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Abstract We study the estimation and forecasting in first-order integer-valued

autoregressive process with Poisson-Lindley (PLINAR(1)) marginal distribution

(Mohammadpour et al., 2018). Quasi-likelihood estimators are proposed for the

parameters of interest and their asymptotic properties are derived. Two methods

for coherent point prediction are given and the prediction intervals for future data

are constructed. We present some simulations to verify rationality of the proposed

estimation and prediction methods. An application to a real data about animal’s

anorexia is also provided.
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1 Introduction

Recently, integer-valued time series has been widely used in many fields, such as the number

of daily transactions in the stock market (Brännäs and Quoreshi, 2010), the weekly number of

patients in a hospital caused by influenza (Moriña et al., 2011), and the annual severe hurricane

counts in the North Atlantic (Livsey et al., 2018), etc. The main feature of these data is their

integer-valued structure, so many traditional autoregressive-type models can not fit this kind of

data well. To tackle with this count time series data, the thinning operator-based technique (Steutel

and Van Harn, 1979) is very popular. For example, Al-Osh and Alzaid (1987) proposed a first-order

integer-valued autoregressive (INAR(1)) process, which has layed the foundation for thinning-based

INAR models. Later on, a large number of new INAR models are developed. Du and Li (1991)

presented a pth-order integer-valued autoregressive model. Zheng et al. (2007) proposed a first-

order random coefficient integer-valued autoregressive process. Ristić and Bakouch (2009) defined
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a new INAR(1) process with geometric distribution based on negative binomial thinning operator.

Bakouch and Ristić (2010) proposed an INAR(1) process with zero truncated Poisson marginal

distribution. Zhang et al. (2010) gave a p-th order integer-valued autoregressive process with

signed generalized power series thinning operator. There was a significant new breakthrough in

INAR modeling which happened recently by introducing a random environment in integer-valued

autoregressive process by Nastić et al. (2016). Mohammadpour et al. (2018) proposed a first-order

integer-valued autoregressive with Poisson-Lindley marginal distribution. More related research

can be referred to Weiß (2008) and Scotto et al. (2015).

As we know, estimation and forecasting are two important topics for the analysis of time

series data. Many results on parameter estimation for INAR models have appeared in the lit-

erature. Zheng et al. (2006) used the maximum likelihood, conditional least squares, modified

quasi-likelihood and generalized method of moments to estimate the parameters of interest in pth-

order random coefficient INAR processes. Bu et al. (2008) developed a general framework for

maximum likelihood estimation of higher-order integer-valued autoregressive processes. Drost, et

al. (2009) considered the semiparametric efficient estimation for INAR(p) models. Zhang et al.

(2011) studied the empirical likelihood based inference for the random coefficient integer-valued

autoregressive processes. Martin et al. (2014) introduced an efficient method of moment estimator

for integer-valued time series. Pedeli et al. (2015) proposed the likelihood estimation for INAR(p)

model by saddlepoint approximation. Zhang et al. (2017) proposed the regularized estimation

method for INAR(p) processes via penalty-based approach. To the best of our knowledge, few

articles are about predictions for count time series. McCabe et al. (2011) gave an efficient prob-

abilistic forecast method for count time series data. Maiti and Biswas (2015) and Awale et al.

(2017) considered the coherent forecasting for INAR(1) process with geometric marginals. Maiti et

al. (2016) studied the forecasting for count time series using Box-Jenkins’s AR(p) model. The aim

of this work is to study both estimation and forecasting for PLINAR(1) process (Mohammadpour

et al., 2018).

The remainder of this article is organized as follows. In Section 2, we introduce the motivation

and provide the definition and some statistical properties of the PLINAR(1) process. In Section 3,

we propose the quasi-likelihood estimator of model parameter and derive its asymptotic properties.

In Section 4, several forecast methods for PLINAR(1) process are presented. Some simulation

results and an application are reported in Sections 5 and 6, respectively. The concluding remarks

are given in Section 7.
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2 Motivation and model definition

2.1 Motivation

Time series of counts are encountered in many context, and usually dynamic in nature with

significant overdispersion relative to the means. For example, the monthly number of animal’s

anorexia from January 2003 to December 2009 in a region of New Zealand (see Figure 1), where the

mean and variance are 0.8214 and 2.8954, respectively. To model this kind of data, Mohammadpour

et al. (2018) proposed an INAR(1) model with Poisson-Lindley (PL) marginal distribution, which

can effectively describe the over-dispersed property of count data. Here a random variable X is

said to have a PL distribution (Sankaran, 1970) if its probability mass function can be written as

P (X = x) =
θ2(x+ θ + 2)

(θ + 1)x+3
, x = 0, 1, 2, · · · ; θ > 0. (2.1)

Since E(X) = (θ + 2)/{θ(θ + 1)}, and V ar(X) = (θ3 + 4θ2 + 6θ + 2)/{θ2(θ + 1)2}, we know that

V ar(X)/E(X) > 1, i.e., the PL distribution is overdispersed.

Note that the main advantages of PL distribution are as follows: First, the PL distribution

belongs to compound Poisson family similar to negative binomial distribution. It has some com-

mon properties like unimodality, over-dispersion, and infinite divisibility (Ghitany and Al-Mutairi,

2009). Second, the PL distribution (2.1) can be regraded as mixture of geometric distribution with

parameter 1/(1+θ) and negative binomial distribution with parameters 2 and 1/(1+θ) with mixing

weights θ/(1 + θ) and 1/(1 + θ), respectively. Thus, the PL distribution is more flexible to fit the

data in practice. Third, the skewness and kurtosis of the PL distribution are much smaller than the

negative binomial distribution (Ghitany and Al-Mutairi, 2009). Based on the above advantages of

PL distribution, the INAR(1) process with PL marginal may have a better fit in certain practical

situations (Mohammadpour et al., 2018). From this point of view, we focus on some estimation

and forecasting topics for the PLINAR(1) process in the remainder of this article.

2.2 Definition and some basic properties

Here we first review the definition of PLINAR(1) process, which was proposed by Mohammad-

pour et al. (2018) as follows:

Definition 2.1 (Mohammadpour et al., 2018) The PLINAR(1) process is defined by the fol-

lowing recursive equation

Xt = α ◦Xt−1 + ϵt, t ≥ 1, (2.2)
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where

(i) the thinning operator “◦” is defined as

α ◦Xt−1 =

Xt−1∑
i=1

Bi,t,

where {Bi,t} is an i.i.d. Bernoulli sequence with P (Bi,t = 1) = 1− P (Bi,t = 0) = α ∈ (0, 1).

(ii) ϵt is a non-negative integer-valued random variable with probability mass function (PMF)

fϵ(x) = αh(x) + (1− α)g(x),

where h(x) is a degenerate distribution at zero, and g(x) is a probability mass function defined by

g(x) =
θ2(1− α)2 + θ(1− α2) + 2α

(θ(1− α) + 1)2
θ

1 + θ

(
1− θ

1 + θ

)x
+

(1− α)

θ(1− α) + 1
(x+ 1)

( θ

1 + θ

)2(
1− θ

1 + θ

)x
− α

(θ(1− α) + 1)2
θ + 1

θ + 1 + α

(
1− θ + 1

θ + 1 + α

)x
with θ > 0. Moreover, ϵt is independent of Bi,t and Xm, for all m ≤ t. The probability generating

function (PGF) of ϵt is

Φϵ(s) =
2 + θ − s

(1 + θ − s)2

(
θ + α(1− s)

)2
1 + θ + α(1− s)

. (2.3)

Mohammadpour et al. (2018) derived some basic properties of model (2.2), which are summa-

rized as the following two remarks.

Remark 2.1 The {Xt} is a Markov Chain on {0, 1, 2, ...} with one-step transition probability

P (Xt = i|Xt−1 = j) =

min(i,j)∑
k=0

(
j

k

)
αk(1− α)j−kP (ϵt = i− k).

Remark 2.2 Let {Xt} be a stationary process from (2.2), then for t ≥ 1

(a) E(Xt) =
θ+2

θ(θ+2) , µ;

(b) E(Xt+h−1|Xt−1) = αhXt−1 + (1− αh)µ, for h ≥ 1;

(c) V ar(Xt|Xt−1) = α(1− α)Xt−1 + σ2
ϵ , where σ2

ϵ = (1−α)(θ3+4θ2+6θ+2+α(θ2+4θ+2))
θ2(θ+1)2

.

The h-step transition probability of {Xt} plays an important role in the forecasting topic.

Moreover, the probability generating function (PGF) is a classical technique in the process of

deriving the h-step transition probability. Thus we are required to present the following result.
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Theorem 2.1 Given Xt, the h-step probability generating function of Xt+h is

ΦXt+h|Xt
(s) = (1− (1− s)αh)Xt

2 + θ − s

(1 + θ − s)2
(θ + αh(1− s))2

1 + θ + αh(1− s)
.

Proof. By the definition of Xt in (2.2) and recursive iteration procedure, we can derive that

Xt+h = α ◦Xt+h−1 + ϵt+h

= α[h] ◦Xt +
h−1∑
i=0

α[i] ◦ ϵt+h−i,

where α[k] = α ◦ α ◦ · · · ◦ α︸ ︷︷ ︸
k times

with k = 1, . . . , h. The PGF of Xt+h given Xt is

ΦXt+h|Xt
(s) = E(sXt+h |Xt)

= E(sα
[h]◦Xt |Xt)

h−1∏
i=0

E(sα
[i]◦ϵt+h−i).

Let α[k−1] ◦Xt = Yk−1, then we have

E(sα◦Yk−1 |Yk−1) =

Yk−1∑
j=0

sjP (α ◦ Yk−1 = j|Yk−1)

= (1− (1− s)α)Yk−1 , k = 1, 2, . . . .

Thus,

E(sα
[h]◦Xt |Xt) = E{(1− (1− s)α)Yh−1 |Xt}

= (1− (1− s)αh)Xt .

Since E(sα
[h]◦Xt |Xt) = (1 − (1 − s)αh)Xt = E(sα

h◦Xt |Xt), it can be concluded that α[h] ◦ Xt|Xt

follows the binomial distribution with parameters (Xt, α
h). Note that ϵt is an i.i.d. sequence, by

(2.3) we can obtain that

h−1∏
i=0

E(sα
[i]◦ϵt+h−i) =

h−1∏
i=0

E(sα
[i]◦ϵt)

=
2 + θ − s

(1 + θ − s)2
(θ + αh(1− s))2

1 + θ + αh(1− s)
,

where Φϵ(·) is defined in (2.3). This ends the proof. �

Based on the h-step probability generating function in Theorem 2.1, we can derive the h-step

transition probability of {Xt}.
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Theorem 2.2 Given Xt, the h-step transition probability function of Xt+h is

P (Xt+h = i|Xt = j) =

min(i,j)∑
k=0

(
j

k

)
αhk(1− αh)j−kP (Wt+h = i− k), (2.4)

where the probability mass function of Wt+h is given as

P (Wt+h = i)



αh + (1− αh)
(
Ah

θ
1+θ +Bh(

θ
1+θ )

2 + Ch
1+θ

1+θ+αh

)
, i = 0,

(1− αh)
(
Ah

θ
1+θ (

1
1+θ )

i +Bh(i+ 1)( θ
1+θ )

2( 1
1+θ )

i

+Ch
1+θ

1+θ+αh (
αh

1+θ+αh )
i
)
, i = 1, 2, . . . ,

(2.5)

and

Ah =
θ2(1− αh)2 + θ(1− α2h) + 2αh

(θ(1− αh) + 1)2
,

Bh =
1− αh

θ(1− αh) + 1
,

Ch =
−αh

(θ(1− αh) + 1)2
.

Proof. Suppose (2.4) is the PGF of Wt+h, which can be rewritten as

ΦWn+h
(s) =

2 + θ − s

(1 + θ − s)2
(θ + αh(1− s))2

1 + θ + αh(1− s)

= αh + (1− αh)
(s2(θαh − αh) + s(−θ2(1 + αh)− 2θαh + 2αh) + θ3 + θ2(αh + 2)

(1 + θ − s)2(1 + θ + αh(1− s))

+
θαh − αh

(1 + θ − s)2(1 + θ + αh(1− s))

)
= αh + (1− αh)

(
Ah

θ

1 + θ − s
+Bh

θ2

(1 + θ − s)2
+ Ch

(1 + θ)

1 + θ + αh(1− s)

)
, (2.6)

where

Ah =
θ2(1− αh)2 + θ(1− α2h) + 2αh

(θ(1− αh) + 1)2
,

Bh =
1− αh

θ(1− αh) + 1
,

Ch =
−αh

(θ(1− αh) + 1)2
.

By (2.6), the PMF of Wt+h is a mixture of the geometric distribution with parameter θ
1+θ ,

negative binomial distribution with parameters (2, θ
1+θ ), geometric distribution with parameter

1+θ
1+θ+αh and a degenerate distribution at zero, respectively. Then we can obtain the PMF of Wn+h

in (2.5) with
∑∞

i=0 P (Wt+h = i) = 1. This completes the proof. �
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3 Quasi-likelihood estimation

In this section, we will consider the quasi-likelihood (QL; Heyde,1997) estimators for the pa-

rameters α and θ, respectively. Note that µϵ = (1−α)(θ + 2)/{θ(θ+1)}, we need to estimate the pa-

rameter of interest with β = (α, µϵ)
′. Assume that {X1, . . . , Xn} is a sample from model (2.2). Let

γ = (λ, σ2
ϵ )

′, where λ = α(1−α). Recall from Remark 2.2, the conditional mean and one-step condi-

tional variance ofXt are E(Xt|Xt−1) = αXt−1+µϵ and Vγ(Xt|Xt−1) , V ar(Xt|Xt−1) = λXt−1+σ2
ϵ ,

respectively. Given γ, a set of standard quasi-likelihood estimating equations has the form

n∑
t=2

V −1
γ (Xt|Xt−1)Xt−1(Xt − αXt−1 − µϵ) = 0,

n∑
t=2

V −1
γ (Xt|Xt−1)(Xt − αXt−1 − µϵ) = 0.

(3.1)

By solving (3.1), we can get the quasi-likelihood estimator of β with an explicit solution,

β̂ = Q−1
n qn, (3.2)

where

Qn =

(∑n
t=2 V

−1
γ (Xt|Xt−1)X

2
t−1

∑n
t=2 V

−1
γ (Xt|Xt−1)Xt−1∑n

t=2 V
−1
γ (Xt|Xt−1)Xt−1

∑n
t=2 V

−1
γ (Xt|Xt−1)

)
,

qn =

(∑n
t=2 V

−1
γ (Xt|Xt−1)XtXt−1∑n

t=2 V
−1
γ (Xt|Xt−1)Xt

)
.

The following theorem establishes the asymptotic property of β̂. The proof is similar to The-

orem 3.2 in Zheng et al. (2007), so we omit the details here.

Theorem 3.1 For the quasi-likelihood estimator β̂ given by (3.2), as n → ∞, we have

√
n(β̂ − β) → N(0, T−1(γ)),

where

T (γ) =

(
T1(γ) T3(γ)

T3(γ) T2(γ)

)
, T1(γ) = E(V −1

γ (X1|X0)X
2
0 ),

T2(γ) = E(V −1
γ (X1|X0)), T3(γ) = E(V −1

γ (X1|X0)X0).

In practice, we need to give the consistent estimator of parameter γ. Let

S(γ) =

n∑
t=2

[
(Xt − α̂clsXt−1 − µ̂cls(1− α̂cls))

2 − (λXt−1 + σ2
ϵ )
]2
,

where α̂cls and µ̂cls represent the CLS estimators of α and µ, respectively (Mohammadpour et al.,

2018). Then we can get an estimator of γ as γ̂cls = argmin
γ

S(γ).
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4 Forecasting in the PLINAR(1) process

The point and interval forecasts of future values from model (2.2) are of great interest in

practice. Freeland and McCabe (2004) introduced the concept of coherent forecasting in the context

of integer-valued time series data. Here the coherent forecasting means that forecasting value is

integer. For the h-step point forecast, a simple forecasting method is based on the conditional

mean with E(Xn+h|Xn) = αhXn + (1 − αh)µ, for h ≥ 1. Although this forecast approach can be

easily figured out, the E(Xn+h|Xn) is continuous and can not describe the discrete characteristic

of count time series. Thus, conditional mean-based predictor is not coherent. To deal with this

problem, Maiti et al. (2015) adopted the rounded conditional mean X̂n+h = ⟨αhXn + (1 − αh)µ⟩
as the h-step predicted value, where ⟨·⟩ is the rounding operator (Kachour and Yao, 2009), α and

µ can be consistently estimated via the CLS or QL method.

Another coherent forecasting method is the probabilistic forecasts by estimating the forecasting

distribution (Freeland and McCabe, 2004; McCabe, et al., 2011). Specifically, the h-step predicted

value X̂n+h is the median of the transition probability function P (Xn+h|Xn), which is defined in

(2.4). The coherence of the median is given by the fact that it almost lies in the support of the

distribution when the variable is discrete and the cardinality of the support is small (Freeland and

McCabe, 2004). Moreover, the median is not sensitive to outliers compared with the mean, so the

median-based approach is a more robust and coherent point prediction method.

For the h-step interval forecasts, the standard interval in autoregression models is constructed

on the basis of asymptotic normality of X̃n+h = E(Xn+h|Xn) (Bhansali, 1974). However, the

forecasting distribution P (Xn+h|Xn) is positively skewed and unimodal as shown in Figure 2 and

Figure 3. So the standard approach is invalid in the aspect of interval forecasts. As suggested

by Maiti and Biswas (2015), we can use the 100(1 − γ)% highest predicted probability (HPP)

interval with γ ∈ (0, 1). Specially, the 100(1 − γ)% HPP interval of Xn+h given Xn, denoted by

Ch = (XL, XU ), is Ch =
{
i : ph(i|j) ≥ Kγ

}
with Kγ is the largest number such that

P (XL ≤ Xn+h ≤ XU |Xn = j) =

XU∑
i=XL

ph(i|j) ≥ (1− γ), (4.1)

where ph(i|j) = P (Xn+h = i|Xn = j) is defined in (2.4). Based on the definition of HPP interval

and the unimodality of the forecasting distribution, we propose the following algorithm to obtain

the HPP interval.
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Algorithm 1

Step 1. Set Kγ = δ, and k = 1, where δ is a small positive number (e.g. δ=0.01)

Step 2. Let XLk
is the smallest integer such that P (Xn+h = XLk

|Xn = j) ≥ Kγ , and XUk
is the

largest integer such that P (Xn+h = XUk
|Xn = j) ≥ Kγ . Calculate Sk =

∑XUk
i=XLk

ph(i|j).
Step 3. If Sk ≥ (1− γ), we set Kγ = Kγ + δ and k = k + 1.

Step 4. Repeat Steps 2 and 3 until there exists an integer k0 such that Sk0 ≥ (1− γ) and S(k0+1) <

(1− γ). Then, the HPP interval is [XLk0
, XUk0

].

5 Numerical simulation

In this section, we conduct some simulation studies to evaluate the performance of our proposed

methods with the help of R software. We generate a number of observations from the PLINAR(1)

model (2.1) with four different sets of parameter combination, (i)α = 0.1, θ = 1, (ii)α = 0.1, θ = 1.5,

(iii)α = 0.3, θ = 1 and (iv)α = 0.3, θ = 1.5. In Figure 4, we present some sample paths of the

simulated data. All the experiments are repeated B = 10000 times, where the sample size n =100,

300, 500, respectively.

To check the efficiency of our proposed quasi-likelihood (QL) estimate, we compare it with the

Yule-Walker (YW) and conditional least squares (CLS) methods (Mohammadpour et al., 2018). In

Table 1, we report the estimated bias (BIAS) and sample standard error (SSE) of the corresponding

estimate using the format (BIAS, SSE). For example, (−0.015442 0.009903) means that BIAS is

−0.015442, and SSE is 0.009903. It can be seen from the results that BIAS and SSE of all the

three estimates are decreasing as sample size n becoming larger. Overall, the BIAS and SSE of

QL are smallest among the three methods, which indicate that the QL method produces a better

estimation.

The second simulation aims to compare the rounded conditional mean-based predictor (RCM)

with the median of transition probability-based predictor (MTP) towards h-step prediction. Here

we set the forward step as h = 1, ..., 4. We generate n+4 observations from the PLINAR(1) process,

where the first n observations are used to estimate the parameters, and the remaining observations

are used to calculate the prediction mean absolute error (PMAE). The calculation formula is

PMAE(h) =
1

B

B∑
k=1

|X(k)
n+h − X̂

(k)
n+h|,

where X
(k)
n+h is the (n + h)th observed data, X̂

(k)
n+h is the corresponding h-step predication, and k

is the repetition times. We give the results on PMAE in Table 2, which indicate that the MTP

procedure is better than RCM method.
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Finally, we study the HPP’s performance for interval prediction of future observation, where

the data are generated as the second simulation. In Table 3, we present the h-step predication

interval of Xn+h in the form (XL, XU ), where XL = 1
B

∑B
i=1X

(k)
L with X

(k)
L being the left interval

value of kth repetition simulation, k = 1, · · · , B, and XU is defined similarly. The 95% coverage

probability (CP) and length of prediction interval (LPI) are also provided. From the results, we

conclude that CP is close to 0.95 and LPI is decreasing as n becoming large, which indicate that

the HPP method can produce reliable predication interval for the PLINAR(1) process.

6 Real data analysis

Now we apply our proposed method to a data set of animal health symptom, which records

the monthly number of animals anorexia from January 2003 to December 2009 in a region of

New Zealand (Mohammadpour, et al., 2018). The sample path, autocorrelation function (ACF)

and partial autocorrelation function (PACF) are presented in Figure 1, which shows that AR(1)-

type process is appropriate for modeling this data set. Of note this data is over-dispersed with

mean and variance equal to 0.8214 and 2.8954, respectively. By Mohammadpour et al. (2018),

we can adopt the PLINAR(1) process to fit this anorexia data. To check the performance of our

prediction method, we use the first 80 observations to estimate the parameters, and predict the last

4 observations. The QL estimators for α and θ are α̂QL = 0.1845 and θ̂QL = 1.5315, respectively.

In Table 4, we report the point predictions for the last 4 observations using the rounded conditional

mean-based predictor (RCM) and the median of the transition probability-based predictor (MTP).

It can be seen that the 95% HPP intervals seem to be acceptable, and the MTP is much better

than RCM since MTP-based predictors are exactly the same as observed data. Thus, we suggest

to use MTP-based predictor for data prediction in the PLINAR(1) process.

7 Concluding remarks

In this paper, we have considered the quasi-likelihood (QL) estimators for the parameters of

interest in PLINAR(1) process. The rounded conditional mean-based predictor and the median of

transition probability-based predictor were proposed to forecast future data. Furthermore, highest

predicted probability interval was also presented. Simulation studies and real data application

indicated that our proposed methods work well.

10



Acknowledgements

The authors would like to thank the Editor, the Associate Editor and the reviewer for their

constructive and insightful comments and suggestions that greatly improved the manuscript. This

work is supported by Science Foundation of Tianjin University (No. 2018XRG-0038).

References

[1] Al-Osh, M. and Alzaid, A. (1987). First-order integer-valued autoregressive (INAR(1)) process.

Journal of Time Series Analysis, 8, 261-275.

[2] Awale, M., Ramanathan, T. and Kale, M. (2017). Coherent forecasting in integer-valued AR(1)

models with geometric marginals. Journal of Data Science, 15, 95-114.
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Table 1. Bias and SE of the estimators for the PLINAR(1) process.

Sample size Parameters YW CLS QL

α = 0.1, θ = 1

n = 100 α̂ (−0.015442 0.009903) (−0.014562 0.010006) (−0.014187 0.009956)

θ̂ (0.014088 0.011799) (0.014265 0.011877) (−0.003855 0.003421)

n = 300 α̂ (−0.004122 0.003424) (−0.003790 0.003436) (−0.002025 0.003137)

θ̂ (0.004880 0.003833) (0.004863 0.003843) (0.004863 0.003843)

n = 500 α̂ (−0.001274 0.001968) (−0.001073 0.001972) (−0.001105 0.001966)

θ̂ (0.002418 0.002291) (0.002387 0.002293) (0.002387 0.002293)

α = 0.1, θ = 1.2

n = 100 α̂ (−0.016144 0.009994) (−0.015313 0.010093) (−0.014976 0.010025)

θ̂ (0.022236 0.015362) (0.022450 0.015477) (0.022448 0.015477)

n = 300 α̂ (−0.005214 0.003425) (−0.004899 0.003436) (−0.004839 0.003419)

θ̂ (0.006646 0.004892) (0.006576 0.004900) (0.006576 0.004900)

n = 500 α̂ (−0.001642 0.001982) (−0.001447 0.001986) (−0.001473 0.001981)

θ̂ (0.003396 0.002933) (0.003396 0.002938) (0.003395 0.002938)

α = 0.3, θ = 1

n = 100 α̂ (−0.022655 0.010198) (−0.019809 0.010287) (−0.019166 0.010297)

θ̂ (0.024098 0.014764) (0.024324 0.014910) (0.024320 0.014910)

n = 300 α̂ (−0.007440 0.003461) (−0.006448 0.003471) (−0.006235 0.003451)

θ̂ (0.005123 0.004762) (0.005113 0.004774) (0.005113 0.004774)

n = 500 α̂ (−0.004120 0.002070) (−0.003523 0.002072) (−0.003385 0.002051)

θ̂ (0.002730 0.002810) (0.002689 0.002817) (0.002689 0.002817)

α = 0.3, θ = 1.2

n = 100 α̂ (−0.023430 0.010167) (−0.020590 0.010254) (−0.019680 0.0102830)

θ̂ (0.027463 0.018812) (0.028283 0.018985) (0.028262 0.018983)

n = 300 α̂ (−0.007831 0.003513) (−0.006866 0.003522) (−0.006764 0.003477)

θ̂ (0.008256 0.006078) (0.008347 0.006097) (0.008344 0.006097)

n = 500 α̂ (−0.005575 0.002121) (−0.004948 0.002124) (−0.004787 0.002096)

θ̂ (0.005804 0.003668) (0.005790 0.003677) (0.005791 0.003677)
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Table 2. Values of PMAE for simulated PLINAR(1) process.‡

h RCM MTP RCM MTP RCM MTP RCM MTP

n = 100 α = 0.1, θ = 1 α = 0.1, θ = 1.2 α = 0.3, θ = 1 α = 0.3, θ = 1.2

1 1.3507 1.2761 1.0959 1.0842 1.2541 1.1835 1.0719 0.9748

2 1.4088 1.3025 1.1044 1.0924 1.3481 1.2593 1.1085 1.0843

3 1.3816 1.2497 1.1088 1.0996 1.3697 1.2533 1.1166 1.0862

4 1.3732 1.2399 1.1070 1.0929 1.3845 1.2534 1.1215 1.0951

n = 300 α = 0.1, θ = 1 α = 0.1, θ = 1.2 α = 0.3, θ = 1 α = 0.3, θ = 1.2

1 1.3157 1.2367 1.0734 1.0573 1.2435 1.1783 1.0632 0.9648

2 1.3885 1.2643 1.0848 1.0830 1.3397 1.2537 1.0955 1.0873

3 1.3752 1.2528 1.1003 1.0986 1.3664 1.2577 1.0778 1.0735

4 1.3610 1.2382 1.0721 1.0713 1.3732 1.2423 1.0798 1.0775

n = 500 α = 0.1, θ = 1 α = 0.1, θ = 1.2 α = 0.3, θ = 1 α = 0.3, θ = 1.2

1 1.3023 1.2135 1.0614 1.0608 1.2432 1.1636 1.0628 0.9607

2 1.3702 1.2523 1.0727 1.0726 1.3279 1.2445 1.0874 1.0804

3 1.3640 1.2412 1.0761 1.0756 1.3474 1.2454 1.0777 1.0749

4 1.3789 1.2580 1.0644 1.0643 1.3678 1.2321 1.0740 1.0729

‡ RCM denotes rounded conditional mean-based predictor; MTP denotes median of transition probability-based predictor.
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Table 3. 95% HPP intervals for the PLINAR(1) simulated data.‡

h-step (XL, XU ) CP(%) LPI (XL, XU ) CP(%) LPI

n = 100 α = 0.1, θ = 1 α = 0.1, θ = 1.2

1 [0.0034, 5.0545) 96.05 5.0511 [0.0016, 4.2676) 96.10 4.2660

2 [0.0001, 5.0855) 95.95 5.0854 [0, 4.2951) 96.15 4.2951

3 [0, 5.0889) 96.25 5.0889 [0, 4.2960) 96.10 4.2960

4 [0, 5.0892) 95.60 5.0892 [0, 4.2963) 96.37 4.2963

α = 0.3, θ = 1 α = 0.3, θ = 1.2

1 [0.0248, 4.9299) 95.86 4.9051 [0.0141, 4.1468) 96.25 4.1327

2 [0.0012, 5.0669) 96.04 5.0657 [0.0008, 4.2677) 96.10 4.2669

3 [0.0001, 5.0795) 95.99 5.0794 [0.0002, 4.2841) 95.79 4.2839

4 [0, 5.0800) 96.15 5.0800 [0.0001, 4.2868) 96.49 4.2867

n = 300 α = 0.1, θ = 1 α = 0.1, θ = 1.2

1 [0.0004, 5.0608) 95.92 5.0604 [0, 4.2245) 96.21 4.2245

2 [0, 5.0648) 96.33 5.0648 [0, 4.2257) 95.80 4.2257

3 [0, 5.0652) 96.07 5.0652 [0, 4.2267) 96.24 4.2267

4 [0, 5.0654) 96.18 5.0654 [0, 4.2271) 96.19 4.2271

α = 0.3, θ = 1 α = 0.3, θ = 1.2

1 [0.0210, 4.9162) 96.17 4.8952 [0.0083, 4.1556) 96.17 4.1473

2 [0.0001, 5.0587) 96.14 5.0586 [0, 4.2470) 96.14 4.2470

3 [0, 5.0658) 95.98 5.0658 [0, 4.2564) 96.05 4.2564

4 [0, 5.0662) 95.52 5.0662 [0, 4.2572) 96.17 4.2572

n = 500 α = 0.1, θ = 1 α = 0.1, θ = 1.2

1 [0, 4.1674) 96.15 4.1674 [0, 4.1620) 95.82 4.1620

2 [0, 4.1680) 96.13 4.1680 [0, 4.1630) 95.97 4.1630

3 [0, 4.1717) 95.73 4.1717 [0, 4.1662) 95.80 4.1662

4 [0, 4.2034) 96.21 4.2034 [0, 4.1986) 96.09 4.1986

α = 0.3, θ = 1 α = 0.3, θ = 1.2

1 [0.0205, 4.9069) 95.87 4.8864 [0.0101, 4.1715) 96.29 4.1614

2 [0.0001, 5.0714) 96.18 5.0713 [0, 4.2145) 96.18 4.2145

3 [0, 5.0599) 96.06 5.0599 [0, 4.2058) 96.05 4.2058

4 [0, 5.0584) 96.47 5.0584 [0, 4.2057) 96.05 4.2057

‡ CP denotes coverage probability; LPI denotes length of prediction interval.
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Table 4. Predictive analysis of Anorexia data.‡

Observed value 0 0 0 0

RCM 1 1 1 1

MTP 0 0 0 0

Lower limit 0 0 0 0

Upper limit 3 3 3 3

‡ RCM denotes rounded conditional mean-based predictor; MTP denotes median of transition probability-based predictor.
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Figure 1. (a) Sample path; (b) ACF; (c) PACF.
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Figure 2. Forecasting distributions for model (2.2) with α = 0.3, θ = 1, conditional on Xn = 2.
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Figure 3. Forecasting distributions for model (2.2) with α = 0.3, θ = 1, conditional on Xn = 5.
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Figure 4. Sample paths of model (2.2) with sample size n = 300:

(a) α = 0.1, θ=1; (b)α = 0.1, θ=1.2; (c) α = 0.3, θ=1; (d)α = 0.3, θ=1.2.
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