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Abstract

We study the effect of two types of graft transformations on the distance
spectral radius of connected uniform hypergraphs containing at least one
cycle, determine the unique k-uniform unicyclic hypergraphs of fixed size
with minimum and second minimum distance spectral radius, respectively,
and show the possible structure of the k-uniform unicyclic hypergraph(s) of
fixed size with maximum distance spectral radius.
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1 Introduction

A hypergraph G is a pair (V| F), where V = V(@) is a nonempty finite set called
the vertex set of G and F = E(G) is a family of subsets of V(G) called the edge
set of G, see [3]. The size of G is the cardinality of F(G). For an integer k > 2, a
hypergraph is k-uniform if all its edges have cardinality k. A (simple) graph is a
2-uniform hypergraph. For v € V(G), let Eg(v) be the set of edges of G containing
v. The degree of a vertex v in GG is the number of edges containing it, denoted by
dg(v), i.e., dg(v) = |Eg(v)|.

For u,v € V(G), a walk from u to v in G is defined to be a sequence of vertices
and edges (vo,e1,v1,...,Vp_1,€p,0,) With vg = w and v, = v such that edge e;
contains vertices v;_; and v;, and v;_1 # v; for ¢ = 1,...,p. The value p is the
length of this walk. A path is a walk with all v; distinct and all e; distinct. A cycle
is a walk containing at least two edges, all e¢; are distinct and all v; are distinct
except vy = v,. A vertex u € V(G) is viewed as a path (from u to u) of length 0.
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If there is a path from u to v for any u,v € V(G), then we say that G is connected.
A component of a hypergraph G is a maximal connected subhypergraph of G. A
hypertree is a connected hypergraph with no cycles. A unicyclic hypergraph is
a connected hypergraph with exactly one cycle. Note that a k-uniform unicyclic
hypergraph with m edges always has order (k — 1)m.

Let G be a connected k-uniform hypergraph with V(G) = {vy,...,v,}. For
u,v € V(G), the distance between u and v is the length of a shortest path from u to
v in G, denoted by dg(u,v). In particular, dg(u,u) = 0. The distance matrix of G
is the n x n matrix D(G) = (dg(u,v))uvev(c). The eigenvalues of D(G) are called
the distance eigenvalues of G. Since D(G) is real and symmetric, the distance
eigenvalues of G are real. The distance spectral radius of G, denoted by p(G),
is the largest absolute value of the distance eigenvalues of G. Since D(G) is an
irreducible nonnegative matrix, the Perron-Frobenius theorem implies that p(G)
is the largest distance eigenvalue, and there is a unique positive unit eigenvector
corresponding to p(G), which is called the distance Perron vector of G, denoted
by z(G).

Balaban et al. [2] proposed the use of the distance spectral radius of ordinary
graphs (2-uniform hypergraphs) as a molecular descriptor, and it was successfully
used to make inferences about the extent of branching and boiling points of alkanes,
see [2, 8]. Now the distance spectral radius of ordinary graphs have been studied
extensively, see [4, 5, 6] for classical results, and see survey [1] (and references
therein, e.g., [14, 16]) for recent results. Particularly, Yu et al. [16] determined the
unique unicyclic graphs with minimum (maximum, respectively) distance spectral
radius. They showed that the graph obtained by adding an edge to a star is the
unique unicyclic graph with minimum distance spectral radius, while the graph
obtained from a path by adding an edge between a terminal vertex and the vertex
of distance two from it is the unique unicyclic graph with maximum distance
spectral radius.

As graph representation of molecular structures is widely used in computation-
al chemistry and theoretical chemical researches, hypergraph theory also found
applications in chemistry [7, 9, 10, 11]. As noted in [10], the hypergraph model
gave a higher accuracy of molecular structure description: the higher the accuracy
of the model, the greater the diversity of the behavior of its invariants. For ‘gen-
eral” k-uniform hypergraphs, Sivasubramanian [15] gave a formula for the inverse
of a few g-analogs of the distance matrix of a 3-uniform hypertree, and we stud-
ied the distance spectral radius of k-uniform hypergraphs in [12] and determined
the k-uniform hypertrees with maximum, second maximum, minimum, and second
minimum distance spectral radius, respectively.

For a k-uniform unicyclic hypergraph G with V(G) = {vy,...,v,}, if E(G) =
{e1,...,em}, where ¢; = {VG—1)(k—1)11s - - V-1 (—1)4+k} for ¢ = 1,...,m and
V(m—1)(k—1)+k = V1, then we call G a k-uniform loose cycle, denoted by C, .

Let GG be a connected k-uniform hypergraph with an induced subhypergraph
Cyk—1),k» Where k > 3 and g > 2. Let the vertices of Cy;—1), be labelled as
above with v(g_1)(k—1)+& = v1. Suppose that G — E(Cy(x—1),x) consists of g(k — 1)
components, denoted by Hj,..., Hyg_1) with v; € V(H;) fori =1,...,9(k — 1).
In this case, we denote G by C;“(k_l)(Hl, oo Hygeony).

In this paper, we propose two types of graft transformations for the uniform



hypergraph C’Z;(k_l)(H 15 -+ Hy—1)) that decrease or increase the distance spectral
radius, determine the unique k-uniform unicyclic hypergraphs of size m > 2 with
minimum and second minimum distance spectral radius, respectively, and discuss
the possible structure of the k-uniform unicyclic hypergraph(s) of fixed size with
maximum distance spectral radius.

2 Preliminaries

Let G be a k-uniform hypergraph with V(G) = {v1,...,v,}. A column vector
7= (Ty,,...,Ty,)" € R™ can be considered as a function defined on V(G) which
maps vertex v; to x,,, i.e., x(v;) = x,, for i =1,...,n. Then

" D(G)x = Z 2de(u, v)x, 2y,
{u}ev(G)

and p is a distance eigenvalue with corresponding eigenvector x if and only if x # 0
and for each u € V(G),

pL, = de(u, v),.
veV(QG)

The above equation is called the eigenequation of G (at u). For a unit column
vector x € R™ with at least one nonnegative entry, by Rayleigh’s principle, we
have

p(G) > 2" D(G)x

with equality if and only if z = z(G).

Lemma 2.1. [12] Let G be a connected k-uniform hypergraph with n being an
automorphism of G, and x the distance Perron vector of G. Then n(v;) = v,
implies that x,, = ;.

For X C V(G) with X # (), let G[X] be the subhypergraph of G induced by
X, i.e., G[X] has vertex set X and edge set {e C X : e € E(G)}, and let o¢(X)
be the sum of the entries of the distance Perron vector of G corresponding to the
vertices in X. For E' C E(G), let G — E’ be the subhypergraph of G obtained by
deleting all the edges of E’. For u € V(G), let G — u be the subhypergraph of G
obtained by deleting u and all edges containing wu.

Let G be a k-uniform hypergraph with u,v € V(G) and ey, ..., e, € E(G) such
that u € e;, v ¢ ¢; and €] ¢ E(G) for 1 <i <r, where ¢, = (e; \ {u}) U {v}. Let
G’ be the hypergraph with V(G') = V(G) and E(G') = (E(G) \ {e1,...,e.}) U
{e,...,e.}. Then we say that G’ is obtained from G by moving edges ey, ..., ¢,
from u to v.

A path P = (vg, €1,01,...,Up_1, €p,v,) With p > 1 in a k-uniform hypergraph G
is called a pendant path of length p at vy, if dg(vo) > 2, dg(v;) = 2for 1 <i < p—1,
da(v) =1for v € e; \ {vi_1,v;} with 1 <¢ <p, and dg(v,) = 1. If p =1, then we
call P or e; a pendant edge at vy.

Let G be a connected k-uniform hypergraph with |E(G)| > 2, and let e =
{wy,...,wr} be a pendant edge of G at wy. For 1 < i < k — 1, let H; be a



connected k-uniform hypergraph with v; € V(H;). Suppose that G, Hy, ..., Hy_4
are vertex-disjoint. For 0 < s < k — 1, let G¢s(Hq,..., Hz_1) be the hypergraph
obtained by identifying w; of G and v; of H; for s +1 < i < k — 1 and identifying
wy of G and v; of H; for all i with 1 <4 < s.

Lemma 2.2. [12] Suppose that |E(H;)| > 1 for some j with 1 < j <k —1. Then
p(Geo(Hy, ..., Hi1)) > p(Ges(Hy, ..., Hiq)) for j < s <k—1.

If P is a pendant path of a hypergraph G at u, we say G is obtained from H
by attaching a pendant path P at u with H = G[V(G) \ (V(P) \ {u})].

Let G be a connected k-uniform hypergraph with |E(G)| > 1. For u € V(G),
and positive integers p and ¢, let G, (p, q) be the k-uniform hypergraph obtained
from G by attaching two pendant paths of lengths p and ¢ at u, respectively, and
G.(p,0) be the k-uniform hypergraph obtained from G by attaching a pendant
path of length p at u.

Lemma 2.3. [12] Let G be a connected k-uniform hypergraph |E(G)| > 1 and
u € V(G). Forintegers p>q > 1, p(Gu(p,q)) < p(Gu(p+ 1,4 —1)).

Let G be a connected k-uniform hypergraph with u,v € e € E(G). For positive
integers p and ¢, let G, (p,q) be the k-uniform hypergraph obtained from G by
attaching a pendant path of length p at u and a pendant path of length ¢ at v, and
Guw(p,0) be the k-uniform hypergraph obtained from G by attaching a pendant
path of length p at u. Let G, (0,q) = G,..(q,0).

Lemma 2.4. [12] Let G be a connected k-uniform hypergraph with |E(G)| > 2
and u,v € e € E(G). Suppose that G — {e} consists of k components and dg(u) =

dG(U) =1 FOT’p >q=> 1; p<Gu,v(pa q)) < p(Gu,v(p+ 17q - 1))

The diameter of a connected k-uniform hypergraph G is the maximum distance
between all vertex pairs of G.

3 Graft transformations and changes of distance
spectral radius

A k-uniform hypertree in which all edges contain a common vertex (u) is known
as a k-uniform hyperstar (with center w), denoted by Sy—1)41,6- Obviously, S
consists of a single vertex, which is its center.

First we give a type of graft transformation on Cg(k_l)(Hl, .., Hyg—1y) that
decreases the distance spectral radius.

Theorem 3.1. For k > 3 and g > 4 with g + Efikfl) |E(H;)| > 5, let G =
Cg(k_n(Hl? ., Hyg—1y), and let G* be the k-uniform hypergraph obtained from G
by moving each edge of Ec(vg—1)(k—1)+1) \ {€g} from vg_1)-1)+1 to v1 and moving
each edge of Eg(vg) \ {e1} from vy to vy. If Hy is a k-uniform hyperstar with
center vy, |V (Hy)| = maxi<;<gi—1) |V (H;)|, and |V(H;)| =1 for2 <i < k—1 and
(g—1D(k=1)+2<i<g(k—1), then p(G*) < p(G).



Proof. For 1 < i < g(k —1), let V; = V(H;) and t; = |E(H;)|. Let x = z(G*).
From the eigenequations of G* at v; and v, we have

p(G*)xy, = Ty, + Z dg-(v1, W) T,

weV(G)\{v1,vx}

p(GM)xy, = Ty, + Z A (Vg, W)Xy

weV (G)\{v1,vx}
Note that for w € V(G) \ {v1, v}, 2dg+(v1, w) — dg«(vg, w) > 0. Then

(P(G*) + 1) (220, — T0y,) = Ty, + Ty, + Z (2dg+(v1, w) — dg=(Vi, W)) T
weV (G)\{v1,vx}
> 0,
and thus 2z,, — z,, > 0, i.e., 2z, > z,,. By Lemma 2.1, the entry of = corre-
sponding to each vertex of (V4 \ {v1})U (e \ {v1}) U (4 \ {v1}) is the same, which
we denote by a. Then z,, > 3.
Case 1. g = 2s with s > 2.
As we pass from G to G*, the distance between v, and a vertex of U; =

<Ul(kk D+ V> \ {vx} is increased by 1, the distance between vy and a vertex of

U, = (Ugis(;)l()k(;);)il Vi> \ {v@2s—1)(k—1)+1} is decreased by 1, the distance between

V(2s—1)(k—1)+1 and a vertex of Us = (UEQSS ,i) f+11)+1 ) \ {v@s-1)(k—1)+1} is increased

by 1, the distance between v(gs—1)(x—1)+1 and a vertex of Uy = (U(S D{k-1)+1 V) \
{vg} is decreased by 1, the distance between a vertex of V; and a vertex of Us =

<U,(2Sk D(k-1)+1 Vi) \ {k, v2s—1)(k—1)+1} is decreased by 1, the distance between a

vertex of e; \ {v1, v} and a vertex of Us = (Ugi?,gﬁfg“ VZ-) \ {ves—1)k-1)41}
is decreased by 1, the distance between a vertex of ess \ {v1,v(2s-1)(k-1)+1} and a

vertex of U; = <Uf(:kk_1) VZ-> \ {vx} is decreased by 1, and the distance between any
other vertex pair is decreased or remains unchanged. Then

5(0(G) — p(G"))
> LaT(D(G) - DG
>y (—0oa-(Ur) + 06+ (U2)) + Tugy_yyosyer (—00+ (Us) + 06+ (Us))
+oa(V1)og(Us) + o+ (e1 \ {v1, vg }) o+ (Us)
+oa-(e2s \ {v1, U(Qs—l)(k—1)+1})UG*(U7)
= a(—0g(U1) + 0g+(Uy)) + alog:(Us) — og+(Us))
+(t1(k — Da+ zy,)oc(Us) + (k — 2)aog:(Us) + (k — 2)ace-(Uz).
Note that
s(k—1)+1
—og-(Uh) +o6-(Us) = —og- U Vil,

i=(s—1)(k—1)+2



(s+1)(k—1)
o+ (Us) —0¢+(Us) = —og- U Vil,

i=s(k—1)+1

and k£ > 3. Thus

5(0(G) — p(G"))

s(k—1)+1 (s+1)(k—1)
> —a|og- U Vi | +o¢ U w (3.1)
i=(s—1)(k—1)+2 i=s(k—1)+1
+(2t1a + val)Ug* (U5) + a(Ug* (Uﬁ) + oG+ (U7))
If ¢; > 1, then since | J; S+81 1)(k 12 Vi € Us, from (3.1), we have
] s(k—1)+1 (s+1)(k—1)
0@ =@ 2 —afow | U wrea| U w
1=(s—1)(k—1)+2 s(k—1)+1
(s+1)(k-1)
+2a0 ¢+ Vi
i=(s—1)(k—1)+2
(s+1)(k-1) s(k—1)
= aog~ U Vi | +aog- U Vi
=s(k—1)+2 i=(s—1)(k—1)+2

> 0,

and thus p(G*) < p(G).
Suppose that t; = 0. Then t; = 0 and V; = {v;} for 1 < i < g(k — 1), i.e.,
G = Cyk—1)- Since g—i—Zg(k b |E(H;)| > 5, we have 2s = g > 6, and thus s > 3.
Let u; = v(i—1)(k—1)4+1 for 1 <i < g. Note that

s(k—1)+1 (s+1)(k—1)
€s \ {us} = U ‘/’iy €s+1 \ {u3+2} - U Vvi;
i=(s—1)(k—1)+2 i=s(k—1)+
(s+1)(k—1)+1 (s+1)(k—1)+1
esUesgp = U Vi CUs, €541\ {tsy1} = U Vi C Us,
i=(s—1)(k—1)+1 i=s(k—1)+2
s(k—1)

€s \ {uerl} = U V; C U7,

i=(s—1)(k—1)+1

and x,, = z,, > 5. By (3.1), we have

1

é(p(G) —p(G7))

—alog(es \ {us}) + 0c(espn \ {tsra})]

IV
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+5 - 06 (e Uegs) + a (06 (o1 \ {uter1}) + 0 (e \ {11s51}))

= —a [UG* (s \ {us, usi1}) + o (€ss1 \ {Usi1, usi2}) + 2xus+1]

+a [UG* (es \ {us, ust1}) + og(esir \ {Usy1, Usya}) + T, + xu5+2}

a
+§ coge(esUegiq)

a
= a (iL‘uS + Lugry = 2xus+l) + 5 COGx (65 U €S+1)

a
=5 (230, + 2Ty, — ATu,,, + 0 (€5 U esit)) .

Since {ug, Usy1, Usio} C €5 Uegi1, we have

1 . a
5(,0(@) —p(G7)) > ) (qus + 20y, — ATy F Ty + Ty, + xus+2)
3a
= ? (,fEuS + .Tus+2 — :Eus+1> .
Let W = V(G) \ {us, ust1,usi2}. From the eigenequations of G* at s, us; and

Us12, We have

p(G*)xy, = @y, +2,,,, + Z dg (Us, W) Ty,
weW

p<G*)xus+1 = Ty, + Ty, T Z da (Us1, W) T,
weW

p<G*)xUS+2 = 2xus + xus-ﬂ + Z dG* (US+2,U))£Cw.
weWw

Note that for w € W, dg«(us, w) + dgs (Usy2, w) — dg+ (us1, w) > 0. Then
p<G*) (xus + xus+2 - xus+l) 2 xus + 2'%'Ufs+1 + xus+2 > 07

and thus @, + 2y, , — Tu,,, > 0. Therefore p(G) — p(G*) > 0, i.e., p(G*) < p(G).
Case 2. g =25+ 1 with s > 2.

As we pass from G to G*, the distance between v, and a vertex of U; =

(Ugizl)(k_l) V;) \ {vx} is increased by 1, the distance between v;, and a vertex of

Uy = (U?i((]z—_l—ll))—(i;cl—l)+2 V;) \ {v2s(k—1)+1} is decreased by 1, the distance between
Uas(k—1)+1 and a vertex of Us = (Ufi(sk(;)gh Vi> \ {V2s(k—1)41} is increased by 1, the

distance between vos,—1)11 and a vertex of Uy = (Ufikkfl) Vi> \ {vx} is decreased

by 1, the distance between a vertex of V; and a vertex of U; = <U?i(,f_1)+1 Vi> \

{vk, vas(e—1)41} is decreased by 1, the distance between a vertex of e; \ {vq, v, } and

a vertex of Ug = (U?i((iﬂ))?kl_l)ﬂ Vi> \ {V2s(k—1)41} is decreased by 1, the distance

between a vertex of g1\ {v1, Vas(k—1)+1} and a vertex of U7 = (Ufﬂ:l)ﬂ V;) \{vx}



is decreased by 1, and the distance between any other vertex pair is decreased or

remains unchanged. Then
1 1

S(0(G) —p(G) = 5o (D(G) = DG)a

Ty, (—0c(Uy) + 06+ (Us)) + Tonate 1)1 (—oc+(Us) + 0g+(Uy))
+og(V1)og(Us) + ag-(e1 \ {v1, v }) o+ (Us)

+og(€2s11 \ {v1, Vas—1)+1}) 0+ (Ur)

a(—oe«(Ur) + o6+ (Us)) + a(og«(Uz) — 06+(Us))

+(t1(k — Da + zy,)og-(Us) + (k — 2)a(og-(Us) + og(Ur)).

v

v

Vv

Note that
(s+1)(k—1)
—0c«(Uy) + 06«(Uy) = —og» U Vil
—s(k—1)+1
(s41) (k—1)+1
og-(U2) —06+(Us) = —og- U v,
=s(k—1)+2

and k£ > 3. Thus

1 *
Q(p(G) - p(G"))
(s+1)(k—-1) (s+1)(k—1)+1

—a | og U Vi | + o U v (3.2)
i=s(k—1)+1 i=s(k—1)+2

v

+(2t1a + 4, )0+ (Us) + a(oe+(Us) + o= (Uz)).

If ¢, > 1, then since U (HDEDH 12 172 we have

i=s(k—1) +1
1 (s+1)(k—1) (s+1)(k—1)+1
§(P(G) —p(GY) = —a|og- U Vi | + oc- U Vi
i=s(k—1)+1 i=s(k—1)+2

(s4+1)(k—1)+1
+2aag* U ‘/;
i=s(k—1)41
= aoc (Vs (k-1)+1) + aog-(Vsk—1)11)
> 0,
and thus p(G) — p(G*) > 0. Therefore p(G*) < p(G).
Suppose that t; = 0. Then t; = 0 and V; = {v;} for 1 <i < g(k — 1), i.e

G= Cg(k—l),k‘
Let u; = v(i—1)(k-1)+1 for 1 <4 < g. Note that

(s4+1)(k—1)+1 (s+1)(k—1)
Cs+1 \ {U'S-H} = U Vi, €s+1 \ {us-‘rQ} - U ‘/z'a
t=s(k—1)+2 +1



(s+2)(k-1)

(es \ {us}) Ues1 U (esqa \ {usqs}) = U Vi C Us,
i=(s—1)(k—1)+2

(s+2)(k-1) s(k—1)+1
€s+2 \ {u8+3} = U ‘/; - U67 €s \ {us} = U ‘/; - U7.
i=(s+1)(k—1)+1 i=(s—1)(k—1)+2

By (3.2), we have

S0(Q) = pl@) > —aloe(ean \ {taso)) + 06+ (enn\ {tea})]
506 ((e\ ) Uesaa U (ensa \ {us42)))

+alog-(es \ {us}) + oc-(est2 \ {usys})]

= —a [QUG* (esy1 \ {tsy1, Usya}) + Tygyy + xus+2}

a

+3 [oc(es \ {us, usir1}) + 0= (esi1 \ {usi1, tsra})

+og- (€S+2 \ {u5+27 u5+3}) + Lusta + xus+2:|
+a [JG* (es \ {Us, us—l—l}) + oG+ (es+2 \ {Us+27 us+3})
+xus+1 _I_ :Eus+2:|

3a

- 5 (oG (es \ {ts, Usi1}) + 0+ (€si2 \ {Usi2, Usi3})

a
—0G (€541 \ {Ust1, Ust2})] + ) ('r“erl + xus+2) :

Let w; € e; \ {uj,upq} for s <i < s+2 and W = V(G) \ {ws, wsy1, wsi2}. From
the eigenequations of G* at ws, wsy1, and ws, o, we have

P(CG*)Tw, = 2Tu,, + 3Tw,,, + Z A (Ws, W) Ty,

weW
PG )Ty, = 2Ty, +2Ty,,, + Z dg (Wsy1, W)Xy,
weW
p(G*)wa+2 = 31‘“}3 + 2st+1 + Z dG* (w8+2, U))ZL‘U).
weW

Note that for w € W, dg (ws, w) + der (Wsi2, w) — dg+ (wsi1, w) > 0. We have
p(G*) (st + st+2 - st+l) 2 st + st+2 + 4st+1 > 07

and then x,,, + 2y, ., — Tw,,, > 0. By Lemma 2.1, the entry of z corresponding to
each vertex of e; \ {u;, u;41} for s <i < s+ 2 is the same. Thus

oo (es \ {us’ U5+1}) + o+ (65+2 \ {us—i-?a U5+3}) — UG*(65+1 \ {Us-‘,-l; Us+2})
= (k‘ — 2)(.1:105 + st+2 - st+1)
> 0.

Therefore p(G) — p(G*) > 0, i.e., p(G*) < p(G). O
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Let Cg(th ce ,tg) = Cg(k—l)(Hh . 7Hg(k—1))7 where Hj = Sti(k—l)—s—l,k with cen-
ter vj, and t; > 0 for j = (i —1)(k— 1)+ 1 withi = 1,...,¢9, and H; = Sy
otherwise.

By Theorem 3.1, we have the following corollary.

Corollary 3.1. Fork>3,g>4, andt; >0 withl1 <i<gand g+ 7 ,t; >5,
Zf tl = NnaXj<i<g ti, then

PCE (1 + o4ty +2, L, 1y 1)) < p(CE(tr, .. 1,)).

Next we give a type of graft transformation on Og(kq)(Hl? .., Hyg—1y) that
increases the distance spectral radius.

Theorem 3.2. For k > 3 and g > 3, let G = C;“(k_l)(Hl,...,Hg(k_l)), and
let G} be the k-uniform hypergraph obtained from G by moving ey from vy to
Vig-1)(k-1)+1, and G be the k-uniform hypergraph obtained from G by moving e,
from vig_1y-1)+1 to vi. Then p(GY) > p(G) or p(G3) > p(G).

g(k—1)

Proof. For 1 < i < g(k —1), let V; = V(H;). Let A; = UZ . Viand Ay =
(g=D)(k=1)
U(g g%,z(kl) DLy g g iseven, and A; =J,_, ? i Vi and Ay = U (gl(%kl)f)rl V; if
2
g is odd. Let x = z(G). Suppose that og(A;) > 0g(As). As we pass from G to G7,

the distance between a vertex of Uk_1 Vi and a vertex of A; is increased by at least

1, the distance between a vertex of U ' V; and a vertex of A, is decreased by 1,
and the distance between any other vertex pair is increased or remains unchanged.
Then

(@) —0l@) > LaT(D(G) ~ D(@)a
> og (U V) — 0c(Az))
> 0.

Thus p(G3) > p(G). If p(G) = p(G3), then p(G}) = 2" D(G?)z, and thus z is also
the distance Perron vector of GGj, implying that

p(G1)wy, — (G, = (D(GY)2)o, — (D(G))o,
= ) (dg;(v1,0) = da(vi,v))z,

veV(Q)

> va

veVy
> 0,

a contradiction. Thus p(G%) > p(G).
Suppose that 06(A;) < 0g(As). As we pass from G to G%, the distance between

a vertex of Ug(k b V; and a vertex of Ay is increased by at least 1, the

g(k—1)
i=(g—1)(k—1)+2

1)(k—1)+2

distance between a vertex of | J; V; and a vertex of A; is decreased by 1,

10



and the distance between any other vertex pair is increased or remains unchanged.
Then

S0(G5) —plG) 2 52T (D(G) — DG
g9(k—1)
>oo| UV (oala) - oa(an)
i=(g—1)(k—1)+2
> 0
Thus p(G3) > p(G). O

The results in this section will be used to study the distance spectral radius of
uniform unicyclic hypergraphs in the next sections.

4 Minimum distance spectral radius of uniform
unicyclic hypergraphs

In this section, we determine the unique hypergraphs with minimum and second
minimum distance spectral radius respectively in the set of k-uniform unicyclic
hypergraphs of fixed size.

Lemma 4.1. For k > 3 and t > 0, p(C%(t,0)) is the largest root of f(p) = 0,
where

flp) = p*+p*(—2tk — 2k +2t +7) + p*(—3k* — 2tk* — tk + 3k + 3t +7)
+p(—4k* — tk* — 4tk + 6k + 5t + 1) — k* + k — 2tk + 2t.

Proof. Let G = C%(t,0). Let (u,ei,v,es,u) be the unique cycle of G, where
dg(v) = 2+t. Let x = 2(G). By Lemma 2.1, the entry of x corresponding to each
vertex of (e; Ueg) \ {u, v} is the same, which we denote by x1, and the entry of
corresponding to each vertex of V(G) \ (e; U es) is the same, which we denote by
x9. Let wy € (61 Uey) \ {u,v} and wy € V(G) \ (e1 Ues). By the eigenequations
of G at u, v, wy, and w,, we have

PGz, = z,+ (2k —4)xy + (2k — 2)tas,

p(Gx, = x,+ 2k —4)xy + (k — 1)tas,

p(G)ry = zy+x,+ (3k — T)xy + (2k — 2)ta,,

p(G)ry = 2wy +xy + 4k — )y + ((2k — 2)(t — 1) + k — 2)xo.

We view these equations as a homogeneous linear system in the four variables
Tu, Ty, T1 and xo. Since it has a nontrivial solution, we have

o1 2%—4 (2k — 2)t
1 —p 2k—-4 (k—1)t B
det| 1 1 gi_7—, (2% — 2)t =9,

2 1 4k—-8 (2k—-2(t—-1)+k—2—p

11



where p = p(G). By direct calculation, this determinant is equal to f(p(G)). Now
the result follows easily. O

Lemma 4.2. For k > 3, we have

p(Car—a) > p(C5(2,0)).

P’I"OOf Let G = C4k—4,k with edges €, = {U(i—l)(k—l)-i-l; ceey U(i—l)(k—1)+k} for1 S ) S
4, where vy,_3 = v1. Let p* = p(G) and = = z(G). By Lemma 2.1, the entry of x
corresponding to each vertex of {vy, vk, vor_1, Usp_2} is the same, which we denote
by «, and the entry of x corresponding to each vertex of V(G)\{v1, vg, vor_1, V3p_2}
is the same, which we denote by 5. Then from the eigenequations of G' at v; and
V9, We have

p(G)a = 4o+ 6(k — 2)0,
p(G)B = 6a+ (8k — 17)0.

Thus p* is the largest root of p?—8kp+13p—4k+4 = 0, i.c., p* = SE=13+v 6422’192“153.
Let G' = C%(2,0). By Lemma 4.1, p(G’) is the largest root of f(p) = 0, where

f(p) = p* + p*(11 — 6k) + p*(13 + k — Tk*) + p(11 — 2k — 6k*) + 4 — 3k — k2.

Let p1 > ps > ps > py be the roots of f(p) = 0, where p; = p(G’). Then
p1+ p2 + ps + ps = 6k — 11. Note that
f(=2k+2) = (k—1)(k—2)(36k* - 116k 4+ 91) > 0,
F0) = —(k+4)(k—-1) <0,
f(p*) = p*(72k® — 411k* + 743k — 436) + 36k — 185k% + 285k — 136 > 0.

Then p* > py, or p* < ps. Suppose that p* < py. Then

pr+p2t+ps+ps > 20"+ 0+ (—2k+2)
= 6k — 11+ V64k2 — 192k + 153
> 6k — 11,

a contradiction. Thus p(G) = p* > p1 = p(G’), as desired. O

Lemma 4.3. For k > 3 and t; > ty > t3 > 0, we have
(i) if ta > 1, then p(CE(t1,ta,t3)) > p(CE(t; + to +t3,0,0));
(ii) if t > 1, then p(C5(t1,0,0)) > p(C5 (t1 + 1,0)).

Proof. Let G = C¥(t;,ta,t3). Let C be the unique cycle of G with edges e; =
{U(ifl)(k71)+1> N ,U(i,l)(k,l)Jrk} fori = 1, 2, 3 and V3k—2 = V1. Let TZ = V(Sti(ktfl)Jrl’k‘)\
{U(i—l)(k—l)—H} for1 <i¢<3.

First we prove (i). Let G’ be the k-uniform hypergraph obtained from G by
moving each edge of Eg(vg) \ {e1,e2} from v to vy, and moving each edge of
Ec(vop_1)\ {e2, e3} from vy, to vy. It is easily seen that G’ = C¥(t, +ty+13,0,0).
Let x = x(G'). By Lemma 2.1, the entry of x corresponding to each vertex of
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(e1 \ {v1,vk}) U (es \ {v1,ver_1}) is the same, which we denote by «, the entry of
x corresponding to each vertex of ey \ {vk, vag—1} is the same, which we denote by
[, the entry of x corresponding to each vertex of T7 U T, U T3 is the same, which
we denote by v, and z,, = z,, ,.

As we pass from G to G, the distance between a vertex of T, and a vertex of
Ty U (e3 \ {var—1}) is decreased by 1, the distance between a vertex of Tp and a
vertex of eg \ {var—1} is increased by 1, the distance between a vertex of 73 and a
vertex of T U (e; \ {vx}) is decreased by 1, the distance between a vertex of T3 and
a vertex of ey \ {vg} is increased by 1, and the distance between any other vertex
pair is decreased or remains unchanged. Then

S(6(G) = p(@)

S2T(D(G) ~ D))

oc (Tz)[oc (Th) + o, + 0cr(e3 \ {1, v26-1}) — o (€2 \ {var—1})]

toa (Ts)[oa (Th) + v, + ocr (e \ {1, 06}) — ocr(e2 \ {ve})]

= og(T)[oc (Th) + 20, + 0 (e3 \ {v1, v21-1}) — o (€2 \ {vk, Var—1}) — 20, ]
+oc (T3)[oa (Th) + oy, + ocr(er \ {v1,vk}) — o (ea \ {vg, Vag—1}) — oy, ]
tolk — Dl — 1)y + 0 + (k — 2)a— (k — 2) — 2,

Fty(k — D[t (k= 1)y + o, + (k= 2)a — (k — 2)8 — @]

= (tatt3)(k—v[ta(k — 1)y + 20, + (k= 2)a— (k= 2)8 — x,]

> (L2 +1t3)(k = 1)y[(k = 1)y + a0, + (k= 2)a— (k= 2)8 — 2,,],

v

Vv

and thus

§<p(G>_p(G1)) > (t2+t3)<k_1)’7[(1{:_1)7""%}1+<k_2)a_(k_2)ﬂ_ka]' (41)

Let u € (e1\{v1,ve})U(es\{v1,va6-1}), v € ea\{vk, vop—1} and w € Ty UTLUT;.
From the eigenequations of G’ at vy, vy, u, v and w, we have

p(GNay, = 22y, +2(k—2)a+2(k —2)8+ (t1 +t2 +t3)(k — 1)y,

p(GNzy, = Ty + @y, +3(k—2)a+ (k—2)8 + 2(t1 + t2 + t3)(k — 1),

p(GNa = xy + 32y, + Bk — T+ 2(k —2)8 +2(t1 +ta + t3)(k — 1)y,
p(G"NB = 2wy + 2z, +4(k —2)a+ (k—3)5+ 3(t1 + ta + t3)(k — 1),
p(G)y = xy + 4z, +4(k — 2)a+3(k —2)8

+(2(ty +to +t3 — 1)(k—1) + (k — 2))7.

Then

p(G)(y(k = 1) + 2y, +a(k —2) = B(k —2) — ;)
= 5z (k— 1)+ a(k — 2)(3k — 4) + B(k — 2)(4k — 3)
+y(k = 1)((t1 +ta + t3)(k — 1) — k)
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> By, (k— 1)+ a(k — 2)(3k — 4) + B(k — 2)(4k — 3) + v (k — 1)(k — 2)
> 0,

and thus (k — 1)y + 2y, + (k — 2)a — (k — 2)8 — z,,, > 0. Therefore by (4.1),
p(G) > p(G').

Now we prove (ii). Let G” be the k-uniform hypergraph obtained from G by
moving ey from vy to vy. It is easily seen that G” = C%(¢; + 1,0). Let z = z(G").
By Lemma 2.1, the entry of x corresponding to each vertex of T} U (eq \ {v1}) is
the same, which we denote by «, the entry of x corresponding to each vertex of
(e2 Ues) \ {v1, vg, vor—1} is the same, which we denote by £.

As we pass from G to G”, the distance between vy, and a vertex of ey \ {vy} is
increased by 1, the distance between a vertex of T} and a vertex of eg\ {vg, vor_1} is
decreased by 1, and the distance between any other vertex pair remains unchanged.
Note that t; > 3 and k > 3. Then

1 1

S(0(G) = p(G") = 52T (D(G) = D(E"))e

= —zy0c(eg \ {vr}) + ogn(T1)ocn(ea \ {vk, vax-1})
= —a(Ty,_, + (k—2)8) +t1(k — Da(k —2)p (4.2)
Qg 4 + (k - 2>(t1<k - 1) - 1)0éﬁ

Z a<ﬂ - xvzk—l)'

Let u € (ea Ueg) \ {v1, Vg, vor_1}. From the eigenequations of G” at vgr_1 and wu,
we have

p(GN iy, = 2(k—2)B+xy, +2(t1 + 1)(k — 1)a,
p(GMB = wy, ,+Bk—=T7)8+ x4, +2(t; +1)(k — 1)a,

and thus p(G")(B — Xy, _,) = Tuy,_, + (K —3)5 > 0, implying that 5 — x,,, , > 0.
Therefore by (4.2), p(G) > p(G"). O

Lemma 4.4. Fork>3,1<b< B{Eﬁ?ﬂ and a = %’“1*2 — b, we have

p(C3(a,b)) > p(Ci(a+1,b—1)).

Proof. Let G = Ck(a,b). Let C be the unique cycle of G with edges e¢; =
{ve-1)—1)41, - - - V-1 (h—1)4k }, Where 1 < < 2 and vgp—1 = v1. Let = 2(G).
By Lemma 2.1, the entry of = corresponding to each vertex of Uecp, )€ \ (€1Ue2)
is the same, which we denote by «, the entry of x corresponding to each vertex
of Ueergwp)€ \ (e1 U ez) is the same, which we denote by 3, and the entry of z
corresponding to each vertex of (e; Ueg) \ {v1, v} is the same, which we denote
by 7. Let 41 € Uecpg)e \ (1 U ez) and uy € Uecpg )€ \ (e1 U €2). From the
eigenequations of G at uy, us, v9, v1 and vy, we have

p(G)a = (2(k—1)a—k)a+3(k—1)b3 + 4(k — 2)y + xy, + 22,,,
p(G)B = 3(k—1aa+ (2(k—1)b— k)3 + 4k — 2)y + 2z, + 2y,
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p(G)y = 2(k—1)aa+2(k—1)bp+ (3k — 1)y + zy, + Ty,
p(G)xy, = (k—1aa+2(k—1)b8 + 2(k — 2)y + xy,,
p(G)xy, = 2(k—1aa+ (k—1)bB 4 2(k — 2)y + z,.

(G)

Thus p(G) is the largest root of the equation g,(t) = 0, where

a(t) = t°—t*(2ak + 20k +k —2a — 20— 7)
—t°(5k* + babk? + 4ak® + 4bk* — 10k
—10abk — ak — bk — 7+ bab — 3b — 3a)
—t?(3K® + abk® + 2ak® + 20k + k* + 5abk® + 2ak* + 2bk*
—13k — 13abk + ak + bk — 1 + Tab — 5b — ba)
—t(4k* + ak® + bk® — 5k* + 4abk® + dak® + 4bk?
—2k — 8abk — 3ak — 3bk + 4ab — 2b — 2a)
—k(k —1)(k + 2b+ 2a).

For 1 <b< B?EEJ{)ZJﬂ it is easily seen that

a(t) — gp1(t) = —(a+1—b)(k — 1)*[t* + (k +7)t +4].
Let p, = p(C%(a,b)). Then

a(pp-1) = g(pr—1) — go—1(pp-1)
= —(a+1=b)(k=1)%py1[pi_y + (k+ T)pp1 + 4]
< 0,

from which, together with the fact that g,(t) > 0 for t > py, we have p, > pp_1. O

Theorem 4.1. For k > 3, let G be a k-uniform unicyclic hypergraph of size
m > 2 with minimum distance spectral radius. Then G = Cs,_3y if m = 3, and
G = CY(m — 2,0) otherwise.

Proof. 1t is trivial if m = 2. Suppose that m > 3. Let g be the length of the unique

cycle of G. Let C be the unique cycle of G with edges e; = {V(i—1)(k—1)+1, - - - » V(i—1)(k—1)+k } s
where i = 1,..., g and vg_1)41 = v1. For 1 <i < g(k — 1), let H; be the compo-

nent of G — E(C) containing v;.

Claim 1. For each i and j with 1 <:<gand2<j <k —1,

V(Hi—1)(k=1)+5) = {V6-1)(k=1)45 }-

Suppose that there exist some 7 and some j with 1 <i<gand2<j<k-—1
such that V(H-1)k-1)45) 7 {06-)0-1)+51> 1€ VIH 1) 0-10) \ Ve 0145 7
(). Then H(;_1)(—1)+; is a k-uniform hypertree with at least one edge.

Let G’ be the k-uniform hypergraph obtained from G by moving each edge
of Eq(vi-1)k-1)+5) \ {€:} from vi_1y—1)4; t0 vG-1yk—1)4%- Obviously, G’ is a
k-uniform unicyclic hypergraph of size m.
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As we pass from G to G, the distance between a vertex of V(H—1)k—1)+5) \
{va-1)(k-1)+j} and vi_1)k-1)+; is increased by 1, the distance between a vertex of
V(Hi—1)(k-1)+j) \ {V(-1)(k—1)+; } and a vertex of ;1 \ {vix—1)+x} is decreased by 1,
and the distance between any other vertex pair is decreased or remains unchanged.
Let x = .Z'(G/) and U = V(H(i—l)(k—l)—l—j) \ {U(i—l)(k—l)—l—j}' Then

2T (D(G) — D(G"))x

N | —

(p(G) = p(G)) =
> UG’(U> [_xv(ifl)(kfl)qu toce (€i+1 \ {Ui(k—1)+k}):| (43)
> UG'(U> <_xv(i—1)(k—1)+j + L (k—1)41 + xvi(k—1)+2> :

Let W = V(G) \ {V(-1)(k—1)45> Vi(k—1)+1, Vi(k—1)+2}- From the eigenequations of G’
at V(i—1)(k—1)+j> Vi(k—1)+1 and v;x_1)4+2, we have

/ _ § . .
p(G )xv(i—l)(k—1)+j - xvi(k—1)+1 + 2x”i(k—1)+2 + dG'<U(Z—1)(k—1)+J7 w)xw,
weW

! _ .
p(G )xvi(k—1)+1 = Tog_1yk—1)1j + Lo (j—1)42 + E : der (Ul(k’—l)-i‘l’ w)IUN
weWw

/ —
p(G )xvi(k71)+2 = To-1)41 + 2xv(i71)(k71)+j + § : dG/(Ui(k*1)+2’w)mw‘
weW

Note that for w € W,
der ('Ui(kfl)Jrla w) +de (Ui(k71)+27 w) —der (U(ifl)(kfl)Jrjaw) > 0.

Then

(p(G/) + 1) <_$U(¢71)(k71)+j + $Uz‘(k71)+1 + xvi(k71)+2> Z 2xv(i71)(k71)+j + ',L"Ui(kfl)Jrl > 0’
implying that —zy, ) FTu 0 F oy, > 0. Thus by (4.3), p(G) > p(G),
a contradiction. Therefore Claim 1 follows.

If m = 3, then by Claim 1, G & Cy;_34 or C5(1,0), and by Theorem 3.2, we
have p(Caj_31) < p(C%(1,0)), implying that G = Cy;_34.

Suppose that m > 4.

Claim 2. For each ¢ with 1 <4 < g, H(;_1)(k—1)+1 is a k-uniform hyperstar with
center v(;—1)(k—1)+1-

Suppose that some H(;_1yx—1)+1, say Hp is not a k-uniform hyperstar with
center v;. Then |E(H;)| > 2. We choose an edge e € Eg(v1) \ {e1, €4} such that e\
{v1} contains at least one vertex of degree at least 2in G. Let e = {wy,wy, ..., w},
where v; = wy. For 1 < j <k —1, let W; be the component of G — e containing
wj. Then G = Heo(Wy,...,Wi_1), where H = G[V(G) \ UZ{ (V(W)) \ {w;})].
Note that there is some j with 1 < 57 < k — 1 such that |E(W;)] > 1. Let
G = Hep1(Wy,...,Wi_1). It is easily seen that G’ is a k-uniform unicyclic
hypergraph of size m. By Lemma 2.2, we have p(G) > p(G’), a contradiction.
This proves Claim 2.
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If m = 4, then by Claims 1 and 2, we have G = Cy;,_41, C¥(1,0,0), C5(1,1) or
C%(2,0), and then by Lemmas 4.2, 4.3 (ii), and 4.4, we have

min{p(04k—4,k)v p(Cg(l, 07 0))7 ,0(05(17 1))} > ,0(05(2, 0))7

implying that G = C%(2,0).

Suppose that m > 5. For 1 <i < g, let ¢; = |E(H(—1)(k—1)+1)|- By Claims 1
and 2, G = C’;(tl,...,tg), where 7  t; = m — g. Suppose without loss of
generality that ¢; = maxj<;<4 t;.

Suppose that ¢ is odd. Suppose that ¢ > 5. Let G' = Cg,z(tl + ity + 1y +
2,t3,...,ty—1). Obviously, G” is a k-uniform unicyclic hypergraph of size m. By
Corollary 3.1, we have p(G) > p(G"), a contradiction. Thus g = 3. Therefore
we have G = C¥(ty,ty,t3) with ¢; +ty +t3 = m — 3. We may assume that
t1 > ty > t3. By Lemma 4.3 (i), we have t; = m — 3 and t, = t3 = 0, i.e.,
G = C¥(m — 3,0,0). Obviously, C5(m — 2,0) is a k-uniform unicyclic hypergraph
of size m. By Lemma 4.3 (ii), p(G) > p(C5(m — 2,0)), a contradiction. Thus g is
even.

Suppose that g > 4. Let G* = Cg_Q(tl +ty+t,+2,t3,...,t,01). Obviously,
G* is a k-uniform unicyclic hypergraph of size m. By Corollary 3.1, we have
p(G) > p(G*), a contradiction. Then g = 2, and thus G = C¥(¢1,t,) with t; > t,
and t;+ty = m—2. By Lemma 4.4, t; = m—2and t, = 0,i.e., G = C§(m—2,0). O

Lemma 4.5. For k > 3 and t; = maxj<j<4t; > 0, we have p(C¥(t1,to,t3,t4)) <
p(C5(ty + by + 1,t3,t4)) if t1 = 0 and k = 3, and p(Cf(t1,t2,t3,t4)) > p(CE(t: +
to + 1,t3,14)) otherwise.

Proof. Let G = Ck(t1,t5,t3,t4). Let C be the unique cycle of G with edges e; =
{U(i—l)(k:—l)—‘rl?‘"7U(i—1)(/€—1)+k}7 where 1 = 1, 4 and U4k—3 = V1. For 1 <
i < 4k — 4, let H; be the component of G — E(C) containing v;. Let G’ be the
hypergraph obtained from G by moving each edge of Eg(vg) \ {e1} from vy to v;.
Then G’ = C%(ty + ty + 1,t3,t4). Let x = 2(G’). By Lemma 2.1, the entry of x
corresponding to each vertex of (e UV (Hy))\ {v1} is the same, which we denote by
1, the entry of & corresponding to each vertex of €; \ {vG—1)(k—1)+1, Vi—1)(k—1)+k }
for + = 2, 3,4 is the same, which we denote by «;.

Suppose that t; = 0. Then G = Cy;_4 . By the proof of Lemma 4.2, we have
px = p(G) = SSEVOIRI9REIS - By Temma 2.1, ap = oy and Ty, | = Ty, .
Then from the eigenequations of G’ at vs, V41, Uk, v1 and vgr_1, we have

p(GNar = (k—2)ag + (4k — 8)ag + (3k — 6)az + 3, + 44, s
p(GNay = (2k —2)an + 3k — T)ag + (2k — 4) g + x4, + 3Ty,
p(GNaz = (3k —3)aq + (4k — 8)aa + (k — 3)ag + 224, + 224,
p(GNxy, = (k—1)ag + (2k —4)an + (2k — 4)as + 2y, ,,
(G, = (2k—2)ag + (3k — 6)aa + (k — 2)ag + Ty, + Ty, _,-

Thus p(G’) is the largest root of f(p) = 0, where
flp) = p°=p'(5k —11) — p3(18k* — 28k — 4) — p*(8k> + 10k* — 39k + 4)
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—p(9Kk3 — 4k? — 14k — 3) — 9k* + 16k — 3.

If & = 3, then f(p*) = —1539 — 125+/153 < 0, which together with the fact
that f(p) > 0 for p > p(G’), implying that p* < p(G’).

Suppose that k& > 4. Let p; > pa > p3s > py > ps be the roots of f(p) = 0,
where p; = p(G’). Note that
f(=k) = (4k* —10k* + 7k — 3)(k — 1)* > 0,
f(0) = —(9k* — 16k +3) <0,
flp*) = p*(320k* — 2585k + 7476k* — 9300k + 4241)

+160k* — 1200k> + 3135k* — 3424k + 1333 > 0.

Then p* > p; or p* < ps. Suppose that p* < ps. Note that 0 < p3 < p*,
—k < py <0 and bk — 11 = p1 + p2 + p3s + ps + ps. Then

ps < bk — 11 —2p* — 0 — (—k) = —2k + 2 — V64k2 — 192k + 153 < —(8k — 10),

However, since the maximum row sum of D(G’) is 8k — 10 and p(G’) is bounded
above by the maximum row sum of D(G’) (see [13, p. 24, Theorem 1.1]), we have
lps| < p(G") < 8k — 10, a contradiction. Thus p* > p; = p(G’), as desired.

Now suppose that t; > 1. As we pass from G to G’, the distance between vy,
and a vertex of (V(Hg) \{vr}) UV (Hak—1)U (e3\ {vag—1,v3k—2}) is increased by 1,
the distance between a vertex of V' (H;) and a vertex of (V (Hy)\ {vi}) UV (Hag—1)U
(€2 \ {vk, vor_1}) is decreased by 1, and the distance between any other vertex pair
is decreased or remains unchanged. Note that |V (Hy)| > k > 3. Thus

S(0(G) = p(G)

%xT(D(G) D)

— Ty [oc (V(Hy) \ {vr}) + 0a(V(Hap-1)) + ocr(es \ {vor—1,V3k—2})]
+oa (V(H))[oa (V(Hi) \ {ve}) + o (V (Har-1) + ocr(e2 \ {vk, var-1})]
—ai[oc (V(Hi) \ {ve}) + 06 (V(Hak-1)) + (k — 2) ]

+(2a1 + ) [ (V(Hg) \ {vr}) + 0 (V(Hog—1)) + (k — 2) ]

> (k—2)a1(2as — ag).

v

v

v

Let W = V(G) \ {vgs1,v2r}. From the eigenequations of G’ at vgyq and vg, we
have

p(G,)OZZ = 20&3 + Z d(;/<1)k+1,w)l'w,

weW

p(G,)Oég = 20&2 + Z dg/(UQk,w).iEw.

weW

Note that for w € W, 2dg/ (vky1, w) —der (vag, w) > 0. Then (p(G')+1) (200 —ar3) >
3ag > 0, implying that 2ay — ag > 0. Thus p(G) > p(G'). O
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For k > 3, let Fy(t) = C% ,(Hy,..., Hay, o) when |V(H,)| = |V(H;)| = 1 for
3 <1 < 2k — 2 and Hs is a hyperstar Sy_1)41,1 With center v,. In particular,
F5(0) = Cop—op.

For k > 3, let Hy = C% ,(Hy,..., Ho_o) when |V (H;)| =1 for 2 <i <2k —2
and H; is a k-uniform pendant path of length 2 at v;.

Lemma 4.6. For k> 3 andt > 1, we have
(1) if t > 1, then p(C5(t,0,0)) < p(F(t + 1)),
(ii) if t = 1, then p(CA(,0,0)) < min{p(CE(1,1)), p(HE)}.

Proof. Let G = C¥(t,0,0). Let C be the unique cycle of G with edges e¢; =
{U(i—l)(k—1)+17 C 7U(i—1)(k—1)+k}> where ¢ = ]., 2,3, and V3p—2 — V1. Let H1 be the
component of G — E(C) containing v;. Let = x(G). By Lemma 2.1, the entry of
x corresponding to each vertex of (e; Ueg) \ {v1, Uk, vor_1} is the same, which we
denote by «, the entry of x corresponding to each vertex of e \ {vk, vop_1} is the
same, which we denote by 3, and z,, = z,,, ,.

First we prove (i). Let G’ be the k-uniform hypergraph obtained from G by
moving e, from vy, to vs,_s. It is easily seen that G’ = FF(t+1). As we pass from
G to G', the distance between vs;_3 and a vertex of ey \ {vk, vor_1} is decreased
by 1, the distance between a vertex of e \ {vg, vor—1} and a vertex of e; \ {vy, vi}
is increased by 1, the distance between vy and wvg,_; is increased by 1, and the
distance between any other vertex pair is increased or remains unchanged. Then

v
g
Py
S
Q
|
g,
2
kg

(@)~ p(C) > ¢

Ty, 506 (€2 \ {Vk; v2r—1})

toa (e \ {vk, var—1}) oaler \ {vr, vr}) + Ty, Loy,
—(k —2)aB + (k — 2)*aB + Ty, Tu, _,

(k—2)(k = 3)af + x4y, Ty,

> 0.

v

Thus p(G') > p(G).

Now we prove (ii). Let E(H;) = {es}, where e; Ney = {v1}. Let G* be the
hypergraph obtained from G by moving e; from v, to wvor_;. It is easily seen
that G* = C%(1,1). As we pass from G to G*, the distance between vq,_; and a
vertex of e; \ {vy, v} is decreased by 1, the distance between vy and a vertex of
eq U (e1 \ {v1,vx}) is increased by 1, and the distance between any other vertex
pair remains unchanged. Then

(@) —0l@) 2 LaT(D(E) ~ D(@)a
= 06 (e \ o1, 0) + 2 0 (en) + oa(er | fon, i)
= mvkaG(el\{vlavk’})
> 0.

Thus p(G*) > p(G).
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Let G** be the hypergraph obtained from G by moving e; from vy to vor_1.
Obviously, G** = HY. As we pass from G to G**, the distance between a vertex
of e4 and a vertex of e; \ {v1} is increased by 1, the distance between vq;_; and a
vertex of ey \ {vy, vx} is decreased by 1, and the distance between any other vertex
pair remains unchanged. Then

S0(G™) = p(@) > 5o (D(E) - D@

= ogles)og (er \ {v1}) — Tuy,_,0c(er \ {v1, vi}))

> (06(es) = Tuy_,)oc(er \ {vr, vk })).

Let u € eg\{v1}. Note that for w € V(G)\{v1, vor_1,u}, da(v1, w)+dg(ver—_1, w) —
de(u,w) > 0. From the eigenequations of G at vy, ve—; and u, we have p(G)(z,, +
:L‘u—l’v%_l) > —xu—i—?)xv%_l, and then (p(G)—i_l)(xm—i_xu_xvzk—J 2 xvl+2xvzk—1 >
0, implying that x,, +x, —x,,, , > 0. Thus og(es) — Xy, | > Ty, + Ty — Ty, _, > 0.
Therefore p(G*) > p(G). O

Theorem 4.2. For k > 3, let G be a k-uniform unicyclic hypergraph of size m > 3
not isomorphic to Csy_sx for m = 3 and C¥(m — 2,0) otherwise with minimum
distance spectral radius. Then G = C5(1,0) if m = 3, G = Cy_qy, if k = 3 and
m =4, and G =2 C¥(m — 3,0,0) otherwise.

Proof. Let g be the length of the unique cycle of G. Let C' be the unique cycle
of G with edges e; = {U(i—l)(k—1)+1, o ,U(i—l)(k—1)+k}, where ¢+ = 1,...,¢9, and
Vgh—1)+1 = v1. For 1 < i < g(k —1), let H; be the component of G — E(C)
containing v;.

If m = 3, then since G 2 Cs;_3, we have G = C§(1,0) or Fy(1), and by
similar argument as in Claim 1 in the proof of Theorem 4.1, we have p(C%(1,0)) <
p(F¥(1)), implying that G = C%(1,0).

Suppose that m > 4. Note that G 2 C5(m — 2,0). As in the proof of Theo-
rem 4.1, we have the following Claims 1 and 2.

Claim 1. For g > 3,each1 <i<gandeach2<j <k -1,

V(Hi-1)k-1)+5) = {06-1)(k-1)45}-

Claim 2. If m > 4 and g > 3, then for each 1 <4 < g, H(;_1)(k—1)+1 is @ k-uniform
hyperstar with center v(;_1)(k—1)+1-

Suppose that m = 4. If g = 2, then since G 2 C5(m—2,0) and by similar argu-
ment as in Claim 1 in the proof of Theorem 4.1, we have G = C§(1,1), F§(2) or HY,
and if g = 3, 4, then by Claim 1, we have G = C¥(1,0,0) or C4x_4x. By Lemmas 4.5
and 4.6, we have p(Cye_y) < min{p(CH(1,1)), p(F§(2)), p(HE), p(CH(1,0,0))} i
k=3 and p(C%¥(1,0,0)) < min{p(C5(1,1)), p(F¥(2)), p(HY), p(Cut—s1)} otherwise.
Therefore G = Cyy,_4y if k=3, and G = C¥(m — 3,0,0) otherwise, as desired.

Suppose that m > 5.

Claim 3. g is odd.

Suppose that g is even. Suppose that ¢ > 6. Then m > 6. For 1 < i <

g, let t; = |E(Hi—1)(,-1)+1)|. By Claims 1 and 2, G = CJ(ty,...,t,), where
7 ti = m — g. Suppose without loss of generality that ¢; = maxj<;<,¢;. Let
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G = 05_2(251 + 1ty +t, +2,t3,...,t,-1). Obviously, G’ is a k-uniform unicyclic
hypergraph of size m and G’ % C%(m — 2,0). By Corollary 3.1, we have p(G) >
p(G"), a contradiction. Thus g = 2 or 4.

Suppose that g = 4. Obviously, by Claims 1 and 2, G = Ck(t,,t,t3,t,) with
t; = maxj<j<at; > 1. Obviously, C¥(t; + to + 1,t3,t4) is a k-uniform unicyclic
hypergraph of size m and it is not isomorphic to C§(m — 2,0). By Lemma 4.5,
we have p(G) > p (C5(t1 + t2 + 1,13,14)), a contradiction. Thus g = 2 and G =
Ck J(Hy, ..., Hy o).

Let m; = |E(H;)|, where 1 < i < 2k — 2 and Zfﬁf m; + 2 = m. Suppose
without loss of generality that m; > my > 0 and my = max{m; : 2 < j <
% —2, j £k},

We will show that my = 0. Suppose that my > 1. Then G % Ck(m —2,0). By
similar argument as in Claim 2 in the proof of Theorem 4.1, each H; is a k-uniform
hyperstar with center v; for 1 <1¢ < 2k — 2.

Suppose that m; > 1. Let G’ be the hypergraph obtained from G by moving
each edge of Eg(vse) \ €1 from vy to vg. Obviously, G’ is a unicyclic hypergraph
of size m and G' 2 C¥(m — 2,0). Let x = x(G’). From the eigenequations of
G’ at vy, vy and vgyq, we have p(G’) (l’vk + Ty, — xm) > —y,,, +31,,. Then
(p(G') + 1) (ka + Ty, — IEUQ) > Ty, + 2x,, > 0. Thus z,, + 2, — T, > 0.
As we pass from G to G', the distance between a vertex of V(Hj) \ {ve} and vy
is increased by 1, the distance between a vertex of V(Hj) \ {ve} and a vertex of
{vk, vks1} is decreased by 1, and the distance between any other vertex pair is
decreased or remains unchanged. Then

S6(G) = p(@) = 52T (DG) — D@
> UG’(V(H2) \ {02}) (':Evk + Loppr — xw)
> 0.

Thus p(G) > p(G’), a contradiction. Thus my; = my, = 0.

Suppose that there exists some i € {j : 3 < j < 2k — 2 and j # k} such
that m; > 1. Let G’ be the hypergraph obtained from G by moving each edge
of Eg(v;) \ e1 from v; to vy if 3 < ¢ < k — 1, and the hypergraph obtained from
G by moving each edge of Eg(v;) \ e from v; to v if K+ 1 < i < 2k — 2.
Obviously, G’ is a unicyclic hypergraph of size m and G’ 2 C5(m — 2,0). By
similar argument as above, we have p(G) > p(G’), a contradiction. Thus m; = 0
fori e {j:3<j<2k—2andj+#k}.

Since m; = 0 for 1 < i < 2k—2 with i # 2, we have G = F¥(m —2). Obviously,
C¥(m — 3,0,0) is a unicyclic hypergraph of size m and it is not isomorphic to
CY¥(m —2,0). By Lemma 4.6 (i), p(G) > p(C¥(m — 3,0,0)), a contradiction. Now
we have mqy = 0.

Suppose that m; > 1. Note that m; > m; and m; + mpy = m — 2. By
similar argument as in Claim 2 in the proof of Theorem 4.1, both H; and Hj, are
k-uniform hyperstars with centers v; and vy, respectively. Then G = C%(my, my).
By Lemma 4.4, we have G = C§(m—3,1). Now by Theorem 3.2, p(G) > p(C5(m—
3,0,0)), a contradiction. It follows that my = 0.
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Let uy be the vertex in V' (H;) such that dg(uo,v1) is as large as possible. Let
p = da(ug,vy). Since mg = my = 0 and G 2 C¥(m — 2,0), we have p > 2. Let
(uo, €}, uq, ... ,ep, u,) be the unique path connecting uy and vy in Hy, where u, = v;.
Note that ¢ is a pendant edge at u;. Let e;, = {wy,...,w}, where wg_1 = up_;
and wy = u,. Let W) be the component of G' — e;, containing w; for 1 < j <k —1.
Then G = Hey o(Wh, ..., Wi_1), where H = G[V(G) \ U?;%(V(Wj) \ {w;})]. Note
that |[E(Wy_1)| > 1.

Suppose that p > 3. Let G' = Hy . 1(Wh,...,Wj_1). Obviously, G’ is a k-
uniform unicyclic hypergraph of size m and G’ 2 C¥(m —2,0). By Lemma 2.2, we
have p(G) > p(G’'), a contradiction. Thus p = 2, implying that W; is a k-uniform
hyperstar with center w; for 2 <i < k — 1.

Let G” be the hypergraph obtained from G by moving e; from vy, to wi_1(= wuy).
Let # = x(G”). By Lemma 2.1, the entry of x corresponding to each vertex of
ei \ {wi_1} is the same. Let zy € €] \ {wr—1}. From the eigenequations of G”
at zp, w1 and v, we have p(G”) (296,20 + Ty, — ka) > —2x,, + 8x,,. Then
(p(G")+1) (2£L‘Z0 + Ty, — %k) > Ty, + 72y, > 0. Thus 22, + x4, , — 2, > 0.

As we pass from G to G”, the distance between a vertex of e; \ {v1, v} and a
vertex of V/(Wj_;) is decreased by 1, the distance between a vertex of e; \ {vy, vy}
and vy is increased by 1, and the distance between any other vertex pair remains
unchanged. Then

S0(Q)— plG") > LaT(D(G) ~ D(E)e
= ogrlen\ {on,u) (g (VWi 1)) — 20,)
> agrlen\ {vnu}) (g (e}) — 2,)
> ogr(er \ {v1,ve}) ((k D)o + Ty, ka)
> ogr(er \ {v1,v}) (szo + Ty, _, ka)
> 0.

Thus p(G) > p(G"), also a contradiction. Now Claim 3 follows.

By Claim 3, ¢ is odd. By Claims 1 and 2, G = C’g(tl,...,tg) with ¢; =
maxi<;<,t; and Y 7, ¢; + g = m. Suppose that g > 5. Let G* = 05_2(151 + by +
ty +2,t3,...,t5—1). Obviously, G* is a k-uniform unicyclic hypergraph of size m
and G* 2 C¥(m — 2,0). By Corollary 3.1, we have p(G) > p(G*), a contradiction.
It follows that g = 3. Therefore we have G = C¥(ty,ta,t3) with t; >ty > t3 > 0
and t; + ty + t3 = m — 3. By Lemma 4.3 (i), we have t; = m — 3 and t, = t3 = 0,
ie., G=Ck(m—3,0,0). O

5 Maximum distance spectral radius of uniform
unicyclic hypergraphs

In this section, we discuss the unique hypergraphs with maximum distance spectral
radius in the set of k-uniform unicyclic hypergraphs of fixed size.
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Lemma 5.1. For k > 4, let G be a k-uniform unicyclic hypergraph with cycle
length 2. Let e be an edge on the cycle of G containing two vertices u and v of
degree 1. Forp>q > 1, p(Gun(p.0)) < p(Gun(p+ 1,4 — 1)),

Proof. Let H = G,.,(p, q). Let C be the cycle of G with edges e = e; = {vy,..., v}
and es = {vg, ..., vok_1}, where vop_1 = v;. Let H; be the component of H — E(C)
containing v; for 1 < ¢ < 2k — 2. We may assume u = vy and v = vp_;. Let
Hy = (v, €}, u1, .., up1,€p,up) and Hyy = (vp_1,€], 91, .., Yq-1,€,,Yq), Where
ey = {vg,ur,wy, ..., wr_o} and e = {vgp_1,y1, W, ... W o}

Let x = x(H). Suppose that oy (V(Hy)) > og(V(Hy-1)). Let [; = |E(H;)| for
1 <i<2k—2 Let I ={i:l; >1,3<i<k—2}. Let H be the k-uniform
hypergraph obtained from H by moving each edge of Ey(v;) \ e; from v; to w_,
for all ¢ € I, moving each edge of Ey(v;) \ e; from v to wj,_4, and moving each
edge of Fy(vg) \ €1 from vy to wj,_,. It is easily seen that H' = G, ,(p+ 1, — 1).

As we pass from H to H', for i € I, the distance between a vertex of V(H;)\{v;}
and a vertex of V(Hs) U (e1 \ {v2, v;, vk_1}) is increased by 1, the distance between
a vertex of V(H;) \ {v;} and v; is increased by 2, the distance between a vertex
of V(H;) \ {v;} and a vertex of V(Hy_1) \ {vk— 1, i o} is decreased by 1, and the
distance between a vertex of V(H;) \ {v;} and w]_, is decreased by 2, the distance
between a vertex of V(H;) \ {v1} and a vertex of V(Hs) U (eg \ {vl, Vg, Ug—1}) 18
increased by 1, the distance between a vertex of V(H;) \ {v1} and v, is increased
by 2, the distance between a vertex of V(H;) \ {v1} and a vertex of V(Hg_1) \
{vg—1,w}_5} is decreased by 1, the distance between a vertex of V(Hi) \ {v1}
and wj,_4 is decreased by 2, the distance between a vertex of V(Hy) \ {vx} and
a vertex of V(Hy) U (e1 \ {ve, vk—1,vx}) is increased by 1, the distance between a
vertex of V(Hy) \ {vx} and vy is increased by 2, the distance between a vertex
of V(Hg) \ {vx} and a vertex of V(Hg_1) \ {vg_1,w}_,} is decreased by 1, the
distance between a vertex of V(Hy) \ {vr} and wj,_, is decreased by 2, the distance

between a vertex of Ufﬁﬁl V(H;) and a vertex of V/(Hz) U (e \ {v1, vk—1,vx}) is

increased by 1, the distance between a vertex of Uff;il V(H;) and a vertex of
2%k—2

{v1, v} is increased by 2, the distance between a vertex of [ J;Z,}; V(H;) and a

vertex of V(Hy_1) \ {vk,l, Wy, _5, Wy,_o + is decreased by 1, the distance between a
vertex of Ufiﬁl V(H;) and a vertex of {wj_5,w;_,} is decreased by 2, and the
distance between any other vertex pair remains unchanged. Note that op(e;) >

Ty + Tyy + Ty, + Ty, Let A = Ufkkil V(H;). Then

S(oH) — p())
> 2T (D(H')— D(H))x
= ZaH \{ui) |on(V(H)) + (on(er) = 2, = 2, = w0, ,) + 20,

B (UH(V<Hk—1>> ~ Pup T xwé*) B wa;’z}

+ou(VH)\ {0} [ou(V(H2) + (ou(er) = 20, — 50, — 0, ) + 200,
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— (UH(V<Hk,1)) — Ty, — Ty ) — 2 ]

o (V(H) \{oe}) [0 (V(H2)) + (0n(er) = 2o = 2o, = 20,) + 200,
_ (aH(wHk,l)) — | — Ty ) — 2, ]

oi(A) |on(V(H)) + (oner) = 2 = 2o, = 20,) + 220, + 22,

— (on(V(H) = 2, = vy, = Ty, ) = 200, — 200

> ouVH)\ {u}) (on(V( 2>>—aH<v<Hk_1>>+<aH<e1>—%>+xm—xwg,Q)

el

+oug(V(H) \ {wn}) (oa(V(Hs)) — onu( Hk—l))Jr(UH(el)—%z)Jr%l—mw;,;),)
+ou(V(H)\ {or}) (aH ) = oulV(He) + (0a(e) = 2) + @, — 2, )
+ou(A >( 1 (V(H:)) = 0 (V (i) + o (er) + 0, + 20, = 2ug_, = Ty,

>~ oulV(H) \{v}) (on(V <H2>>—aH<v<Hk_1>>+xm+asvk_l—xwg_g)

and thus

i€l
o (V) \ {01}) (n(V(H2)) = o0 (V(Hy1) + 20, + 0, = 7y,
+ou(V(He) \ {vr}) <UH ) —ou(V(Hyg-1)) + 2, +ka,1_xw;€_2>
+011(A) (0 (V(H2) = 030 (V(Hi 1)) + B, + By + 0, + 00, = T, — T, )
1 /
§(p(H) — p(H))

Vv

Z or(V(H;) \ {vi}) <$Ui T Ty, — ;Ewg_2>

el

o (V) \ 1)) (20, + @0,y — ) (5.1)
vou(VH)\ {op)) (;z,- Yy, — xw)

+ou(A) <96u1 + Ty + Ty + Ty — Ty, — x%_2> .

For w € W = V(H) \ {vi, g1, w,_o} with 3 < i < k — 2, we have dH(vZ,w) +
dy(vp_1,w) —dg(w,_y,w) > 0. From the eigenequations of H at v;, vy_1 and w]_,,

we have

p(H)('T”Uz + Lop_y — xw§,2>

> — Ly, + Bzw;_Q + Z (dH(Uiv 'LU) + dH(Uk—ly 'LU) dH( W;_2, W))l'w
weW

Z — Ly, + 31'102_2,
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implying that (p(H) + 1)(zy, + Ty, — Twy_,) = Ty, + 22y, > 0, and thus z,, +
Ty — Ty, > 0. Similarly, we have x,, +z,, , — Ty, > 0, Ty, + Ty, — Ty, >0
and Ty, + Ty, + Ty,_, + Ty, — Tuy_, — Ty, > 0. Thus by (5.1),

1

S (PUH') = p(H)) = 73t (A) (2 + s+ @, + 0, = g, = Ty, ) >0

It follows that p(H) < p(H’).

Suppose that oy (V(Hz)) < og(V(Hg_1)). Let H” be the k-uniform hypergraph
obtained from H by moving each edge of Ey(v;) \ e; from v; to w;_5 for all 3 <
i < k—2, moving each edge of Ey(vy)\ €1 from vy to wy_3, and moving each edge
of Ey(vg) \ €1 from vy to wy_o. It is easily seen that H” = G, ,(p —1,¢ +1). By
similar argument as above, we have p(H) < p(H").

Now we have proved that

P(Guw(p;q)) < max{p(Guo(p+1,¢—1)), p(Gup(p—1,q¢+1))}. (5.2)

If p = ¢, then the result follows easily. Suppose that p > ¢g. Suppose
that p(Guw(p,q)) < p(Guw(p — 1,¢+ 1)). Note that Gu,v([fﬁ%ﬂw, |pta=l)) =~

2
Guo(| B, [EHEL). Using (5.2) repeatedly, we have

#Guctpr) < o (Cun ([P35 |25 )
(1 o))

which is impossible. Thus p(Gu.(p,q)) < p(Gun(p + 1,9 — 1)), as desired. O

For k > 3, let C¥(I1,15) = Gy, (h, 1), where G = Cop_oy, and 1y > Iy > 0.

Theorem 5.1. For k > 3, let G be a k-uniform unicyclic hypergraph of size m > 2
with maximum distance spectral radius. Then G = C’é“(ll,lg), where l; > 1o > 0
and ly + 1y +2 =m.

Proof. 1t is trivial if m = 2. Suppose that m > 3. By Theorem 3.2, the cycle
length of G is 2. Let C be the unique cycle with edges e; = {vy,...,vx} and
ey = {V,...,vo5_1}, where vo,_1 = v;. Let H; be the component of G — E(C)
containing v;, which is a k-uniform hypertree, where 1 < ¢ < 2k — 2. Then
G = Cgk_Q(Hly ceey Hgk_g). Let z = JI(G)
Claim 1. |V(H,)| = |V(Hy)| = 1.

Suppose that there is at least one edge in H;. We may assume og (Uf:_; V(Hi)) >

oG (Ufﬁﬁl V(Hi)>. Let G’ be the k-uniform hypergraph obtained from G by mov-

ing each edge of Eg(v1) \ {e1,e2} from vy to vg,_o. As we pass from G to G, the
distance between a vertex of V(H;) \ {v1} and a vertex of {v;} U (Uf:_zl V(Hi)>

is increased by 1, the distance between a vertex of V(H;) \ {v1} and a vertex
of V(Ha—_2) is decreased by 1, and the distance between any other vertex pair
remains unchanged. Then

S0(@) —pl@) > JaT(D(G) ~ D@

\Y
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= oc(V(Hi) \{v}) <:C’Ul +og (O V(Hi)> - UG(V(H2k2))>

=2

> Ug(V(HI) \ {’Ul}) <O’G <L_J V(HZ)> — 0@ ( L_J V(HJ))

i=k+1
> 0,

and thus p(G') > p(G), a contradiction. Therefore |V (H;)| = 1. Similarly, we
have |V (Hj)| = 1. Claim 1 follows.
Claim 2. Each H; with |V (H;)| > 1 is a pendant path at v;, where 2 <i < 2k —2
and 7 # k.

Suppose that dp,(v;) > 2. Let Uy, ..., Udy ;) be the vertex-disjoint subhyper-

graphs of H; — v; with Ujiil(vi)V(Uj) = V(H;) \ {v:} such that H;[V(U;) U {v;}]
is a k-uniform hypertree for 1 < j < dg,(v;). Note that dg,(w) = dg(w) for each
w e V(U;), where 1 < j < dp,(v;).

Suppose that there is one vertex of degree at least 3 in V' (U;) for some j with
1 < j < dpy,(v;). Choose a vertex u of degree at least 3 such that dg(v;,u) is as
large as possible. Let Ny, ..., Ny, ) be the vertex-disjoint subhypergraphs of G —u
with U;lfl(”)V(Nj) = V(G) \ {u} such that G[V(N;) U{u}] is a k-uniform unicyclic
hypergraph and G[V(N;) U {u}] is a k-uniform hypertree for 2 <[ < dg(u).

Suppose that G[V(N;) U {u}] is not a pendant path at u for some [ with 2 <
| < dg(u). Then there are at least three vertices of degree 2 in some edge of
E(G[V(N;) U{u}]). We choose such an edge e = {wy, ..., wg} by requiring that
dg(u,w) is as large as possible, where dg(u,w,) = dg(u,w,) — 1 for 2 < r < k.
Then there are two pendant paths, say P and ) with lengths p and @) at different
vertices w, and w; of e respectively, where 2 < s < t < k. We may assume that p >
q. Then G = F,, 4, (p,q), where F' = G[V(G) \ (V(PUQ) \ {ws, w;})]. Obviously,
dr(ws) = dp(wy) = 1 and G" = Fy_u(p + 1,¢ — 1) is a k-uniform unicyclic
hypergraph of size m. By Lemma 2.4, we have p(G) < p(G"), a contradiction. Thus
for each [ with 2 <1 < dg(u), G[V(N;) U{u}| is a pendant path at u, the length
of which is denoted by p;. We may assume that p; > p3. Then G = N,(ps, p3),
where N = G[V(G) \ V(N2 U N3)]. Obviously, G* = N,(p2 + 1,ps — 1) is a k-
uniform unicyclic hypergraph of size m. By Lemma 2.3, we have p(G) < p(G*), a
contradiction. Thus for 1 < j < dg,(v;), each vertex of V(U;) is of degree at most
2.

By similar argument as above, there is no edge in E(G[V (U;) U {v;}]) with at
least three vertices of degree 2, and thus G[V (U;)U{v;}] is a pendant path at v; for
1 <j <dpy,(v;). Let g; be the length of G|V (U;)U{v;}], where 1 < j < dp,(v;). We
may assume that ¢; > ¢o. Then G = N,,(q1, ¢2), where N = G[V(G)\ V (U, UUs)].
Obviously, G** = Nvi(QI +1,¢2 — 1) is a k-uniform unicyclic hypergraph of size m.
By Lemma 2.3, we have p(G) < p(G**), a contradiction. Therefore dg,(v;) = 1.

By similar argument as above, each vertex of V(H;) \ {v;} is of degree at most
2, and there is at most two vertices of degree at least 2 in each edge of E(H;),
Thus H; is a pendant path at v; in G. This proves Claim 2.

By Claims 1 and 2, |V(H,)| = |V(H)| = 1 and each H; with |V (H;)| > 1 is
a pendant path at v;, where 2 < i < 2k —2 and 7 # k. Let m; = |E(H,)| for
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1 <4 <2k —2. Then my = my = 0.

If k = 3, then G = C%(my, my) with my + my + 2 = m, and thus the result
follows.

Suppose that k& > 4. Suppose that there exist at least two integers ¢ and
J with 2 < i < 7 <k —1 such that m; > m; > 1. Then by Claims 2, we
have G = H,,,,(mi,m;), where H = G[V(G) \ (V(H; U H;) \ {vi,v;})]. Let
G' = Hy,;(m; +1,m; —1). By Lemma 5.1, p(G) < p(G’), a contradiction. Thus
there exists at most one integer ¢ with 2 < ¢ < k — 1 such that m; > 1. Similarly,
there exists at most one integer j with k+1 < j < 2k — 2 such that m; > 1. Thus
G~ Ch(my,m;) with2 <i<k—1,k+1<j<2k—2and m; +m; +2=m,
and the result follows. m

By direct calculation, we list p (6’5(11, 12)) for k =3,4and [y + 1, = 2,3,4 in
Table 1.

Table 1: p (ég(zl, lz)) for k= 3,4 and Iy + o = 2,3, 4.

G | C3(1,1) | C3(2,0) | C3(2,1) | C3(3,0) | C3(2,2) | C3(3,1) | C3(4,0)
p(G) 14.7150 | 14.1580 | 22.3219 | 21.4508 | 31.5138 | 31.2036 | 30.1133
G | Ci1,1) | C4(2,0) | C4(2,1) | C4(3,0) | C4(2,2) | C4(3,1) | C4(4,0)
p(G) 23.2481 | 23.8118 | 35.5228 | 34.6496 | 49.5106 | 49.1982 | 48.1116

Based on Table 1, we conjecture that p <5§ ([2]-1,[2] - 1)) > p (Cg(ll, l2)>
for I and Iy with [y +1;+2 = m and (I, 1) # ([2] — 1, 2] — 1). If this is proved,

then by Theorem 5.1, C% (2] —1,[%2] — 1) is the unique k-uniform unicyclic hy-
pergraph of size m > 2 with maximum distance spectral radius for k > 3.
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