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Abstract

The distance Laplacian eigenvalues of a connected graph G are the eigenvalues
of its distance Laplacian matrix L(G), defined as L(G) = Tr(G) − D(G), where
Tr(G) is the diagonal matrix of vertex transmissions of G, and D(G) is the dis-
tance matrix of G. In this paper, we determine the unique unicyclic graphs with
maximum largest distance Laplacian eigenvalue and minimum second largest dis-
tance Laplacian eigenvalue, respectively.
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1 Introduction

We consider simple and undirected graphs. Let G be a connected graph of order n with
vertex set V (G) and edge set E(G).

The distance matrix of G is the n × n matrix D(G) = (dG(u, v))u,v∈V (G), where
dG(u, v) denotes the distance between vertices u and v in G, i.e., the length of a shortest
path from u to v in G. The spectrum of a distance matrix, arisen from a data communi-
cation problem studied by Graham and Pollack [5] in 1971, has been studied extensively,
see the recent survey [2].

For u ∈ V (G), the transmission of u in G, denoted by TrG(u), is defined as the sum
of distances from u to all other vertices of G, i.e., the row sum of D(G) indexed by
vertex u. Let Tr(G) be the diagonal matrix of vertex transmissions of G.
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The distance Laplacian matrix of G is defined as L(G) = Tr(G) − D(G), see
[1]. The distance Laplacian eigenvalues of G are the eigenvalues of L(G), denoted by
λ1(G), . . . , λn(G), arranged in the nonincreasing order, where n = |V (G)|. Note that
L(G) is positive semidefinite and λn(G) = 0. The largest distance Laplacian eigenvalue
of G (i.e., λ1(G)) is known as the distance Laplacian spectral radius of G.

Aouchiche and Hansen [3] showed that the star is the unique tree with minimum
distance Laplacian spectral radius. More results on distance Laplacian spectral radius
may be found in [3, 8, 9, 11]. Tian et al. [14] studied lower bounds for λ1(G) and
λ2(G). Aouchiche and Hansen [1] showed that the distance Laplacian eigenvalues do
not increase when an edge is added, and λn−1(G) ≥ n for n ≥ 3 with equality if and
only if the complement of G is disconnected. Nath and Paul [10] characterized the
(connected) graphs G of order n ≥ 5 whose complements are trees or unicyclic graphs
having λn−1(G) = n+ 1.

In [3], Aouchiche and Hansen proposed several conjectures on λ1(G) and λ2(G),
and some were settled in [7, 9, 12, 13, 14]. For unicyclic graphs, they also proposed
the following two conjectures about the first two largest distance Laplacian eigenvelues
(λ1(G) and λ2(G)).

Conjecture 1.1. If G is a unicyclic graph of order n ≥ 4, then λ1(G) ≤ λ1(Kin,3) with
equality if and only if G ∼= Kin,3, where Kin,3 is the graph obtained by adding an edge
between a vertex of a triangle and a terminal vertex of a path on n − 3 vertices (see
Fig. 1).

Conjecture 1.2. If G is a unicyclic graph of order n ≥ 6, then λ2(G) ≥ λ2(S
+
n ) with

equality if and only if G ∼= S+
n , where S

+
n is the graph obtained by adding an edge to the

star Sn of order n.

The remainder of this paper is organized as follows. Section 2 introduces several basic
concepts and notations, and some lemmas are also been presented there. In Section 3,
we show that Kin,3 is the unique unicyclic graph of order n ≥ 4 with maximum largest
distance Laplacian eigenvalue, and thus Conjecture 1.1 follows. Section 4 establishes
properties of the second largest distance Laplacian eigenvalues of unicyclic graphs with
some particular structures. Finally, in Section 5, by considering Conjecture 1.2, we
show that S+

n is the unique unicyclic graph of order n ≥ 7 with minimum second
largest distance Laplacian eigenvalue, but for n = 6, besides S+

n , the graph obtained
by attaching a pendant vertex to a vertex of a pentagon is also a unicyclic graph with
minimum second largest distance Laplacian eigenvalue.

2 Preliminaries

LetG be a connected graph with V (G) = {v1, . . . , vn}. A column vector x = (xv1 , . . . , xvn)> ∈
Rn can be considered as a function defined on V (G) which maps vertex vi to xvi , i.e.,
x(vi) = xvi for i = 1, . . . , n. Then

x>L(G)x =
∑

{u,v}⊆V (G)

dG(u, v)(xu − xv)2.
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In particular, if x is a unit eigenvector corresponding to λ1(G), then we have the following
eigenequation of G at u for each u ∈ V (G):

(λ1(G)− TrG(u))xu = −
∑

v∈V (G)

dG(u, v)xv,

or equivalently,

λ1(G)xu =
∑

v∈V (G)

dG(u, v)(xu − xv).

For a unit column vector x ∈ Rn, by Rayleigh’s principle, we have λ1(G) ≥ x>L(G)x
with equality if and only if x is a unit eigenvector of L(G) corresponding to λ1(G). From
this or the interlacing theorem [6, pp. 185–186], we immediately have the following result.

Lemma 2.1. Let G be a connected graph and Trmax(G) be the maximum vertex trans-
mission of G. Then λ1(G) ≥ Trmax(G).

Note that 1n = (1, . . . , 1︸ ︷︷ ︸
n

)> is an eigenvector of L(G) corresponding to λn(G) = 0.

For n ≥ 2, if x is an eigenvector of L(G) corresponding to λ1(G), then x>1n = 0.
Let G be a graph. For v ∈ V (G), let NG(v) be the set of neighbors of v in G, and

δG(v) the degree of v in G. For U ⊆ V (G), let G[U ] be the subgraph of G induced by
U . For a subset E1 of E(G), G−E1 denotes the graph obtained from G by deleting all
the edges in E1, and in particular, we write G − xy instead of G − {xy} if E1 = {xy}.
For a subset E2 of E(G), where G is the complement of G, G + E2 denotes the graph
obtained from G by adding all edges in E2, and in particular, we write G + xy instead
of G+ {xy} if E2 = {xy}.

Lemma 2.2. [1] Let G be a connected graph with u, v ∈ V (G). If u and v are non-
adjacent in G, then λ1(G+ uv) ≤ λ1(G).

A path u1 . . . ur (with r ≥ 2) in a graph G is called a pendant path (of length r− 1)
at u1 if δG(u1) ≥ 3, the degrees of u2, . . . , ur−1 (if exist) are all equal to 2 in G, and
δG(ur) = 1. If P is a pendant path of G at u with length r ≥ 1, we say G is obtained from
H by attaching a pendant path P of length r at u, where H = G[V (G) \ (V (P ) \ {u})].
In particular, if the pendant path of length 1 is attached to a vertex u of H, then we
also say that a pendant vertex is attached to u.

For a nontrivial connected graph G with u ∈ V (G), and positive integers k and l,
let Gu(k, l) be the graph obtained from G by attaching two pendant paths of lengths k
and l, respectively, at u, and in particular, let Gu(k, 0) be the graph obtained from G
by attaching a pendant path of length k at u.

Lemma 2.3. [9] Let G be a nontrivial connected graph with u ∈ V (G). For k ≥ l ≥ 1,
λ1(Gu(k, l)) < λ1(Gu(k + 1, l − 1)).

For a connected graph G with u, v ∈ V (G), and positive integers k and l, where
δG(u), δG(v) ≥ 2, let Gu,v(k, l) be the graph obtained from G by attaching a pendant
path of length k at u, and a pendant path of length l at v, and in particular, let Gu,v(k, 0)
be the graph obtained from G by attaching a pendant path of length k at u.
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Lemma 2.4. [9] Let G be a connected graph with uv ∈ E(G). If NG−uv(u) = NG−uv(v) 6=
∅ and k ≥ l ≥ 1, then λ1(Gu,v(k, l)) < λ1(Gu,v(k + 1, l − 1)).

For an n×n real symmetric matrix M , let λ1(M) and λ2(M) be the largest and the
second largest eigenvalues of M , respectively. From interlacing theorem [6, pp. 185–186],
we have the following lemma.

Lemma 2.5. Let N be an n × n real symmetric matrix, and M a principal submatrix
of N with order m with 2 ≤ m ≤ n. Then λ2(N) ≥ λ2(M).

Lemma 2.6. [1] Let G be a connected graph with an independent set S such that
NG(u) = NG(v) for any u, v ∈ S. Then for u ∈ S, TrG(u) + 2 is a distance Lapla-
cian eigenvalue of G with multiplicity at least |S| − 1.

For a connected graph G with u, v ∈ V (G), let L(G)[u, v] be the principal submatrix
of L(G) indexed by u and v.

Let Pn and Cn be the path and the cycle on n vertices, respectively.

3 Maximum largest distance Laplacian eigenvalue of

unicyclic graphs

Let Gn be the graph as shown in Fig. 1.

Table 1: λ1(Gn) and λ1(Kin,3) for n = 6, . . . , 16.

n 6 7 8 9 10 11
λ1(Gn) 17.6056 24.9373 33.6659 43.6796 54.95 67.4664
λ1(Kin,3) 18.7130 26.4296 35.3836 45.5731 56.9962 69.6512

n 12 13 14 15 16
λ1(Gn) 81.2235 96.2178 112.4472 129.9099 148.6044
λ1(Kin,3) 83.5368 98.6518 114.9952 132.5661 151.3638

3 Maximum largest distance Laplacian eigenvalue of

unicyclic graphs

Let Gn be the graph as show in Fig. ??.

s s s . . . s s s ss s
v1 v2 vn−3

vn

vn−2 vn−1
s s s . . . s s s s@@

s s
v1 v2 vn−3vn−2

vn

vn−1

Gn Kin,3

The graphs Gn and Kin,3 in Lemma 3.1.

Lemma 3.1. For n ≥ 6, λ1(Gn) < λ1(Kin,3).

Proof. If n = 6, . . . , 16, then from Table 1 we have λ1(Gn) < λ1(Kin,3).
Suppose that n ≥ 17.
Let x be a unit eigenvector of L(Gn) corresponding to λ1(Gn). By direct calcula-

tion, we have TrGn(v1) = n2−n−4
2

, TrGn(vn−2) = n2−5n+12
2

, TrGn(vn−1) = n2−3n+8
2

and

TrGn(vn) = n2−5n+16
2

.
As we pass from Gn to Kin,3, the distance between vn and vi with 1 ≤ i ≤ n− 3 is

increased by 1, the distance between vn and vn−2 is decreased by 1, the distance between
vn and vn−1 is increased by 1, and the distance between other vertex pair remains
unchanged. Note that

∑n
i=1 xvi = 0 and

∑n
i=1 x

2
vi

= 1. Then

λ1(Kin,3)− λ1(Gn)

≥ x>(L(Kin,3)− L(Gn))x

=
n−3∑

i=1

(xvn − xvi)2 − (xvn − xvn−2)
2 − 2(xvn − xvn−1)

2

=
n−3∑

i=1

(x2vn − 2xvnxvi + x2vi)− (x2vn − 2xvnxvn−2 + x2vn−2
)− 2(x2vn − 2xvnxvn−1 + x2vn−1

)

4

Fig. 1: The graphs Gn and Kin,3 in Lemma 3.1.

Lemma 3.1. For n ≥ 6, λ1(Gn) < λ1(Kin,3).

Proof. If n = 6, . . . , 16, then the results follow from Table 1.
In what following, we suppose that n ≥ 17.
Let x be a unit eigenvector of L(Gn) corresponding to λ1(Gn). By direct calcula-

tion, we have TrGn(v1) = n2−n−4
2

, TrGn(vn−2) = n2−5n+12
2

, TrGn(vn−1) = n2−3n+8
2

and

TrGn(vn) = n2−5n+16
2

.
From the label of vertices in Gn and Kin,3 in Fig. 1, note that Kin,3 = Gn −

{vn−3vn}+ {vn−2vn, vn−1vn}. As we pass from Gn to Kin,3, the distance between vn and
vi with 1 ≤ i ≤ n − 3 is increased by 1, the distance between vn and vn−2 is decreased
by 1, the distance between vn and vn−1 is decreased by 2, and the distance between any
other vertex pair remains unchanged. Note that

∑n
i=1 xvi = 0 and

∑n
i=1 x

2
vi

= 1. Then

λ1(Kin,3)− λ1(Gn)
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Table 1: λ1(Gn) and λ1(Kin,3) for n = 6, . . . , 16.

n 6 7 8 9 10 11

λ1(Gn) 17.6056 24.9373 33.6659 43.6796 54.95 67.4664

λ1(Kin,3) 18.7130 26.4296 35.3836 45.5731 56.9962 69.6512

n 12 13 14 15 16

λ1(Gn) 81.2235 96.2178 112.4472 129.9099 148.6044

λ1(Kin,3) 83.5368 98.6518 114.9952 132.5661 151.3638

≥ x>(L(Kin,3)− L(Gn))x

=
n−3∑

i=1

(xvn − xvi)2 − (xvn − xvn−2)
2 − 2(xvn − xvn−1)

2

=
n−3∑

i=1

(x2vn − 2xvnxvi + x2vi)− (x2vn − 2xvnxvn−2 + x2vn−2
)− 2(x2vn − 2xvnxvn−1 + x2vn−1

)

= (n− 6)x2vn +
n−3∑

i=1

x2vi + 2xvn

(
−

n−3∑

i=1

xvi + xvn−2 + 2xvn−1

)
− x2vn−2

− 2x2vn−1

= (n− 6)x2vn + 1−
n∑

i=n−2
x2vi + 2xvn

(
n∑

i=n−2
xvi + xvn−2 + 2xvn−1

)
− x2vn−2

− 2x2vn−1

= (n− 5)x2vn + 1 + 2xvn
(
2xvn−2 + 3xvn−1

)
− 2x2vn−2

− 3x2vn−1
. (3.1)

From the eigenequations of Gn at vn−2, vn−1 and vn, we have

(λ1(Gn)− TrGn(vn−2))xvn−2 = −2xvn − xvn−1 −
n−3∑

i=1

dGn(vn−2, vi)xvi , (3.2)

(λ1(Gn)− TrGn(vn−1))xvn−1 = −3xvn − xvn−2 −
n−3∑

i=1

(dGn(vn−2, vi) + 1)xvi , (3.3)

(λ1(Gn)− TrGn(vn))xvn = −2xvn−2 − 3xvn−1 −
n−3∑

i=1

dGn(vn−2, vi)xvi . (3.4)

First, by Eqs. (3.2) and (3.3),

(λ1(Gn)− TrGn(vn−2))xvn−2 − (λ1(Gn)− TrGn(vn−1))xvn−1

=
n−3∑

i=1

xvi + xvn − xvn−1 + xvn−2

= (−xvn−2 − xvn−1 − xvn) + xvn − xvn−1 + xvn−2
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= −2xvn−1 ,

i.e.,

(λ1(Gn)− TrGn(vn−2))xvn−2 = (λ1(Gn)− TrGn(vn−1)− 2)xvn−1 . (3.5)

From Lemma 2.1, we have

λ1(Gn)− TrGn(vn−2) ≥ Trmax(Gn)− TrGn(vn−2)

≥ TrGn(v1)− TrGn(vn−2)

= 2n− 8

> 4

and

λ1(Gn)− TrGn(vn−1)− 2 ≥ Trmax(Gn)− TrGn(vn−1)− 2

≥ TrGn(v1)− TrGn(vn−1)− 2

= n− 8

> 4.

So xvn−2 and xvn−1 possess the same sign from Eq. (3.5).
Without loss of generality, we suppose that xvn−2 and xvn−1 are both non-negative.

Note that
TrGn(vn−2) < TrGn(vn−1) + 2.

Then by Eq. (3.5), xvn−2 ≤ xvn−1 .
On the other hand, by Eqs. (3.3) and (3.4),

(λ1(Gn)− TrGn(vn))xvn − (λ1(Gn)− TrGn(vn−1))xvn−1

=
n−3∑

i=1

xvi + 3xvn − 3xvn−1 − xvn−2

= (−xvn−2 − xvn−1 − xvn) + 3xvn − 3xvn−1 − xvn−2

= 2xvn − 4xvn−1 − 2xvn−2 ,

i.e.,

(λ1(Gn)− TrGn(vn)− 2)xvn − (λ1(Gn)− TrGn(vn−1)− 4)xvn−1 = −2xvn−2 ≥ −2xvn−1 ,

which implies that

(λ1(Gn)− TrGn(vn)− 2)xvn ≥ (λ1(Gn)− TrGn(vn−1)− 6)xvn−1 ≥ 0.

From Lemma 2.1, we have

λ1(Gn)− TrGn(vn)− 2 ≥ Trmax(Gn)− TrGn(vn)− 2

≥ TrGn(v1)− TrGn(vn)− 2

= 2n− 12

> 0.
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Thus xvn ≥ 0.
Furthermore, by Eqs. (3.2) and (3.4),

(λ1(Gn)− TrGn(vn−2))xvn−2 − (λ1(Gn)− TrGn(vn))xvn = 2xvn−2 + 2xvn−1 − 2xvn ,

i.e.,

(λ1(Gn)− TrGn(vn−2)− 4)xvn−2 − (λ1(Gn)− TrGn(vn)− 2)xvn
= 2(xvn−1 − xvn−2). (3.6)

Noting that TrGn(vn−2) + 4 = TrGn(vn) + 2, by Eq. (3.6), we have

(λ1(Gn)− TrGn(vn−2)− 4)(xvn−2 − xvn) = 2(xvn−1 − xvn−2) ≥ 0,

which implies that xvn−2 ≥ xvn .
In conclusion, we get xvn−1 ≥ xvn−2 ≥ xvn ≥ 0.
Now by (3.1), we have

λ1(Kin,3)− λ1(Gn) ≥ (n− 5)x2vn + 1 + 2xvn
(
2xvn−2 + 3xvn−1

)
− 2x2vn−2

− 3x2vn−1

≥ (n− 5)x2vn + 1 + 2xvn (2xvn + 3xvn)− 2x2vn−1
− 3x2vn−1

≥ (n+ 5)x2vn + 1− 5x2vn−1

≥ 22x2vn + 1− 5x2vn−1
. (3.7)

Let

f(t) = 2(t− TrGn(vn−2)− 2)(t− TrGn(vn−1)− 2)− 4(t− TrGn(vn−2))

−(t− TrGn(vn)− 2)(t− TrGn(vn−2))

= 2

(
t− n2 − 5n+ 16

2

)(
t− n2 − 3n+ 12

2

)
− 4

(
t− n2 − 5n+ 12

2

)

−
(
t− n2 − 5n+ 20

2

)(
t− n2 − 5n+ 12

2

)

= t2 − (n2 − 3n+ 16)t+
n4 − 6n3 + 37n2 − 96n+ 240

4
.

It is easily verified that n2−3n+16±2
√
n2+4

2
are the two roots of f(t) = 0.

By interlacing theorem,

λ1(Gn) ≥ λ1(L(Gn)[v1, vn−1]) =
n2 − 2n+ 2 +

√
5n2 − 28n+ 52

2

>
n2 − 3n+ 16 + 2

√
n2 + 4

2

for n ≥ 17, which implies that f(λ1(Gn)) > 0, equivalently,

2(λ1(Gn)− TrGn(vn−2)− 2)(λ1(Gn)− TrGn(vn−1)− 2)− 4(λ1(Gn)− TrGn(vn−2))

(λ1(Gn)− TrGn(vn)− 2)(λ1(Gn)− TrGn(vn−2))
> 1

for n ≥ 17.
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Together with Eqs. (3.5) and (3.6), we may deduce

2xvn

=
2(λ1(Gn)− TrGn(vn−2)− 2)(λ1(Gn)− TrGn(vn−1)− 2)− 4(λ1(Gn)− TrGn(vn−2))

(λ1(Gn)− TrGn(vn)− 2)(λ1(Gn)− TrGn(vn−2))
xvn−1

≥ xvn−1 .

Finally, from (3.7), we conclude that

λ1(Kin,3)− λ1(Gn) ≥ 22x2vn + 1− 5x2vn−1
≥ 2x2vn + 1 > 0,

implying that λ1(Kin,3) > λ1(Gn), as desired. �

Theorem 3.1. Let G be a unicyclic graph of order n ≥ 3. Then λ1(G) ≤ λ1(Kin,3) with
equality if and only if G ∼= Kin,3.

Proof. It is trivial when n = 3. Suppose that n ≥ 4. Let G be a unicyclic graph of
order n with maximum distance Laplacian spectral radius. Let l be the length of the
unique cycle in G.

Suppose that G ∼= Cn. From [1], we have

λ1(Cn) =

{
n2

4
+ csc2 π

n
if n is even,

n2−1
4

+ 1
4

csc2 π
2n

if n is odd.

If n = 4, 5, then by direct calculation,

λ1(C4) = 6 < 7 ≈ λ1(Ki4,3),

λ1(C5) ≈ 8.6180 < 12.2361 ≈ λ1(Ki5,3).

Suppose that n ≥ 6. Let w1 and w2 be, respectively, the pendant vertex and a vertex
of degree 2 on the triangle in Kin,3. Note that TrKin,3(w1) = n2−n−2

2
and TrKin,3(w2) =

n2−3n+4
2

. Let M be the principal submatrix of L(Kin,3) indexed by w1 and w2. By
interlacing theorem,

λ1(Kin,3) ≥ λ1(M) =
n2 − 2n+ 1 +

√
(n− 3)2 + 4(n− 2)2

2
.

It is easily verified that 2n2

π2 > csc2 π
n

and 2n2

π2 > 1
4

csc2 π
2n

. Then

λ1(Kin,3) ≥
n2 − 2n+ 1 +

√
(n− 3)2 + 4(n− 2)2

2
>
n2

4
+

2n2

π2
> λ1(Cn),

which is a contradiction to the maximality of λ1(G) = λ1(Cn). Thus 3 ≤ l ≤ n− 1.
Suppose that l ≥ 5. Assume that w1 is a vertex of degree at least 3 lying on the unique

cycle in G. Let uv be the edge on the cycle in G such that dG(u,w1), dG(v, w1) ≥ 2. Let
G′ = G− uv. By Lemmas 2.2, 2.3 and 3.1, we have

λ1(G) ≤ λ1(G
′) ≤ λ1(Gn) < λ1(Kin,3),
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which is a contradiction to the maximality of λ1(G). Thus l = 3, 4.
Suppose that l = 4. By Lemma 2.3, G ∼= Cn(l1, l2, l3, l4), where Cn(l1, l2, l3, l4) is the

graph obtained from a quadrangle C4 = w1w2w3w4w1 by attaching a pendant path of
length li at wi, l1 + l2 + l3 + l4 + 4 = n and li ≥ 0 for 1 ≤ i ≤ 4. Suppose without
loss of generality that l1 = max{li : 1 ≤ i ≤ 4} and l2 ≥ l4. Suppose that l1 ≥ 2. Let
G′ = G− w2w3. By Lemmas 2.2, 2.3 and 3.1, we have

λ1(G) ≤ λ1(G
′) ≤ λ1(Gn) < λ1(Kin,3),

which is a contradiction to the maximality of λ1(G). Suppose that l1 = 1. If l2 = 1,
then as above, we may deduce that λ1(G) < λ1(Kin,3), which is a contradiction again. If
l2 = 0, then also l4 = 0, and thus G ∼= C5(1, 0, 0, 0) or C6(1, 0, 1, 0). By direct calculation,

λ1(G) = λ1(C5(1, 0, 0, 0)) ≈ 10.8951 < 12.2361 ≈ λ1(Ki5,3)

and
λ1(G) = λ1(C6(1, 0, 1, 0)) ≈ 16.6056 < 18.7130 ≈ λ1(Ki6,3),

also a contradiction.
Thus l = 3. By Lemmas 2.3 and 2.4, G ∼= Kin,3, as desired. �

We remark that Bapat et al. [4] gave an independent and different proof for the
above theorem very recently.

4 Second largest distance Laplacian eigenvalues of

unicyclic graphs with particular structures

The eccentricity of u in G is defined to be the largest distance from u to other vertex.
Denote by d(G) or d the diameter of G. Recall that the diameter of G is actually the
largest eccentricity among all vertices of G.

Lemma 4.1. Let G be a unicyclic graph of order n ≥ 7 and G � S+
n . If there are at

least three pendant vertices of G sharing a common neighbor, then λ2(G) > 2n− 1.

Proof. Since there are at least three pendant vertices of G sharing a common neighbor,
we may assume that v is a vertex among such pendant vertices. Denote by s the
eccentricity of v in G. Clearly, s ≥ 3 because G � S+

n .
First by Lemma 2.6, we know that TrG(v) + 2 is a distance Laplacian eigenvalue of

G with multiplicity at least 2, which implies that λ2(G) ≥ TrG(v) + 2. On the other
hand, it is easily seen that

TrG(v) ≥ (1 + 2 + · · ·+ s) + 2(n− s− 1)

= 2n+
s2

2
− 3

2
s− 2

≥ 2n+
32

2
− 3

2
· 3− 2

= 2n− 2.

Now it follows that
λ2(G) ≥ TrG(v) + 2 ≥ 2n > 2n− 1,

as desired.
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Lemma 4.2. Let G be a unicyclic graph of order n ≥ 8, where u is a pendant vertex of G
with unique neighbor v. Suppose that the eccentricity of u in G is s ≥ 6. If δG(v) = 2, 3
or 4, then λ2(G) > 2n− 1.

Proof. First suppose that δG(v) = 2. By Lemma 2.5, we have

λ2(G) ≥ λ2(L(G)[u, v]) > TrG(v)− 1.

On the other hand, it is easily seen that

TrG(v) ≥ (1 + 1 + 2 + · · ·+ s− 1) + 2(n− s− 1)

= 2n+
s2

2
− 5

2
s− 1

≥ 2n+
62

2
− 5

2
· 6− 1

= 2n+ 2.

Then we get
λ2(G) > TrG(v)− 1 ≥ 2n+ 1 > 2n− 1,

i.e., λ2(G) > 2n− 1.
If δG(v) = 3, then similarly we have TrG(v) ≥ 2n+ 1, and thus

λ2(G) > TrG(v)− 1 ≥ 2n > 2n− 1,

i.e., λ2(G) > 2n− 1.
If δG(v) = 4, then similarly we have TrG(v) ≥ 2n, and thus

λ2(G) > TrG(v)− 1 ≥ 2n− 1,

i.e., λ2(G) > 2n− 1.

Lemma 4.3. Let G be a unicyclic graph of order n ≥ 7, where d = 5, and u is a pendant
vertex of G with unique neighbor v. Suppose that δG(v) = 3, and there is a diametrical
path P of G such that u is an end vertex of P . If there are at least two vertices, say
x, y, in G outside P such that dG(v, x) = dG(v, y) = 3, or there is at least one vertex,
say z, in G outside P such that dG(v, z) = 4, then λ2(G) > 2n− 1.

Proof. Similar to the proof of Lemma 4.2, if there are at least two vertices, say x, y, in
G outside P such that dG(v, x) = dG(v, y) = 3, then we have

TrG(v) ≥ (1 + 1 + 2 + 3 + 4) + 1 + 2 · 3 + 2(n− 9) = 2n,

and if there is at least one vertex, say z, in G outside P , such that dG(v, z) = 4, then
we have

TrG(v) ≥ (1 + 1 + 2 + 3 + 4) + 1 + 4 + 2(n− 8) = 2n.

Now it follows that

λ2(G) ≥ λ2(L(G)[u, v]) > TrG(v)− 1 ≥ 2n− 1,

i.e., λ2(G) > 2n− 1, as desired.
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If u is a pendant vertex of G whose unique neighbor v is of degree 2, and w is the
unique neighbor of v in G different from u, then the local structure of G induced by
vertices u, v, w is said to be a pendant P3 of G.

If two pendant vertices x and y possess a common neighbor z in G, then the local
structure of G induced by vertices x, y, z is said to be an outer P3 of G.

If G is a unicyclic graph of maximum degree 3 obtainable by attaching some pendant
vertices to some vertices of a cycle, then G is said to be a sun graph.

For a unicyclic graph G, it is easily seen that if G contains neither pendant nor outer
P3, then G would be either a cycle or a sun graph.

4.1 Unicyclic graphs with pendant P3

First, we focus on the unicyclic graphs with pendant P3.

Lemma 4.4. Let G be a unicyclic graph of order n ≥ 7. If there are at least two pendant
P3’s of G attached to the same vertex, then λ2(G) > 2n− 1.

Proof. Denote by u and v the two pendant vertices in such two pendant P3’s in G.
By Lemma 2.5, we know that

λ2(G) ≥ λ2(L(G)[u, v]) = TrG(v)− 4.

On the other hand, it is easily seen that

TrG(v) ≥ (1 + 2 + 3 + 4) + 3(n− 5) = 3n− 5.

Then
λ2(G) ≥ TrG(v)− 4 ≥ 3n− 9 > 2n− 1

for n ≥ 9.
If n = 7 or 8, then G is a graph as shown in Fig. 2. For the first two graphs,

λ2(G) > 2n − 1 follows from direct calculation, and for the remaining three graphs,
noting that there is at least one vertex different from u with distance 4 from itself to v,
we have TrG(v) ≥ 3n− 4, and thus

λ2(G) ≥ TrG(v)− 4 ≥ 3n− 8 > 2n− 1

for n = 8.

                                     

Fig. 2: The graphs in Lemma 4.4 when n = 7 or 8.
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Lemma 4.5. Let G be a unicyclic graph of order n ≥ 7, where d = 5. Suppose that
there exists pendant P3 in G, where u and v are, respectively, the vertices of degrees
one and two in such pendant P3. If there is a diametrical path P of G such that u is
an end vertex of P , and there is at least one vertex, say w, in G outside P such that
dG(v, w) ≥ 3, then λ2(G) > 2n− 1.

Proof. First by Lemma 2.5, we have

λ2(G) ≥ λ2(L(G)[u, v]) > TrG(v)− 1.

On the other hand, it is easily seen that

TrG(v) ≥ (1 + 1 + 2 + 3 + 4) + 3 + 2(n− 7) = 2n.

Now it follows that

λ2(G) ≥ λ2(L(G)[u, v]) > TrG(v)− 1 ≥ 2n− 1,

i.e., λ2(G) > 2n− 1, as desired.

Lemma 4.6. Let G be a unicyclic graph of order n ≥ 8, where d = 4. Suppose that
there exists pendant P3 in G, where u and v are, respectively, the vertices of degrees one
and two in such pendant P3. If there is a diametrical path P of G such that u is an end
vertex of P , and there are at least three vertices, say x, y, z, in G outside P such that
dG(v, x) = dG(v, y) = dG(v, z) = 3, then λ2(G) > 2n− 1.

Proof. Similar to the proof of Lemma 4.5, we have

TrG(v) ≥ (1 + 1 + 2 + 3) + 3 · 3 + 2(n− 8) = 2n,

and thus
λ2(G) ≥ λ2(L(G)[u, v]) > TrG(v)− 1 ≥ 2n− 1,

i.e., λ2(G) > 2n− 1, as desired.

4.2 Unicyclic graphs with outer P3

Next we consider the unicyclic graphs with outer P3.

Lemma 4.7. Let G be a unicyclic graph of order n ≥ 7. If there are at least two
vertex-disjoint outer P3’s in G, then λ2(G) > 2n− 1.

Proof. Denote by u a pendant vertex of an outer P3 of G, and v a pendant vertex of
another outer P3 of G. Let s = dG(u, v). Clearly, s ≥ 3.

By Lemma 2.6, we know that both TrG(u)+2 and TrG(v)+2 are distance Laplacian
eigenvalues of G, which implies that

λ2(G) ≥ min{TrG(u) + 2, T rG(v) + 2}.

It is easily seen that

TrG(u) ≥ (1 + 2 + · · ·+ s) + 2(n− s− 1)
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= 2n+
s2

2
− 3

2
s− 2

≥ 2n+
32

2
− 3

2
· 3− 2

= 2n− 2.

Similarly, we have TrG(v) ≥ 2n− 2. Thus we can get that

λ2(G) ≥ min{TrG(u) + 2, T rG(v) + 2} ≥ 2n > 2n− 1,

as desired.

Lemma 4.8. Let G be a unicyclic graph of order n ≥ 7. Suppose that there exists outer
P3 in G, where u and v are the two pendant vertices in such outer P3. Let s be the
eccentricity of u in G, where s = 4 or 5. Denote by w the unique neighbor of u in G. If
δG(w) = 3 or 4, then λ2(G) > 2n− 1.

Proof. First suppose that δG(w) = 3. By Lemma 2.5, we know that

λ2(G) ≥ λ2(L(G)[u, v]) = TrG(u)− 2.

On the other hand, it is easily seen that

TrG(u) ≥ (1 + 2 + · · ·+ s) + 2 + 3(n− s− 2)

= 3n+
s2

2
− 5

2
s− 4

=

{
3n− 6 if s = 4,

3n− 4 if s = 5.

Then
λ2(G) ≥ TrG(u)− 2 ≥ 3n− 8 > 2n− 1

for s = 4 and n ≥ 8, and

λ2(G) ≥ TrG(u)− 2 ≥ 3n− 6 > 2n− 1

for s = 5 and n ≥ 7. In particular, if s = 4 and n = 7, then G is a graph as shown in
Fig. 3, and thus λ2(G) > 2n− 1 follows from direct calculation.

 1 

    

                          
                                                                       

 Fig. 3: The graphs in Lemma 4.8 when δG(w) = 3, s = 4 and n = 7.

The proof for δG(w) = 4 when s = 4 and n ≥ 9, or s = 5 and n ≥ 7 can be deduced
similarly. In particular, if s = 4 and n = 7 or 8, then together with Lemmas 4.1 and 4.7,
we may assume that G is a graph as shown in Fig. 4, and thus λ2(G) > 2n− 1 follows
from direct calculation.

Now the result follows.
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Fig. 4: The graphs in Lemma 4.8 when δG(w) = 4, s = 4 and n = 7 or 8.

(The dashed line represents the edge may exist or not exist.)

Lemma 4.9. Let G be a unicyclic graph of order n ≥ 7. Suppose that d = 4, or d = 5
and there is no pendant P3 in G. If there exists outer P3 in G, then λ2(G) > 2n− 1.

Proof. Denote by u and v the two pendant vertices of an outer P3 of G, and w the
unique neighbor of v in G. Let s be the eccentricity of u in G.

First suppose that there exists pendant P3 in G. Then d = 4 from the hypothesis.
Denote by x and y, respectively, the vertices of degrees one and two in such pendant P3.

Suppose that s = 4. Then we may choose a diametrical path of G such that u is
an end vertex of such diametrical path. In this case, together with Lemma 4.1, we only
need to consider the cases that δG(w) = 3 if w lies outside the unique cycle of G, and
δG(w) = 4 if w lies on the unique cycle of G. Now λ2(G) > 2n− 1 follows from Lemma
4.8.

Suppose that s < 4. Then the unique neighbor of y in G different from x is actually
w, otherwise dG(u, x) ≥ 4, i.e., s ≥ 4, which is a contradiction. Moreover, by Lemmas
4.1, 4.4, 4.6 and 4.7, we only need to consider when G is a graph as shown in Fig. 5,
and thus λ2(G) > 2n− 1 follows from direct calculation.

                      
 
 
 
 Fig. 5: The graphs in Lemma 4.9 when there exists pendant P3 in G.

Next suppose that there is no pendant P3 in G. By Lemmas 4.1 and 4.7, we only
need to consider the cases that δG(w) = 3 if w lies outside the unique cycle of G, and
δG(w) = 4 if w lies on the unique cycle of G. If s = 4 or 5, then λ2(G) > 2n− 1 follows
from Lemma 4.8. If s = 3, then by Lemma 4.7, we only need to consider when G is a
graph as shown in Fig. 6, and thus λ2(G) > 2n − 1 follows from direct calculation. If
s = 2, then G ∼= S+

n , and d = 2, which is a contradiction to the hypothesis that d = 4
or 5.

                 
 

Fig. 6: The graphs in Lemma 4.9 when there is no pendant P3 in G.

Now the result follows.
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5 Minimum second largest distance Laplacian eigen-

value of unicyclic graphs

We are now ready to give the unique unicyclic graphs whose second largest distance
Laplacian eigenvalue is minimum.

Theorem 5.1. Let G be a unicyclic graph of order n ≥ 6. Then λ2(G) ≥ 2n − 1 with
equality if and only if G ∼= S+

6 or the graph obtained by attaching a pendant vertex to a
vertex of a pentagon for n = 6, and G ∼= S+

n for n ≥ 7.

Proof. Suppose that G ∼= Cn. From [1], we have

λ2(Cn) =

{
n2

4
+ csc2 π

n
if n is even,

n2−1
4

+ 1
4

csc2 π
2n

if n is odd.

So it is easily seen that λ2(Cn) > 2n− 1.
In the following, suppose that G � Cn. Since G � Cn, we may choose a diametrical

path of G, say P = v0v1 . . . vd, such that v0 is a pendant vertex of G.
Case 1. d ≥ 6.

If δG(v1) ≥ 5, then λ2(G) > 2n − 1 follows from Lemma 4.1. If δG(v1) = 2, 3 or 4,
then λ2(G) > 2n− 1 follows from Lemma 4.2.
Case 2. d = 5.

First suppose that there exists no pendant P3 in G. By Lemma 4.9, we only need to
consider the graphs without outer P3, which implies that G is a sun graph. By Lemma
4.3, we only need to consider the graphs as shown in Fig. 7, and λ2(G) > 2n− 1 follows
from direct calculation.

         

Fig. 7: The graphs in Theorem 5.1 when d = 5 without pendant P3.

Next suppose that there exists pendant P3 in G. Denote by u and v, respectively,
the vertices of degrees one and two in such pendant P3 of G.

Suppose that the eccentricity of u in G is 5. Then we may choose a diametrical path
Q of G such that u is an end vertex of Q. By Lemma 4.5, we only need to consider the
case that the distance between v and each vertex outside Q in G is exactly 2. It means
that the unique cycle of G is of length at most 4. Together with Lemma 4.3, we may
assume that G is a graph as shown in Fig. 8, and λ2(G) > 2n − 1 follows from direct
calculation.

If the eccentricity of u in G is 3 (4, respectively), then it is easily seen that the
diameter of G must be 3 (4, respectively), which would lead to a contradiction to the
hypothesis that d = 5.
Case 3. d = 4.

By Lemma 4.9, we only need to consider the graphs without outer P3. It implies
that either there exists pendant P3 in G, or G is a sun graph.
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Fig. 8: The graphs in Theorem 5.1 when d = 5 with pendant P3.

First suppose that there exists no pendant P3 in G, i.e., G is a sun graph. Then we
only need to consider G is a graph as shown in Fig. 9, and λ2(G) > 2n− 1 follows from
direct calculation.

        

Fig. 9: The graphs in Theorem 5.1 when d = 4 without pendant P3.

Next suppose that there exists pendant P3 in G. Denote by u and v, respectively,
the vertices of degrees one and two in such pendant P3 of G.

Suppose that the eccentricity of u in G is 4. Then we may choose a diametrical path
Q of G such that u is an end vertex of Q. By Lemmas 4.4 and 4.6, we only need to
consider the case that G is a graph as shown in Fig. 10, and λ2(G) > 2n − 1 follows
from direct calculation.

                   

Fig. 10: The graphs in Theorem 5.1 when d = 4 with pendant P3.

If the eccentricity of u in G is 3, then it is easily seen that the diameter of G must
be 3, which is a contradiction to the hypothesis that d = 4.
Case 4. d = 3.

It is easily seen that G is a graph of the form as shown in Fig. 11.
For the first type of graphs in Fig. 11, from Lemmas 4.1 and 4.7, we only need to

consider the four possibilities that (a, b) = (0, 0), (0, 1), (0, 2), or (1, 0).
For the second type of graphs in Fig. 11, from Lemmas 4.1 and 4.7, we only need to

consider the three possibilities that (a, b) = (0, 1), (0, 2), or (1, 0).
For the third type of graphs in Fig. 11, from Lemmas 4.1 and 4.7, we only need to

consider the four possibilities that (a, b) = (0, 1), (2, 0), (1, 0), or (1, 1).
For the fourth type of graphs in Fig. 11, from Lemmas 4.1 and 4.7, we only need to

consider the three possibilities that (a, b, c) = (0, 0, 1), (0, 0, 2), or (0, 1, 0).
By direct calculations for the above possible graphs, we have λ2(G) ≥ 2n − 1 with

equality if and only if n = 6, and G is the 6-vertex graph obtained by attaching a
pendant vertex to a vertex of a pentagon.
Case 5. d = 2.
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a 

b 

a b a b 

a b 

c 

Fig. 11: The graphs in Theorem 5.1 when d = 3.

Clearly G ∼= S+
n , and λ2(G) = 2n− 1.

Combining all the above five cases, the result follows.
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