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1. Introduction

Let (X;)i>1 be a sequence of independent random variables with zero means

and finite variances: EX; =0 and 0 < EX? < oo for all > 1. Set

5 = zx B2 — ZEX Ve - zx

It is well-known that under the Lindeberg condition the central limit theorem
(CLT) holds
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.
.

sup |P(S,/B, <x) — <I>(:z:)‘ —0 asn— oo,
z€ER

arxiv

where ®(z) denotes the standard normal distribution function. Cramér’s mod-
erate deviation expansion stated below gives an estimation of the relative er-
ror of P(S,,/B,, > z) to 1 — ®(z). If (X;);>1 are identically distributed with

EetoVIXil < oo for some to > 0, then for all 0 < z = o(n'/%) as n — oo,

P(S,/B, > x)
1—®(x)

P(S,/B, < —x)

=14o(1) and B (—2)

—14o0(1). (1.1)

Expansion is available for all 0 < 2 = o(n'/?) if the moment generating function
exists. We refer to Chapter VIII of [Petrov, 1975] for further details on the
subject.
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However, the limit theorems for self-normalized partial sums of independent
random variables have put a new countenance on the classical limit theorems.
The study of self-normalized partial sums S,,/V,, originates from Student’s ¢-
statistic. Student’s t-statistic T}, is defined by

T, = \/Eyn/ﬁv
where .
~ _ 5 o~ (X - X))
Xn = 7 and o° = ; ﬁ

It is known that for all x > 0,

p(t ) =5/ o (o))

see [Efron, 1969]. So, if we get an asymptotic bound on the tail probabilities for
self-normalized partial sums, then we have an asymptotic bound on the tail prob-
abilities for T;,. [Giné, Gotze and Mason, 1997] gave a necessary and sufficient
condition for the asymptotic normality. [Bentkus, Bloznelis and Gotze, 1996]
(see also [Bentkus and Gotze, 1996]) obtained the exact Berry-Esseen bound for
self-normalized partial sums. [Shao, 1997] established a self-normalized Cramér-
Chernoff large deviation without any moment assumptions and [Shao, 1999)
proved a self-normalized Cramér moderate deviation theorem under (2 + p)th
moments. If (X;);>1 are independent and identically distributed with E| X |>** <
00, p € (0,1], then for all 0 < x = o(n?/(4+20)) as n — oo,

P(S,/V, > x)

T =1+o0(1). (1.2)

For symmetric independent random variables with finite third moments, [Wang and Jing,
1999] derived an exponential nonuniform Berry-Esseen bound, while [Chistyakov and Gotze,

2003] further refined Wang and Jing’s result and obtained the following Cramér
type moderate deviation expansion:

P(Sn/Vzﬁ)_ 353 n 3
1oa@ oW+ B, ;Em : (1.3)

where O(1) is bounded by an absolute constant. The expansion (1.3) was further
extended to independent but not necessarily identically distributed random vari-
ables by [Jing, Shao and Wang, 2003] under finite (2+ p)th moments, p € (0,1],
showing that
P(S,/V, > z)
1—®(x)

uniformly for 0 < z = o(min{e,; !, x,'}), where

= exp{O(l)(1+x)2+”€Z} (1.4)

el = ZE\XZ-\Q'H’/BZ"'" and k2 = max EX?/B>. (1.5)

: 1<i<n
i=1
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For further self-normalized Cramér type moderate deviation results for inde-
pendent random variables we refer, for example, to [Hu, Shao and Wang, 2009],
[Liu, Shao and Wang, 2013}, and [Shao and Zhou, 2016]. We also refer to [de la Pefia, Lai and Shao,
2009] and [Shao and Wang, 2013] for recent developments in this area.

The theory for self-normalized sums of independent random variables has
been studied in depth. However, we are not aware of any such results for mar-
tingales. For some closely related topic, that is, exponential inequalities for
self-normalized martingales, we refer to [de la Pena, 1999], [Bercu and Touati,
2008], [Chen, Wang, Xu and Miao, 2014] and [Bercu, Delyon and Rio, 2015].
The main purpose of this paper is to establish self-normalized Cramér type
moderate deviation results for martingales. Let (0n)n>1, (€n)n>1 and (Kn)n>1
be three sequences of nonnegative numbers, such that §,, — 0, ¢, — 0 and
kn — 0 as n — oco. Let (X;,F;)i>1 be a sequence of martingale differences

satisfying
| BIXEIF] - B2 < 2B,
i=1
S BIX ] < B,
i=1
and

max BX2F1] < kB2,

where p € (0, %] From Corollary 2.1 we have

P(S,/ Vi >z)=(1—®(x))(1 +o0(1)) (1.6)
uniformly for 0 < 2 = o( min{e,”/ ™, 61 k-1}) asn — co. A more general
Cramér type expansion is obtained in a larger range in our Theorem 2.1, from
which we derive a moderate deviation principle for self-normalized martingales.
Moreover, when the condition Y ., E[|X;|*™?|F,_1] < ef B2** is replaced by a
slightly stronger condition

E[|X|*"*|Fi—1] < (enBn) E[X7|Fi_1],

equality (1.6) holds for a larger range of 0 < z = o( rnin{s,:p/(“_%)7 5, 1}) for
p € (0,1], see Corollary 2.4. Clearly, our results recover (1.2) for i.i.d. random
variables.

The rest of the paper is organized as follows. Our main results are stated and
discussed in Section 2. Section 3 provides the preliminary lemmas that are used
in the proofs of the main results. In Section 4, we prove the main results.

Throughout the paper the symbols ¢ and ¢, probably supplied with some
indices, denote respectively a generic positive absolute constant and a generic
positive constant depending only on a.
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2. Main results

Let (X;, Fi)i=o,...n be a sequence of martingale differences defined on a prob-
ability space (2, F,P), where Xo = 0 and {0,Q} = F» C ... C F,, C F are
increasing o-fields. Set

k
So=0, Sp=>» X k=1,...,n (2.1)
=1

Then S = (Sk, Fi)k=0,....n is a martingale. Denote BZ = 3" EXZ2. Let [5]
and (S) be, respectively, the squared variance and the conditional variance of
the martingale S, that is

k
[Slo =0, [S]kIZXE, k=1,..,n,
i=1

and
k

(S)o=0, (S)x=>D EX}|Fia], k=1,...,n (2.2)
i=1
In the sequel, we use the following conditions:

(A1) There exists 6, € [0, ] such that
S EXEIF ] - B < 8282
i=1

(A2) There exist p > 0 and &, € (0, 1] such that

S E[XPTIF ] <eh Bt

i=1
(A3) There exists £, € (0, %] such that
E[XZ|Fio1] <k2B2, 1<i<mn;
(A4) There exist p € (0,1] and 7, € (0, 1] such that
E[|X;[***|Fi-1] < (wBn)? E[X7|Fia], 1<i<n.

When p € (0,1] and v, < (16/17)'/7/4, conditions (A1) and (A4) imply
condition (A2) with e,, = (17/16)'/#~,,. Thus, we may assume that £, = O(1)y,,
as n — oo. It is also easy to see that condition (A4) implies condition (A3) with
Kn = YVn, see Lemma 3.5.

In practice, we usually have max{d,,en, Vn, fn} — 0 as n — oco. In the case
of sums of i.i.d. random variables, conditions (Al), (A2), (A3), and (A4) are
satisfied with 0, = 0, e, Yn, kn = O(\/LT_L)
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Our first main result is the following Cramér type moderate deviation for the
self-normalized martingale

Wn - Sn/ V [S]n7
under conditions (A1), (A2), and (A3).
Theorem 2.1. Assume that conditions (A1), (A2), and (AS8) are satisfied. Set

p1 = min{p, 1}.

Then for all 0 < x = o(max{e, ', k,'}),

pPw, >
1(7_ q)zx;:) = exp {9@, (m2+pl€ﬁl + 276 + (14 2)(ef/ O + 5“)) } (2:3)

P(W, >x)
1-®(x)

P(W,<—z)

Moreover, the equality remains valid when )

1s replaced by

Under condition (A2) the best Berry-Esseen bound for standardized martin-
gales is provided by [Haeusler, 1988]. Assuming (S), = B2 a.s., Haeusler proved
that

sup ‘P(Sn/Bn <) ®(z) ’ < C(iE|Xi/Bn|2+”)1/(3+p).
x i=1

Moreover, it was showed that this bound cannot be improved for martingales
with finite (2 + p)th moments. In fact, there exist positive absolute constant
¢ and a sequence of martingale differences satisfying P(S,, < 0) — ®(0) >
c (X0, EIX;/B,*) YO for all large enough n. In particular, under con-
ditions (A2) and (S), = B2 a.s., Haeusler’s result implies that

sup ‘P(Sn/Bn <z)-®(x) ’ < O/ B+r), (2.4)

Notice that Theorem 2.1 implies that

sup |[P(W, <) — @ (2) | < C(er/BH0) +5,). (2.5)

Under conditions (A2) and (S),, = B2 a.s., the Berry-Esseen bound in (2.5) for
self-normalized martingales is of the same order as the Berry-Esseen bound in
(2.4) for standardized martingales.

From Theorem 2.1, we obtain the following result about the equivalence to
the normal tail.

Corollary 2.1. Assume that conditions (A1), (A2), and (A3) are satisfied with
p € (0,3]. Then

P n=>T
(Vo 2 7) =1+0(1) and

P(W, < —x)
1-9(x)

B (—) =1+0(1)

p/(3+p)

uniformly for 0 < x = o( min{e,, Kyt 0,1)) asn — oo.
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Theorem 2.1 also implies the following moderate deviation principles (MDP)
for self-normalized martingales.

Corollary 2.2. Assume conditions (A1), (A2), and (A3) with max{0y,,en, kn} —
0 as n — oo. Let a, be any sequence of real numbers satisfying a,, — oo and
anen — 0 as n — oco. Then for each Borel set B,

2 1
— inf = < liminf —InP %GB
zeBe 2 n—oo a2 G,
1 W, 2
< limsup =P =2 e B) < — inf =, (2.6)
n—00 a% Qnp 2€B 2

where B° and B denote the interior and the closure of B, respectively.

The last corollary shows that the convergence speed of MDP depends only
on &, and it has nothing to do with the convergence speeds of k,, and &,,.

For i.i.d. random variables, the self-normalized MDP was established by
[Shao, 1997]. See also [Jing, Liang and Zhou, 2012] for non-identically distributed
random variables.

The other main results concern some improvements of Theorem 2.1 when
condition (A3) is replaced by the stronger condition (A4). Theorems 2.2 and
2.3 below give respectively lower and upper bounds, while Theorem 2.4 gives a
Cramér type moderate deviation expansion sharper than that in Theorem 2.1.

Theorem 2.2. Assume that conditions (A1), (A2), and (A4) are satisfied.
li] If p € (0,1), then for all 0 <z = o(v, '),

P(W, > 1)

1% @) > exp{—cp<x2+psﬁ+x26i+(l+x) (zP~E +~F +5n)>}‘

(2.7)
[ii] If p =1, then for all 0 < z = o(vy,; '),
P(W, > )

= > _ 377 252 1 . nl . (Sn .
1—o(2) _exp{ c<x5,+:1c 2+ (1+2) (@9, + vn| Invy,| + ,)(28)

Moreover, the two equalities above remain valid when Pl(XVT’fé:;) is replaced by

P(Wa<—2)
e(—z) -
For any sequence of positive numbers (a,),>1 denote
aﬁ(%p)/‘l
an(z, p) = 11 wr@rp/a (2.9)
Theorem 2.3. Assume that conditions (A1), (A2), and (A4) are satisfied.
li] If p € (0,1), then for all 0 <z = o(v, '),
PW, > ~
P28 < oxp { o (et (100 (292t 42 60 00) ) |
— X

imsart-generic ver. 2014/10/16 file: Cramer_type_large_deviations_for_martingales-180206.tex date: August 13, 20!



X. Fan et al./Self-normalized Cramér type moderate deviations 7

[ii] If p=1, then for all 0 <z = o(y; 1),

P(W, > ~
M <explc|ade, + 2202 +(1+1) (xfyn + Y| In vy | + 0y, + En(z, 1)) .
1—®(x) ’
Moreover, the two equalities above remain valid when %ﬁf) is replaced by
P(anfm)
P(—z)

Combining Theorems 2.2 and 2.3, we obtain the following Cramér type mod-
erate deviation expansion for self-normalized martingales under conditions (A1),
(A2), and (A4), which is stronger than the expansion in Theorem 2.1 since the
term 5’,’/ (3+°) therein is improved to a smaller one. In what follows, 6 stands for

values satisfying |6] < 1.
Theorem 2.4. Assume that conditions (A1), (A2), and (A4) are satisfied.
li] If p € (0,1), then for all 0 <z = o(v, 1),

P(W, > z)

_ 24p p 252 PP P =~
1= () exp{90p<x el + o5 + (1+x)(:c 7n+7n—|—6n—|—5n(x,p))>}.

[ii] If p =1, then for all 0 < z = o(v,; 1),

P(W, > ~
H =exp 1 fc( 2%c, + 2262 + (1 + ) (:r% + Yol Iy | + 0n + En(x, 1)) .
1—®(x)
Moreover, the two equalities above remain valid when Pl(KVTﬁ"éf) is replaced by
P(W,<-z)
d(—z)

Notice that condition (A4) implies condition (A2) with &, = ;. Therefore,
it follows from Theorem 2.4 that:

Corollary 2.3. Assume that conditions (A1) and (A4) are satisfied.
li] If p € (0,1), then for all 0 < x = o(v, 1),

P(W, > )

1 d@ P {9 (“’2*”%6 +2%, + (1) (3 4+ 3, ”))> }

[ii] If p=1, then for all 0 < z = o7, 1),

P(W, > ~
M = exp 1 Oc| 23y, + 2262 + (1 +z) (dn + Yol Ny | + An(z, 1)) .
1—-@(x)
Moreover, the two equalities above remain valid when Pl(EVT?éf) is replaced by
P(anfm)
P(—z) -

From Theorem 2.4, we also obtain the following result about the equivalence
to the normal tail.
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Corollary 2.4. Assume conditions (A1), (A2), and (A4) with p € (0,1]. Then

P(W,>z) o an P(W, <-—z) o
Toa Lt ed TGy St @10

uniformly for 0 < x = 0(111111{5;p/(2+p), A P1AEP) 511

In the case of i.i.d. random variables, conditions (Al), (A2), and (A4) are
satisfied with &,,v, = O(1/A/n) and 6, = 0. Thus, the range 0 < z =
o(min{e,”/ #0514 P 0T reduces to 0 < @ = o(n—P/4+20)) n — oo,
which is the best possible result such that (2.10) holds (see [Shao, 1999]). More-
over, from Theorem 2.4, we can get the estimation of the rate of convergence in

(2.10); for example, when p = 1 we have:

Corollary 2.5. Assume conditions (A1), (A2), and (A4) with p =1, €n, Yn, On =
O(1/\/n). Then, for xz = zonz ™% with 0 < a < - and z¢ > 0 fized, as n — oo,

7131(W2D?x:;) = exp {0(1)3—;} and 7P(Z7Ei)_x) :exp{O(l)\x/—;}‘
(2.11)

In particular, for v = zons 0 with 0 < b < % and xo > 0 fized, as n — oo,

as n — OQ.

3

Pl(V_VEZ)v):HO(j_;) nd %:Ho(%), (2.12)

Notice that the rate of convergence in (2.11) coincides with that in (1.4) for
i.i.d. random variables.

3. Preliminary lemmas

The proofs of Theorems 2.1-2.4 are based on a conjugate multiplicative martin-
gale technique for changing the probability measure which is similar to that of
the transformation of [Esscher, 1924]. Our approach is inspired by the earlier
work of [Grama and Haeusler, 2000] on Cramér moderate deviations for stan-
dardized martingales, and by that of [Shao, 1999], [Jing, Shao and Wang, 2003],
who developed techniques for moderate deviations of self-normalized sums of in-
dependent random variables. We extend these work by introducing a new choice
of the density for the change of measure and refining the approaches in [Shao,
1999] and [Jing, Shao and Wang, 2003] to handle self-normalized martingales.
A key point of the proof is a new Berry-Esseen bound for martingales under the
changed measure, see Proposition 3.1 below.
Let

Then (&;, Fi)i=o,...n is also a sequence of martingale differences. Moreover, for
simplicity of notations, set
k
M=>"¢&,
i=1
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k k
(M =>¢ and (M),=> E[Z|Fi1], k=1,.,n
=1 i=1
Thus g M
W, = —2— = Z_. (3.1)
[STn [M],,

For any real number ), consider the exponential multiplicative martingale

with
G(A) = A& — N2 )2.

Thus, for each real number A\ and each k = 1,...,n, the random variable Zj(\)
is nonnegative and EZy(\) = 1. The last observation allows us to introduce the
conjugate probability measure Py =Py , on (Q, F) defined by

APy = Z,(\)dP. (3.2)

Although (My, Fi)k=o,....n is a martingale under the measure P, it is no longer a
martingale under the conjugate probability measure P . To obtain a martingale
under Py we have to center the random variables ¢;(\). Denote by Ej the ex-
pectation with respect to Py. Because Z(\) is a uniformly integrable martingale
under P, we have

E\[(] = BICZi (V) (3.3)
and
B[SO |7 )]
E\[(|Ficq] = —=—+—7— 3.4
>\K| 1] E[CQ()‘”]:i—ﬂ ( )
for any F;-measurable random variable ¢ that is integrable with respect to F;.
Set
bi(A) = EA[G(N|Fizi], i=1,....n,
ni(A) =G —b;(N), i=1,....n,
and

.
Yi(A) = Zm(/\), kE=1,..,n. (3.5)

Then Y(A\) = (Yi(\), Fi)k=o,...n is the conjugate martingale. The following
semimartingale decomposition is well-known:

k
Zgi(x) =B\ +Yi(\), k=1,..,n, (3.6)
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where B(X\) = (Bi(A), Fr)k=o0,...,n is the drift process defined as

k
Bi(N) =Y _bi(N), k=1,.n.
i=1

By the relation between E and E, on F;, we have

_ E[G(N)eS W[ Fi ]
bz()\) - E[ecz(k)u:-z_l] 9

1=1,...,n. (3.7)

It is easy to compute the conditional variance of the conjugate martingale Y (\)
under the measure Py, for k =0, ...,n,

k
Y(N), = ZEA[m(Mzm_l}

k
= STEMGO) — bi(V)?|Fia]

i=1
E RGNS VF ] BIGO) e O F 2
= ;( E[e$i M| F; 4] B E[e¢ D[ F_ (]2 > (3.8)

In the sequel, we give the upper and lower bounds for B, (\). To this end,
we need the following three useful lemmas. The proof is similar to tat in [Shao,
1999] and [Jing, Shao and Wang, 2003]. Set

Ex = NE[E 1 e s 131 Fica] + NE[E 1 e, <y [ Fi1], A= 0.
If E[|&|*"*] < oo for p € [0, 1], then it is obvious that
Ex < NTPE[|&P TP Fica], A>0.

Lemma 3.1. For all A > 0 and 7 € [%,2], we have
242 ].
E[eM ™8 F ) =1+ Ch TINE[E|Fi—1] + O(1)2x,

where O(1) is bounded by an absolute constant.

Lemma 3.2. For all A > 0, we have

E[eMN|F 1] = 14+0(1)&,
BGO)SN ] = SVBIEIF ]+ 008,
E[GZ(Ne“MF_1] = NE[E|Fi-1] + O(1)E),
E[GOV)PeSVF ] = 0(1)&,

(E[GNeSNF]D? = O(1)8),

where O(1) is bounded by an absolute constant.
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Lemma 3.3. Let Z; = & — E[¢2|Fi—1]. Then for all A > 0,

) 1 _
E[Ziegz(/\”]:i,l] = O(l)>\_2€)\’
1

E[Z2e5WM|F ] = O(1) 578

where O(1) is bounded by an absolute constant.
Using Lemma 3.2, we obtain the following upper and lower bounds for By, ().

Lemma 3.4. Assume conditions (A2) and (A3) with p € (0,1]. Then for all
0 <\ =o(max{e, !k, 1}),

1
Bu(A) = A% (M) + O()N*"7ep, (3.9)
where O(1) is bounded by an absolute constant.
Proof. According to the definition of b;(\), we have

E[G\)es WM Fi_y]
E[eS M| F_]

bi(A) =
By Lemma 3.2, it follows that
EIG eSO Fit] = 2EIEIF-] + 02

and

E[eSWM|Fi_1] =1+ O(1)E). (3.10)
Therefore, conditions (A2) and (A3) imply that for all0 < X\ = o(max{e, !, s, 1}),

Bi(N) = SVBIEIF: ] + 01z

and .

B,.(\) = §A2<M)n +O(1)\*FPer
as desired. O

The following lemma shows that condition (A4) implies condition (A3) with
Rn = Tn-

Lemma 3.5. Assume condition (A4). Then E[&2|F;—1] < ~2.
Proof. By Jensen’s inequality and condition (A4), it holds that

E[|Fi_1]®T/2 < B[|&1*T)Fimi1] < ALE[E|Fi-1),

from which we get E[¢?|F;_1] < 2. =
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Lemma 3.6. Assume condition (A4). Then for any t € [0, p),
E[&[**|Fioa] < v, BlEF|Fimal- (3.11)
Proof. Let [, p, q be defined by the following equations
Ip=2, (2+t-0g=2+p, p'+qgt=1 1>0, andp,qg>1.

Solving the last equations, we get

lzi’ p:— q:

2(p—1) p P
0 p—t t

By Hoélder’s inequality and condition (A4), it is easy to see that

E[l&] 612 Fin]
(BI& 7| Fia)) VP (B[1&])CHD Fiy]) e
(B | Fima) P (BlI& T Fima])
(B[ Fia]) /P (vEE[E] | Fica]) /0
VO TE[E2) Fi_1]
y E&|Fial.

This completes the proof of the lemma. O
Lemma 3.7. Assume conditions (A1) and (A2). Then for any t € [0, p),

E[|&*TFi—d]

VAN VAN VAR VAN

> E[&G1PFio] < 26, (3.12)
Proof. Recall the notations in the proof of Lemma 3.6. It is easy to see that
>_Bl&PIFin] Z (€21 ]) /P (B 71 7).
i=1

Using Holder’s inequality and conditions (A1) and (A2), we have

SEjeEa] < (S EEE) (Y BlerEo)
=1 =1 =1

< 2¢l,

which gives the desired inequality. O
We will also need the following two lemmas.

Lemma 3.8. Assume condition (A1). Then for all z > 0,

P(Mn > ay/[M]y, [M], > 16) < %x_2/3 exp{ - %mQ}
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X. Fan et al./Self-normalized Cramér type moderate deviations 13

Proof. By inequality (11) of [Delyon, 2009], we have for all A € R,
A1
7 (5l
Applying the last inequality to the exponential inequality of [de la Peria and Pang,
2009] with p = ¢ = 2, we deduce that for all > 0,

M, 2\ 2/3 1
P( | Mo > a:) < (g) 23 exp{ — 52}2}. (3.13)
V3G M] + 3(M), + EM)

Eexp { AM, - M), + §<M>n)} <1.

By condition (A1) and the fact E(M), = EM2 = 1, it is easy to see that for

all z > 0,
3
P(M,,, > zv/[M], [M], > 16) < P(Mn > 2/ SIM]n + 4, [M], > 16)
3 3 9
< > x4/ 2 2 ZEM?2 >
< P(Muz oS0, 1 20+ SEA M), 2 16)
3 3 9
< > — el e 2
< P(Mn > x\/4[M]n + (M) + 4EM,,)
3 3
P 3
< Z2.-2/3 _ 9.2
= 37 eXp{ 1" }
as desired. O

Lemma 3.9. Assume conditions (A1) and (A2). Then
P(|[M]n — (M),| > 1) < ¢, (27072 1 er).

Proof. Notice that [M],, — (M), = > 1 (& — E[£?|F;—1]) is a martingale. For
p, we distinguish two cases as follows.

When p € (0, 2], by the inequality of [von Bahr and Esseen, 1965], it follows
that

E[|[[M], — (M),| /7]

IN

Y E[€ - B |Fi)| G0
i=1

n
< oy E[&P)
i=1
< cep,
where the last line follows by conditions (A1) and (A2). Hence, by Markov’s

inequality,
P(|[M], = (M)n| > 1) E[|[M], — (M),|>7)/2]

<
< cpeh,
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When p > 2, by Rosenthal’s inequality (cf., Theorem 2.12 of [Hall and Heyde,
1980]), Lemma 3.7, and condition (A2), it follows that

E[|[M],, — <M> |(2+0)/2)

< o (B( ZE (€& - Bl F) ZE|£2 BIE 7l )
2+p)/4 &
<e, ( ZE[&?m_l}) + ZE@»P“)
i=1
G (2+p)/2 +eb). (3.14)
This completes the proof of the lemma. O

Consider the predictable process W(\) = (Vi (\), Fr)r=0
to the martingale M as follows:

n, which is related

.....

k
A =Y InE[e“M|F 4], (3.15)

By equality (3.10), we easily obtain the following elementary bound for the
process U(\).

Lemma 3.10. Assume conditions (A2) and (A3) with p € (0,1]. Then for all
0 <X =o(min{e,; ! k,'}),
U, (A) = O(1)N*TPef

where O(1) is bounded by an absolute constant.

In the proofs of Theorems 2.2 and 2.3, we make use of the following assertion,
which gives us a rate of convergence in the CLT for the conjugate martingale
Y (\) under the probability measure Pj.

Proposition 3.1. Assume conditions (A1) and (A4).
[i] If p € (0,1), then for all 0 < X\ = o(v;, 1),

WN/A < 0) = 0(@)| < 6 (W7l + 98+ 6 );
[ii] If p =1, then for all 0 < X\ = o(v; 1),
sup [PA(Ya(A)/A < @) = ©(@)| < ¢ (M + 7l 90| 40, );

with the convention that Y, (0)/0 = >"1 | &;.

Similarly, we have the following Berry-Esseen bound.
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Proposition 3.2. Assume conditions (A1), (A2), and (A3). Then for all 0 <
A = o(max{e, !,k '}),

sup [PA(Ya(A)/A < 2) = B(@)| < o (A/29/2 + £f/C19) 1.5,

with the convention that Y,,(0)/0 =1, &.

The proofs of Propositions 3.1 and 3.2 are much more complicated and we
give details in the supplemental article [Fan, Grama, Liu and Shao, 2017].

4. Proof of the main results

We start with the proofs of Theorems 2.2 and 2.3, and conclude with the proof
of Theorem 2.1.

4.1. Proof of Theorem 2.2

By (3.1), it is easy to see that

(502 BT} = {2V BT} 2 {2 ZE0MI) (302 )

Forall0 < A = o(y,, 1), according to (3.2), (3.6) and (3.15), we have the following
representation:

P(Wn > x)

|
=

)\[ZnO‘ {S >x\/_}}
- EA{exp{ ZC} A+, (A)} {anz\/m}]
|

> Ey|exp { - ~ B,(\) + \IJ,L(A)}l{ZTl_lQ(A)z%}}
= Ea|exp{ = Ya) = Ba) + 0 Py i gy
Using Lemmas 3.5, 3.4 and 3.10, we get

p(W,>2) > B, [exp{ —Y,0\) - (%/\2<M)n +enrtee) )

{Y N> —($22(M), +Cl/\2+”€n)}}
Condition (A1) implies that
[(M)n — 1] < 67,
and thus
Lo 24 2
> > _ — (= pep
P(Wn Jc) > EA{exp{ Yu(N) (2)\ + e sn)(1+5n)}

Ly, 0> gi—(éx-’+c1v+r»sz>(1+éa)}}' (4.1)
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Let A = \(z) be the largest solution of the following equation

2

l 2 24p_p 2y - 2
(2/\ +eh an>(1+6n)— ~.

The definition of A implies that for all 0 < z = o(v,; 1),

- x
o <\ < — 4.2
TSRS e 2

and _
X =+ c3bp(z' TPl + 262), (4.3)

where 0 < 0y < 1. From (4.1), we obtain

12 ~2te 2 ~Yn(N)
P(W, =) > exp{ —(GX X )1+ 5n)}EX[e Ly, 0y
_ (4.4)
Setting F,(y) = Px(Yn(A) < y), we get

2

P(Wn > x) > exp{ — 64()\ 62 + )\2+psp) — )\7} /0 e YdF,(y). (4.5)

By integration by parts, we have the following bound:

| evanw > [ e W) - 2w (1
0 0

For p, we distinguish two cases as follows.
Case 1:If p € (0, 1), combining (4.5) and (4.6), by Proposition 3.1, we have
for all 0 <z = o(y;, 1),

~2
I)(LVﬁ Z I) Z eXF){ _'04(A 52 +_A2+P€P) __%%_}

x (/OOO —Mdcp(y)—clp(A VAP 46, )) (4.7)

Because

e*”/?/ e MAD(y) =1 — B () (4.8)
0
and

- —/\2/2 < _ >

- +A V2 (1 ()\)), A >0, (4.9)
we obtain the following lower bound
P (W, > z) 2 N*Pp NV (NPAP L AP
W > exp{ 04)\5 + A )}(1—627,3(1—0—)\)()\’yn+fyn—|—5n))

> exp{ CSP(A B2+ N TPer 4 (14 N)(Wrp +7,f;+5n))}(,4.10)
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X. Fan et al./Self-normalized Cramér type moderate deviations 17

forall 0 <X < L min{y_p/(Hp) 5’1}

Next, we con51der the case of - —min{y, PIAHP) 5=11 < X = o(y71). Let

K > 1 be an absolute constant, whose exact value is chosen later. It is easy to
see that

Y

-v.(x -V, (X
By [ M1, 550)] By e O 10cy, y<xaen

> e_XKTPX(O <Y,V < XKT), (4.11)

where 7 = Xp’ynff + 0,,. By Proposition 3.1, we have

Pr(0<Ya(X) <3K7) > P(OSN(O,1) < K7) —cppr
1 2
> —Kre KT/2 ¢y 1
= \/ﬁ 4,p
1
> (5K -e)
Letting K > 12¢4 ,, it follows that
14+p
- - 1 1A L+ N0
Pr(0<V,(X) <3K7) > TK7 = 2K O *
4 4 A
Choosing
4
K = max {1204 0 —=(2¢2 )H'p}
s \/_ P
and taking into account that 5—— mm{’y A < X =o(v;1), we con-
clude that

PX(O <Y,(\) < XKT) > %

TA

Because the inequality ﬁe_)‘z/ 2>1-—®()) is valid for all A > 1, it follows
that for all 52— min{y, " P 5711 < X = o(y71),

Pr(0< V() < K1) > (1-0 (X) )X 2. (4.12)
Combining (4.4), (4.11), and (4.12), we obtain

P(W, > z)

_ 252 N2 o N (AP o AP
Yy zexp{ C5.p ()\ O+ N el +(1+A)(A Wn+7n+5n)> }(,4.13)

which is valid for all 57— min{y[’)/(l-‘_‘)), ST < XN =o(y ).
op s
From (4.10) and (4.13), we get for all 0 < X\ = o(y;, 1),
P(Wn > x)

= ~2 ~2+p EeYavd
/> - NO24+N el + L+ NN+ L+ 6y }(.4.14
1- 3 ()\> = exp{ C6,p < n €n ( )( Yn T Tn )) )
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Next, we substitute 2 for X in the tail of the normal law 1 — ®(\). By (4.2),
(4.3), and (4.9), we get

5 exp{—t?/2}dt P f5 exp{—t?/2}dt

1<
©J exp{—t?/2}dt [ exp{—t2/2}dt
< 1+4ciz(z — N exp {(x2 - Xz)/Z}
< exp {02 (2262 + x2+pez)} (4.15)
and hence
1—®(X) = (1—®(z))exp {b1c(a®tPeh +2762)}. (4.16)
Implementing (4.16) in (4.14) and using (4.2), we obtain for all 0 < z = o(v,, 1),
P(Wn > x) 2
AN > _ +pop 252 P AP P
P e { - enp (220 4 282+ (L D)orag 4o 46) |

which gives the desired lower bound (2.7).
Case 2: If p = 1, using Proposition 3.1 with p = 1, we have for all 0 < z =
o(vn 1),
-2

P(Wn > 1‘) > exp { —C1 (XQ(;?Q] + XBEn) - /\7}

X </ eixydq)(y) —C2 (X'Yn + ’Yn‘ 1n’7n| + 6n)) s
0

that is, the term £ in inequality (4.7) has been replaced by 7,|In~,|. By an
argument similar to that of Case 1, we obtain the desired lower bound (2.8).
Notice that (—Sk, Fi)r=0,....n also satisfies conditions (A1), (A2), and (A4).

Thus, the same inequalities hold when PI(KVT?%S) is replaced by % for all
0 <2 = o(y;,,!). This completes the proof of Theorem 2.2. O

4.2. Proof of Theorem 2.3
We first prove Theorem 2.3 for all 1 < z = o(v;, ). Observe that
P(Wn > x) - P(Wn >, [M]n — (M| < 60 + 1/(21,))
+ P(Wn >, [M]n — (M)| > 6n + 1/(2x)). (4.17)

For the the first term on the right hand side of (4.17), by (3.2) and (3.5) with
A =z, we have the following representation:

P(W, > 2. (M, — (M),] <, +1/(22))

— -1

=E, {Zn(x) Lirt, >a/B00, |[M]n7<M)n|§6n+l/(2x)}:|

- E {e—mm—Bn(w)m,,(x)l }
@ {aM 202 /TR =1, [[M]n—(M)n|<6n+1/(22) }
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By the inequality
VIty>1+y/2-¢%/2,  y>-1,
condition (A1) and Lemma 3.4, we have for all 1 < x = o(v;, 1),
P(Wo 2, |[M]n — (M)a] <6, +1/(20))
<E, [EXP{ - Yn(x) - Bn(x) + \I]n(x)}
><1 1 1 1 ]
{&Mn— L2 (M + 202 ((M1a—1)22 422, |[M]n—(M)n] <60+1/(20) }
< B, | exp{ = Ya(@) = Bu(@) + ¥a(x)}
! ]
x {:tMn—%1‘2[M]n+»’E2([]\/I]n_<M>n)2+$2(1_<M>n)22%x27 I[M]n—<M>n|§5n+1/(2z)}

< Ew[exp{ —Y,.(z) — Bu(x) + \I/n(x)}

1 ]
o ()2 =22 (M1 — (M) )2 =2283 + $22— B (), |[M]n— (M) |<8,+1/(22) }
<E,; [GXP{ - Yn(x) - Bn(x) + \Iln(x)}
XLy ()5 et w258 4 ha?— Ba(a), I[M]n—<M>nIS(xsn)”/2}}
+E; {EXP{ - Yn(x) - Bn(l') + \I]n(x)}
1 ]
X {0>Yn(x)z—zZ([M]n—(M)n)2—z26ﬁ+%m2—Bn(z), (xen)o/2<\[M]n_(M>n|S6n+1/(2I)}
<E, [exp{ —Y.(x) — Bp(z) + \I/n(x)}
X1{Yn<x>z—c1<x2+f>s2+z2si>}}

+E, [exp{ —Y.(x) — Bp(z) + \Ifn(x)}

X1{0>Yn(I)z—%—62(12+”€ﬁ+125i)» (zan)”/2<|[M]n—(M)n|§5n+1/(2z)}]
=1 (x) + Iz(x). (4.18)

For I;(x), by an argument similar to the proof of Theorem 2.2, we get for all
0<z=o0(7,"),

exp {cp (27728 + 2262 + (14 2) (2298 + 72 + 60) ) } i p e (0,1),
I(x)
_ <

1—®(x) —
exp {C(g)35n + 2262 + (1 + ) (Y0 + Yu| Invn| + 5n))} if p=1.

(4.19)
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Next, consider the item I5(z). By condition (A1), Lemmas 3.4 and 3.10, it is
obvious that for all 1 < z = o(y;, 1),

1
I(z) < exp{ - 5132 + c1(z*Pef + ;r%%)}

Y, (x)
By [e Hosva@2-t-caarroct +ars), (zan>f’/2<|[M1n—<M>n|}}

IN

1
exp { — 53:2 + 1 (2®1Pel + 2%62) }

XEI [6%4’02(124»9524’1'253)1{(3:6 Yo/2<|[M]p— (M) |}]

1 14 24pp | 252
S e4 eXp{ - 51‘ + CS(I En +x 571) Em |:1{(J:En,)’)/2<|[M]n—<M>7g|4}%0)
Denote by (M(z)), = > i, E;[¢2|Fi—1]. Notice that £, = O(1)7,. From (3.4),
using (3.10), Lemmas 3.3, 3.5 and condition (A2), we obtain for all 1 < z =
o(v 1),
(M (@) — (M),

n E[g?erﬁi—xsz/ﬂfiil]
<2 [ g
i—1

Bl € 7]
<a Y (BlfI&l1Fia] + (Blag?|Fina])?)
i=1

— E[&|Fi-1]

+i E[gems o 2| F )2
Elent w2 7,y )?

i=1

< e Y (BIPI6I 71 Fn] + Bl 2P 2)
=1
< cpafel. (4.21)

Thus, for all 1 <z = o(y, '),

. 1
Lz) < ef eXP{ - 5a? +c3(a0e + 2%07) }Ew [1{%(xen)p/2<|[M]n—<M<x>>n\}]

2
et 12 20gp | 262 (240)/2
(zey, )P(2+r)/4 Xpy §I + 03(x &t 5n) Em“[M}n — (M (x))n] ]
It is obvious that
(M) — (M (@) = 3 (€~ BL[€2|Fi]).
=1

Thus, ([M]; — (M (2))i, Fi)i=o.... n is a martingale with respect to the probability
measure P,. By the inequality of [von Bahr and Esseen, 1965], it follows that
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forall 1 <z = o(y;, 1),

Bo[|[M]n — (M())a| /%) < qZE 167 = Bu[g?|1Fica]| 302

IN

Sl

_ E[&[* e ™| Fi 4]
2 Z E[e¢@)|F,_q]

c:;aﬁ. (4.22)

IN

Hence, for all 1 <z = o(y, 1),

50(2—/7)/4
I(r) < C”—exp{ -

xP(2+p)/4

1
53:2 + c3(2*Pel 4+ 2767 } (4.23)

Next, we give an estimation for P<Wn >z, [[M]n — (M)n| > 0n + 1/(21”))
It is obvious that

P(Wo 2, [[M]n — (M)l > 80 +1/(22))
< P(Wn >, |[M]n = 1] + 1 = (M)n| > 60 + 1/(230))
< P(Wn >, |[M]n — 1] > 6,/2 + 1/(21-)).

To estimate the tail probability in the last line, we follow the argument of
[Shao and Zhou, 2016]. We have the following decomposition:

P(Wn >z, [[M]n — 1] > 6,/2 + 1/(250))

< P(Mn/\/WE @, 14 8,/241/(22) < [M], < 16)
+P<Mn/\/m >, [M]n < 1—8n/2 — 1/(23:))
+P(Mn/\/M2 , [M]n > 16)

P( (M, /[M],) € 5) (4.24)

i
NE

S
Il
—

where &, C R x RT,1 < v < 3, are given by

&= {(u,v) ER xR :1ufv >, /14+6,/2+1/(2x) <U§4},

= {(uu) ERXxRT:1ufv>x,v</1-6,/2-1/(2x) },

&y = {(u,v) ERxRT:ufv>2z,v> 4}.

imsart-generic ver. 2014/10/16 file: Cramer_type_large_deviations_for_martingales-180206.tex date:

August 13, 201



X. Fan et al./Self-normalized Cramér type moderate deviations 22

To estimate the probability P((M,, /[M],) € &1), we introduce the following
new conjugate probability measure P, defined by

dP, = Z,(z)dP,

where
k eCl(x) ~
=[[=—=———— and () =at; — 2228,
121 egz(z) |-7:Z 1]

Denote by E, the expectation with respect to P, and (M (z)),, ZZ 3 E.[¢2|Fi1).
1

By an argument similar to (4.21), it follows that for all 1 <z = o(v,, 1),

(M(2))n = (M) + O(L)a’e,.

By Markov’s inequality, we deduce that

P((an \/W) € 51)
< (80/2 + 1/(22)) 26~ Mwmee (Gu=(02)* /O R[([M],, — 1)2e?Mn—[M]na?/8)
< 1622e~ Pwwee (zuf(vm)2/8)E[([M]n _ <M(l_)>n)2€zMn7[]W]nz2/8]
+1622e Mmes (zu—(vz)2/8)E[(<M(w)>n _ <M>n)2ezMn—[M]nm2/8]
+ 165;26—inf(u,v)€51 (mu—(71$)2/8)E[(<M>n _ 1)26an—[M]nac2/8]
< 16z e*inf(u,v)egl(wuf(va:)r"/S)E[([M]n _ UT/[’(m»n)zezMw[M]"x?/s]
+ C$2+2p837‘p67 inf(u,vyee, (:L‘uf(vx)2/8)E[ean7[M],,L:r2/8]

+1602¢ e (Iu—(w)2/8)E[ean—[M]nx2/8}’ (4.25)
where it is easy to verify that

1 7 1
(u,iJ)lggl (xu - g(va:)Q) > §$2 +7e- cx?s?. (4.26)

By Lemma 3.1, conditions (A1) and (A2), it follows that

f[lE[eZi(z)U-}_l] < f[l(1+g:c2E[€2|fz i+ O PE( | 7))
< Hexp{ BI&7|Fim1] + O(1)a™ 7Bl [* 7| Fioa) |
= exp {242 (M), +0(1) 2+92E|5|2+P|f i}
< exp {ggﬂ +O(1) (a2 Per + g:?dz)}.
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Therefore, for all 1 <z = o(y;;1),
B[ (M — (31(x)),) %"=V /5]
— 2.
= B[, Bl |7 1)) (M) — (M (2))n) Za()]
< B[ (M) — (@) ) Zao)] exp { 20 + 0(0) @ #0e8 +2252)}
~ 3
=B, [((M]. - <M(m)>n)2] exp { Za? + O(1) (@ 7eh, +2262) |
3
Z (@~ BullF )] exp {502 + 0 0h + 2282) ),
= 8
where the last line follows because ([M ] (M (2))i, Fi)ie 0,..,n is a martingale
with respect to the probability measure Px. Therefore, by Lemma 3.1, conditions
(A1) and (A2) again, we have for all 1 < z = o(y,;}),

B, - (@) e

<ZE o [&F ] Fiz1] eXp{ 22+ O(1)(x*rPel +x262)}

B, [BIee 0 ) B OIF ] exp {202+ 00) @70l + 27257) )

I
"
Mﬁ
I

Y B[

< Cie? exp{gzv2 +O(1)(x*tPel + 2252 }

.
Il

I /\

Z E[J&[***|Fi1]] exp {gaﬁ +O(1)(@ e, + 2%52) |

Lemma 3.1 implies that for all 1 < z = o(y,;}),

B[ exp {20, - éﬁ[mn - gx2<M>n _O(1)a?+ iE[|§i|2+P|J-}_1]H
< Bexp (M, — Lo My — S0 (M)o s — 0127 TSE[|&2+”|J-}_1]H

i=1

By conditions (Al), (A2) and the last inequality, we obtain for all 1 < z =
(v 1),

B[ Mha/5) < exp { zuz +0(1)(z*Peh + 1252)}
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Thus, from (4.25), we deduce that for all 1 < z = o(y,, 1),

P((Mm \/W) € 51)

< Co(el + x212P2P 4 62) exp{ - %ﬁ - ix +O0(1)(z*TPeP + x253)}

< C(eh + ) exp | - %gﬂ + O +a75) ). (4.27)
Similarly, we have

p ((Mn, VM) € 52)

< (6n/2+ 1/(21‘))—26—inf(u,v)egQ(z‘u—Q(UJ,‘)Z)E[([M]n _ 1)26zMn—2[M]nx2]

1
< Cy(ef +62) exp{ — 527+ O()(*el, + x%g)}. (4.28)
For the last term P((M,, \/[M],) € &3), we obtain the following estimation

P((Mn, VIM],) € 53) = P(Mn > 2v/[M], [M]n > 16)

2 3
gafz/g exp { — sz}, (4.29)

IN

where the last line follows by Lemma 3.8. Moreover, by Lemma 3.9, it holds
that for p € (0, 1],

P<(Mn, VM) € 53)

IN

P (/M — (M)a| 2 1)

P
< ceh.

By the last inequality and (4.29), we get for all 1 <z = o(v;, 1),

P((Mn7 VM) € 53) < min {caﬁ, %x_2/3e_3$2/4}
EfL(Q—p)/4

1 2

Thus, combining the inequalities (4.24), (4.27), (4.28) and (4.30) together, we
deduce that for all 1 < z = o(v; 1),

P(Wn >, |[M]n — (M)| > 60 + 1/(217))
p(2—p)/4

En 9 1 9 9 5
= C(W T 5n> eXp{ — 57+ O0() (@™ ef + 5n)}. (4.31)
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Combining (4.18), (4.19), (4.23), and (4.31), we obtain for all 1 < z = o(y;, 1),

P(W Z SL’) 62(27'0)/4 5
T—%(2) < <1 +C@1 -I-a?)(W-I-én)

exp {ap (471028 4 28+ (Lt D)erag 4o +0)) | iEpe0)

exp {C(x3€n + 2202 + (1 + 2) (290 + Yol In Y| + 0n) )} if p=1

er(2=p)/4

exp {Cp (x2+p€Z + 2262 + (1 + 2) (2PvE + 7L + 60 + W))} if p € (0,1)
<

. p(2—p)/4 .
exp {C(ac%n + 2262 + (1 + z)(a:fyn + Yol Iy, | + 0 + W))} if p=1,
which gives the desired inequalities.

For the case of 0 < x < 1, the proof of Theorem 2.3 is similar to the case
of & = 1. Notice that (—Sk, Fi)k=0,....n also satisfies conditions (A1), (A2), and

(A4). Thus, the same inequalities hold when Pl(EVT”é;”) is replaced by %ﬁx)—z)
for all 0 < 2 = o(7,,!). This completes the proof of Theorem 2.3. O

4.3. Proof of Theorem 2.1

Using Proposition 3.2, by an argument similar to the proof of Theorem 2.4, we
obtain the following result. If p € (0,1), then for all 0 < z = o(max{e, !, k,;'}),

P(W, > )
1—®(x)

p(2—p)/4
- | p2tep 4 252 p/2.0/2 | -p/(3+p) En )
exp{&c,)(z el + 6n+(1+x)<1 eprs 4 b +5n+1+xﬂ(2+/3)/4 >}

Notice that the following three inequalities hold:

$1+P/25£)L/2 < x2+pgfw x> 5;9/(2+p)’
xﬂ/%ﬁ/? < Eﬁ/(gﬂj)» 0<z< E:LP/(Q‘FP)’
M < I e (0,1,

Therefore, for p € (0,1) and all 0 < 2 = o(max{e,, !, k,, 1 }),

P(W, > z)

T\ W=t 2+4p_p 2 52 p/(3+p)
-3 @) exp{@cp(:zc e + 20, + (1 + z)(ef) +6n))},

which gives the desired equality for p € (0,1).
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Assume that condition (A2) holds for p > 1. When p € [1,2], by Markov’s
inequality and (4.22), we have for all = > 1,

1
- _ (2+p)/2
Y e Be [ = Q1))
L @21
p(2+p)/47T
< B2/ (4.32)

When p > 2, Lemma 3.7 implies that condition (A2) also holds for p = 2, with
the term ¢, in condition (A2) replaced by 2¢,. Then (4.32) with p = 2 shows
that

E, {1 } < 2ep,.
{@ewrrz<ip—anya ] = %

Thus, for all p > 1, it holds that

El{ < max {57(13‘)72)/4, 25n} < 2551/(3*”).

1{(m)1/2<|[M}F<M>”|}]

Notice that Lemma 3.7 also implies that condition (A2) holds for p = 1. There-
fore, by (4.20), (4.23) can be improved to

IQ(.L)

IN

L L, 24p_p 22
el exp{ - §$ +C3(!L ep T T 5n) E, |:]-{(Ign)1/2<‘[M]n_<]\,[>n|}i|

IN

1
Caﬁ/(?’ﬂ’) exp { — §x2 + c3 (:r?’sn + xgéz) }
Notice also that for p > 1,

P((My, VIM],) € &)

IN

2
min {c b, 5172/3673952/4}

C P/ B3+P) exp { — %x2}

IN

By an argument similar to the proof for case p € (0,1) but with the term
(ze,)P/? in (4.18) replaced by (ze,,)'/2, we have for all 0 < x = o(max{e; ', k,;'}),
P(W, > x)

= (23 + 2262 + (1 + z)(2P/2eP/? 4 P/ (3+0) n)
1= () exp{e(’l(a:zz + 2262 + (14 x) (a7 %eb/? + b +6y)

= exp {002 (xgan + 2262 + (1 +2) (55/<3+”) + (5n)) },

which gives the desired equality for p > 1.

4.4. Proof of Corollary 2.2

To prove Corollary 2.2, we need the following two sides bound on the tail prob-
abilities of the standard normal random variable:

1
V2r(l + z)

2 1 2
e TPl —B(x) < ———e /2 >0, (4.1)

Vil tz)©
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First, we prove that
1 W, 2
lim sup —zlnP<—n € B> < - inf_x—. (4.2)
n—oo Qp an zEB

For any given Borel set B C R, let g = inf,cp |z|. Then, it is obvious that
wo > inf 5 [x|. Therefore, by Theorem 2.1,

W,
p<_ e B)
an

IN

P( |Wn| > anxo)
2(1 —@(anxo)>

X exp {cp ( (anx0)2+p el + (anx0)2 62 + (anxo) (55/(3“) + 5n)> }

IN

Using (4.1), we deduce that
1 w, 2 2
limsup—anP<—n€B) < N < — inf I—,
n—oo Ay (¢7) +€B 2
which gives (4.2).

Next, we prove that

1 n 2
liminf—anP(K € B> > inf T (4.3)

n—oo ag an z€Be 2
We may assume that B® # (). For any 1 > 0, there exists an xyp € B°, such that
x x
0< 70 < inf S +er (4.4)

For zy € B°, there exists small g5 € (0,2z), such that (zg — e2,20 + 2] C B.
Then it is obvious that zp > inf 5 . Without loss of generality, we may assume
that zo > 0. By Theorem 2.1, we deduce that

P(ﬁ € B) > P(Wn € (an(zo — €2), an(zo +€2)]>

2%

%

P(Wn > an(x() — 62)) — P<Wn > an(l’o + Eg)).
Using Theorem 2.1 and (4.1), it follows that

1 n 1
lim inf —21nP<K IS B> > —5(9:0 —£9)°.

n—oo az Qn

Letting €2 — 0, we get

IL‘Z

1 W, 2
lim inf — InP “~eB) > _To > — inf — —¢q.
n—oo as, [e7% 2 zeBe 2

Because €1 can be arbitrarily small, we obtain (4.3). This completes the proof
of Corollary 2.2. O
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Abstract: We give detailed proofs for Propositions 3.1 and 3.2 in the
article “Self-normalized Cramér type moderate deviations for martingales”.

1. Proof of Proposition 3.1

Recall that we have the notation
G(A) = A& = X%&2/2, 1i(\) = G(A) = EAlGOV)|Fical, Ya(N) =D mi(N),
i=1

and Y (A) = (Ye(N), Fk)k=o0,... n. For simplicity, we write ¢;, n;, Yy, Y for ¢;()),
7:(A), Yo (N), Y(N), respectively. In the sequel, ¢ (different from 6) stands for
real numbers satisfying 0 < ¢ < 1 and ¢ stands for the density function of the

standard normal distribution.
Let A(Y), = E\[n?|Fr_1] and (Y), = > i<k A(Y); . Notice that for p > 0,

[0 < 2P (|G + BAIGIIFi-1]* 7).

Using (A4), Lemmas 3.2 and 3.5 of [Fan et al., 2017], we have for all 0 < X =
o),
Ex[|ni***|Fi-1]

arXiv:1712.04756v2 [math.PR] 9 Feb 2018

2 PEAGIT A+ EAlG I Fima T Fi]
27PN G Fia]
o2+p BIAG — N2E2 /2240 exp{ A& — A€ /2}| Fi_a]
El[exp{\&; — \262/2}| Fi_1]
o E[A&[*+7|Fizi]
1 + 0(1))\2""/)’75 E[fﬂfl_l]
g NEBIE|F ]
YT+ 0N 7L Bl ]
< e NHPLBIE|Fi). (L.1)
1
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Using Lemmas 3.2 and 3.5 of [Fan et al., 2017] again, we obtain for all 0 < \ =

o),
|A(Y) = NE[E}] Fr-1]|
E[GRe [Fr1]  \opre2 ’E[Ck€<k|fk—1]2
ual i DN 1Y | I kil i Y
< e el + R
_ [ElGEe | Fa-1] — NE[&|Fi1]E[e | Fr]| ‘E[Ck€<k|fk—112
|E[e¢k [ Fi—1]| Elets|Fj—1]?
< e1 (BING 7| Fia) + OPEIEEIFi1))?)
< ey NP TP B[R Froa. (1.2)
Therefore,
(Y)n =X < (V) = N(M)p] + N|(M),, — 1]
< e NTAL(M), + NP6 (1.3)

Inequalities (1.1) and (1.3) show that the martingale Y satisfies the following
conditions. For all 0 < A = o(v,,; 1),

(B1) Ex[|n: /AT |Fica] < cpvE BIEEFimnl;
(B2) [(Y), /A2 = 1| < cAryf + 62

For simplicity of notation, set 7' = 1+ §2. We introduce a modification of the
conditional variance of the martingale M as follows:

Vie = (M), Lk<ny + TLig=ny- (1.4)

It is easy to see that Vy = 0 and V,, = T, and that (Vi, Fi k=0
process. Denote

n is a predictable

.....

Y = ANyh + Yn + On.

Let ¢, be a constant depending only on p, whose exact value will be chosen
later. Then
A = Ci?ﬁ +T -V, k=1,...,n,

is a non-increasing predictable process. For any fixed u,z € R, and y > 0, set,
for brevity,

D, (x,y) :(I)(u\;gm) (1.5)

In the proof we make use of the following two lemmas from [Bolthausen,
1982].

Lemma 1.1. Let X and Y be random wvariables. Then

1/2

oo

sup P(Xgu)—q)(u)‘gclsup

P(X+Y <u)—®(u) ‘ +C2HE [¥*1x] H

imsart-generic ver. 2014/10/16 file: Supplemnt_to_Cramer_type_large_deviations_for_martingales-180206.tex date: |



X. Fan et al./Self-normalized Cramér type moderate deviations 3

Lemma 1.2. Let G(x) be an integrable function on R of bounded variation
|Gllv, X be a random variable, and a, b # 0 be real numbers. Then

)

X
E[G< b*)} < 1Gllv sup [P (X < u) — @ (u)| + (16111 [o

where ||G||1 is the L1(R) norm of G(z).

Let N'= N(0,1) be a standard normal random variable independent of Y,,.
Using Lemma 1.1, we deduce that

sup |[PA(Yo /A <u) — @(u)| < cosup [Px(ciYnN + Yo /A <u) — (I)(u)‘ + 16
= c1sup [Bal@u(Ya/A, An)] = Ea[@4(Yo/A Ao)]| + 2
< crsup [Ea[®u (Yo /A An)] — EA[<I>U(Y0/)\,A0)]’

u

+ e sup ’E,\[cbu(Yo/)\,Ao)] - <I>(u)’ e

= crsup [Ex[@u(Yi/\ An)] — Ex[®u(Yo/A, Ao)]]
U ~
+cisup || ———) — O(u)| + c2Vn, 1.6
1up |8~z ) - 0(0)| + e (1.6)

where the last line follows from the fact that Yo = 0 and Ag = czﬁ +T. Because
T =1+ 62, it is obvious that

u -
sup “I’(T) - ‘I)(U)’ < €3 Yn-
u V CiVn +T

Thus, from (1.6),

sup [Py (Yo /A <u) — @(u)‘ < ¢y sup

EA[@u(Ya /A, An)] — Ex[@u(Yo/, Ao)]| + 40 (1.7)

For the first item on the right hand side of the last inequality, we have the
following telescoping

n

E[@y (Vi /A, An)]—Ex[@,(Yo/ A, Ao)] = E,\{Z ((I)u(Yk/)\,Ak)—tbu(Yk_l//\, Ak_l))]
k=1

Taking into account that (1;, F;)i=o,....» is a Py-martingale and that

,,,,,

2 0
_(bu ) = 2_(I)u s Y)
52 2ul@y) ay (z,y)
we deduce that
E\[®, (Yo /X An)] — EX[®,(Yo/A, Ao)] =T + I — I, (1.8)
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where

n

L = EA{Z((I)u(Yk/A,Ak)—@u(Yk_l/)\,Ak)

k=1

_8‘9 @ (Vi /A Ax) 5 %83 Bo(Yior /A, Ak))\—’?”
L - %EA[ 6‘922 Do (Yi1 /A Ai) (A (Y>k/)\2—AVk)],

n

I = E,\[Z(Qu(Ykl/)\,Akl)@u(Ykl/)\,Ak)
k=1

Ay
Next, we estimate 17, Is, and I3. To shorten the notations, denote

Ty =

\/LA—J“’ - Yk; )

a) Control of I;. Assume that f is a three times differentiable function on
R. By Taylor’s expansion, it is easy to see that for any |Axz| <1,

flo+ &)~ ()~ F@)Az — 5 f@)BF| = [+ 9a) a2

/" (@ + 9Aw)| | Az >,

IN

and for any |Az| > 1,

[Fw+A0) = (@) = @) Ac = 37" (@) (AP

L oean - exan

N

< 3 (17" + 0102 + 17 (@)) 18l

< 11" (x + 0A7) | Acf?
< |f"(@ +0Az)| | Az
Taking f(z) = ®(z), x = Ty—1 and Az = —\/T’ we have
n '19177k 2+p
il < Ea [ZF(TH + ) o 1{|nk/xms1+n1/2}}
k=1
n 8
FE | | Bu(Yi/A Ax) — Bu(Yio1 /A Ak) - S @u(Yim1 /A AR B
k=1
1 92 n?
,gﬁfpu(kal/)\a Ak))\_Q‘l{771«/>\\/A_k|>1+|Tk—1|/2}]
= I+ ho, (1.9)
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where

)

P (1) = max { |0 (1)

(1))}
To bound the right hand side of (1.9), we distinguish two cases as follows.

Case 1: g/ MW Ak| <1+ |Tx—1|/2. By the inequality F(t) < ¢(t)(1 + t2), it
follows that

P o) < o) (1 (s 2))

M Ay M Ay M Ay
< g1(Th=1),
where
gi(z) = sup ()1 +¢%).
[t—z|<1+]|z]/2

It is easy to see that g;(z) is non-increasing in z > 0. Because g1 (z) is nonneg-
ative,

24+p

I < By [Zgl(Tk—l 1{nk/A¢A—k|g1+Tm|/z}} (1.10)
k=1

)’ Mk
MWAL
Case 2: |np /A Ak| > 1+ |Tip—1]/2. It is easy to see that

[+ Ax) — Ba) — ¥ (x)Ax %@’(w)(Aw)Q‘

~ (|2 +| AA;T; YO 0w+ 207 @) 120+
< (@fw + |0/()] + [@"(2)]) |Aa|*+
< @fﬁ |Ag[+P

for [Az| > 1+ |z|/2. Because |®”(t)| < 2, it follows that

ha < Ex {i%(Tk1)‘%’2+p1{|nk/wm>1+m_l|/2} o (1)
k=1 k
where e
= B e
Set

G(t) = g1(t) + g2(¢).
It follows that

24+p
[Tk } (1.12)

L|<In+I1i2<E G(Ty—
1<+ hs < B | 36| A
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Now we consider the conditional expectation of |n|?>T*. Using condition (B1),
we have

E[|n*1|Fuo1] < e, AP 42 A(M)y,

where A(M), = (M) — (M)g_1. From the definition of the process V, it follows
that A(M), = AV, =V — Vi1, 1 <k <n, and A (M), < AV, and that

E\[|76*T°|Fr1] < c, A28 A (1.13)

Returning to (1.12), by inequality (1.13), we get

11| < Ji, (1.14)
where
L |
Ji=c, %’;EA[Z G (Te1) AVi | (1.15)
k=1 “'k

We introduce the time change 7; as follows. For any real ¢ € [0, T7,
7 =min{k <n:V; >t}, where minf=n. (1.16)

Let (o%) k=1,....n+1 be the increasing sequence of moments when the increasing
stepwise function 73, t € [0,7], has jumps. It is clear that AV, = f[gk _— dt,

and that k = 7 for ¢ € [0y, ok41). Because 7 = n, we have

n n

1 1
> o7z & Tk AVi = Z/ 557z G (Trn—1) dt
=1 A k=17 lor.011) Ax,

T
== A WG(T-,—t_l)dt.

Set a; = 232 + T — t. Because AV, <72 + 262 (cf., Lemma 3.5 of [Fan et al.,
2017] and (1.4)), we see that

t< Vi, S Vo1 + AV, <t+92+262, te[0,7T). (1.17)

Assume that ¢, > 4. We have
1 - —
Fa < AT —(t+724262) < Ay, = E2+T -V, <ay, t€[0,T]. (1.18)

Notice that G(z) is symmetric, and is non-increasing in z > 0. From (1.15),
(1.18) implies that

T
1 u—Yr_1/A
0 ay ay

By Lemma 1.2, it is easy to see that

Y, /A
E\ [G <u) ] < ey sup ‘PA(YT,_l//\ <) - @(z)‘ +epay/ar. (1.20)

at1/2
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Because V,,_1 = V,, — AV, V;, >t and AV,, <2 +262, we get
Vi = Vet SV = Vo, + AV, ST =t el +67) < ar. (1.21)
By (1.1), we have
Exlni /N Fi-1] < coA (M), .
Thus

n

E, { > EA[U%/)\2|fk—1]’fn—1}
k=1

E, [(Yn/)‘ - Yﬂ—l/A)Q‘th—l}

< o EA[ > a |

= & EA[ ‘rt 1 |‘7:th1]
< Cp EA[ - 'Tf 1|]:‘rt 1]

< cpay.

Then, by Lemma 1.1, we deduce that for any ¢ € [0, 7],

sup ‘PA(YTt,l/)\ <z)-— CI)(Z)’ < ¢p3 Sup ‘PA(YH/)\ <z - @(2)‘ + cpar/ar.

(1.22)
From (1.19), using (1.20) and (1.22), we obtain
J1 < ° Tt Pyr(Y,/A < P r_
1S s | e Qup‘ AYn /A< 2) - (Z)‘ + o6 o aH
(1.23)
By (1.21) and some elementary computations we see that
Cp
/ 1+p/2 / (232 + T —t)i+e/2 = prp ) (1.24)
and
/T at__ _ { Cp if p € (0,1),
o a§1+p)/2 =1 cllny,l, if p=1.
Then B
] < 01 < Bl sup ’P(Yn/A <2) = ®(2)| + cpsAn. (1.25)
where
~ | AYE A AE + by, if p€(0,1),
T M+ va gl +6n, i p=1.

b) Control of I. Set G(z) = Sup|, <2 ¥(2z +v), where ¢(z) = (2)(1+22)3/2,
Because AA, = —AVj, we have |Iy| < I 1 + Iz, where

Ba = B3 gl () AV - A )] |

n

B = B[S0 gl () (AN - s, |
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We first deal with I ;. Because |¢'(z)| < G(z) for any real z, we have
" (Te-1)| < G (Th—1) - (1.26)

Notice that 0 < AVy — A (M), < 26215y}, An = 272, and ¢, > 4. Then,
using (1.26), we get the estimations

5,02 ~
I, < =2 :" EA[G (T, 1)] < 22 EA[G (Th-1)),

* In <k

and, by (1.20) with G = G and (1.22) with ¢ = T,
721 < sup ‘PA Yo/ < 2) = ®(2)| + ca,p7n-

We next consider I 2. By (1.2), we easily obtain the bound
|A(Y), [N = A(M),| < es MALAM)g < c3 WAL AV

With this bound, we get

n 1
< PAP — ! .
Toa] < e ¥AEBA| 3 5 I (Ten)| AV

Because |’ (2)| < G (z), the right-hand side can be bounded exactly in the same

way as Jy in (1.15), with A replacing A, 1+0/2 Similar to the proof of (1.23),
we get

Tt T at
al S esp ¥l [ sup[Pau/A £2)— 8] +eap At [ S
o At = 0 a,

By some elementary computations, we see that

[ =] e

and, taking into account that a; > 252,

Tt
/ — < | In 72| < ¢yl In Myn.
0o M

Then B
[Ia.2] < 2 sup [PA(Ya /A < 2) = 0(2)| + €5, A1
Cx 2z

Combining the bounds I>; and I 2, we get

C ~
12| < 22 sup |Pa(Ya /A < 2) = (2)| + e10,7n- (1.27)
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¢) Control of I3. By Taylor’s expansion, it follows that

1 " 1 u—Ys 1/)\
I;=-E " AAZ|.
"8 /\[;ﬂzl(AkﬁkAAkV@ <vAk—19kAAk> k}

Because |AA| = AV, < %21 + 2 5721 and ¢, > 4, we have

A < A — 0pAA < EF2HT — Vi + 292 < 24y (1.28)

Using (1.28) and the inequalities |¢" (2)| < G(z), we obtain
1 T
2 2 k—1
1I3] < c(vp 4202 )E,\[ZAQ ( I>AV4
Proceeding in the same way as for estimating .J; in (1.15), we get
L] < SLe “ sp ‘PA(Y IA< 2) — CD(Z)‘ + €12.)7n. (1.29)

From (1.8), using (1.25), (1.27), and (1.29), we have

[BA[@u(Ya /A, An)] - BAl®u(Yo/\, Ao)]| < < 2) = 8(2)| + ¢, n-
Implementing the last bound in (1.7), we obtain
J
sup ‘PA(YR//\ <) - <I>(z)’ < (Yo/A < 2) — @(z)’ + A,
z
from which, choosing cf = max{2cj ,,4°}, we get
sup ’PA(YH/A <) - <I>(z)’ <2¢) A, (1.30)

which gives the desired inequalities.

2. Proof of Proposition 3.2

Assume conditions (A1), (A2), and (A3). By Lemma 3.2 of [Fan et al., 2017],
and condition (A3), it follows that for all 0 < A = o(k; 1),

Elexp{\&; — N2 /2}|Fic1] = 1+ O(1)NE[¢|Fi-1]
= 14o0(1).

By an argument similar to the proof of (1.1), we get for all 0 < A = o(max{e, !, k. 1}),

S EAnPIFE] < e Y EIAGPTIF )
=1 =1
< ep\PtPel (2.1)
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Similarly, we have for all 0 < A = o(max{e,; !, r,1}),

(V) — N2 < e AFFPel 4 2262 (2.2)
(see (1.3) for a similar argument). Thus, Y satisfies the following conditions.
For all 0 < A\ = o(max{e,; !,k 1}),

(C1) S0 Ex[|ni/A*™? |Fica] < cpel)
(C2) [(Y), /A? —1| <cAeef +62.

In the proof we make use of the following lemma of [Joos, 1993].

Lemma 2.1. Let p > 0. Then

/(3+p)

sup‘PM <) - ®(z) ’<c ((ZE|§ |2+ﬂ> +||<M>n—1||;{2>.

(2.3)

Applying the last lemma to the martingale Y/, we obtain the desired in-
equalities.
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