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ABSTRACT. We study the stability theory of solitary wave solutions for the gen-
eralized derivative nonlinear Schrodinger equation
i0pu + 0%u + i|ul*? Opu = 0.
The equation has a two-parameter family of solitary wave solutions of the form
- T
c i
boela) = uela) exp {iga = 5t [ o an.

Here ¢,, . is some real-valued function. It was proved in [29] that the solitary wave
solutions are stable if —2v/w < ¢ < 2z94/w, and unstable if 2zpy/w < ¢ < 24/w for
some zp € (0,1). We prove the instability at the borderline case ¢ = 2z9/w for
1 < 0 < 2, improving the previous results in [7] where 7/6 < 0 < 2.

1. INTRODUCTION

In this paper, we study the stability theory of the solitary wave solutions for the
generalized derivative nonlinear Schrodinger equation:

iOpu + 02u + i|u|*? O,u = 0, teR, zeR (1.1)

for o > 0. It describes an Alfvén wave and appears in plasma physics, nonlinear
optics, and so on (see [34, 35]). In the case of 0 = 1, by a suitable gauge trans-
formation, (1.1) is transformed to the standard derivative nonlinear Schrédinger
equation:

i0pu + 02u + 10, (|u|?u) = 0. (1.2)

This equation (1.2) was widely studied. The local well-posedness was proved
by Hayashi and Ozawa [18, 19] in the energy space H'(R) and by Guo and Tan
[10] in the smooth space. In the paper of [18], the authors proved the global well-
posedness in the energy space when the initial data ug satisfies the mass condition
|uol|z2 < V2. This condition seems natural for global well-posedness in view of the
mass critical nonlinear Schrodinger equation and generalized KdV equation, as it
ensures a priori estimate of H'-norm from mass and energy conservations. However,
recently, the third author extended the condition to |Jug||r2 < 2/7 in [45, 46], in
which the key ingredient in the proof is the use of the momentum conservation.
A simplified proof was later given by the first and third authors in their paper
[15], where the global well-posedness in Hz(R) was also proved under the same
mass constraint. The problems for large mass are still unclear at the moment. In
[6], Fukaya, Hayashi and Inui constructed a class of large global solution with high
oscillation. In the papers of Cher, Simpson and Sulem [3], Jenkins, Liu, Perry, Sulem
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[22, 28, 26, 27|, Pelinovsky and Shimabukuro [39, 40], the authors constructed a class
of global solution by using the inverse scattering method. On the long-time behavior
and modified scattering theory, see [13] and references therein. On the low regularity
theory, see [1, 4, 5, 8, 9, 14, 21, 31, 36, 37, 42, 43] and the references therein.

In the case of 0 # 1, the Cauchy problems of (1.1) have been investigated by
many researchers. In the case of o > 1, local well-posedness in energy spaces H'(R)
was studied by Hayashi and Ozawa [20] for any o > 1, by Hao [16] in H2(R) for any
o > 2, and by Santos [41] in Hz(R) for any o > 1 and small data. In the case of
1 <o < 1, local well-posedness in H*(R) was studied by Hayashi and Ozawa [20],
see also Santos [41] in the weight Sobolev spaces. In the case of 0 < o < 3, local
well-posedness in some weighted spaces was studied by Linares, Ponce and Santos
[25]. Note that in this case, the nonlinear term is not regular enough, appropriate
construction of the working space is needed to handle nonlinearity. Global well-
posedness was studied in [6, 20, 33]. In particular, in the case of 0 < o < 1, the
global existence (without uniqueness) of the solution in H!(R) was shown by Hayashi
and Ozawa [20]; while in the case of o > 1, the global well-posedness of the solution
in H'(R) was shown by Fukaya, Hayashi, Inui [6] with some suitable size restriction
on the initial datum.

Also, the stability theory was widely studied. The equation (1.1) has a two-
parameter family of solitary waves (see [29]),

Uy o(t) = ei“’t¢w,c(x —ct),

where ¢, . is the solution of the form

¢w@0—¢%&w@m{%x—2012/:%ﬁxw@&, (1.3)

with

(0 +1)(4w — ?) 3
Puclt) = {Qﬁcos;(a\/mx) - C} |

Actually ¢, . is the solution of the following equation
—0%¢ + wo + cidpd — i|9|*7 0,0 = 0. (1.4)

Note that the equation (1.4) can be solved in H'(R) when 4w > ¢*,¢ € R or
4w = ¢ > 0.

When o = 1, Colin and Ohta [2] proved the stability of the soliton waves when
¢ < 4w, and see also [11] for previous result in the case of ¢ > 0. The endpoint case
? = 4w, c > 0 was studied in [23]. Further more, Le Coz and Wu [24], Miao, Tang
and Xu [32] proved the stability of the multi-solitary wave solutions. A consequence
of these results is the existence of a class of global solutions with arbitrary large
mass.

In the case of 0 < o < 1, Liu, Simpson and Sulem [29] proved that the solitary
wave solution u,, . is stable for any —2\/w < ¢ < 2y/w, and Guo [12] further proved
the stability of the solitary wave solutions in the endpoint case 0 < ¢ = 2y/w. In the
case of o > 2, the solitary wave solution u, . is unstable for any —2y/w < ¢ < 2y/w
(see [29]).
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The case 1 < o < 2 is more complicated. It was proved by Liu, Simpson and
Sulem [29] that there exists zo(o) € (0, 1), which solves the equation F,(z) = 0 with

2

Fy(2) = (o — 1) Uooo(coshy - z)—idyr - Uooo(coshy — 2) 7 Mz coshy — 1)dy| ,

such that when —2/w < ¢ < 2z9y/w the solitary wave solution u, . is stable, and
when 2z9y/w < ¢ < 24/w the solitary wave solution u,, . is unstable. See also Tang
and Xu [44] for the stability of the sum of two solitary waves. Fukaya [7] proved
that the solitary waves solution is unstable when % <0 <2, c=2z4/w. The case
l<o< %, ¢ = 2294/w is still unknown. However, as pointed out by the referee, in
view of the form of the linearized action S/ . defined later, the energy seems in fact
C3-functional at least when 1 < o < 2, so the proof in [7] may be applicable for all
case of 1 < 0 < 2 and ¢ = 2z5y/w. In this paper, we aim to solve this case by a
different approach which does not require more regularity of the energy than C?2.
Before stating our theorem, we adopt some notations. For € > 0, we define
Udpwe) ={u € HY(R) : inf |ju—ePpy (- —y)llm < e}
(0,y)€R2

Definition 1. We say that the solitary wave solution u, . of (1.1) is stable if for
any € > 0 there exists 6 > 0 such that if uy € Us(dw.), then the solution u(t) of
(1.1) with u(0) = wg exists for allt > 0, and u(t) € U.(¢yc) for allt > 0. Otherwise,
Uy o @5 said to be unstable.

The main result in the present paper is

Theorem 1. Let 1 < 0 < 2 and zy = zo(0) € (—1,1) satisfy F,(z9) = 0. Then the
solitary wave solutions e“'¢,, .(x — ct) of (1.1) is unstable if ¢ = 2zp\/w.

In this paper, we use the same ideas as in [47]. It relies on the modulation theory
and construction of the virial identities. Compared to [7], the idea is to utilize
virial identities to replace the Lyapunov functional, to obtain the lower bound on
modulations. This can be used to avoid the requirement of the high-order regularities
of the energy. However, the construction in the present paper is much more delicate,
due to the complicated structure of the equation. In addition, the construction of
virial quantities in this paper possibly gives a hint to analyze global behaviors of
the solutions to (1.1) such as blowup.

This paper is organized as follows. In Section 2, we give the definitions of some
important functionals and some useful lemmas. In Section 3, we obtain the modula-
tion result and show the coercivity for the second variation. In Section 4, we prove
the main theorem.

Remark 1. We note that the same result in Theorem 1 was obtained independently
by Miao-Tang-Xu in [30] (appear on arXiv on March 20, 2018) by different method.
They used the third derivative of the energy around the solitary wave.

2. PRELIMINARIES

2.1. Notations. We use A < B or A = O(B) to denote an estimate of the form
A < CB for some constant C' > 0. Similarly, we use A ~ B to mean A < B and
B < A. We denote f=0,f.
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For u,v € L*(R) = L*(R, C), we define

and regard L*(R) as a real Hilbert space.

1

For a function f(x), we define its Li-norm || f| .« = (/ ]f(x)]%x)q and its
R
1
H'-norm || fl[mr = (I /1|72 + 102 f1I7)>-

2.2. Conservation laws. The strong solution u(t) of (1.1) satisfies three conser-
vation laws,

E(u(t)) = E(u),  P(u(t)) = P(uo), M (u(t)) = M(uo)

for all t € [0, Tinax), Where Tiax denotes the maximal existence time of u(t), and
B(w) =~ 02 — —— Im/ >0 T da
I T oG+ 1) J, S
1. 1 _
P(u) ==(i0,u,u) > = —Im/ uOyudr,
2 2

1
M(u) =3 ule.

2.3. Some functionals. From the definitions of £/, P and M, we have

E'(u) = — 0*u — ilu|* 0u,
P'(u) =i0,u,
M'(u) =u.

Let
Swe(u) = E(u) + wM(u) + cP(u),
then we have

S e(u) =E'(u) + wM'(u) + cP'(u)
= — 0%u — i|u|* Opu + wu + icd,u. (2.5)

Hence, (1.4) is equivalent to S, .(¢) = 0. Hence for the solution ¢, to (1.4), we
have

SI:J,C(QSUJ7C) = 0. (26)

Moreover, by (2.5), we obtain

Sx,c(gb%c)f = aif + Wf + anxf - ia’¢w,c’2072¢7,c ax¢w,c f
- ia|¢w7c|20_2¢w,cax¢w7c? - i|¢w7c|2081‘f- (27)
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2.4. Useful Lemma. In this subsection, we give some lemmas which are useful in
the following sections. First, we have following formulas.

Lemma 1. Let 1 < 0 < 2 and (w,c) € R? satisfy ¢ < 4w, we have
S0 e(Pue)Pue = = 201 P c| 7 Ve (2.8)
S () (102Bu.c) = = 200[ e[ Pus -
Proof. First, using (2.6) and (2.7), we get
S (G = — P2+ 0+ iDurae — 10160 o Our
01002 POr — 16 Duhe
== 020w — (20 + D)il@uo* Outoc + Whusc + €O
= =200 Gu.c|* 0P
Similarly, using (2.6) and (2.7), we obtain
St (D) (105 Puc) =10 — 03P + WP e + 1COp P e — 10| G c|*” OrPu.c]
= 20]6u.e|*" 7 Gl O |’
= — 20W|¢u,c[* Pu -
This concludes the proof of Lemma 1. O
Let
J(u) = Im/ |u|*"u Opudz.
Then we have ’
J'(u) = 2(0 + 1)i|ul*? 0, u. (2.9)
Moreover, we have the following lemma.

Lemma 2. Let 1 < 0 < 2 and (w,c) € R? satisfy ¢* < 4w, then

“ax?bw,CH%Q :w”QSw,CH%?' (2'10)
Moreover,
J(¢UJ,C) == 4WM(¢OJ,C) + 20P(¢UJ,C)’ (2'11)
o—1
T () = 26P(60.0) + 4B(60), (212)
and
J/(‘bw,C) = _UTHSx,c(%,C)%,c‘ (2'13>

Proof. From the equation S/, .(¢w..) = 0, by multiplying on both sides with 20,
and ﬁ respectively, and integrating over x, we obtain

10: Gl T2 = wliduellZ2,

and
102 clZ2 + wlldwelZe + cIm / Goe Dodoad — J(6) = 0.
R

Therefore, we have
J(Pue) = 4M (b e) + 2¢P(due).



6 ZIHUA GUO, CUI NING, AND YIFEI WU

Combining the definition of F and (2.10), we have

1 1 S
B(0uc) =gl = g [ 6mel s B

2(o
=wM (Pu,c) — mﬂ%,&-
Then, we get
1

wM(¢w,C> = E(¢w,6> + 9 J(¢w,6>-

(c+1)
Hence, we obtain

J(6ue) =AE(Gue) + = (b)) + 26P ()

2(0+1)
2

=20P(Gue) +AE(due) + =7 T (due).

That is,

oc—1

= 2cP 4F :
o + 1 J((bwyc) c (¢w70> + ((bw,C)
Moreover, from (2.8) and (2.9), we have
J/(¢w,c) :2<J + 1)i’¢w,c’208x¢w,c

oc+1
= - —S(Z,c(¢w,c)¢w,c-
o
This completes the proof. 0
Lemma 3. Let 1 < 0 < 2 and (w,c) € R? satisfy ¢ < 4w, then
c
IfucllZ3% = 4(0 + 1[5 M (due) + P(due)], (2.14)
and
8CM<¢w,c) = awP((bw,c)a acp((bw,c) = wawM(¢w,c>~
Proof. The details are given in Appendix. O

For any (w, ¢) € R? satisfying ¢? < 4w, we define a function d(w, ¢) by
d(w,c) = Su.c(Pu.c)-

Thus, we have

d’(w, C) - (&ud("‘}a 0)7 acd(wu C)) = (M(¢w,c)7 P(¢w,c))7
and the Hessian matrix d”(w, ¢) of d(w, ¢) is given by
d”(w C) _ awwd(wac) awcd<wac) _ awM(¢w,c) awp(¢w,c>
’ acwd<w7 C) accd<w7 C) 8CM<¢W,C) acp((lﬁw,c> .
For general exponents 1 < o < 2, Liu, Simpson and Sulem [29] proved that
¢ = 2z9+/w is the unique solution of det[d”(w, ¢)] = 0. Let (u, ) to be the eigenvector

associated to zero eigenvalue of the Hessian matrix d”(w, c). Since zero is a simple
eigenvalue, (u, ) is unique up to a constant. That is,

NawM(¢w,c) + Vawp(¢w,c) = 07
{ ,UJaCM(¢w,c) + Vacp(¢w,c) =0.

(2.15)
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Together with 0. M (¢y.c) = 0uP(dw,), (2.15) is equivalent to

{ HawM(¢w,c> + VacM((bw,c) = 07

2.16
#QJP(CZ%,.:) + Vacp(gbw,c) = 0. ( )
Now we have the following lemma.

Lemma 4. Let 1 < 0 < 2 and (w,c) € R? satisfy ¢ = 2z9y/w, then

P(¢w,c) == aOM(¢w7C)> g \/(J_Ja
where ag = (0 — 1)y/w > 0. Moreover, there exists ko > 0, such that
MQawwM(gbw,c) + Q,UVawa(gbw,c) + VQach(gbw,c) =K0pZ20,

2.17)
1200 P(Guc) + 2000, P(D00) + 10 P00e) = — Rov/.  (2.18)
Proof. The proof of Lemma 4 is postponed to Appendix. 0
For convenience, we denote the quality @), , to be:
Quu(f) = uM(f) +vP(f).
Moreover, we let ¥ = Or@uirpctrv | 3=0= 10w Pu.c + VOcPy c-
Lemma 5. Let 1 < o < 2. If ¢ = 2z9y/w, then
(M (¢ue), 1) = (P'(Pue) ¥0) =0, (2.19)
and
S e(Pu) = =@, (Pue)s  (Sho(bue)ts ) = 0. (2.20)
Proof. By (2.16), we get

{ <MI(¢M,C>7 Naw¢w,c + Vac¢w,c> = 0,

<Pl(¢w,c)7 Maw¢w,c + Vac(bw,c)) = O,
that is,

<M/(¢w,c)7w> = <Pl<¢w,c)7w> = 0.

From (2.15), we have

<#’M,(¢w,c) + VP,(%,C), 8w¢w,c> = 07
<“M,(¢w,0) + VP/(¢w,c)a ac¢w,c> = 0.

Therefore, we have

<Q;L,V(¢UJ,C)7 w> = O
On the other hand, differentiating

Szi)+)\y,c+>\u(¢w+)\u,c+/\l/) = 0 with respect to A, we
have

Z+/\u,c+>\u (¢w+/\u,c+>\u)a>\ ¢w+>\,u,c+>\u ‘ A=0

= — |:/,LM/(¢w+/\p,c+)\l/) + VP/(¢W+/\M70+>‘V):| })\ZO'
That is

Sx,c(¢w,c)¢ = —Q:W(Q%,c) .

Thus, we have

<SZ,C(¢‘WC)¢7 w> = _<Q,/u,,y(¢w,c)7 10) =0.

This proves the lemma.
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Lemma 6. Let 1 < o < 2. If ¢ = 22py/w, then
<J/(¢w,c)7 w> = 4“’M(¢w,c) + 2yp(¢w,c) 7£ 0.

Proof. Note that ¢ = O\x@u4rpctrv|r=0, using (2.11), we can write
<J,(¢w,c)a 1/)> :aAJ<¢w+)\,u,c+>\u) |>\:0
:a)\ [4(W + )‘M)M(QSer)\u,ch/\u) + 2(C + )\V)P<¢w+/\,u,c+)\u)} })\:0

:4/’LM(¢UJ,C) + 2VP(¢w,c) + 4w<M/(¢w,c)a 8A¢w+)\,u,c+)\1/’)\:0>
+ 2C<Pl(¢w,6>7 a)\qbw+)\y,c+)\u|)\:0>~

When ¢ = 2zqy/w, together with (2.19), we obtain

(S (Due), ) =AM (bure) + 20 P (Gue) + 4w(M' (Pue), ) + 2¢(P (due), ¥)
=AM (Pu.c) + 20 P (du,c)-
Using Lemma 4, we find
ApM (foe) + 20 P(Gue) = v (4w + 2a0) M () # 0.
Hence, (J'(¢w,.), ) # 0. This finishes the proof. O

3. MODULATION AND THE COERCIVITY PROPERTY

Proposition 1. There exists 69 > 0, such that for any 6 € (0,d0), u € Us(¢y.c), the
following properties is verified. There exist C'-functions

(0,9, : Us(de) > Rx R X RT,
such that if we define £(t) by
e(t) = e Dult, -+ y(t) = Gurr®uerrow (3.21)
then € satisfies the following orthogonality conditions for any t € R,
<€7i¢w+)\u,c+)\u> = <€, ax¢w+)\u,c+)\u> = <€, J/(¢w+)\u,c+)\u)> =0.
Moreover,
<Sx+>\u,c+)\u(¢w+>\M,C+AV)675> 2 ||5||§{1(]R)' (3.22)

Proof. The proof of the proposition can be splitted into the following three steps.
Step 1: modulation for fixed time. Fixing ¢ € R, let ?(Q,y, Xu) = (Fy, Fy, F)
with
Fl (97 Y, )‘; U) :<57 i¢w+)\y,c+/\u>a
F2(97 Y, )‘; u) :<€a 6I¢W+)\M,C+)\V>7
F3<97 Y, )‘; ’U,) :<57 J/(¢w+/\u,c+)\u)>-

Note that

895‘(0,070;¢w,c) = —iuc; ayg‘(o,o,o;qbw,c) = Oz Puc; aA‘€|(o,0,0;<z>w,c) ==
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Then, the Jacobian matrix of the derivative of the function (6,y, \;u) — ? with
respect to (6,y, A) is as follows.

0oF, 0,F, O\F,
D?’ y

=|0F> 0,Fx O\F,
(0,0,05¢0,¢) OpF3 OyF3 O\F3/ 1(0,0,0:¢0.)

_||¢w,0||%2 _QP(¢w,C) _<wal¢w,6>
= 2P<¢w,c) ||8m¢w,c“%2 _<¢7ax¢w,c>

0 0 _<Jl<¢w76)v ¢>
Thus, we can get
det (DF)| = 10(2 = M (G0 ) (T (Bu). 0).
(07070§¢u,c)
From Lemma 6, we have
det (DF)| 0.
¢ ( ) (07070§¢w,c) #

Therefore, the implicit function theorem implies that there exists §y > 0, such that
for any 0 € (0,d0), u € Us(pu.), the following properties is verified. There exist
continuity functions

0,9, : Us(de) > R xR x RT,
such that F;(6,y,\;u) =0, j =1,2,3.
Step 2: the regularity of the parameters in time. It follows from the regularization
arguments that the parameters (0, y,\) € C}.
Step 3: the coercivity property of Sf) .(¢..c). In this step, we shall prove that for
any (w, ¢) satisfying ¢? < 4w, and any € € H'(R) satisfying
<€> Z'§Z§cu,c> = <€7 ax¢w,c> = <€7 J/<¢w,c)> = O,

the following estimate holds,

(S0, oGz ) 2 el ey-

From [29] Theorem 3.1, we obtain that S/, .(¢...) has exactly one negative eigen-
value. Hence there exists only one A\_; < 0, such that,

Spe(Guwe)g—1 = A 19-1, g1l = 1.
Moreover, we have the following decomposition,

€= 0a_19-1 + 1@y + 20,0y c + Iy,
with

(h1,9-1) = (h1,idye) = (h1,0:0uc) = 0,
and

(St e(buwe)hn, ha) Z (17l gy -
Since (g,i¢y.c) = (€, 0:¢,.c) = 0, we have a; = as = 0. Then, we can write
e=a_19-1+ hi.

Next, using (2.13), we have

1
T (bue) = 8" () (=L

g

Pus,c)-
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For convenience, we put
o +1

h = Bus,e-
Note that (h,i¢y.) = (h, 0x¢,.c) = 0, we can also write that

h=0b_19-1+hy
with

<h27971> = <h27i¢w,c> = <h27a’p¢w,c> = 07
and
(S0 o(Pue)ha, ha) Z [hall g

For simplicity, we denote

(S du ) = (T (00 ) = 2T .

Then, from (2.11) and Lemma 4, we know v > 0.
Moreover, we have

(S (Pue)e e) =A1a’ ) + (S) (Pue)hi, b)), (3.23)
(S0 (Guc)hy By =A_1b% 1 + (S) (Guc)ha, ha) = —7 < 0. (3.24)

According to the orthogonality condition (e, J'(¢,.)) = 0 and some direct compu-
tations, we have

)\_1a_1b_1 + <S‘Z7c(¢w70)h1, h2> =0. (325)

Together with (3.23), (3.24), (3.25) and the Cauchy-Schwartz inequality, we obtain
that

/\2_16L2_1b2_1 _ <S(Z,c(¢w,c)hlah2>2

A = S N
<Sx,c(¢w,c)h1a h2>2 < <S<Z,c(¢w7c)h1a h1> <Sz,c(¢w76)h2> h2> <3 26)
+ <Sx,c(¢w,c>h27 h2> N Y + <Sx,c(¢w,0)h27 h‘2> . '

Thus, from (3.23) we get
<S¢Z,c(¢mc)hla hl) <Sx,c(¢w,c>h27 h2>
+ <Sz,c(¢w,6)h27 h2>

<Sz,c(¢w,0>h17 h1>

<S” ¢wc 3 5> > = + <Sx,c<¢w,6)hl7 h1>

g
+ <Sx,c(¢w,6)h27 h2>

2Nl g

By (3.26) and Hélder’s inequality, we have

a’; < Hh1HH1
Hence, by e = a_19_1 + hy, we have
lellze S a2y + 1Pl S Il

Since,
(Sic(Puele,e) 2 Mlling) 2 llelzm)-
From the definition of S, (¢w.) in (2.7), we have

el S (Soc(Bue)ere) + llelza)
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Therefore, we get that
<Sx,c(¢w,6)€7€> 2 ||€||§{1(R)
This finishes the proof of the proposition. 0

Remark 2. The choosing of the orthogonal condition (¢, J'(puirpctrv)) = 0 is
based on the following two reasons. The first, it guarantees the reversibility of the
corresponding Jacobian matrixz. The second, it brings convenience to obtain the
desired estimate of the dynamic of the parameter vy as presented in the following
lemma.

Lemma 7. There exists C,, . € R, such that

a0¢w c + 18x¢w c

§ == A = Coch+ (SL(due); 2(a3 — w)M(¢u)’

e) + Ollellmw + llellzn ),
(3.27)
and
6—w—Mi=O0(elmm), A=O0(lelmu). (3.28)
Here the parameters 0, y, \ are given by Proposition 1.

Proof. Now, we consider the dynamic of the parameters. From (3.21), we have

u =€ (¢ rmueriw + (1) (@ — y(1)).
Using (1.1), we obtain
€ — (9 — W= )\,U)((bw+)\u,c+)\u + 8) - (y —C— )‘l/) (iax¢w+Au,c+Au + 2(915)
+ )\ . Z'8>\¢M+)\u7c+)\,, = Sx’c(¢w,c)5 + O(>\€ + 62), (329)

where O(+) is a functional with the order equal or more than one.
First, multiplying the equation (3.29) on both sides with —ag®uwxu,c+ 30 +102 Put et av
and integrating over z, we get

- (9 —w — A1) [ — 200 M (Purpetrw) + 2P (Pwtrpctrw) + O(Hg”Hl(]R))]
— (9 = = W) [ = 200P(busrpetn) + [0cburrperavlie + O(el mm)]
+ A [(10APurtapctrvs —00Pwrtapcirv T 102 Puiapetrv) — (€,1000xPusrpcraw + OrOzPuosrpcirn)]
= (S0 (bwe) (0 Pwirpeirw + 10:Puirperaw) €) + ONlellmm) + ||5||%11(]R))
By a direct expansion, we have
Guwirpetrv = Duwe + M0+ O(N), (3.30)
and
N\Putrpetrw =8 + O(N).

Moreover, together with (2.19), we have

M(Guirperr) =M(bue) + MM (60), ) + OO2) = M(d,) + O(2),

Plbusrpers) =P(6se) + AP (6ue), 0) + O02) = P(du) + O0).
From (2.10), we get

Ham(bw+)\,u,c+)\u‘|%2 :(w + )‘M>||¢W+AM,C+)\UH%2
=2WM (¢rs.c) + O(N).
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We collect the above computations and obtain

— (0 —w = M) [ = 2a0M (durc) + 2P(hure) + ON + [l i wy)]
— (== M) [ = 2a0P(¢u ) + 2wM (dyc) + O+ |l i wy)]
+M@w—%%w+me)+OA+Hﬂm )]

= (80 (Bue) (—0Pue + 10rpue + ON)) &) + Ol gy + ellFnmy)-

By Lemma 4, we know that

_CLOM(¢UJ,C) + P(¢w,c> = 07 _aOP<¢w,C) + WM(¢0J,C) - (Cd - a[)) (d)w c) 7é

Then, we get

— (0 —w =) [0 + |lellm)]
— (= ¢ — W) [2(w — )M (Sue) + O+ [l w)]
+ A1), —aobue + 10:0uc) + O+ |l mw)]
= (S0 o(Gue) (—a0huc +102¢0c),€) + Ol iy + el Fw))- (3.31)

Next, multiplying ¢,+auc+a0 o0 both sides of the equation (3.29) and treating as
above, we get

— (0 —w = M) [2M (¢uc) + ON + [le] @)
—(y = c = A)[2P(duc) + ON + |le]l i w))]
+ MW, Gue) + O+ el miw))]
= O(|lellm(w))- (3.32)
Finally, multiplying i.J'(¢u4auc+rv) o0 both sides of the equation (3.29) and treat-
ing as above, we obtain
— (0 —w =) - O+ el m@) — (5 — ¢ = W) - OO+ el wy)
+ AT (Gue) ¥) + O el ®)]
— Olllellim)- (3.33)

Using (3.31), (3.32), (3.33) and Lemma 6, we obtain

. \ 1 —a ¢wc +28x¢wc
y—Cc— Av = Ow,c)\ + <S (gbw c) ( . ) (¢ ) > + O(/\“g”Hl(R) + ||8||?{1(R))7
and
0 —w—Au=O0(lelmm), *=Olellmm)
Here

-1
2((1(% - w)M(¢w,C)
This completes the proof. 0

Cw,c = <“/}a _a0¢w,c + iacc¢w,c>-
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4. INSTABILITY OF THE SOLITARY WAVE SOLUTIONS

4.1. Virial Estimates. To prove the main theorem, first, we need the localized
virial identities.

Lemma 8. Let ¢ € C*(R), bounded and u be a strong solution to (1.1), then

dat @‘u!de =— 2]m/ ©'uOyude _|_ - / o |ul? 2z,

d 1 -
gp]m(u@ u) = /gp’\@xufd:z + = / " Jul*dx + [m/ ¢ |u|*?u d,u.
dt R 2 Jr R

Proof. Combining the equation (1.1) and integration by parts, we have

= |u| dx 2Re/g08tuﬂ

:2Re/ (102 — |ul* d,u)u
R

1
:—QRe/icp’ﬁzuﬂdx+ Re/go’|u|2"+2dx
R o+1 Jr

S 1
:—QIm/gp’uﬁxudx+—/90’|u|2"+2d9:.
R o+ 1 R

By the same way, we obtain

cplm(ua u —Im/ ©0u Oy udx+1m/ U Oy udx

dt
:QIm/gpﬁtumdx—i—Im/go’@tuﬂdx
R R
:2Im/ ©(i0%u — |u|* O,u)Opudz + Im/ ¢ (10%u — |u|* O,u)udz
R R
1 _
= — 2/ ©'|0pul*dx + —/gp”’\u|2d:ﬂ+lm/ ¢ |u*u d,u.
R 2 Jr R
This proves the lemma. [l

Now we define pr € C*(R) satisfying
z, |z| <R,
on@)= {3 "2 om

and 0 < |pi| <1 for any x € R. Moreover, we denote

L(t) = / ol — y()|udz.
1(t) = [ uta = (0 Im(u B

To prove the main theorem, we define the key functional I(t) as
I(t) = —VwIi(t) + L(t) + Cuc),

where O, = 20, o(M(¢y) + P(Gue))-
Hence, by Lemma 8 we can obtain the following localized virial estimates.
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Lemma 9. Assume that

u =" (Guiamperrmn + (b)) (T = y(t)), (4.34)

with the parameters obeying the estimates in Lemma 7. Then the following estimates
hold:

[i (t) - ZCw c).‘M(gbw c) - QC[M( O) - M(gbw,c)] - 4[P<u0> - P(¢w,c)]
<S(ZC ¢wc \/_wac iax¢w,c)a5>

L edy 25
2(0+1) d)\2 o135 A=0

+ l) +0(N?),

+O\ellm @ + llelin@ + 5

and
Ié(t) = - 2Cw c/\P((bw c) - 2[P( ) - P(¢w,e)] - 4[E(u0> - E(¢w,c)]
e f<S” (Go.e) (VWbure = 10ane) €)

o—1 ., d
_'_ 2(0_ + 1) d)\2 J(¢W+AM,C+)\V)

A=0

+ O(\lellm @) + H€H12ql(R) + =) +o(A?).

1
7
Proof. By Lemma 8 and some direct computation, we have the following formulas.

I () :—y/gp}%(x— ))|ul? —QIm/goR x —y(t))ud,udx
R

1 loa
1 [l = yleplu s,

I(t) = — y'/Rsoﬁq(:v — y(t))Im(u Oyu)dz — /Rso}z(fv — y(1))[2/0zul* — Tm(|ul*"u Opu)]dz

1
+3 / Ph(x —y(t))|u]*dz.
R

First, with the definitions of M and P yields
1(t) = — 2M(u) — 2 / [Pr(a — (1) — 1] julPdz — 4P(u) (4.35)
—QIm/ Oz —y —1}uﬂdm
g 1 g
gl + g [ [ = (o) — 1l

:—2(9—0—)\1/)M(U)—2(C+)\V)M(U)_4P(u)+a_1i_1

| 7522

+0( [ [l =y(®) = 1) Glaf + Im(uB) + P ) de). (430

In fact, supp[pr(x —y(t)) — 1] C {z : |z —y(t)| > R}, 0 < |p| < 1. From Lemma
7, we know that |g| < 1. Then, after using (4.34) and the exponential decaying of
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¢w+/\u7c+)\y, we have
[ [t =400 = 1) Gl + I T+ 22
R

S / |:|¢w+)\p,c+/\u|2 + |8£¢w+>\u,0+)\l/| + |8|2 + |aa:€|2 + |5|20+2]
2|>R

1
Mergering (3.27) and (4.37) into (4.35), we obtain
!/ 1! —a ¢wc+zam¢wc
L(t) = = 2[Coch + (S5 (0uc)5 2 > o) M (0 ,€) + ONlellm) + llellfn )] M ()
1 - 1
— 2(0 + )\V)M(u) — 4P(u) + o+ 1 ||U||igj—32 + O(HEHHl(R) + }_%)
Now, using (2.19), (3.30) and (4.34), we get
M(u) =M (du,e) + (M (¢ue),€) + ONlellm@) + llellin @) (4.38)
and
P(u) =P($uc) + (P'(due),€) + OWNell iy + llellin @))- (4.39)
Moreover,
[ull 552 = l@well 52 +2(0 + DM bu,e* due, ) +2(0 + 1){|duel* b, €)
1., d? o
N Guinmenn B2+ O(lellm + lelling) +o0%)
(4.40)
and
! 1 2 d2
J(u) :J(¢w c) + )‘<J (¢w c)a ¢> + 5)‘ W‘](gbw-‘r}\u,c—k)\u)‘)\:o
o—
o LT (), ) + O(Mlellm ) + llelzn @) +o(X). (4.41)

Combining (4.38) and (4.40) yields
. 1
I{(t) = — 2Cw’c)\M<¢w,C) - 2CM(U) — 2)\1/M(gf)w7c) — 4P(u) + O_—H|l¢w,c|’%gjfg
a'Ogbw c + Za:v¢w c

+ (= Sie(Pue) 5 2| b, €) + 2M{| el P, V)
+;A2d—2l|¢w+x etwllionts) A+ Ol @ + lellzn +1)+0(A2>-
2(c+1)" dX\? " L x=0 H®)

R

From the conservation laws and (2.14), we get

I(t) = = 2C, AM (¢o.e) — 2¢M (up) — 4P (o) — 2M\M (¢c) + 2¢M (¢oe) + 4P (Py )
< S// (bw c) a0¢2§ i_ Z}a$¢W,C + 2’¢w,c’20¢w,ca 5> + 2)‘<‘¢w,c‘2a¢w,ca ¢>

0

1 2 d2 2042 2 1 2
Ao+ 1) WH%HMHUHLQLQ 7t O(Mlella @y + llellznm + =) + o(A?).

+ R)
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Observe that
1

20 o
<|¢w,c| ¢w,c>w> - 2(0_ + 1)

a)\ < ‘ | ¢w+)\u,c+)\l/ | | igjfz )

Moreover, using the equality (2.14) again yields

A
<|¢w,c|2a¢w,cv ¢> :ﬁa)\ <4(O' + ].)(C +2 UM(¢w+)\u,c+)\u) + P(wa—f—)\p,,c-‘,-)w))) ‘

A=0
Using Lemma 5 again, we obtain that

<|¢w,c|2a¢w,ca 770) - VM(¢w,c)~

By Lemma 1, we have

—Clo¢w c + Zaz¢w c 2 o—1 " .
) ) 2 o I o ‘
CL% —w + |¢W70| ¢w7c 0(2 N U)WSw,c(gbw,c) (\/aqbw,c Za:cgbw,c)

_S(Z,C(¢w,0)
Finally, we collect the above equalities and obtain
]{(t) - QCw CAM(¢W c) - 2C[M(u0) - M(¢w,c)] - 4[P(u0) - P<¢w,c)]

. 1 2 d2 2042
<S” (bwc (\/_(bwc Zax¢w,c)75> + 2<0_ + 1))‘ d>\2 H¢w+)\,u,c+)\l/HL2o++2 \=0

+ O<)‘H5HH1(R) + ||5HH1(R) + =) +o(\?).

1
7
Similarly, from the definitions of P, E and J, we have

I(t) = — 29 P(u) — 4E(u) +

—y / (Pl — y(t)) — 1)[m(uBym) — 2/0,uf* + I (|uf**u Byu))dz
1

. o—1
=—2(y—c—A)P(u) —2(c+ Av)P(u) — 4E(u) + U—HJ(U) +O(llel @ + ﬁ)‘
Using (3.27), we get

a0¢w ct Za;t¢w c
2(af — w)M(¢uc)’

—2(c+ \v)P(u) — 4E(u) + 0——|—1J(u) + O(”EH%{l(R) +

L(t) = = 2[Cuch + (S (¢, )3 e) + OWllellmwy + llelln )] P(w)

1
R
Combining (4.39) and (4.41), we obtain

() = — 200 AP(buc) — 20P(u) ~ 2w P () — 4B(w) + ! I (6u)

P(d)w,C) " _a0¢w,c + iaacﬁbw,c g —
W) S Goe) = a0 4 5

co—1,, o—1 _,d?
tox 1/\<J (Gue)s ) + 2(c+1)" dx\? I Gurneen)| sy

(T (Gu)€)

1
O(Mlell @) + Hs!l?p(R) + =) +o(\?).

R)
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Using (2.11), (2.12), (2.13), Lemma 4 and the conservation laws, we have

[é(t) - - 2Cw.c}\P<¢w,c) - 20[P<u0) - P(¢w,c)] - 4[E<u0) - E((bw,c)]

— 1 —1 L, &
- 0<20_ p \/(;<5£§,c(¢w,c)(@¢w,c — 103 c), €) o N T (B i)

200 +1) dX\? A=0
1
+ OMlellm@ + llellfn e + E) + 0(\?).

This completes the proof of the lemma. O

According to Lemma 9, we have following result.

Lemma 10. Under the assumptions of Lemma 9, we have

, 1
I'(t) = Auo) + BO) + O (el @ + llellin + 5) +o(\);

with A(ug), B(X) verifying
A(uo) =(2¢v/w + 4w) [(M (uo) — M (du))] + (4v/w — 2¢) [P(ug) — P(duc)]
— 4[Su.e(u0) = S e(Pue)]
and
B(\) = b )2,
for some by > 0.

Remark 3. The form of 1(t) removes the linear term of € in I'(t). The key obser-
vation is that the linear terms of € from I](t) and I5(t) are almost the same.

Proof of Lemma 10. From the definition of I(t), we have
I'(t) = —vVwIi(t) + I(t) + Coch.
By Lemma 9, we obtain
I'(t) =vw[2e(M (1) — M(¢u,c)) + 4(P(ug) — P(du))]
= 2c[P(ug) — P(uc)] — 4[E(uo) — E(du.)]

1 & i
[ - \/;"¢W+Ap,c+)\ul|i2jf2 + (U - 1)J(¢w+)\u,c+)\y):| ‘

* 20 + 1) dA? A=0

1
+ O(Alell ey + ||8||%{1(R) + E> +0o(A%).

We denote
Alug) =v/w[2e(M (ug) = M () + 4(P(ug) — P(du.))]
— 2¢[P(up) — P(¢ue)] — 4[E(uo) — E(bue)],
and
1 d?
B :2(0 +1)d\?

Then, we have

[ Vool + (0= DI Gurnenn)] |

, 1
I'(t) = A(uo) + B(A) + O(Mlellmw + llelin @) + )+ o(A%).



18 ZIHUA GUO, CUI NING, AND YIFEI WU

By the definition of S, ., we have
Alug) =(2evw + 4w) [(M (uo) — M ()] + (4v/w — 20)[P(uo) — P(duc)]
— 4[Suc(u0) = Sue(we)]-
Now we consider B()A). Observe, from (2.11) and (2.14), that
—\/5||¢w+/\u,c+>\u||i§j+22 + (0 = 1)J(Putrpetrw)

=—Vw-4(oc+ 1)[0 +2)\VM<¢w+)\u,c+/\u) + P(¢w+/\u,c+)\u)]
+ (0 = Dd(w + M) M (duirpeiaw) +2(¢ + AV)P(Puirpetav)]

—{1eo(0 — 1) — 2ev/E(0 + DM (Busrer) + 20 — 1) = V(0 + DIP D)
+ [dplo = 1) = 2vv/w(o + DIAM (¢ rpetrv) + 200 P(Puirpeia)-

Next, using (2.17) and (2.18), we calculate the terms above separately:

d2

WM<¢W+/\%C+)\V) A=0 :,u2awwM<¢w,c) + 2ﬂyawa(¢w,c> + V2800M(¢w,c> = K020,
d2

W‘P(gbw-‘r)\u,c—&-)\l/) 0 :/'LQawa(¢w,c) + 2luyawcp(¢w,c) + VQaccP(qbw,c) - _HO\/J-

Finally, together with (2.19), and the three estimates above, we get

1 d?
o+ 1) ae | = VBl buimenlB5HE + (0 = DI (Guipern)] }

1 d2
= 1 2w(o — 1) = Vwe(o + 1)]WM(%+AM,CHV)
1 d2

+ ] [c(c —1) — 2y/w(o + 1)]WP(¢W+>\M7C+>\V) -

_ ! 2w(o — 1) = Vwe(o +1)] - Koz

o+1
—I—U_l_l[c(a—l)—Q\/@(a—l—l)]-—/{0\/5

=2row(1 — 23).

A=0

Let by = 2kow(1 — 22), then b; > 0. Hence, we obtain that
B(A\) = b1 \%.
This concludes the proof of Lemma 10. O

4.2. Proof of Theorem 1. Now we give the proof of Theorem 1. Suppose that
e“td,, o(x — ct) of (1.1) is stable. Choose

Uy = (bw,c + 61(_a0¢w,c + ia:v(bw,c)a (51 > 0.

Here 6, is small enough such that uy € Us(¢, ) which is given by Proposition 1.
Let u be the corresponding solution of (1.1) with the initial data uy. Then, we
can write

u=¢e" (¢w+>\u,c+)\u + 6) (l’ - y)a
with (6,y,\) obtained in Proposition 1, and |\ < 1.
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Lemma 11. There exists by > 0, such that
A(ug) > byds.
Proof. Recalling that ¢ = 229/w, ag = (0 — 1)y/w and the choose of ug, we have
M(ug) — M(¢uc) =01 (M (¢u.c), —0@u,c + 105D ) + 0(d1)
=01[—2a0M (@) + 2P (Pus,c)] 4 0(01)
=0(0,), (4.42)
and
P(ug) = P(du.e) =01(P (due), —a0¢u.c + 10:hue) + 0(d1)
=2(w — ag) M(¢u.c)01 + 0(d1)
=2w0o (2 — o) M (¢y)01 + 0(d1). (4.43)

Moreover, using S, .(¢..) = 0, we get

Sw,c(“O) - Sw,c(¢w,c) :61<S:J,c(¢w,c)a _a0¢w,c + iaz¢w,c> + 0<51)
=0(d1). (4.44)
Now, we collect the above computations and obtain
A(ug) =(2cv/w + 4w) - 0(61) + (4v/w — 2¢) - 2w (2 — )M (Pey.c)01 + 0(61) — 4 - 0(6y)

:800\/0_00'(2 - U)M(¢w,c)5l + 0(51)
Zb2517

where by = dw\/wo(2 — o)M(¢,) > 0. This proves the lemma. O
We further give the estimate on ||e|3,, (®)-
Lemma 12. Let € be defined in (3.21), there exists by > 0, then
||€H12ql(R) < b3)\51.

Proof. Without loss of generality, we may assume that v > 0. From the conservation
laws, we have

Sw+)\u,c+)\u (u0> :Sw+)\u,c+)\u (U)

1
= w+>\u,c+>\u(¢w+/\u,c+>\u) + §< x+/\u,c+>\u(¢w+>\u,c+>\u)5a 5> + 0(H5H§11(R)>'

Combining (2.6) and Lemma 5 yields
Sw+/\u,c+)\u(¢w+)\u,c+)\u) :Sw+)\u,c+/\1/(¢w,c) + )\<S£J+Au7c+>\y(¢w,c)7 w>

NS Bt 0) 4 0(?)
=Swtametrv(Bue) + A, (Bue)s V) + AMu(M (Gue), V)

F AP (Bue), 0) 4 5N (e, 0) + o)
=Suiametrv(Bue) + 0(N?).

Then, we have

1
Sw-i-/\u,c—&-)\u(u()) = Sw+>\u,c+>\u(¢w,c) + 5<SIZ+>\M,C+>\V(¢W+AM,C+)\V)E7 5> + 0()‘2 + ||5||2H1(R))
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Together with (4.42), (4.43) and (4.44), we have

Sw+)\u,c+>\u(u0>_Sw+)\u,c+)\u(¢w,c)
:Sw,c(uo) - Sw,c(¢w,c) + )‘M(M(UO) - M(¢w,c)) + )‘V<P(u0) - P(¢w,c))
=2vwo (2 — o) M (¢y.) A1 + 0(01). (4.45)

Therefore, by (3.22), (3.28) and (4.45), there exists C' > 0, such that
||5||12L11(R) §C<SZ+)\H,0+/\V(¢w+>\u7c+)\v)€’ 5>

=C [Sw-i-)\u,C-i-)\V(uO) - Sw+>\u76+)\u(¢m0)} + 0()‘2 + Hg‘ﬁ{l(R))
=2Cvwo (2 — o) M (B, )A01 + 0(61) + o(A* + ||5||§{1(R))
<2b3A\d; + 0(||5||§{1(R))7

where by = 2Cvwo (2 — 0)M(¢w,) > 0. Then we obtain

el )y < bsAdy.
This completes the proof. ([l

Proof of Theorem 1. On one hand, we note that from the definition of I(t), we have
the time uniform boundedness of I(¢). That is, if |A\| < 1, then

sup (1) < Rl el ey +1)- (4.46)
On the other hand, using (3.28) and Lemmas 10, 11, we get

, 1
I'(t) =A(uo) + B + O(Alellme + lelling + 5) +o(W)

1
>bydy + i\ + O(HEH%{I(R) + E) + O()\Q)

1 1
Z§b251 + ébl)\Q + O<||5||?{1(R))7

by choosing R > 10(b9d;) .
Moreover, combining Lemma 12 yields

1 1
I'(t) > o0+ §b1)\2 >0,

when || < 1.

This implies that I(¢) — +oo when t — 400, which contradicts to (4.46). Hence
we prove the instability of the solitary wave solutions e“¢,, .(x — ct) of (1.1). This
completes the proof of Theorem 1. O

APPENDIX: PROOF OF LEMMA 3 AND LEMMA 4

Throughout this appendix, let 1 < ¢ < 2 and zy = z(0) € (—1,1) satisfy
FJ(Z()) =0.

Now we adopt some notations from [29]. More precisely, for any (w,c) € R?
satisfying ¢? < 4w, we denote

1 1 2 1 1 1 2
K=Viw—c2>0, F=2720"11+0)rre 2w 2 2, flwrc)= (U—i_—)'i7
2\/w
h(x;o;w,c) = cosh(okr) — ﬁ, ay = /0 h~s"dx, n € Z".
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Proof of Lemma 3. For any (w,c) € R? satisfying ¢® < 4w, by (1.3), we have

_ o6 i
Ouduclz) = e”[(i3 2 + 2

Therefore, we have

P(qbw,c) :%Im/ ¢w,cax¢w,cdx

1 C
:—I - o 2 d
2 m/ 2 2% + 2(pw,c:| (pw,c T

1 2042
4||90w,0||L2 + 4(0 + 1) H‘pw,CHLZGH-

Soazu(,jc)@w,c + ax@w,c] .

Finally, we obtain

fwell 7552 = 4(0 + 1)[ M(Gue) + P(¢ue)].
According to [29] Appendix Lemma A.3, we have that
OcM () = 0P (due)s  OcP(Pue) = w0 M (D).
This completes the proof. O
Now, we focus on the critical case ¢ = 2z9y/w.
Proof of Lemma 4. From [29] Lemma 4.2, det[d”(w, ¢)] = 0 is equivalent to
(0 = DVEM(6u)]” = P(duc)’.

When ¢ = 229v/w, we have P(¢,.) > 0. Indeed, if P(¢,.) < 0, since AIZ((? <) 4o,

c)
when ¢ — —24/w. Then there exist two solutions ¢; = ¢;(y/w), ¢2 = c2(y/w), such
that
} ¢wc | _

M(du,c)
This contradicts to the fact that ¢ = 2zg1/w is the unique solution of det[d”(w, ¢)] =
0. Hence,

P(ue) >0, Plgue) = (0 = 1)VWM ().
From [29] Appendix (A.2) Lemmas A.1 and A.2, we know that M (d,.) = f= g
and P(dy.) = ﬁfi(—Qw%cao + K%aq). Since P(¢,,.) > 0, then we have

K20 > Zw%cao.
Together with [29] Appendix Lemma A.3, we obtain
DM () =Fw [—8(0 — 1)w%ao + C(QW%CO«) — K’ay)] <0,
OuwP(¢u.c) :2&[20w%a0(0 —-1) - 2cwiag + K*ay] > 0.
On one hand, by 0.P(¢,..) = wO,M(¢y.) and 0,P(Pyc) = 0cM (¢ ), we have

E _ acM<¢w,c) _ QJP(géw,c) -0
v 6UJM(¢W7C) awM(¢w,c>
On the other hand,

C0uP(bne)  OuP(ue)

B OP(u) wOM(du)
v
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Hence, combining with the two equations above, we get

(E)2 _ awp((bw,c) . _wawM(¢w,C> _
v a,uM((bw,c) awp(¢w,c)

Then we obtain

Differentiating M (¢, ) and P(¢, ) with respect to w and ¢, we have the following
relations:

1
8wwM(¢w,c) :; (awcp(¢w,c) - awM(¢w,c)); awa(¢w,c) = awwp(¢w,c)a
ach(¢w,c) :awcp(¢w7c)a accp(¢w,c) = wawwp<¢w,c)~
Since 9, P(pu.c) = VwdoM(Py.), we obtain (25 — 1)a; = (1 — 29 — 0)ay. From [7]
Appendix Lemma 10, we have

0uM ($us) = 8V/whao(2] — 0 +1) + 8Vwkan (2 — 1) = 8vwRao(1 = o) (14 20),

20 P(G) + 20cP () — 50M (610) = —4/Rau(o — (1~ 2),
and
,uzawa(gbw,C) + 2p10,c P(pu ) + VQOCCP(QSW,C) = 812wk, (0 — 1).
Moreover, we have
120 M (G.e) + 20000 M (D) + V2 Oec M (D)
=0 (00 M ($.c) + 2V/00ucM ($.c) + 0ecM (D))
=17 [ = 0uM(¢u.e) + 20ueP(buc) + 2V/w0s P(Gusc)|

:V2 [2\/C_uawwp<¢w,c) + 2awcp<¢w,c) - %8wM(¢w,c) - %awM(¢w,c)]

= [—dvwkag(o — 1)(1 — zp) + 4v/whean(l — o)(z + 1)]
=8v2Vwkag(o — 1)z.
Take ko = 8v%\/wk,ap(c — 1), then ko > 0. This completes the proof. O
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