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Recently, Center loss that aiming to assist Softmax loss with the objectives
of both inter-class dispension and intra-class compactness simultaneously,
has achieved remarkable performance on convolutional neural network
based face recognition. However, its advantages highly rely on the center
feature assumption, which influences the capacity of the final obtained
face features. Inspired by the center loss approach, a novel Orientation
Truncated Center Learning (OTCL) is proposed, which takes advantage of
an orientation truncated center function to make the center feature learning
have more suitable orientation for deep face recognition. Three metrics
are proposed to evaluate how discriminative are the distributions of the
learned features for MNIST visualization. Experimental results on several
challenging benchmarks, including FGLFW, LFW, YTF, and BLUFR,
show that the proposed approach can easily generate more favorable
results than several state-of-the-art competitors.

Introduction: Convolutional Neural Network (CNN) based face
recognition has achieved significant performance. However, how to
design better supervision signals for more discriminative face features is
one of the most concerned issues. Commonly used loss functions include
Softmax loss, Contrastive loss [5] and Triplet loss [6]. Softmax loss
is effective for multi-class classification, but the learned face features
are not discriminative sometimes. Contrastive loss and Triplet loss
make it more discriminative by using information of feature pairs and
triplets. However, the training procedure is not straightforward and the
computation complexity will increase by selecting meaningful image pairs
and triplets. Recently, center loss approach [9], which is a simple and
trainable method, has achieved great progress. However, its advantages
highly rely on the center feature assumption. Once the center feature is
not learned appropriately, the final face features may not represent the
raw face images suitably. Particularly, the situation may be more serious
when there exist a certain number of outliers. To this end, we propose
a simple and efficient approach for more discriminative face features,
called orientation truncated center learning (OTCL). Rather than defining
the center feature by averaging the features of the focused class in each
iteration, OTCL learns the center feature by using an orientation truncated
function. The idea is to update the center feature according to its nearest
feature members, instead of using the full features to avoid the disturbance
of some outliers. Thus, the center feature can represent the features of
the same class more efficiently to learn more suitable CNN models.
Experimental results show the superiority of the proposed approach over
two baselines and several state-of-the-art methods.
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Fig. 1 Framework of orientation truncated center learning (OTCL)

Proposed Approach: Center loss approach for CNN model learning is
based on an optimization objective, expressed as

θ∗ = min
θ
LC(X,L,θ), (1)

where LC(X,L,θ) is the joint supervision of Softmax loss LS and Center
loss Lc, namely,

LC(X,L,θ) =LS(X,L,θ) + λLc(X,L,θ), (2)

and X = {x1,x2, · · · ,xn} is the training data set, L= {l1, l2, · · · , ln}
is the corresponding label set, and θ is the parameter set, λ is a hyper-
parameter to balance the two losses. Here Lc is Center loss which is based
on the distance of the feature xm to its corresponding center feature clm ,
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Fig. 2 Center features (white points) for different distributions of MNIST
a distribution of MNIST testing database by LC
b distribution of MNIST testing database by LOTC

formalized as

Lc =
1

2M

M∑
m=1

‖xm − clm‖
2, (3)

where clm is computed as the average of the features in the lm-th class,
and M is the mini-batch size. However, when there exist many outliers
for a focused class, the corresponding center feature may not properly
represent the class. As shown in Fig. 2a, many features are far away from
their corresponding centers, which seems to have little connection with the
center feature updating.

Intuitively, we can update the center feature according to those nearest
features around the center feature, instead of using the full features.
Suppose that there exist some nearest features {xi1 , · · · ,xiNi

} around
the center feature ci, such that

Ni∑
j=1

‖xij − ci‖
2 ≈ f(i) =R

M∑
m=1

I(lm = i)‖xm − clm‖
2, (4)

where Ni is the number of features in class i, I is the indicator function,
and R ∈ (0, 1). We want to find a suitable R to represent ci, and thus to
avoid the disturbance of the outliers for center feature updating, shown in
Fig. 2b.

For CNN training with N classes, considering all features in a mini-
batch, then

N∑
i=1

f(i) =R

N∑
i=1

M∑
m=1

I(lm = i)‖xm − clm‖
2 =R

M∑
m=1

dm, (5)

where dm = ‖vm‖2 and vm =xm − clm , we aim to find a smallest M̂
(M̂ ≤M ) such that

M̂∑
m=1

dim ≥R
M∑

m=1

dm, (6)

where di1 ≤ di2 ≤ · · · ≤ diM . Then, we propose the Orientation Truncated
Center (OTC) function

LOTC =
1

2M

M̂∑
m=1

dim =
1

2M

M̂∑
m=1

‖xim − clim ‖
2, (7)

a truncated version of Center loss, to assist the center feature updating
to have more suitable orientation for CNN feature extraction. Further, we
update the center feature by

∆ci =−γ
∂LOTC

∂ci
=

γ

M

M̂∑
m=1

I(lim = i)vim , (8)

where γ is the center feature learning rate.
In this way, we propose orientation truncated center learning (OTCL) by

changing the backward computation of center loss approach by (8), without
modifying the forward computation, which can be easily optimized by the
standard stochastic gradient descent.

MNIST visualization: We use LeNet++ [9] and MNIST database for
feature visualization. Three metrics are proposed to characterize the
discrimination of the features: the average cosine distance between each
sample and its corresponding center feature (CD1), the average cosine



distance between the center features (CD2), the average cosine distance
between each sample and its inter-class center feature (CD3), where

CD1 =

N∑
i=1

Ni∑
j=1

1

NiN

cTi xij

‖ci‖ ‖xij‖
, (9)

CD2 =
2

N(N − 1)

N∑
i=1

N∑
j=1

I(i 6= j)
cTi cj

‖ci‖ ‖cj‖
, (10)

CD3 =
1∑N

i Ni(N − 1)

N∑
i=1

Ni∑
j=1

N∑
n=1

I(n 6= i)
cTnxij

‖cn‖ ‖xij‖
, (11)

ci is the center feature for class i, xij is the feature in class i, Ni is the
number of features for class i, andN is the number of classes. By the above
definitions, feature distribution with larger CD1, smaller CD2 and smaller
CD3 is treated as more discriminative. As shown in Fig. 3, our proposed
OTCL performs better than the center loss approach.
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Fig. 3 Final feature distributions corresponding to LC and LOTC

a the diameter of a class cluster is about 2

b the diameter of a class cluster is about 1

Experimental results: The proposed approach is used for face feature
extraction without fine-tuning operations on CASIA-WebFace database
[11] and ResNet-27 [9]. The initial learning rate is 0.1 and is divided by 10
at 30K, 50K iterations, until reaching the maximum iteration 60K. We set
λ= 0.003 and γ = 0.5 according to [9], and range R in [0.1, 0.2, · · · , 0.9].

Table 1: Comparing performance on FGLFW
Method #Train FGLFW (%)

Noisy Softmax [1] 0.5M 94.50
Human [2] n/a 92.00
DCMN [2] 0.5M 91.00
VGG [4, 2] 2.6M 85.78

DeepFace [7, 2] 0.5M 78.78
DeepID2 [5, 2] 0.2M 78.25

Softmax 0.44M 90.87
Softmax + Center 0.44M 94.28

OTCL-0.5 0.44M 95.38
OTCL-0.7 0.44M 95.45

Table 2: Comparing performance on LFW and YTF
Method #Train LFW (%) YTF (%)

SphereFace [3] 0.49M 99.42 95.0
SphereFace 0.44M 99.12 92.98

NormFace [8] 0.49M 99.19 94.72
NormFace 0.44M 98.63 93.26

Softmax + Center [9] 0.7M 99.28 94.9
Softmax + Center 0.44M 99.03 93.3

OTCL-0.5 0.44M 99.17 93.94
OTCL-0.7 0.44M 99.17 94.18

Table 3: Comparing performance on BLUFR protocol
Verification (%) Identification (%)

Method FAR=0.1% FAR=1% FAR=1% FAR=10%
NormFace [8] 95.83 - 77.18 -

Softmax + Center [8, 9] 93.35 - 67.86 -
LightenedCNN [10] 89.12 - 61.79 -
WebFaceCNN [11] 80.26 - 28.9 -

Softmax 82.22 93.5 56.81 73.3
Softmax + Center 93.64 98.12 70.73 86.91

OTCL-0.5 94.15 98.15 75.29 88.73
OTCL-0.7 94.88 98.42 77.28 89.12
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Fig. 4 Example images for MINST, LFW, and YTF

The performances of our best models OTCL-0.5 (R= 0.5) and OTCL-
0.7 (R= 0.7) are reported on FGLFW in Table 1, LFW and YTF in
Table 2, and BLUFR protocol in Table 3, respectively. Experimental results
show that the proposed approach outperforms two baselines: Softmax, and
Softmax + Center. Specifically, our proposed approach achieves the 1st
place on FGLFW, and performs better than most of the compared methods
on LFW, YTF, and BLUFR protocol. Note that it also surpasses NormFace
and SphereFace with the same training data in Table 2. These all show the
superiority of the proposed approach to characterize the center features for
more discriminative face features.

Conclusions: In this letter, we propose a simple and more efficient
algorithm for CNN-based face features learning, referred to as orientation
truncated center learning. By adopting an orientation truncated center
function to restrict the clustering degree in a mini-batch for the center
feature definition, we make the center feature represent the features of the
same class more efficiently to learn CNN models. Feature visualization
with three metrics on real-world dataset MNIST shows that the proposed
approach can make the features more discriminative. Various evaluation
implementations on face recognition tasks show that the proposed
approach is effective and can easily generate more favorable results than
the baseline center loss approach and related state-of-the-art methods.
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