :

In the above estimates, we have used the fact that ||v|[;2gn) < C (||V0|| LZ(Rn)). Combining {#.16)) with

@13), @23), @24) and (.23) then yields that

||Vv||L2(R,, + STV < C+ 07 H[|ASVY - (4.26)

Therefore, from the above arguments of Case (I) and Case (II), for any 3 < 8 < 1 with n = 2,3,
choosing ¢ large enough such that C(1 + t)_ﬁ < v, one deduces from (4.22) and (4.26) that

||Vv|| o TV HAﬁVv||i2(Rn) <0. (4.27)

In the following, we continue our proof by applying the Fourier splitting method as used in the proof
of (I) of this theorem.

ﬁ+ﬁ+1

Let B(p) be the ball of radius p, where p? = ﬁ

follows from that

Thanks to the Plancherel’s theorem, it

2 n Vp v — Y
||§V||L @ t? | EPdE<0
B(p)

which gives rise to

d . o0 2B 1£0112 28+2 a2

TNy + V0™ N8I gy < 0P o I dé. (4.28)
On the other hand, we obtain by Lemma4.2]and (I) of this theorem

] + f (1 + S)_Eds f ”VV”Lz(R") :|

With this bound and (4.28)), we arrive at

fP*<cC

d .. N
AL DR P
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(oot [

Let K(t) = (1 + t)%“? o Taking K(¢) as an integrating factor, we then claim

<Cv p2/3+2+n

d
e (R E TP

1+(f(1+s) Zﬁds)(f VYR g )]

Thanks to the Tonelli theorem and the Plancherel’s theorem, we obtain by applying (I) of this theo-
rem again and integrating in time from O to r

<C

+141
(1 + ’/')2/j < ”VV”LZ(R"

<C+r)

(o . L1+ )BT
; f ( f (1+s)_2/fds)- V()R ds
0 \Jo 0 (14 s)2*s*!

The Gronwall inequality then implies that

(1 +nB E W, < C + e,

12 (Rn)

where

Note that the term A is bounded 1ndependent of r for n = 2,3, we then obtain

1

VY22 gy < CCL+ 1) 575

L2 (R")

This finishes the proof of (I).

We then prove (11I1-1).

Due to Lemma [2.10, Lemma [.2] with (I) and (II) of this theorem, we have [F(v)| < C. Note
that the Helmholtz equation u — @*Au = v, simple computation gives | (w)| < |F(v)| yields the
conclusion of (III-1).

We next show (I11-2).
From (I) of this theorem, we have shown that

”u”LZ(R”) + QZHV“”LZ(Rn) S C(l + t)_% (429)

Differentiating the Helmholtz equation u — @>Au = v and squaring the resulting equation yields,
after some integration by parts,

VU2, ) + 207 V201 + @ V0] = 19912

Combining this with (II) of this theorem gives rise to

||V2u||iz(Rn) <CA+1y %5 <C1+1)%.
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This together with (4.29) deduces
V172 oy < M0 gy + 207 VU, + @ AW, ) < CCL+ 1),

This ends the proof of (I1I-2).

In the following, we begin to show (IV).

We will adopt the Fourier splitting argument again. Let B(p) be the ball of radius p. Thanks to
the Plancherel’s theorem, breaking up the left hand side of the integral (4.1) deduces that

||§m ~

28 28+2m ~12 y
VP || EMW < Vp f [W|“dé + C(1 + t)”. (4.30)
2 dt ’LZ(]R ” “L2(R B)

Let p? = v(l 5 for some large b. Note that the assumption for the bound on W, making direct
calculation for the right hand side of {.30) gives

d R _m_ _n
d—t[(l + DIy | < C{A+ 07525 4 (1407 4.31)

Integrating both sides of (@.31)) with respect to time ¢, and then applying the plancherel’s theorem
once again, we arrive at the conclusion of (IV).

We next prove (V).

Note that the chain rule

d (" _ " of(t,s)
- fo [, $)ds = f(t,1) + fo s,

one deduces from (4.3) and (@.6) that

OPF V) = (=) KPP e F (vp)

P-1
+ > () aruen
p=0

" f (~vieP?)” e y e, yds.
0

With this expression, to achieve (V), the key ingredient is to first bound (?‘f Y&, 1), with (&, £) defined
by (4.6). Applying an argument similar to the proof of Lemma4.2] one obtains

HuE.n) =-F @-Vv) +'F (w- V) + 0!

< ¢(P + 2 uivi)]
i=1
£ 'A+ 0B+ dVC.

Thanks to div u = 0, by the assumptions of (V), 8f’ A can be bounded as follows:

f [Z ujajvJ = (9??[2 aj(ujv)]
j=1

J=1
oy

07 Al =

SN IATN
j=1

Clél ||o;

Mm

V”LZ(R” L2(R")

~
1l
(=)
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<CA+0 B +87" B0+ P D%

L
<CA+1t)yP ™3,
In the same manner, one attains the bound for 47 B:
n
6[P Z F (u va j)
=1

)4
< Z Clgl ||6£V||L2(Rn)
=0

<CA+) B+ P05

_p_n_ 1
<C(l+1)yP 873,

5=

8f “lyy

L2(R?)

Due to [#.9), putting together the above estimates for 3 A and 87 B, we get

6ffT (p + i uivi)

i=1

_p_n_ 1
<CA+1) P73,

orc] = < ||+ or]

: ; : 2 _n_1
In view of (4.6), the bound V] < C by (III-1) of this theorem, |£]7 < Yi+0) and 1 Y, <0,
we finish the proof of (V).

For readers’ convenience, the proof of (VI-1) will be given in Appendix B and (VI-2) in Ap-
pendix C.

So far, we finish the proof of Theorem 4.1. O

5 Convergence to the NSE with nonlocal viscosity

We observe that for @ = 0, the system (I.I)) formally reduces to the incompressible Navier-Stokes
equations with fractional Laplacian viscosity

vi+v-Vv+Vp = —v(—A)ﬁv
5.1)
divv =0.

By means of the fractional heat kernel estimates [13]] and Leray projection, we figure out the relation
between the nonlocal system (I.T)) and (5.I). In particular, we investigate the convergence of the
solution of (I.T)) to that of (5.1)) strongly as the filter parameter @ — 0, and relate the limit to . To
achieve this, we need first exploring how a solution u of the Helmholtz equation

u-a’Au=v (5.2)

approaches v as « tends to zero. In [16, [17], the authors clarified that how the solutions of the
Camassa-Holm equations (1.3) approach that of the corresponding imcompressible Navier-Stokes
equations (I.4) weakly as the filter parameter « tends to zero. In [3]], the authors established how so-
lutions to the viscous Camassa-Holm equations (I.3]) approach that to (I.4)) strongly as @ — 0 when
the solution to (I.4) is known to be regular enough. Here, we expect to establish a similar result
for the nonlocal Camassa-Holm equations (I.1) to that for (I.3) mentioned as above . Precisely, we
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hope to make sure how solutions of (I.T)) tend to that of strongly as @ — 0 when the solutions
to (5.1)) are to be sufficiently regular. To attain this goal, we must establish some a priori estimates
on the solutions of (I.T)) which are independent of @, but on regions of time where a solution to the
nonlocal Navier-Stokes equations is known to be regular by the functional analytic argument.

The object of this section is to prove the following convergence theorem for (I.T)):

Theorem 5.1. For ﬁ < B < 1,n =23, let {e;} be a sequence of filter coefficients tending to zero,
and let v,, be the solutions of (I.I)) constructed in Proposition [2.4] corresponding to the initial data
wgy € Hg(R”). Let w be the solution of (5.I) with the same initial data wy. In any time interval
[0, T'], where a solution to (3.1]) is known to be sufficiently regular, if there exists a bound

sglp tes[gg] (”VU‘I'”L’(R”) + ”Aﬁvai”u(Rn)) <C,

which is independent of «, then v, approaches w strongly in L% ([0, T], LY(R")) as @ — 0, where

2s In n
, S = and [ > .
s—2 n—IB 38-1

Before proving this theorem, we first make some preliminary remarks and preparations.

q= s

Remark 5.2. By a similar proof to that for the Camassa-Holm equations without any fractional
viscosity term (I.3]), we deduce that a solution u of (5.2)) approaches v weakly as the filter parameter
a tends to zero. That is, fix v € LP(R"), let {a;} be a sequence of filter coefficients tending to zero,
for each ¢; there is a weak solution u,, € Wwhr(R") of (5.2) such that

u,, — v weakly in L(R") as a; — 0. O
Due to Remark [5.2] we claim a stronger result if v is sufficiently differentiable.

Proposition 5.3. For g <B<1,n=2,3,letve WA(R") and u be the solution of (5.2)). Then for
a € (0, 1), there holds

B_ n{l 1
It = Vil oy < Cr, p, ™ APV, ) fOry =5 (— - —) < §.

2\p ¢
In particular, if {o;} is a sequence tending to zero, and u,, are solutions of (5.2), then for l - é < g,
u,, — v strongly in LY(R") as @; — 0.
Here, WAP(R") is defined by Definition
Proof. If u and v satisfy (5.2)), then a preliminary calculation gives rise to
Il = Vllzages) < @?l|Au|zoqen). (5.3)
Since (3.2)) is linear, the derivatives of the corresponding functions obey the relation
APu - o?APAu = APy, (5.4)

1 1
Applying Lemma [2.6|to (5.4) with y = y3 = g (— - —) < g, we arrive at the following:
P q

. Coup.9)

8wl < [|A°Au] g, < =252
(0%

“AﬂV”u(Rn) :
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This together with (5.3) yields that

Il = Vllzaeny < @77 [|APY]),, (5.5)

®" "
Note that y < 'g, replacing @ with «; in (5.5) and then letting @; — 0, we immediately deduce the

B

1 1
second statement that u,, — v strongly in L(R") for — — — < —. O
p qg n

We now mention some estimates concerning the fundamental solution of the linear nonlocal
Y
operator J; + (—A)Toin [13]], which are key to the proof of Theorem

Lemma 5.4 ( [13]). Let yo € (1,2]. Define G,,(t, x) by its Fourier transform EYO(I, &) = e 7 for
t > 0. Then G,,(t, x) is the fundamental solution of the linear operator: 9, + (—A)YTO. In addition, it

enjoys the scaling property:
_n _L
G, (t,x) =1 20Gy, (l,t “/Ox). m]

Lemma 5.5 ( [13]]). For yg € (0, 00) and p € [1, o], let kK > 0 be an integer and € € (0, 1]. Then for
some constant C = C(n, yp, €), there holds that

|VﬁA¢Gma,ﬂhﬂw)g(ﬁ“k%flﬁ‘%O‘ﬂ

for any « satisfying

e-1<ax<l if k>1
e<a<lora=0 if k=0.
Here, the constant C can be taken to be independent of p. O

In addition, the following auxiliary lemma will be needed for the proof of Theorem|[5.1]

n 1 1 1 2s In n
L 5.6. For-<p<1,n=23let—+=-=-+1,g= , 8= dl> It
emma or4_/3 n ep 275 q s_zs n—lﬁan 361
follows that
% for n =3,
1<p<
2 for n=2.
Proof. Direct calculation gives In Thanks to [ > " "< B <1and 2,3
) ulation giv =T R , 7 < n=273,
SR Ay M 3B-1" 4
it follows that 1 < p < Ll This completes the proof of this lemma. O
n f—

With the previous preparations, we begin to show Theorem|[5.1]

Proof of Theorem|5.1|

We will work in a time interval with known regularity of the solutions to the Camassa-Holm
equations with fractional Laplacian viscosity (I.I)) and the imcompressible Navier-Stokes equations
with fractional Laplacian viscosity (5.1). Hence these are the unique solutions. Note that (I.T)) and
(5.1), if P is the Leray projector onto the divergence free subspace of L>(R") and ¢(t) is the fractional
power heat kernel ¢(¢) = e~ then

w(?) = ¢(2) * wo — f ¢t —s5) = P[w - Vw] (s)ds, (5.6)
0
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3
V(1) = ¢(1) * wo — f H(t—s)*P [u -Vv-u- VVT] (s)ds.
0

Thanks to (4.4)), a straightforward computation shows that

w(t) — v(?) :—f(p(t—s)*]P’[(w—u)-Vw+u-V(w—V)](s)ds
0

—f¢(t—s)*]?
0

n

J=1 J

DV —wp) + > = w)Vw; | (s)ds.
i=1

(5.7)

(5.8)

Note that the definition of the Leray projector, and the fact that the projector commutes with deriva-
tive for smooth functions in the entire space, using Young’s inequality and Gagliardo-Nirenberg-
Sobolev inequality, one deduces the following estimate for the first term of the integrand in (5.8)):

llg(t = )« P[(W =) - VW] ()| o gn)
<IVe(r = 5) # P (W — ) - W] ()] Lagmn)

< IVe(E = Moy (W = @) - W72

<IVOQ = lirgen Wy W = 0llaen)

n—IB (R™)
< ||V¢(t - S)”Lp(Rn)

ABWHLI(Rn) ”W - u“L‘I(R") .

+

Here and hereafter, 1 +1= l l l
q p 22
n

3B-1
Due to Proposition With y=5 (% - é) < 'g, (3.9) can be bounded as follows:

[ >

lp(z — 5) * P LW — w) - TW] ()l o

< |IVe(z - s)”Lp(Rn)

Aﬁw“Ll(R”)

: (||W = Vllza@n + Ca®™ ”ABV”LZ(R")) :

Making a similar derivation to (5.10) for the second term of (5.8)), one achieves

llp(z = 5) * P [u- V(W = V)] ($)lpacgn
= IVe( = 5) « P[u- (W = V)] (9)llocgn)
< IVt = $)llzpgny I - (W = V)l 22y
< IVt = $)llzp gy IIUIIL#(RVL)IIW = Vllzan)

< ||V¢(f - S)HU’(R")

Nu| gy IIW = Vilzage-

(5.9

(5.10)

(5.11)
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In the same manner, one can deduce the following estimate for the third term of (5.8):

n
Bt —s)+P| > uV(v; - wj)}
J=1 La(R)
n
< ||Vo(t—5) =P Z uj(vj— Wj)]
= Lorn)

+ [|@p(t = 5) x P

J

< IVG(t = Dl Y |lus
=1

n
Vuj(vj - Wj)
=1 Lq(Rn)

-
L#(R”) J JLa®m)

i
LB &) b = villsoee,

n
160 = lpony . [Vu;
=1

n
< IV = neny Y 18] gy
=

n
#6 = o D APV
j=1

Vi~ Wj“LfI(R”)

The fourth term of (5.8)) can also be bounded as

Z(Vj - Wj)VWj

¢t - 5)*P
J=1 La(R™)
n
< ||V =)+ P| > ;= wpw;
j=1 La(RM)
n
+ |[¢p(t = 5) * P Z V(uj—wjw;
J=1 L4(R")
n
<||Vop(t — 5) « P Z(uj —Wjw;
J=1 La(R™)
n
< IVt = gnen | D ;= ww;
J=1 L2(R)
< Ve = llppgny e = Wllzogn IIWIIanntﬁ(Rn)

<Vt = Ml pgny [0 = Wil agn)

< |IVe(t = llp@ny

AﬁW” LR

ABW“L’(]R")

. (llw = Vllzawny + Cat™ ”ABV”LZ(R"))'

Wi~ Vj”L‘I(R") .

31

(5.12)

(5.13)
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Putting together estimates (5.8), (3.9), (5.10), (3.11)), (5.12) and (5.13), we conclude

!
v = Wllawn) < Calg_yj; ”A’BVHLZ(R”) ds

C AP
+C sup (la%w.

: fo (et = llppny + IV = llzpn ) IV = Wligaar (5)ds.

w18l + 8290 ) (5.14)

Finally, thanks to Lemma Lemma and Lemma we deduce that for ¢(r) = e~V

1 1\ n
gt = lppwny < = 01 = (1 - 1_7) % (5.15)
1 1 1\ n
Vot = Sl p@ny < =5 6y = % + (1 - ;) % (5.16)

1 1
As a consequence, for y = g (— - —) < ’g, we infer from (5.14)), (5.13)) and (5.16)) that
P q

f
v = wWllLown) < Ca?™ + Bfo G _1 G IV — WllLa@ny(s)ds, (5.17)
where .
A= Cf(; ”AﬁV”LZ(R") ds,
B=C sup ([|NW|ye0, + 40 ey + 14550 ) (5.18)

t€[0,T]

— < <
2 28 n 2B

1 1 1 28 -1
6:max{61,62}:—+(1——) ! fB-ln
2 p

Here, we have used some known facts:

n 1

N 1, 1 n-IB 1 1 1 n-IB 28-1
B-1 ¢q

=—+—", l--=--=-= < -

1
l Z
2 qg In p 2 qg In n

1+1
=ty

Note that (5.17) and (5.18)), the Gronwall inequality then implies that

B_ " B
v = WilLoen < Aa® 7exp(fo‘ mds), (5.19)

(t _ S)—(5+1 ! l_6+1

t
h t—5)0%ds = ————| =-
Werefo( s)"ds -0+1 |, -0+1
t € [0,T], letting @ — 0 deduces that v — w strongly in L7(R").

This finishes the proof of Theorem[5.1] i

, which is finite for 6 < 1 and ¢ € [0, T']. Hence, for
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Appendix A

We are now in the position to show (3.18)). Note that v° is a solution of (I.1)-(I.2)), multiplying the
first equation for v¢ in (I.I) by Av®, then integrating by parts yields

+v|[APVve = (U VY, AVF) + (v - VuT AVF) (A-1)

2 dl‘ ”V ||L2(]R’) HLZ(]R’)

We then deal with the two terms on the right hand side of (A-1) through two cases:
Case (I) Z <B<lforn=2,3;
Case (I) B = Z forn = 2,3.

We first consider Case (I) Z <B<1lforn=23.

In this case, notice that (u® - Vv®,v*) =0, —=--——— — -1 <=--8< -1<
n

n on

" 4’ 2

3~ 28 + 1 < 1, Holder’s inequality, Sobolev inequality and Cauchy-Schwartz inequality yield that
|(u‘9 . VVE,AV8>| = |(Vu‘9 . VVS,VVS>|

< ClYY gy 1909V 2oy

<C “VVEHLZ(R”) Vv ” zﬁ(Rl) || u€||L%(Rn)
<C “VVEHLZ(]R") “ABVV “LZ(Rn) ”Arﬁvug |L2(R ) A-2)
< 9 1PV ey 907 10122
<C “VVSHLZ(]R”) “ABVVSHU(R") VS“U(R")
v
< 4 ”AﬁVVEHiZ(Rn) +C “VS”iZ(Rn) ||Vv‘9||i2(Rn) :
On the other hand, Lemma [2.8]and Lemma [2.11] ensure that
<V5 V) AV8>
< KAI"B (v‘9 . VugT) ,AﬁVv8>
= HAI_B (VS ' V“ST) L2(R7) ”AﬁVVg”Lz(R")
< C(||A1 Bye || - HVus”L%(R’l)
(A-3)
+ || || 2:B(R ) || ||L/3(Rn)) . ||ABVV£”L2(R”)
v n_ 2
< 1 ”Aﬁv" “LZ(R") * C||Aﬁv “iZ(R") ”A2 zﬁHV“g“H(RH)
%
<7 ||AﬁVV8“i2(R") +C ||AﬁV€“i2(Rn) ||V€”L2(R D)

< TV, + € (W ey # 199 ) IV e
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Combining (A-1) with (A-2) and (A-3) gives rise to

d
a ”VV8||i2(Rn) + g ”ABVVSH;(W) <C ”VV8||i2(Rn) Va”Lz(R”)' A-4

We next consider Case (II) B = Z forn =2,3.

In this case, thanks to (u® - Vv®,v®) = 0 and % = % - 'g note that Lemma|2.12} applying Holder’s

inequality and Gagliardo-Nirenberg-Sobolev inequality imply
[(u® - Vv®, Av®)| < [(Vu? - VvZ Vv®))
< IVe®ll2m) ||VV€||L4(R,1 (A - 5)
< C VUl 2, (||Vv€||L2(Rn + ||A%VV€||;(R,1)),
and

’<V£ Vol Av8>

< VIR, gy 190 25, + AT 25 VTV 2

L4(R”
< ||VV‘9||L4(R,1) IVOZllz2 gy + 1AW 2y VO]l 4Ry IVVENl 4 Ry

n 2
< ClIVuell2n [|ATVY| 5

+ [|AW®|| 12 g ”A%VSHLZ A%VVEHLZ(R,,)

(R™) R")

" 2 12 n 2 (4-6)
< CIVU Il [|AT V7|2 gy + 1802 (”AZV8||L2(R") * ”AZVVSHLZ(R"))

< (V00 2y + AW 2y ) [|AS TV oy + 1180 2y AV

< (||Vu8||L2(R”) + ”AUSHLZ(R")) ”A%VV‘S”;(R"

1AW 2y (V912 gy + 1992117

L2(Rm) L2(R") ) ’

By Proposition the assumptions in (III) of this theorem, once we choose [[Vu®|| 2 gm +|AW || 2rny S
IVl 2@y S IVGll2 @y S IVollz2@ny < € < 7, (A-1), (A-5) and (A-6) yield

—||VV€||L2(Rn ||A Vv HLW S IVl IV g (A-7)
Using (A-4) and (A-7), Gronwall’s lemma yields that for Z <B<1lwithn=23
199122 gy < VG2 e 0020 < €62, (A -8)
This gives
X0 ey + @ AP0y < 190 o + @ 80y < 9V ey < €87 A= 9)

It follows from (2.1)) and (A-9) that
d &
- (I

This is the estimate (3.18)). So far, we finish the proof of Theorem 3.1. o

2 & 2
pn + IV, ) 2 —C8.
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Appendix B

We shall prove (VI-1) of Theorem here by using inductive argument. Due to the regularity of
solutions (Proposition [2.4)), we present the proof only formally. It should be pointed out that the
key point of the proof is to establish an inequality in a form satisfing the conclusion in (IV) of this
theorem. To achieve this, we shall divide the proof into the following three steps.

Step 1. For m = 0, 1, the inequality holds by (III-2) and (II), respectively. That is,

_n _1_n
VI 2 gy < CAL+ 07, [IVVIE, CA+0)F %,

®n S

Step 2. We now assume (inductive assumption) that the decay

V"V 2y < CL+ 1) 575 (B-1)

holds for all m < M. Here, m and M are both non-negative integers.

Step 3. We will verify that the inequality (B-1) is true for m = M.
Multiplying the first equation in (T.T)) by AMv, and then integrating by parts the resulting equa-
tion gives rise to

dit ”VMV'EZ(RW) +2v “AﬂVMVHEZ(Rn)
< ’<u - Vv, AMV>‘ + |<V . VuT,AMV>’ (B-2)

£ IM+JM.

To bound Ij; and Jy,, there are two cases to consider.

Case (I) Z<ﬁ<1f0rn=2,3;
Case (I) [ = g forn = 2,3.

We first consider Case (I) g <pB<1forn=2,3.

In this case, it is easy to check that g - B < Band 7—3 = #72_@ Recall that (B-2) and
(u - Vv, v) = 0, thanks to Cauchy’s inequality, Holder’s inequality and Gagliardo-Nirenberg-Sobolev

inequality, one deduces that



36

and

Z.H. GaN, Y. HE & L. H. MenG

Iy = '(u-Vv,AMV>’

m=1

M
<C Z ”VMH_mVHLZ(Rn) “Vm“ v
m=1

(M
Z( . )(V’”u-va—'"v, VMV>

v||L2(R”)

M
< C ) IV M 970l ey 199, 25

m=1

M
<C Z ”VMH_mV”LZ(Rn) “Aﬂvmu“U(Rn) ”AﬁVMV”L2

m=1

M
< C ) IV M 1A 29" 4291

m=1

M
ey L I e N T

m=1

M
<C Z ||VM+1_mVHL2(R") “Aﬁvm_]V”Lz(R") ”ABVM

m=1

M
LD i N

m=1

®"

&™)
5+1-28

12 (R")

V”L2(R")

e * 5 IV Ve

Jy = KV . VuT, AMV>’

M
= Z( nj‘f )’<VMV - VV™u, VM_’”V>'
m=0

M
<C ‘(VMV .V, VMV>| rcy |<VMV Ly, VM""V>’ .
m=1

By Lemma[2.12] a similar computation to (B-3) shows that

|<VMV - Vu, VMV>|
= ”VMV“Z(W) IVl 2 @)
< (19 "Vl 1931 ) 1905

< (c@ v + & APV ) V2o

I
Vilz2 ey

A9,

(B-3)
(B—4)
(B-5)
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and

i |<VMV vy, VM_’"V>|

m=1

IA

“VM_mV||L2(R") HVmH“ : VMV“LZ(R")
1

IA

9" gy 197 ] g 1191

Rm) ” L% (R™) | ngirztﬂ(Rn)

(B-6)

IA

AT |y 425

V||L2(R")

“VM_mV”LZ(Rn)
1

IA

M= iM= iM= iD=

A g 1 1 g e A 7 e

1

3
I

M
_ _ %
< CZ “VM mV“iZ(Rn) ”A'va IVHiZ(Rn) *t7 “ABVMV“;(R")‘

m=1

We have used the relation u—a?Au = v in the estimates (B-3) and (B-6). Choosing € <

- 4||VUOIIL2(R”) ’
if follows from (B-2), (B-3), (B-4), (B-5) and (B-6) that

d
T “VMV”iZ(Rn) TV ”AﬂVMV“;(Rn)

<C ”VMV“iZ(Rn) “Aﬁv||i2(Rn) +C(e) “VMV“i2 ) IVul;

®" L2R") (B-17)

M
R R N 9l L A I

m=2

2
V”B(R”) :

We next consider Case (II) S = Z forn =2, 3.

In this case, thanks to Lemma[2.12] note that (B-2) and (u - Vv, v) = 0, we deduce the following
two estimates:
Iy = |<u - Vy, AMV>|

M

> ( nﬁf )(V’"u L yyMmy, vty

m=1

M
< C QMMM gy 970 Vo
m=1

(R™)
< M+1 M B-8)
< CZ“V ' _mV”U(Rn) ”VM“HH(W)“V V”L“(R")

m=1

M
<C Z “VMH_mV”LZ(Rn)

m=1

M
< € Q9 g IS Wy 5 9] 2 -
m=1

AFV™ AV

u“U(R") V“LZ(Rn)
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and

= i( n]‘f )|<VMv-VVmu, Vi)

M
= CZ_O “VM_mV“U(Rn) via- VMV“LZ(Rn)
" y 1 y (B-9)
< CZ;)“V _mv||L2(R") va+ u”L“(R”) “V V||L4(Rn)
o
M
<C Z;) “VM_mV||L2(R") ”A%VmHu”LZ(R") ”A%VMV“B(R")
=
M
<C Z) IV 1AV oy 1A T2 gy -
=
Combining (B-8) with (B-9) yields that
M n n
Iy +Jy < C Z) VY78 gy ISV oy 1A 2
=
< Cl[9Y| oy 1A%l 2y 1459V 2
M-1
+C Zi IV gy 1597V oy A7 2 gy
m=
+C [Vl 2y [|[ATVMV|| 2
< C VW2 912 IV o ATV
o (B - 10)
_ 1-2 2 n
+C Z ”VM mV”LZ(Rﬂ) “VmV“LZ(AI‘R”) ||Vm+1V“22(Rn) ||A4VMV“L2(R")
=
+C Iz ATV
S (19 gy IV o, IOV

n
X2

L2 (Rn ) )

M-1

¥ Z‘i (7= o + 197V 97y
m=

Vil 2 AV N

v 2
® T g | V”U(R”) :
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This together with (B-2) and the smallness assumption of the initial data for § = Z in (VI) with
M < K ensures that

d n 2
7 ||VMV||L2(R”) tv ||A4VMV||L2(R")

M-1

2 _
S ”VMVHiZ ®) T Z v mV“iz(R"
m=

A%VMV“ZW)

®™

S 98]y IV VI g + Z A (e
< (W1 2y + 19172 ) ||VMv|ILz(Rn
+ Z (|va||L2(R" + “VmHV“LZ(Rn )”VM mV“LZ(Rn (B-11)

(||vM R\ 7

< ((1 +1)7% +(1+ t)_%_%)“VMV”LZ(R")

M=2 _m_n _m+l_n _M-m__ n
+Z((1+t)ﬁ o (140 2ﬁ)(1+z) 7
m=1

_M-1_n _1l_n _1_n M_ 112
H1+HTF BA+NFB+ (140 BV v||L2(R,,)

n

< +n75 |vM (AR,

2
V||L2(R")

Note that ||VM V|| e S < C by Proposition|2.4} (I), (I) of this theorem and the inductive assumption
(B-1), applying interpolation inequality and a bootstrap argument, it follows from (B-7) and (B-11)

thatforg <B<1withn =23,

d
a ”VMV“;(Rn) tv ”A'BVMV“Z(R”)

n

< C(1+ 1% ||V L C(L+10) Fh

vl
ey (B-12)

<C+n o |v" FCU+0 7 H 1407 H

2
V“LZ(R"

Here, we applied the fact that forn = 2,3,—1 + é > (0 and —% + ;—3 < 0. Since | (v)| < C by (III-1)
of this theorem, applying (IV) of this theorem to estimate (B-12) gives rise to

VY32, < CCL+ 077 55,

Combinig Step 1 with Step 2 and Step 3 finishes the proof of (VI-1).

Appendix C

We show (VI-2) of Theorem . T|here. We will adopt an inductive argument as above. The inductive
assumption is as follows.
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K

For p < 2% the decay rate

1679V} gy < CC1+ 027575 Cc-1

holds for all p < P and m such that 2pg + m < K. Here, p, P and m are all non-negative integers.

In the following, based on the inductive assumption (C-1), we divided the proof into four steps. In

Step 1, we show that for |§|2ﬁ <

, ||a§’ €7(§)|| < C( + 07", In the second step, we verify that
v(l +1)

the decay rate (C-1) holds for p = P and m = 0 by an inductive argument on p. We will check the
decay rate (C-1) holds for any m > 0 by another inductive argument on m in the third step. In the
fourth step, we conclude the expected result by a bootstrap argument.

We begin to show (VI-2) step by step in detail.
Step1 We show for |£F < ﬁ, ||Bf’f’(§)” <c+n".

By (C-1) we getforall p < Pandm =0, 1,

1079 5|[7 2 gy < €L+ 027755 (€ -2)

By the aid of (V) of theorern (C-2) implies that for |£% < Tt
)4

JOPNIY) _
||a{’v(§)||L2(Rn) <cl+n7r. (C-3)
Step2 We now show that the decay rate (C-1) holds for p = P and m = 0 by an inductive argument

on p.

Note that v - Vu’ = V(uv) — u - Vv/ by @#34) and div v = 0, choosing P and M such that
M + 2P < K, then applying 8" to the first equation in (T.T)), multiplying the resulting equation by
A AMy and integrating in space variable x yields, after some integration by parts,

dit ”avaV”i%R»ﬂ) +2v ”avaABV”iZ(Rn)
< ’((f(u . VV),af’AMV>’ + ’<6f (V . VuT),afAMV>‘ (€ — 4
= Kaf(u - Vv), 6f’AMV>’ + ’<6f (u : VVT),afAMV>‘

= IM,p + JM,p.

In the following, we deal with the two terms on the right hand side of (C-4) by considering two
cases:

Case (1) Z<B< 1forn=2,3;

Case (2) B= Z forn =2,3.

© We first consider Case (1) g <pB<lforn=273.
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In this case, a straightforward computation shows that
2n 1 n-2 n-2
i <

1 < 3 f 3
— = , = = ~  for n=3,
B u_2.2% 2 2 2 "%
-2 -2 1
0=n <n B<— for n =2,
, 2 2 (Cc-5)
n—28 n
B="" 1 =112
> B > B,
g—1<B<1, for n = 2,3.
Note that (C-4), one attains
I = (3w - ). 0 AY)
P M-1
B e ——
p=om=0 N P (C -6)
P M-1
< Z ( P )( M-1 )”Al—/} (afvmu . 6?‘PvM—mV)
— £ p m L2(R")
p=0 m=0
: ”6fVMAﬁV“L2(Rn) :
Thanks to higher order fractional Leibniz’s rule [18], HAI_B (6f V' - (9;)_” VM_’”V) L2y €A be
bounded as follows:
A1 (0 v o P ey
[2(R")
<[|a8 (a7 - o ey
—8°V™u - aP—PvM—mAl—BV
t t
c-7

—OP NPV gl TPy

L2(Rm)

+||orvm - o rermA Ay
LZ(R”)

+ | ANy . 9P M oy

12 (R” ) :

1 1 1
Due to Lemma|2.10} (I) of Lemma/2.11|and (C-5), for 3 = m+m and0 < 1-8<B<1,

the first term on the right hand side of (C-7) can be bounded by

A1 (379 - o P My)
—9PV"u - 8L TP YM APy

—OP APy - Py My

L2(Rn)

< Cllopar vl 5 [ar ey

LB R?) = (C-3)

< C oAzt a; PvMm APy

u“Lz(R”) L2(R™)

281 141-2 _
B—3 afvm+1u||22‘:Rn)ﬁHaf PyM-m By

L2(R")

< Cllarvm

12 (R")

< Cl|PV IV o 18] PV APy

(R™) L2(RM) :
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On the other hand, note that Lemma Lemma [2.9] and Lemma [2.11]} the second and the third
terms on the right hand side of (C-7) can be bounded by

o v af PvMm ATy

L2(R)
< Clapvmul| e flor Ay

LBT @Ry (177

2n
L n=202p-1) (Rn)

<C ||8meu|| ||8f)_pVM_mAﬁv (C-9)

72( 2 +1 2/3) L2(R™)

< C|arvmazt- Zﬂu”LZ(R . “aP—PVM—m APy

L2(R™)

< Cllgyvm! roryMem APy

2R’

and

HafAl’ﬁV’"u . af—PvamV

L2(R")
P—pVM_mV”Ln%igﬁ (R™) (C _ 10)
Hc?prVM_mAﬁv

< Cllo7atvral 5

<Cloras-emal 5

L2(R")
< C[lV"™ | 2 ||af’ “PyM-mapy

2R

Hence, combining (C-6) with (C-7), (C-8), (C-9) and (C-10) gives rise to

Iy = Ka” (u-vv), 6PAMV>‘

P —

Z apvm+1

p: m=0

PPvaﬁ

L2R")
: ”aPVMAﬁV”LZ(Rn)

< cZ [EA7 . ||aP PyM syl

+CZ||

PMl

103 S 0TS
p=0 m=2

+7 ZlorvM asy|; @

L2(R™) (C-11)

P —pyM- lAﬁV

L2(R")

L2(R™)
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Similar estimates to that used in the estimates for Iy p are valid for Jy p in (C-4):

Jup = <6P (u . VVT),aPAMV>|
= CZ ”apV”LZ 3" VAR L2(RM)
+CZ||8”VVHL2(R)“6P PyM-ipBy . (C-12)
P M-1 P
l M-

+7 ||a§’vMAﬁv|| L2 -

Substituting the above estimates (C-11) and (C-12) into (C-4) leads to the following estimate under
the case g <B<lwithn=2,3:

d
I ”aPVMVHZ(R 0)

<C Z ”apVHU(R"

+v ||af’v1‘4/\5v||iz(R )

P pVMAﬁV

L2(R™)

(C - 13)
ol ryM- By

LXRY)
P M-1

+C Z Z ”apvm IV“Lz(R"

p=0 m=2

P va mA,B

L2R")

© We now tackle (C-4) under the Case (2) S = Z forn =2,3.

In this case, it is easy to check that 1 — Z < g Recall (C-4), we shall estimate Iy, p and Jy p,

respectively. We first handle 7, p.
By a similar proof to that for case (1), one deduces the following:

= (o u - vw), 8PAMV>|

P M-1
:ZZ( )( ) AE (VM 0] PVMImy) 9P M AY)

p=0 m=(i (- 14)

( )( —1 ) HAI—% (07 v - 9 PvMmy)
p=0 m=0

|lorvMAs

L2(R7)

V“LZ(Rn) :
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However, direct calculation gives

A1 (a7 v - of e

LZ(R”)
< ||A1‘% (afV'”u : (')f)_pVM_mv)
~3'V™a - 9 PYMTA Gy

. (C-15)
— O’ AIEY . 9P TPy M oy

12 (R”)

+

|07V - o PeMmAlty

12 (]R")

+

|07 A1t v o Py

L2(RM) :

Due to Lemma and Lemma|2.11} one deduces that for0 < 8; < 1 — Z, the first term on the right

hand side of (C-15) can be estimated by

A1 (ar - o) ey

—8'VM - 9l PVM Ay

1-2 P—po M-
—OPAEV . 9P TPy My L (C - 16)
<Cllor A EFvm| s, A R
Ln72(n/4+/31) (R") Lll*2(ll/4*ﬁl) (Rn)
< C|arvmy g, PVMmAGy
- 4 L2R) ||t L2(R") ’
1 n N1 1 1 2n
h clo,=},1-=-8,€l0.=). == —+ —withp;, ;e (l,0), p; = ———
where fi ( 2) i ( 2)2 pr Ty M pE P2 € (L) = R
2n
2= T A
P2 = oA = By

Let us turn to estimate the second and the third terms on the right hand side of (C-15). Thanks
to Agmon’s inequality, interpolation inequality, Lemma|[2.12|and the assumption of (VI) for § = Z,

we have

AV 9T PVMTA Sy

12 (Rn)

+ HafAl‘£V’"u -QrryMmy

L2 (Rn)

<C|larvm 8. PVMImAl Gy

u“L‘)"(R") ’ L2(R")

+ |7 AlE v

o Py

u||L4(R") LA@®M) Cc-17

1 _ n
V"7 e 0PN

N A

pom 113
SC”E),V ““zl(Rn)“

L2(R")
+C||ar A3 v

u”Lz(R”) L2(R")

< C|arvn o) PMmALy

V”LZ(R”) L2(R") :
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This together with (C-14), (C-15) and (C-16) gives rise to

Iy = |(af’(u .VV), a”AMv)|

N

P
CPZ:;) n;) ”apvmV“Lz(R " HdeAEVM?mV @Y fp_pl\Z vMy )
P
2
< C Y Vo [0 " AT MY .
p:OP (Cc-18)
o’ M- |
+CPZ:(:) PATY LZ(W)
P M-1 - .
P xgm -p My
+sz;)m:2 ||8 Y AT Yz
v
7 |a;D V”U(Rﬂ)'

Here we have used Cauchy-Schwarz inequality and Young’s inequality in the third inequality.
In the same manner, one may deduce the following estimate for Jy p in (C-4):

Jup = <8f3 (u-VVT),(')fAMV>|

.
YN 27 TN ’
p=0

LZ(R")
P 2
+C ZHafVVHLz :
I_:’ M-1 p . )
> Ha”vmv”Lz(R)Ha ATV Vil
p=0 m=2

+7 = loraiv

; 2
P AIVMly
LR

(C-19)

V”U(R") :

Therefore, under the case of 8 = g with n = 2, 3, substituting (C-18) and (C-19) into (C-4) yields
that

d
ar ”6vaV“22(Rn)

P
= CZHBfVHiZ(RrI) g
p=0
P
+CZ|| !

PMl

+C Z Z ||6pvmv||L2(R"

p=0 m=2

+v ||afA%va||iz(Rn)

PP ATvMy

L2(R™)

5 (C - 20)

ol PAIVM Ty
LZ(R”)

2
P PA4va LZ(R)
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With (C-4), (C-13) and (C-20), for g <pB < 1withn = 2,3, we always have

d
AT P oG Al

P
Z ”apV”LZ(R”
CZ ”atpVV“Lz(R") Y

+C Z Z ||apvmv||L2(Rn

p=0 m=2

o P By M|

LZ(R")
) (C-21)
P—PAﬁvM—]V -

P pAﬁvM My

L2(RM) :
Note that the inductive assumption (C-1), one deduces that for p = Pand m = 0

108, + v o AN

(R") (R")

<C(1L+07% H(%DABVHL2 +C(L+ )27 51 + ) 2" P-5-%

(R}‘l

<CA+1) % “afAﬁVHiz L+ 2P

®")

Takeing ¢ large enough such that C(1 + t)_% < 12/ the above inequality then implies that

d i .p Y laP 2 —2P-1-1
0V 2y + 5 107N 2y < €O 41 5. (C-22)
This together with (IV) of this theorem ensures that (C-1) and (C-3) hold for p = P and m = 0.

So far we have shown that for m = 0, and VP < %, there holds
d.p Y [1aP A B2 —2P-1-1
- A + 5 llor Ay <C(1+1) s

V||L2(R”) “LZ(R")

This deduces by Gronwall’s inequality that

d P 2 —o2p-1z

107Vl gy < €+ 7 (C-23)
Step 3 We show that the decay rate (C-1) holds for any m < M + 1 for p < P, and m < M for
p = P. That is,

16797 ¥|[ 2y < €A+ 227575, (C -24)

The base case is (C-23) where (C-24) holds for p = P and m = 0. In the following, based on the
inductive assumption (C-24), we will show that the decay rate (C-24) holds for m = M and p = P.
Recall (I) and (II) of this theorem, applying the inductive assumption (C-24) to (C-21), one
deduces that 4
PoM P M
- |oFv +v||of APV

2
V“LZ(]R" V“LZ(Rn)

< CL+ 075 |0 AT (C -25)

+C(1 + t)_ﬁ_E ||5fA'BVM_1V“L2(R")

+C(1 + t)
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Taking ¢ large enough such that C(1 + t)_ﬁ < g, thanks to (C-3), using (IV) once again deduces

that

2 _op-M_n _op-M_n
|67V V[ oy < CA+0TF TR <O 40575, (C -26)

This implies that the inductive assumption (C-24) holds for m = M and p = P. By another bootstrap
argument, we obtain for all m + 2pB < K, the following optimal decay holds:
oy v

2 —2p-m_n
V||L2(R,,)SC(1+I) B,

This completes the proof of (VI-2).
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