
On distance spectral radius of uniform
hypergraphs with cycles

Hongying Lina∗, Bo Zhoub†,
aCenter for Applied Mathematics, Tianjin University,

Tianjin 300072, P.R. China
bSchool of Mathematical Sciences, South China Normal University,

Guangzhou 510631, P.R. China

Abstract

We study the effect of two types of graft transformations on the distance
spectral radius of connected uniform hypergraphs containing at least one
cycle, determine the unique k-uniform unicyclic hypergraphs of fixed size
with minimum and second minimum distance spectral radius, respectively,
and show the possible structure of the k-uniform unicyclic hypergraph(s) of
fixed size with maximum distance spectral radius.
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1 Introduction

A hypergraph G is a pair (V,E), where V = V (G) is a nonempty finite set called
the vertex set of G and E = E(G) is a family of subsets of V (G) called the edge
set of G, see [3]. The size of G is the cardinality of E(G). For an integer k ≥ 2, a
hypergraph is k-uniform if all its edges have cardinality k. A (simple) graph is a
2-uniform hypergraph. For v ∈ V (G), let EG(v) be the set of edges of G containing
v. The degree of a vertex v in G is the number of edges containing it, denoted by
dG(v), i.e., dG(v) = |EG(v)|.

For u, v ∈ V (G), a walk from u to v in G is defined to be a sequence of vertices
and edges (v0, e1, v1, . . . , vp−1, ep, vp) with v0 = u and vp = v such that edge ei
contains vertices vi−1 and vi, and vi−1 6= vi for i = 1, . . . , p. The value p is the
length of this walk. A path is a walk with all vi distinct and all ei distinct. A cycle
is a walk containing at least two edges, all ei are distinct and all vi are distinct
except v0 = vp. A vertex u ∈ V (G) is viewed as a path (from u to u) of length 0.
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If there is a path from u to v for any u, v ∈ V (G), then we say that G is connected.
A component of a hypergraph G is a maximal connected subhypergraph of G. A
hypertree is a connected hypergraph with no cycles. A unicyclic hypergraph is
a connected hypergraph with exactly one cycle. Note that a k-uniform unicyclic
hypergraph with m edges always has order (k − 1)m.

Let G be a connected k-uniform hypergraph with V (G) = {v1, . . . , vn}. For
u, v ∈ V (G), the distance between u and v is the length of a shortest path from u to
v in G, denoted by dG(u, v). In particular, dG(u, u) = 0. The distance matrix of G
is the n× n matrix D(G) = (dG(u, v))u,v∈V (G). The eigenvalues of D(G) are called
the distance eigenvalues of G. Since D(G) is real and symmetric, the distance
eigenvalues of G are real. The distance spectral radius of G, denoted by ρ(G),
is the largest absolute value of the distance eigenvalues of G. Since D(G) is an
irreducible nonnegative matrix, the Perron-Frobenius theorem implies that ρ(G)
is the largest distance eigenvalue, and there is a unique positive unit eigenvector
corresponding to ρ(G), which is called the distance Perron vector of G, denoted
by x(G).

Balaban et al. [2] proposed the use of the distance spectral radius of ordinary
graphs (2-uniform hypergraphs) as a molecular descriptor, and it was successfully
used to make inferences about the extent of branching and boiling points of alkanes,
see [2, 8]. Now the distance spectral radius of ordinary graphs have been studied
extensively, see [4, 5, 6] for classical results, and see survey [1] (and references
therein, e.g., [14, 16]) for recent results. Particularly, Yu et al. [16] determined the
unique unicyclic graphs with minimum (maximum, respectively) distance spectral
radius. They showed that the graph obtained by adding an edge to a star is the
unique unicyclic graph with minimum distance spectral radius, while the graph
obtained from a path by adding an edge between a terminal vertex and the vertex
of distance two from it is the unique unicyclic graph with maximum distance
spectral radius.

As graph representation of molecular structures is widely used in computation-
al chemistry and theoretical chemical researches, hypergraph theory also found
applications in chemistry [7, 9, 10, 11]. As noted in [10], the hypergraph model
gave a higher accuracy of molecular structure description: the higher the accuracy
of the model, the greater the diversity of the behavior of its invariants. For ‘gen-
eral’ k-uniform hypergraphs, Sivasubramanian [15] gave a formula for the inverse
of a few q-analogs of the distance matrix of a 3-uniform hypertree, and we stud-
ied the distance spectral radius of k-uniform hypergraphs in [12] and determined
the k-uniform hypertrees with maximum, second maximum, minimum, and second
minimum distance spectral radius, respectively.

For a k-uniform unicyclic hypergraph G with V (G) = {v1, . . . , vn}, if E(G) =
{e1, . . . , em}, where ei = {v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k} for i = 1, . . . ,m and
v(m−1)(k−1)+k = v1, then we call G a k-uniform loose cycle, denoted by Cn,k.

Let G be a connected k-uniform hypergraph with an induced subhypergraph
Cg(k−1),k, where k ≥ 3 and g ≥ 2. Let the vertices of Cg(k−1),k be labelled as
above with v(g−1)(k−1)+k = v1. Suppose that G − E(Cg(k−1),k) consists of g(k − 1)
components, denoted by H1, . . . , Hg(k−1) with vi ∈ V (Hi) for i = 1, . . . , g(k − 1).
In this case, we denote G by Ck

g(k−1)(H1, . . . , Hg(k−1)).
In this paper, we propose two types of graft transformations for the uniform
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hypergraph Ck
g(k−1)(H1, . . . , Hg(k−1)) that decrease or increase the distance spectral

radius, determine the unique k-uniform unicyclic hypergraphs of size m ≥ 2 with
minimum and second minimum distance spectral radius, respectively, and discuss
the possible structure of the k-uniform unicyclic hypergraph(s) of fixed size with
maximum distance spectral radius.

2 Preliminaries

Let G be a k-uniform hypergraph with V (G) = {v1, . . . , vn}. A column vector
x = (xv1 , . . . , xvn)> ∈ Rn can be considered as a function defined on V (G) which
maps vertex vi to xvi , i.e., x(vi) = xvi for i = 1, . . . , n. Then

x>D(G)x =
∑

{u,v}⊆V (G)

2dG(u, v)xuxv,

and ρ is a distance eigenvalue with corresponding eigenvector x if and only if x 6= 0
and for each u ∈ V (G),

ρxu =
∑

v∈V (G)

dG(u, v)xv.

The above equation is called the eigenequation of G (at u). For a unit column
vector x ∈ Rn with at least one nonnegative entry, by Rayleigh’s principle, we
have

ρ(G) ≥ x>D(G)x

with equality if and only if x = x(G).

Lemma 2.1. [12] Let G be a connected k-uniform hypergraph with η being an
automorphism of G, and x the distance Perron vector of G. Then η(vi) = vj
implies that xvi = xvj .

For X ⊆ V (G) with X 6= ∅, let G[X] be the subhypergraph of G induced by
X, i.e., G[X] has vertex set X and edge set {e ⊆ X : e ∈ E(G)}, and let σG(X)
be the sum of the entries of the distance Perron vector of G corresponding to the
vertices in X. For E ′ ⊆ E(G), let G−E ′ be the subhypergraph of G obtained by
deleting all the edges of E ′. For u ∈ V (G), let G − u be the subhypergraph of G
obtained by deleting u and all edges containing u.

Let G be a k-uniform hypergraph with u, v ∈ V (G) and e1, . . . , er ∈ E(G) such
that u ∈ ei, v /∈ ei and e′i /∈ E(G) for 1 ≤ i ≤ r, where e′i = (ei \ {u}) ∪ {v}. Let
G′ be the hypergraph with V (G′) = V (G) and E(G′) = (E(G) \ {e1, . . . , er}) ∪
{e′1, . . . , e′r}. Then we say that G′ is obtained from G by moving edges e1, . . . , er
from u to v.

A path P = (v0, e1, v1, . . . , vp−1, ep, vp) with p ≥ 1 in a k-uniform hypergraph G
is called a pendant path of length p at v0, if dG(v0) ≥ 2, dG(vi) = 2 for 1 ≤ i ≤ p−1,
dG(v) = 1 for v ∈ ei \ {vi−1, vi} with 1 ≤ i ≤ p, and dG(vp) = 1. If p = 1, then we
call P or e1 a pendant edge at v0.

Let G be a connected k-uniform hypergraph with |E(G)| ≥ 2, and let e =
{w1, . . . , wk} be a pendant edge of G at wk. For 1 ≤ i ≤ k − 1, let Hi be a
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connected k-uniform hypergraph with vi ∈ V (Hi). Suppose that G,H1, . . . , Hk−1
are vertex-disjoint. For 0 ≤ s ≤ k − 1, let Ge,s(H1, . . . , Hk−1) be the hypergraph
obtained by identifying wi of G and vi of Hi for s+ 1 ≤ i ≤ k − 1 and identifying
wk of G and vi of Hi for all i with 1 ≤ i ≤ s.

Lemma 2.2. [12] Suppose that |E(Hj)| ≥ 1 for some j with 1 ≤ j ≤ k− 1. Then
ρ(Ge,0(H1, . . . , Hk−1)) > ρ(Ge,s(H1, . . . , Hk−1)) for j ≤ s ≤ k − 1.

If P is a pendant path of a hypergraph G at u, we say G is obtained from H
by attaching a pendant path P at u with H = G[V (G) \ (V (P ) \ {u})].

Let G be a connected k-uniform hypergraph with |E(G)| ≥ 1. For u ∈ V (G),
and positive integers p and q, let Gu(p, q) be the k-uniform hypergraph obtained
from G by attaching two pendant paths of lengths p and q at u, respectively, and
Gu(p, 0) be the k-uniform hypergraph obtained from G by attaching a pendant
path of length p at u.

Lemma 2.3. [12] Let G be a connected k-uniform hypergraph |E(G)| ≥ 1 and
u ∈ V (G). For integers p ≥ q ≥ 1, ρ(Gu(p, q)) < ρ(Gu(p+ 1, q − 1)).

Let G be a connected k-uniform hypergraph with u, v ∈ e ∈ E(G). For positive
integers p and q, let Gu,v(p, q) be the k-uniform hypergraph obtained from G by
attaching a pendant path of length p at u and a pendant path of length q at v, and
Gu,v(p, 0) be the k-uniform hypergraph obtained from G by attaching a pendant
path of length p at u. Let Gu,v(0, q) = Gv,u(q, 0).

Lemma 2.4. [12] Let G be a connected k-uniform hypergraph with |E(G)| ≥ 2
and u, v ∈ e ∈ E(G). Suppose that G−{e} consists of k components and dG(u) =
dG(v) = 1. For p ≥ q ≥ 1, ρ(Gu,v(p, q)) < ρ(Gu,v(p+ 1, q − 1)).

The diameter of a connected k-uniform hypergraph G is the maximum distance
between all vertex pairs of G.

3 Graft transformations and changes of distance

spectral radius

A k-uniform hypertree in which all edges contain a common vertex (u) is known
as a k-uniform hyperstar (with center u), denoted by Sd(k−1)+1,k. Obviously, S1,k

consists of a single vertex, which is its center.
First we give a type of graft transformation on Ck

g(k−1)(H1, . . . , Hg(k−1)) that
decreases the distance spectral radius.

Theorem 3.1. For k ≥ 3 and g ≥ 4 with g +
∑g(k−1)

i=1 |E(Hi)| ≥ 5, let G =
Ck

g(k−1)(H1, . . . , Hg(k−1)), and let G∗ be the k-uniform hypergraph obtained from G

by moving each edge of EG(v(g−1)(k−1)+1)\{eg} from v(g−1)(k−1)+1 to v1 and moving
each edge of EG(vk) \ {e1} from vk to v1. If H1 is a k-uniform hyperstar with
center v1, |V (H1)| = max1≤i≤g(k−1) |V (Hi)|, and |V (Hi)| = 1 for 2 ≤ i ≤ k−1 and
(g − 1)(k − 1) + 2 ≤ i ≤ g(k − 1), then ρ(G∗) < ρ(G).
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Proof. For 1 ≤ i ≤ g(k − 1), let Vi = V (Hi) and ti = |E(Hi)|. Let x = x(G∗).
From the eigenequations of G∗ at v1 and vk, we have

ρ(G∗)xv1 = xvk +
∑

w∈V (G)\{v1,vk}

dG∗(v1, w)xw,

ρ(G∗)xvk = xv1 +
∑

w∈V (G)\{v1,vk}

dG∗(vk, w)xw.

Note that for w ∈ V (G) \ {v1, vk}, 2dG∗(v1, w)− dG∗(vk, w) ≥ 0. Then

(ρ(G∗) + 1)(2xv1 − xvk) = xv1 + xvk +
∑

w∈V (G)\{v1,vk}

(2dG∗(v1, w)− dG∗(vk, w))xw

> 0,

and thus 2xv1 − xvk > 0, i.e., 2xv1 > xvk . By Lemma 2.1, the entry of x corre-
sponding to each vertex of (V1 \ {v1})∪ (e1 \ {v1})∪ (eg \ {v1}) is the same, which
we denote by a. Then xv1 >

a
2
.

Case 1. g = 2s with s ≥ 2.
As we pass from G to G∗, the distance between vk and a vertex of U1 =(⋃s(k−1)+1
i=k Vi

)
\ {vk} is increased by 1, the distance between vk and a vertex of

U2 =
(⋃(2s−1)(k−1)+1

i=(s+1)(k−1)+1 Vi

)
\ {v(2s−1)(k−1)+1} is decreased by 1, the distance between

v(2s−1)(k−1)+1 and a vertex of U3 =
(⋃(2s−1)(k−1)+1

i=s(k−1)+1 Vi

)
\{v(2s−1)(k−1)+1} is increased

by 1, the distance between v(2s−1)(k−1)+1 and a vertex of U4 =
(⋃(s−1)(k−1)+1

i=k Vi

)
\

{vk} is decreased by 1, the distance between a vertex of V1 and a vertex of U5 =(⋃(2s−1)(k−1)+1
i=k Vi

)
\ {vk, v(2s−1)(k−1)+1} is decreased by 1, the distance between a

vertex of e1 \ {v1, vk} and a vertex of U6 =
(⋃(2s−1)(k−1)+1

i=s(k−1)+2 Vi

)
\ {v(2s−1)(k−1)+1}

is decreased by 1, the distance between a vertex of e2s \ {v1, v(2s−1)(k−1)+1} and a

vertex of U7 =
(⋃s(k−1)

i=k Vi

)
\ {vk} is decreased by 1, and the distance between any

other vertex pair is decreased or remains unchanged. Then

1

2
(ρ(G)− ρ(G∗))

≥ 1

2
x>(D(G)−D(G∗))x

≥ xvk(−σG∗(U1) + σG∗(U2)) + xv(2s−1)(k−1)+1
(−σG∗(U3) + σG∗(U4))

+σG∗(V1)σG∗(U5) + σG∗(e1 \ {v1, vk})σG∗(U6)

+σG∗(e2s \ {v1, v(2s−1)(k−1)+1})σG∗(U7)

= a(−σG∗(U1) + σG∗(U4)) + a(σG∗(U2)− σG∗(U3))

+(t1(k − 1)a+ xv1)σG∗(U5) + (k − 2)aσG∗(U6) + (k − 2)aσG∗(U7).

Note that

−σG∗(U1) + σG∗(U4) = −σG∗

 s(k−1)+1⋃
i=(s−1)(k−1)+2

Vi

 ,
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σG∗(U2)− σG∗(U3) = −σG∗

 (s+1)(k−1)⋃
i=s(k−1)+1

Vi

 ,

and k ≥ 3. Thus

1

2
(ρ(G)− ρ(G∗))

≥ −a

σG∗
 s(k−1)+1⋃

i=(s−1)(k−1)+2

Vi

+ σG∗

 (s+1)(k−1)⋃
i=s(k−1)+1

Vi

 (3.1)

+(2t1a+ xv1)σG∗(U5) + a(σG∗(U6) + σG∗(U7)).

If t1 ≥ 1, then since
⋃(s+1)(k−1)

i=(s−1)(k−1)+2 Vi ⊆ U5, from (3.1), we have

1

2
(ρ(G)− ρ(G∗)) ≥ −a

σG∗
 s(k−1)+1⋃

i=(s−1)(k−1)+2

Vi

+ σG∗

 (s+1)(k−1)⋃
i=s(k−1)+1

Vi


+2aσG∗

 (s+1)(k−1)⋃
i=(s−1)(k−1)+2

Vi


= aσG∗

 (s+1)(k−1)⋃
i=s(k−1)+2

Vi

+ aσG∗

 s(k−1)⋃
i=(s−1)(k−1)+2

Vi


> 0,

and thus ρ(G∗) < ρ(G).
Suppose that t1 = 0. Then ti = 0 and Vi = {vi} for 1 ≤ i ≤ g(k − 1), i.e.,

G = Cg(k−1),k. Since g+
∑g(k−1)

i=1 |E(Hi)| ≥ 5, we have 2s = g ≥ 6, and thus s ≥ 3.
Let ui = v(i−1)(k−1)+1 for 1 ≤ i ≤ g. Note that

es \ {us} =

s(k−1)+1⋃
i=(s−1)(k−1)+2

Vi, es+1 \ {us+2} =

(s+1)(k−1)⋃
i=s(k−1)+1

Vi,

es ∪ es+1 =

(s+1)(k−1)+1⋃
i=(s−1)(k−1)+1

Vi ⊆ U5, es+1 \ {us+1} =

(s+1)(k−1)+1⋃
i=s(k−1)+2

Vi ⊆ U6,

es \ {us+1} =

s(k−1)⋃
i=(s−1)(k−1)+1

Vi ⊆ U7,

and xu1 = xv1 >
a
2
. By (3.1), we have

1

2
(ρ(G)− ρ(G∗))

≥ −a [σG∗(es \ {us}) + σG∗(es+1 \ {us+2})]
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+
a

2
· σG∗(es ∪ es+1) + a (σG∗(es+1 \ {us+1}) + σG∗(es \ {us+1}))

= −a
[
σG∗(es \ {us, us+1}) + σG∗(es+1 \ {us+1, us+2}) + 2xus+1

]
+a
[
σG∗(es \ {us, us+1}) + σG∗(es+1 \ {us+1, us+2}) + xus + xus+2

]
+
a

2
· σG∗(es ∪ es+1)

= a
(
xus + xus+2 − 2xus+1

)
+
a

2
· σG∗(es ∪ es+1)

=
a

2

(
2xus + 2xus+2 − 4xus+1 + σG∗(es ∪ es+1)

)
.

Since {us, us+1, us+2} ⊂ es ∪ es+1, we have

1

2
(ρ(G)− ρ(G∗)) >

a

2

(
2xus + 2xus+2 − 4xus+1 + xus + xus+1 + xus+2

)
=

3a

2

(
xus + xus+2 − xus+1

)
.

Let W = V (G) \ {us, us+1, us+2}. From the eigenequations of G∗ at us, us+1 and
us+2, we have

ρ(G∗)xus = xus+1 + 2xus+2 +
∑
w∈W

dG∗(us, w)xw,

ρ(G∗)xus+1 = xus + xus+2 +
∑
w∈W

dG∗(us+1, w)xw,

ρ(G∗)xus+2 = 2xus + xus+1 +
∑
w∈W

dG∗(us+2, w)xw.

Note that for w ∈ W , dG∗(us, w) + dG∗(us+2, w)− dG∗(us+1, w) ≥ 0. Then

ρ(G∗)
(
xus + xus+2 − xus+1

)
≥ xus + 2xus+1 + xus+2 > 0,

and thus xus + xus+2 − xus+1 > 0. Therefore ρ(G)− ρ(G∗) > 0, i.e., ρ(G∗) < ρ(G).
Case 2. g = 2s+ 1 with s ≥ 2.

As we pass from G to G∗, the distance between vk and a vertex of U1 =(⋃(s+1)(k−1)
i=k Vi

)
\ {vk} is increased by 1, the distance between vk and a vertex of

U2 =
(⋃2s(k−1)+1

i=(s+1)(k−1)+2 Vi

)
\ {v2s(k−1)+1} is decreased by 1, the distance between

v2s(k−1)+1 and a vertex of U3 =
(⋃2s(k−1)+1

i=s(k−1)+2 Vi

)
\{v2s(k−1)+1} is increased by 1, the

distance between v2s(k−1)+1 and a vertex of U4 =
(⋃s(k−1)

i=k Vi

)
\ {vk} is decreased

by 1, the distance between a vertex of V1 and a vertex of U5 =
(⋃2s(k−1)+1

i=k Vi

)
\

{vk, v2s(k−1)+1} is decreased by 1, the distance between a vertex of e1 \{v1, vk} and

a vertex of U6 =
(⋃2s(k−1)+1

i=(s+1)(k−1)+1 Vi

)
\ {v2s(k−1)+1} is decreased by 1, the distance

between a vertex of e2s+1\{v1, v2s(k−1)+1} and a vertex of U7 =
(⋃s(k−1)+1

i=k Vi

)
\{vk}

7



is decreased by 1, and the distance between any other vertex pair is decreased or
remains unchanged. Then

1

2
(ρ(G)− ρ(G∗)) ≥ 1

2
x>(D(G)−D(G∗))x

≥ xvk(−σG∗(U1) + σG∗(U2)) + xv2s(k−1)+1
(−σG∗(U3) + σG∗(U4))

+σG∗(V1)σG∗(U5) + σG∗(e1 \ {v1, vk})σG∗(U6)

+σG∗(e2s+1 \ {v1, v2s(k−1)+1})σG∗(U7)

≥ a(−σG∗(U1) + σG∗(U4)) + a(σG∗(U2)− σG∗(U3))

+(t1(k − 1)a+ xv1)σG∗(U5) + (k − 2)a(σG∗(U6) + σG∗(U7)).

Note that

−σG∗(U1) + σG∗(U4) = −σG∗

 (s+1)(k−1)⋃
i=s(k−1)+1

Vi

 ,

σG∗(U2)− σG∗(U3) = −σG∗

(s+1)(k−1)+1⋃
i=s(k−1)+2

Vi

 ,

and k ≥ 3. Thus

1

2
(ρ(G)− ρ(G∗))

≥ −a

σG∗
 (s+1)(k−1)⋃

i=s(k−1)+1

Vi

+ σG∗

(s+1)(k−1)+1⋃
i=s(k−1)+2

Vi

 (3.2)

+(2t1a+ xv1)σG∗(U5) + a(σG∗(U6) + σG∗(U7)).

If t1 ≥ 1, then since
⋃(s+1)(k−1)+1

i=s(k−1)+1 Vi ⊆ U5, we have

1

2
(ρ(G)− ρ(G∗)) ≥ −a

σG∗
 (s+1)(k−1)⋃

i=s(k−1)+1

Vi

+ σG∗

(s+1)(k−1)+1⋃
i=s(k−1)+2

Vi


+2aσG∗

(s+1)(k−1)+1⋃
i=s(k−1)+1

Vi


= aσG∗(V(s+1)(k−1)+1) + aσG∗(Vs(k−1)+1)

> 0,

and thus ρ(G)− ρ(G∗) > 0. Therefore ρ(G∗) < ρ(G).
Suppose that t1 = 0. Then ti = 0 and Vi = {vi} for 1 ≤ i ≤ g(k − 1), i.e.,

G = Cg(k−1),k.
Let ui = v(i−1)(k−1)+1 for 1 ≤ i ≤ g. Note that

es+1 \ {us+1} =

(s+1)(k−1)+1⋃
i=s(k−1)+2

Vi, es+1 \ {us+2} =

(s+1)(k−1)⋃
i=s(k−1)+1

Vi,
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(es \ {us}) ∪ es+1 ∪ (es+2 \ {us+3}) =

(s+2)(k−1)⋃
i=(s−1)(k−1)+2

Vi ⊆ U5,

es+2 \ {us+3} =

(s+2)(k−1)⋃
i=(s+1)(k−1)+1

Vi ⊆ U6, es \ {us} =

s(k−1)+1⋃
i=(s−1)(k−1)+2

Vi ⊆ U7.

By (3.2), we have

1

2
(ρ(G)− ρ(G∗)) ≥ −a [σG∗(es+1 \ {us+2}) + σG∗(es+1 \ {us+1})]

+
a

2
· σG∗((es \ {us}) ∪ es+1 ∪ (es+2 \ {us+3}))

+a [σG∗(es \ {us}) + σG∗(es+2 \ {us+3})]
= −a

[
2σG∗(es+1 \ {us+1, us+2}) + xus+1 + xus+2

]
+
a

2

[
σG∗(es \ {us, us+1}) + σG∗(es+1 \ {us+1, us+2})

+σG∗(es+2 \ {us+2, us+3}) + xus+1 + xus+2

]
+a
[
σG∗(es \ {us, us+1}) + σG∗(es+2 \ {us+2, us+3})

+xus+1 + xus+2

]
=

3a

2
[σG∗(es \ {us, us+1}) + σG∗(es+2 \ {us+2, us+3})

−σG∗(es+1 \ {us+1, us+2})] +
a

2

(
xus+1 + xus+2

)
.

Let wi ∈ ei \ {ui, ui+1} for s ≤ i ≤ s+ 2, and W = V (G) \ {ws, ws+1, ws+2}. From
the eigenequations of G∗ at ws, ws+1, and ws+2, we have

ρ(G∗)xws = 2xws+1 + 3xws+2 +
∑
w∈W

dG∗(ws, w)xw,

ρ(G∗)xws+1 = 2xws + 2xws+2 +
∑
w∈W

dG∗(ws+1, w)xw,

ρ(G∗)xws+2 = 3xws + 2xws+1 +
∑
w∈W

dG∗(ws+2, w)xw.

Note that for w ∈ W , dG∗(ws, w) + dG∗(ws+2, w)− dG∗(ws+1, w) ≥ 0. We have

ρ(G∗)
(
xws + xws+2 − xws+1

)
≥ xws + xws+2 + 4xws+1 > 0,

and then xws + xws+2 − xws+1 > 0. By Lemma 2.1, the entry of x corresponding to
each vertex of ei \ {ui, ui+1} for s ≤ i ≤ s+ 2 is the same. Thus

σG∗(es \ {us, us+1}) + σG∗(es+2 \ {us+2, us+3})− σG∗(es+1 \ {us+1, us+2})
= (k − 2)(xws + xws+2 − xws+1)

> 0.

Therefore ρ(G)− ρ(G∗) > 0, i.e., ρ(G∗) < ρ(G).
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Let Ck
g (t1, . . . , tg) = Ck

g(k−1)(H1, . . . , Hg(k−1)), where Hj = Sti(k−1)+1,k with cen-

ter vj, and ti ≥ 0 for j = (i − 1)(k − 1) + 1 with i = 1, . . . , g, and Hj = S1,k

otherwise.
By Theorem 3.1, we have the following corollary.

Corollary 3.1. For k ≥ 3, g ≥ 4, and ti ≥ 0 with 1 ≤ i ≤ g and g +
∑g

i=1 ti ≥ 5,
if t1 = max1≤i≤g ti, then

ρ(Ck
g−2(t1 + t2 + tg + 2, t3, . . . , tg−1)) < ρ(Ck

g (t1, . . . , tg)).

Next we give a type of graft transformation on Ck
g(k−1)(H1, . . . , Hg(k−1)) that

increases the distance spectral radius.

Theorem 3.2. For k ≥ 3 and g ≥ 3, let G = Ck
g(k−1)(H1, . . . , Hg(k−1)), and

let G∗1 be the k-uniform hypergraph obtained from G by moving e1 from vk to
v(g−1)(k−1)+1, and G

∗
2 be the k-uniform hypergraph obtained from G by moving eg

from v(g−1)(k−1)+1 to vk. Then ρ(G∗1) > ρ(G) or ρ(G∗2) > ρ(G).

Proof. For 1 ≤ i ≤ g(k − 1), let Vi = V (Hi). Let A1 =
⋃ g(k−1)

2
i=k Vi and A2 =⋃(g−1)(k−1)+1

i=
g(k−1)

2
+2

Vi if g is even, and A1 =
⋃ (g−1)(k−1)

2
+1

i=k Vi and A2 =
⋃(g−1)(k−1)+1

i=
(g+1)(k−1)

2
+1
Vi if

g is odd. Let x = x(G). Suppose that σG(A1) ≥ σG(A2). As we pass from G to G∗1,
the distance between a vertex of

⋃k−1
i=2 Vi and a vertex of A1 is increased by at least

1, the distance between a vertex of
⋃k−1

i=2 Vi and a vertex of A2 is decreased by 1,
and the distance between any other vertex pair is increased or remains unchanged.
Then

1

2
(ρ(G∗1)− ρ(G)) ≥ 1

2
x>(D(G∗1)−D(G))x

≥ σG

(
k−1⋃
i=2

Vi

)
(σG(A1)− σG(A2))

≥ 0.

Thus ρ(G∗1) ≥ ρ(G). If ρ(G) = ρ(G∗1), then ρ(G∗1) = x>D(G∗1)x, and thus x is also
the distance Perron vector of G∗1, implying that

ρ(G∗1)xv1 − ρ(G)xv1 = (D(G∗1)x)v1 − (D(G)x)v1

=
∑

v∈V (G)

(dG∗1(v1, v)− dG(v1, v))xv

≥
∑
v∈Vk

xv

> 0,

a contradiction. Thus ρ(G∗1) > ρ(G).
Suppose that σG(A1) < σG(A2). As we pass from G to G∗2, the distance between

a vertex of
⋃g(k−1)

i=(g−1)(k−1)+2 Vi and a vertex of A2 is increased by at least 1, the

distance between a vertex of
⋃g(k−1)

i=(g−1)(k−1)+2 Vi and a vertex of A1 is decreased by 1,

10



and the distance between any other vertex pair is increased or remains unchanged.
Then

1

2
(ρ(G∗2)− ρ(G)) ≥ 1

2
x>(D(G∗2)−D(G))x

≥ σG

 g(k−1)⋃
i=(g−1)(k−1)+2

Vi

 (σG(A2)− σG(A1))

> 0.

Thus ρ(G∗2) > ρ(G).

The results in this section will be used to study the distance spectral radius of
uniform unicyclic hypergraphs in the next sections.

4 Minimum distance spectral radius of uniform

unicyclic hypergraphs

In this section, we determine the unique hypergraphs with minimum and second
minimum distance spectral radius respectively in the set of k-uniform unicyclic
hypergraphs of fixed size.

Lemma 4.1. For k ≥ 3 and t ≥ 0, ρ(Ck
2 (t, 0)) is the largest root of f(ρ) = 0,

where

f(ρ) = ρ4 + ρ3(−2tk − 2k + 2t+ 7) + ρ2(−3k2 − 2tk2 − tk + 3k + 3t+ 7)

+ρ(−4k2 − tk2 − 4tk + 6k + 5t+ 1)− k2 + k − 2tk + 2t.

Proof. Let G = Ck
2 (t, 0). Let (u, e1, v, e2, u) be the unique cycle of G, where

dG(v) = 2 + t. Let x = x(G). By Lemma 2.1, the entry of x corresponding to each
vertex of (e1 ∪ e2) \ {u, v} is the same, which we denote by x1, and the entry of x
corresponding to each vertex of V (G) \ (e1 ∪ e2) is the same, which we denote by
x2. Let w1 ∈ (e1 ∪ e2) \ {u, v} and w2 ∈ V (G) \ (e1 ∪ e2). By the eigenequations
of G at u, v, w1, and w2, we have

ρ(G)xu = xv + (2k − 4)x1 + (2k − 2)tx2,

ρ(G)xv = xu + (2k − 4)x1 + (k − 1)tx2,

ρ(G)x1 = xu + xv + (3k − 7)x1 + (2k − 2)tx2,

ρ(G)x2 = 2xu + xv + (4k − 8)x1 + ((2k − 2)(t− 1) + k − 2)x2.

We view these equations as a homogeneous linear system in the four variables
xu, xv, x1 and x2. Since it has a nontrivial solution, we have

det


−ρ 1 2k − 4 (2k − 2)t
1 −ρ 2k − 4 (k − 1)t
1 1 3k − 7− ρ (2k − 2)t
2 1 4k − 8 (2k − 2)(t− 1) + k − 2− ρ

 = 0,
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where ρ = ρ(G). By direct calculation, this determinant is equal to f(ρ(G)). Now
the result follows easily.

Lemma 4.2. For k ≥ 3, we have

ρ(C4k−4,k) > ρ(Ck
2 (2, 0)).

Proof. Let G = C4k−4,k with edges ei = {v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k} for 1 ≤ i ≤
4, where v4k−3 = v1. Let ρ∗ = ρ(G) and x = x(G). By Lemma 2.1, the entry of x
corresponding to each vertex of {v1, vk, v2k−1, v3k−2} is the same, which we denote
by α, and the entry of x corresponding to each vertex of V (G)\{v1, vk, v2k−1, v3k−2}
is the same, which we denote by β. Then from the eigenequations of G at v1 and
v2, we have

ρ(G)α = 4α + 6(k − 2)β,

ρ(G)β = 6α + (8k − 17)β.

Thus ρ∗ is the largest root of ρ2−8kρ+13ρ−4k+4 = 0, i.e., ρ∗ = 8k−13+
√
64k2−192k+153

2
.

Let G′ = Ck
2 (2, 0). By Lemma 4.1, ρ(G′) is the largest root of f(ρ) = 0, where

f(ρ) = ρ4 + ρ3(11− 6k) + ρ2(13 + k − 7k2) + ρ(11− 2k − 6k2) + 4− 3k − k2.

Let ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4 be the roots of f(ρ) = 0, where ρ1 = ρ(G′). Then
ρ1 + ρ2 + ρ3 + ρ4 = 6k − 11. Note that

f(−2k + 2) = (k − 1)(k − 2)(36k2 − 116k + 91) > 0,

f(0) = −(k + 4)(k − 1) < 0,

f(ρ∗) = ρ∗(72k3 − 411k2 + 743k − 436) + 36k3 − 185k2 + 285k − 136 > 0.

Then ρ∗ > ρ1, or ρ∗ < ρ2. Suppose that ρ∗ < ρ2. Then

ρ1 + ρ2 + ρ3 + ρ4 ≥ 2ρ∗ + 0 + (−2k + 2)

= 6k − 11 +
√

64k2 − 192k + 153

> 6k − 11,

a contradiction. Thus ρ(G) = ρ∗ > ρ1 = ρ(G′), as desired.

Lemma 4.3. For k ≥ 3 and t1 ≥ t2 ≥ t3 ≥ 0, we have
(i) if t2 ≥ 1, then ρ(Ck

3 (t1, t2, t3)) > ρ(Ck
3 (t1 + t2 + t3, 0, 0));

(ii) if t1 ≥ 1, then ρ(Ck
3 (t1, 0, 0)) > ρ(Ck

2 (t1 + 1, 0)).

Proof. Let G = Ck
3 (t1, t2, t3). Let C be the unique cycle of G with edges ei =

{v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k} for i = 1, 2, 3 and v3k−2 = v1. Let Ti = V (Sti(k−1)+1,k)\
{v(i−1)(k−1)+1} for 1 ≤ i ≤ 3.

First we prove (i). Let G′ be the k-uniform hypergraph obtained from G by
moving each edge of EG(vk) \ {e1, e2} from vk to v1, and moving each edge of
EG(v2k−1)\{e2, e3} from v2k−1 to v1. It is easily seen that G′ ∼= Ck

3 (t1+t2+t3, 0, 0).
Let x = x(G′). By Lemma 2.1, the entry of x corresponding to each vertex of
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(e1 \ {v1, vk}) ∪ (e3 \ {v1, v2k−1}) is the same, which we denote by α, the entry of
x corresponding to each vertex of e2 \ {vk, v2k−1} is the same, which we denote by
β, the entry of x corresponding to each vertex of T1 ∪ T2 ∪ T3 is the same, which
we denote by γ, and xvk = xv2k−1

.
As we pass from G to G′, the distance between a vertex of T2 and a vertex of

T1 ∪ (e3 \ {v2k−1}) is decreased by 1, the distance between a vertex of T2 and a
vertex of e2 \ {v2k−1} is increased by 1, the distance between a vertex of T3 and a
vertex of T1∪ (e1 \{vk}) is decreased by 1, the distance between a vertex of T3 and
a vertex of e2 \ {vk} is increased by 1, and the distance between any other vertex
pair is decreased or remains unchanged. Then

1

2
(ρ(G)− ρ(G′))

≥ 1

2
x>(D(G)−D(G′))x

≥ σG′(T2)[σG′(T1) + xv1 + σG′(e3 \ {v1, v2k−1})− σG′(e2 \ {v2k−1})]
+σG′(T3)[σG′(T1) + xv1 + σG′(e1 \ {v1, vk})− σG′(e2 \ {vk})]

= σG′(T2)[σG′(T1) + xv1 + σG′(e3 \ {v1, v2k−1})− σG′(e2 \ {vk, v2k−1})− xvk ]

+σG′(T3)[σG′(T1) + xv1 + σG′(e1 \ {v1, vk})− σG′(e2 \ {vk, v2k−1})− xv2k−1
]

= t2(k − 1)γ[t1(k − 1)γ + xv1 + (k − 2)α− (k − 2)β − xvk ]

+t3(k − 1)γ[t1(k − 1)γ + xv1 + (k − 2)α− (k − 2)β − xvk ]

= (t2 + t3)(k − 1)γ[t1(k − 1)γ + xv1 + (k − 2)α− (k − 2)β − xvk ]

≥ (t2 + t3)(k − 1)γ[(k − 1)γ + xv1 + (k − 2)α− (k − 2)β − xvk ],

and thus

1

2
(ρ(G)−ρ(G′)) ≥ (t2+t3)(k−1)γ[(k−1)γ+xv1 +(k−2)α−(k−2)β−xvk ]. (4.1)

Let u ∈ (e1\{v1, vk})∪(e3\{v1, v2k−1}), v ∈ e2\{vk, v2k−1} and w ∈ T1∪T2∪T3.
From the eigenequations of G′ at v1, vk, u, v and w, we have

ρ(G′)xv1 = 2xvk + 2(k − 2)α + 2(k − 2)β + (t1 + t2 + t3)(k − 1)γ,

ρ(G′)xvk = xv1 + xvk + 3(k − 2)α + (k − 2)β + 2(t1 + t2 + t3)(k − 1)γ,

ρ(G′)α = xv1 + 3xvk + (3k − 7)α + 2(k − 2)β + 2(t1 + t2 + t3)(k − 1)γ,

ρ(G′)β = 2xv1 + 2xvk + 4(k − 2)α + (k − 3)β + 3(t1 + t2 + t3)(k − 1)γ,

ρ(G′)γ = xv1 + 4xvk + 4(k − 2)α + 3(k − 2)β

+(2(t1 + t2 + t3 − 1)(k − 1) + (k − 2))γ.

Then

ρ(G′)(γ(k − 1) + xv1 + α(k − 2)− β(k − 2)− xvk)

= 5xvk(k − 1) + α(k − 2)(3k − 4) + β(k − 2)(4k − 3)

+γ(k − 1)((t1 + t2 + t3)(k − 1)− k)
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≥ 5xvk(k − 1) + α(k − 2)(3k − 4) + β(k − 2)(4k − 3) + γ(k − 1)(k − 2)

> 0,

and thus (k − 1)γ + xv1 + (k − 2)α − (k − 2)β − xvk > 0. Therefore by (4.1),
ρ(G) > ρ(G′).

Now we prove (ii). Let G′′ be the k-uniform hypergraph obtained from G by
moving e2 from vk to v1. It is easily seen that G′′ ∼= Ck

2 (t1 + 1, 0). Let x = x(G′′).
By Lemma 2.1, the entry of x corresponding to each vertex of T1 ∪ (e1 \ {v1}) is
the same, which we denote by α, the entry of x corresponding to each vertex of
(e2 ∪ e3) \ {v1, vk, v2k−1} is the same, which we denote by β.

As we pass from G to G′′, the distance between vk and a vertex of e2 \ {vk} is
increased by 1, the distance between a vertex of T1 and a vertex of e2\{vk, v2k−1} is
decreased by 1, and the distance between any other vertex pair remains unchanged.
Note that t1 ≥ 3 and k ≥ 3. Then

1

2
(ρ(G)− ρ(G′′)) ≥ 1

2
x>(D(G)−D(G′′))x

= −xvkσG′′(e2 \ {vk}) + σG′′(T1)σG′′(e2 \ {vk, v2k−1})
= −α(xv2k−1

+ (k − 2)β) + t1(k − 1)α(k − 2)β (4.2)

= −αxv2k−1
+ (k − 2)(t1(k − 1)− 1)αβ

≥ α(β − xv2k−1
).

Let u ∈ (e2 ∪ e3) \ {v1, vk, v2k−1}. From the eigenequations of G′′ at v2k−1 and u,
we have

ρ(G′′)xv2k−1
= 2(k − 2)β + xv1 + 2(t1 + 1)(k − 1)α,

ρ(G′′)β = xv2k−1
+ (3k − 7)β + xv1 + 2(t1 + 1)(k − 1)α,

and thus ρ(G′′)(β − xv2k−1
) = xv2k−1

+ (k − 3)β > 0, implying that β − xv2k−1
> 0.

Therefore by (4.2), ρ(G) > ρ(G′′).

Lemma 4.4. For k ≥ 3, 1 ≤ b ≤
⌊
n−2k+2
2(k−1)

⌋
and a = n−2k+2

k−1 − b, we have

ρ(Ck
2 (a, b)) > ρ(Ck

2 (a+ 1, b− 1)).

Proof. Let G = Ck
2 (a, b). Let C be the unique cycle of G with edges ei =

{v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k}, where 1 ≤ i ≤ 2 and v2k−1 = v1. Let x = x(G).
By Lemma 2.1, the entry of x corresponding to each vertex of ∪e∈EG(v1)e\ (e1∪ e2)
is the same, which we denote by α, the entry of x corresponding to each vertex
of ∪e∈EG(vk)e \ (e1 ∪ e2) is the same, which we denote by β, and the entry of x
corresponding to each vertex of (e1 ∪ e2) \ {v1, vk} is the same, which we denote
by γ. Let u1 ∈ ∪e∈EG(v1)e \ (e1 ∪ e2) and u2 ∈ ∪e∈EG(vk)e \ (e1 ∪ e2). From the
eigenequations of G at u1, u2, v2, v1 and vk, we have

ρ(G)α = (2(k − 1)a− k)α + 3(k − 1)bβ + 4(k − 2)γ + xv1 + 2xvk ,

ρ(G)β = 3(k − 1)aα + (2(k − 1)b− k)β + 4(k − 2)γ + 2xv1 + xvk ,
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ρ(G)γ = 2(k − 1)aα + 2(k − 1)bβ + (3k − 7)γ + xv1 + xvk ,

ρ(G)xv1 = (k − 1)aα + 2(k − 1)bβ + 2(k − 2)γ + xvk ,

ρ(G)xvk = 2(k − 1)aα + (k − 1)bβ + 2(k − 2)γ + xv1 .

Thus ρ(G) is the largest root of the equation gb(t) = 0, where

gb(t) = t5 − t4(2ak + 2bk + k − 2a− 2b− 7)

−t3(5k2 + 5abk2 + 4ak2 + 4bk2 − 10k

−10abk − ak − bk − 7 + 5ab− 3b− 3a)

−t2(3k3 + abk3 + 2ak3 + 2bk3 + k2 + 5abk2 + 2ak2 + 2bk2

−13k − 13abk + ak + bk − 1 + 7ab− 5b− 5a)

−t(4k3 + ak3 + bk3 − 5k2 + 4abk2 + 4ak2 + 4bk2

−2k − 8abk − 3ak − 3bk + 4ab− 2b− 2a)

−k(k − 1)(k + 2b+ 2a).

For 1 ≤ b ≤
⌊
n−2k+2
2(k−1)

⌋
, it is easily seen that

gb(t)− gb−1(t) = −(a+ 1− b)(k − 1)2t[t2 + (k + 7)t+ 4].

Let ρb = ρ(Ck
2 (a, b)). Then

gb(ρb−1) = gb(ρb−1)− gb−1(ρb−1)
= −(a+ 1− b)(k − 1)2ρb−1[ρ

2
b−1 + (k + 7)ρb−1 + 4]

< 0,

from which, together with the fact that gb(t) > 0 for t > ρb, we have ρb > ρb−1.

Theorem 4.1. For k ≥ 3, let G be a k-uniform unicyclic hypergraph of size
m ≥ 2 with minimum distance spectral radius. Then G ∼= C3k−3,k if m = 3, and
G ∼= Ck

2 (m− 2, 0) otherwise.

Proof. It is trivial if m = 2. Suppose that m ≥ 3. Let g be the length of the unique
cycle ofG. Let C be the unique cycle ofG with edges ei = {v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k},
where i = 1, . . . , g and vg(k−1)+1 = v1. For 1 ≤ i ≤ g(k − 1), let Hi be the compo-
nent of G− E(C) containing vi.
Claim 1. For each i and j with 1 ≤ i ≤ g and 2 ≤ j ≤ k − 1,

V (H(i−1)(k−1)+j) = {v(i−1)(k−1)+j}.

Suppose that there exist some i and some j with 1 ≤ i ≤ g and 2 ≤ j ≤ k − 1
such that V (H(i−1)(k−1)+j) 6= {v(i−1)(k−1)+j}, i.e., V (H(i−1)(k−1)+j)\{v(i−1)(k−1)+j} 6=
∅. Then H(i−1)(k−1)+j is a k-uniform hypertree with at least one edge.

Let G′ be the k-uniform hypergraph obtained from G by moving each edge
of EG(v(i−1)(k−1)+j) \ {ei} from v(i−1)(k−1)+j to v(i−1)(k−1)+k. Obviously, G′ is a
k-uniform unicyclic hypergraph of size m.
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As we pass from G to G′, the distance between a vertex of V (H(i−1)(k−1)+j) \
{v(i−1)(k−1)+j} and v(i−1)(k−1)+j is increased by 1, the distance between a vertex of
V (H(i−1)(k−1)+j)\{v(i−1)(k−1)+j} and a vertex of ei+1 \{vi(k−1)+k} is decreased by 1,
and the distance between any other vertex pair is decreased or remains unchanged.
Let x = x(G′) and U = V (H(i−1)(k−1)+j) \ {v(i−1)(k−1)+j}. Then

1

2
(ρ(G)− ρ(G′)) ≥ 1

2
x>(D(G)−D(G′))x

≥ σG′(U)
[
−xv(i−1)(k−1)+j

+ σG′
(
ei+1 \ {vi(k−1)+k}

)]
(4.3)

≥ σG′(U)
(
−xv(i−1)(k−1)+j

+ xvi(k−1)+1
+ xvi(k−1)+2

)
.

Let W = V (G) \ {v(i−1)(k−1)+j, vi(k−1)+1, vi(k−1)+2}. From the eigenequations of G′

at v(i−1)(k−1)+j, vi(k−1)+1 and vi(k−1)+2, we have

ρ(G′)xv(i−1)(k−1)+j
= xvi(k−1)+1

+ 2xvi(k−1)+2
+
∑
w∈W

dG′(v(i−1)(k−1)+j, w)xw,

ρ(G′)xvi(k−1)+1
= xv(i−1)(k−1)+j

+ xvi(k−1)+2
+
∑
w∈W

dG′(vi(k−1)+1, w)xw,

ρ(G′)xvi(k−1)+2
= xvi(k−1)+1

+ 2xv(i−1)(k−1)+j
+
∑
w∈W

dG′(vi(k−1)+2, w)xw.

Note that for w ∈ W ,

dG′
(
vi(k−1)+1, w

)
+ dG′

(
vi(k−1)+2, w

)
− dG′

(
v(i−1)(k−1)+j, w

)
≥ 0.

Then

(ρ(G′) + 1)
(
−xv(i−1)(k−1)+j

+ xvi(k−1)+1
+ xvi(k−1)+2

)
≥ 2xv(i−1)(k−1)+j

+ xvi(k−1)+1
> 0,

implying that−xv(i−1)(k−1)+j
+xvi(k−1)+1

+xvi(k−1)+2
> 0. Thus by (4.3), ρ(G) > ρ(G′),

a contradiction. Therefore Claim 1 follows.
If m = 3, then by Claim 1, G ∼= C3k−3,k or Ck

2 (1, 0), and by Theorem 3.2, we
have ρ(C3k−3,k) < ρ(Ck

2 (1, 0)), implying that G ∼= C3k−3,k.
Suppose that m ≥ 4.

Claim 2. For each i with 1 ≤ i ≤ g, H(i−1)(k−1)+1 is a k-uniform hyperstar with
center v(i−1)(k−1)+1.

Suppose that some H(i−1)(k−1)+1, say H1 is not a k-uniform hyperstar with
center v1. Then |E(H1)| ≥ 2. We choose an edge e ∈ EG(v1)\{e1, eg} such that e\
{v1} contains at least one vertex of degree at least 2 in G. Let e = {w1, w2, . . . , wk},
where v1 = wk. For 1 ≤ j ≤ k − 1, let Wj be the component of G − e containing
wj. Then G = He,0(W1, . . . ,Wk−1), where H = G[V (G) \ ∪k−1j=1(V (Wj) \ {wj})].
Note that there is some j with 1 ≤ j ≤ k − 1 such that |E(Wj)| ≥ 1. Let
G′ = He,k−1(W1, . . . ,Wk−1). It is easily seen that G′ is a k-uniform unicyclic
hypergraph of size m. By Lemma 2.2, we have ρ(G) > ρ(G′), a contradiction.
This proves Claim 2.
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If m = 4, then by Claims 1 and 2, we have G ∼= C4k−4,k, Ck
3 (1, 0, 0), Ck

2 (1, 1) or
Ck

2 (2, 0), and then by Lemmas 4.2, 4.3 (ii), and 4.4, we have

min{ρ(C4k−4,k), ρ(Ck
3 (1, 0, 0)), ρ(Ck

2 (1, 1))} > ρ(Ck
2 (2, 0)),

implying that G ∼= Ck
2 (2, 0).

Suppose that m ≥ 5. For 1 ≤ i ≤ g, let ti = |E(H(i−1)(k−1)+1)|. By Claims 1
and 2, G ∼= Ck

g (t1, . . . , tg), where
∑g

i=1 ti = m − g. Suppose without loss of
generality that t1 = max1≤i≤g ti.

Suppose that g is odd. Suppose that g ≥ 5. Let G′ = Ck
g−2(t1 + t2 + tg +

2, t3, . . . , tg−1). Obviously, G′′ is a k-uniform unicyclic hypergraph of size m. By
Corollary 3.1, we have ρ(G) > ρ(G′′), a contradiction. Thus g = 3. Therefore
we have G ∼= Ck

3 (t1, t2, t3) with t1 + t2 + t3 = m − 3. We may assume that
t1 ≥ t2 ≥ t3. By Lemma 4.3 (i), we have t1 = m − 3 and t2 = t3 = 0, i.e.,
G ∼= Ck

3 (m− 3, 0, 0). Obviously, Ck
2 (m− 2, 0) is a k-uniform unicyclic hypergraph

of size m. By Lemma 4.3 (ii), ρ(G) > ρ(Ck
2 (m− 2, 0)), a contradiction. Thus g is

even.
Suppose that g ≥ 4. Let G∗ = Ck

g−2(t1 + t2 + tg + 2, t3, . . . , tg−1). Obviously,
G∗ is a k-uniform unicyclic hypergraph of size m. By Corollary 3.1, we have
ρ(G) > ρ(G∗), a contradiction. Then g = 2, and thus G ∼= Ck

2 (t1, t2) with t1 ≥ t2
and t1+t2 = m−2. By Lemma 4.4, t1 = m−2 and t2 = 0, i.e., G = Ck

2 (m−2, 0).

Lemma 4.5. For k ≥ 3 and t1 = max1≤i≤4 ti ≥ 0, we have ρ(Ck
4 (t1, t2, t3, t4)) <

ρ(Ck
3 (t1 + t2 + 1, t3, t4)) if t1 = 0 and k = 3, and ρ(Ck

4 (t1, t2, t3, t4)) > ρ(Ck
3 (t1 +

t2 + 1, t3, t4)) otherwise.

Proof. Let G = Ck
4 (t1, t2, t3, t4). Let C be the unique cycle of G with edges ei =

{v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k}, where i = 1, . . . , 4, and v4k−3 = v1. For 1 ≤
i ≤ 4k − 4, let Hi be the component of G − E(C) containing vi. Let G′ be the
hypergraph obtained from G by moving each edge of EG(vk) \ {e1} from vk to v1.
Then G′ ∼= Ck

3 (t1 + t2 + 1, t3, t4). Let x = x(G′). By Lemma 2.1, the entry of x
corresponding to each vertex of (e1∪V (H1))\{v1} is the same, which we denote by
α1, the entry of x corresponding to each vertex of ei \ {v(i−1)(k−1)+1, v(i−1)(k−1)+k}
for i = 2, 3, 4 is the same, which we denote by αi.

Suppose that t1 = 0. Then G ∼= C4k−4,k. By the proof of Lemma 4.2, we have

ρ∗ = ρ(G) = 8k−13+
√
64k2−192k+153

2
. By Lemma 2.1, α2 = α4 and xv2k−1

= xv3k−2
.

Then from the eigenequations of G′ at v2, vk+1, v2k, v1 and v2k−1, we have

ρ(G′)α1 = (k − 2)α1 + (4k − 8)α2 + (3k − 6)α3 + xv1 + 4xv2k−1
,

ρ(G′)α2 = (2k − 2)α1 + (3k − 7)α2 + (2k − 4)α3 + xv1 + 3xv2k−1
,

ρ(G′)α3 = (3k − 3)α1 + (4k − 8)α2 + (k − 3)α3 + 2xv1 + 2xv2k−1
,

ρ(G′)xv1 = (k − 1)α1 + (2k − 4)α2 + (2k − 4)α3 + 2xv2k−1
,

ρ(G′)xv2k−1
= (2k − 2)α1 + (3k − 6)α2 + (k − 2)α3 + xv1 + xv2k−1

.

Thus ρ(G′) is the largest root of f(ρ) = 0, where

f(ρ) = ρ5 − ρ4(5k − 11)− ρ3(18k2 − 28k − 4)− ρ2(8k3 + 10k2 − 39k + 4)
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−ρ(9k3 − 4k2 − 14k − 3)− 9k2 + 16k − 3.

If k = 3, then f(ρ∗) = −1539 − 125
√

153 < 0, which together with the fact
that f(ρ) > 0 for ρ > ρ(G′), implying that ρ∗ < ρ(G′).

Suppose that k ≥ 4. Let ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4 ≥ ρ5 be the roots of f(ρ) = 0,
where ρ1 = ρ(G′). Note that

f(−k) = (4k3 − 10k2 + 7k − 3)(k − 1)2 > 0,

f(0) = −(9k2 − 16k + 3) < 0,

f(ρ∗) = ρ∗(320k4 − 2585k3 + 7476k2 − 9300k + 4241)

+160k4 − 1200k3 + 3135k2 − 3424k + 1333 > 0.

Then ρ∗ > ρ1 or ρ∗ < ρ2. Suppose that ρ∗ < ρ2. Note that 0 < ρ3 < ρ∗,
−k < ρ4 < 0 and 5k − 11 = ρ1 + ρ2 + ρ3 + ρ4 + ρ5. Then

ρ5 < 5k − 11− 2ρ∗ − 0− (−k) = −2k + 2−
√

64k2 − 192k + 153 < −(8k − 10),

However, since the maximum row sum of D(G′) is 8k − 10 and ρ(G′) is bounded
above by the maximum row sum of D(G′) (see [13, p. 24, Theorem 1.1]), we have
|ρ5| ≤ ρ(G′) ≤ 8k − 10, a contradiction. Thus ρ∗ > ρ1 = ρ(G′), as desired.

Now suppose that t1 ≥ 1. As we pass from G to G′, the distance between vk
and a vertex of (V (Hk) \ {vk})∪ V (H2k−1)∪ (e3 \ {v2k−1, v3k−2}) is increased by 1,
the distance between a vertex of V (H1) and a vertex of (V (Hk)\{vk})∪V (H2k−1)∪
(e2 \ {vk, v2k−1}) is decreased by 1, and the distance between any other vertex pair
is decreased or remains unchanged. Note that |V (H1)| ≥ k ≥ 3. Thus

1

2
(ρ(G)− ρ(G′))

≥ 1

2
x>(D(G)−D(G′))x

≥ −xvk [σG′(V (Hk) \ {vk}) + σG′(V (H2k−1)) + σG′(e3 \ {v2k−1, v3k−2})]
+σG′(V (H1))[σG′(V (Hk) \ {vk}) + σG′(V (H2k−1) + σG′(e2 \ {vk, v2k−1})]

≥ −α1[σG′(V (Hk) \ {vk}) + σG′(V (H2k−1)) + (k − 2)α3]

+(2α1 + xv1)[σG′(V (Hk) \ {vk}) + σG′(V (H2k−1)) + (k − 2)α2]

> (k − 2)α1(2α2 − α3).

Let W = V (G) \ {vk+1, v2k}. From the eigenequations of G′ at vk+1 and v2k, we
have

ρ(G′)α2 = 2α3 +
∑
w∈W

dG′(vk+1, w)xw,

ρ(G′)α3 = 2α2 +
∑
w∈W

dG′(v2k, w)xw.

Note that for w ∈ W , 2dG′(vk+1, w)−dG′(v2k, w) ≥ 0. Then (ρ(G′)+1)(2α2−α3) ≥
3α3 > 0, implying that 2α2 − α3 > 0. Thus ρ(G) > ρ(G′).

18



For k ≥ 3, let F k
2 (t) = Ck

2k−2(H1, . . . , H2k−2) when |V (H1)| = |V (Hi)| = 1 for
3 ≤ i ≤ 2k − 2 and H2 is a hyperstar St(k−1)+1,k with center v2. In particular,
F k
2 (0) = C2k−2,k.

For k ≥ 3, let Hk
2 = Ck

2k−2(H1, . . . , H2k−2) when |V (Hi)| = 1 for 2 ≤ i ≤ 2k− 2
and H1 is a k-uniform pendant path of length 2 at v1.

Lemma 4.6. For k ≥ 3 and t ≥ 1, we have
(i) if t ≥ 1, then ρ(Ck

3 (t, 0, 0)) < ρ(F k
2 (t+ 1)),

(ii) if t = 1, then ρ(Ck
3 (t, 0, 0)) < min{ρ(Ck

2 (1, 1)), ρ(Hk
2 )}.

Proof. Let G = Ck
3 (t, 0, 0). Let C be the unique cycle of G with edges ei =

{v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k}, where i = 1, 2, 3, and v3k−2 = v1. Let H1 be the
component of G−E(C) containing v1. Let x = x(G). By Lemma 2.1, the entry of
x corresponding to each vertex of (e1 ∪ e3) \ {v1, vk, v2k−1} is the same, which we
denote by α, the entry of x corresponding to each vertex of e2 \ {vk, v2k−1} is the
same, which we denote by β, and xvk = xv2k−1

.
First we prove (i). Let G′ be the k-uniform hypergraph obtained from G by

moving e2 from vk to v3k−3. It is easily seen that G′ ∼= F k
2 (t+ 1). As we pass from

G to G′, the distance between v3k−3 and a vertex of e2 \ {vk, v2k−1} is decreased
by 1, the distance between a vertex of e2 \ {vk, v2k−1} and a vertex of e1 \ {v1, vk}
is increased by 1, the distance between vk and v2k−1 is increased by 1, and the
distance between any other vertex pair is increased or remains unchanged. Then

1

2
(ρ(G′)− ρ(G)) ≥ 1

2
x>(D(G′)−D(G))x

≥ −xv3k−3
σG (e2 \ {vk, v2k−1})

+σG (e2 \ {vk, v2k−1})σG(e1 \ {v1, vk}) + xvkxv2k−1

= −(k − 2)αβ + (k − 2)2αβ + xvkxv2k−1

= (k − 2)(k − 3)αβ + xvkxv2k−1

> 0.

Thus ρ(G′) > ρ(G).
Now we prove (ii). Let E(H1) = {e4}, where e1 ∩ e4 = {v1}. Let G∗ be the

hypergraph obtained from G by moving e1 from vk to v2k−1. It is easily seen
that G∗ ∼= Ck

2 (1, 1). As we pass from G to G∗, the distance between v2k−1 and a
vertex of e1 \ {v1, vk} is decreased by 1, the distance between vk and a vertex of
e4 ∪ (e1 \ {v1, vk}) is increased by 1, and the distance between any other vertex
pair remains unchanged. Then

1

2
(ρ(G∗)− ρ(G)) ≥ 1

2
x>(D(G∗)−D(G))x

= −xv2k−1
σG (e1 \ {v1, vk}) + xvk(σG(e4) + σG(e1 \ {v1, vk}))

= xvkσG(e1 \ {v1, vk})
> 0.

Thus ρ(G∗) > ρ(G).
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Let G∗∗ be the hypergraph obtained from G by moving e1 from v1 to v2k−1.
Obviously, G∗∗ ∼= Hk

2 . As we pass from G to G∗∗, the distance between a vertex
of e4 and a vertex of e1 \ {v1} is increased by 1, the distance between v2k−1 and a
vertex of e1 \ {v1, vk} is decreased by 1, and the distance between any other vertex
pair remains unchanged. Then

1

2
(ρ(G∗∗)− ρ(G)) ≥ 1

2
x>(D(G∗∗)−D(G))x

= σG(e4)σG (e1 \ {v1})− xv2k−1
σG(e1 \ {v1, vk}))

> (σG(e4)− xv2k−1
)σG(e1 \ {v1, vk})).

Let u ∈ e4\{v1}. Note that for w ∈ V (G)\{v1, v2k−1, u}, dG(v1, w)+dG(v2k−1, w)−
dG(u,w) ≥ 0. From the eigenequations of G at v1, v2k−1 and u, we have ρ(G)(xv1 +
xu−xv2k−1

) ≥ −xu+3xv2k−1
, and then (ρ(G)+1)(xv1 +xu−xv2k−1

) ≥ xv1 +2xv2k−1
>

0, implying that xv1 +xu−xv2k−1
> 0. Thus σG(e4)−xv2k−1

> xv1 +xu−xv2k−1
> 0.

Therefore ρ(G∗∗) > ρ(G).

Theorem 4.2. For k ≥ 3, let G be a k-uniform unicyclic hypergraph of size m ≥ 3
not isomorphic to C3k−3,k for m = 3 and Ck

2 (m − 2, 0) otherwise with minimum
distance spectral radius. Then G ∼= Ck

2 (1, 0) if m = 3, G ∼= C4k−4,k if k = 3 and
m = 4, and G ∼= Ck

3 (m− 3, 0, 0) otherwise.

Proof. Let g be the length of the unique cycle of G. Let C be the unique cycle
of G with edges ei = {v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k}, where i = 1, . . . , g, and
vg(k−1)+1 = v1. For 1 ≤ i ≤ g(k − 1), let Hi be the component of G − E(C)
containing vi.

If m = 3, then since G � C3k−3,k, we have G ∼= Ck
2 (1, 0) or F k

2 (1), and by
similar argument as in Claim 1 in the proof of Theorem 4.1, we have ρ(Ck

2 (1, 0)) <
ρ(F k

2 (1)), implying that G ∼= Ck
2 (1, 0).

Suppose that m ≥ 4. Note that G � Ck
2 (m − 2, 0). As in the proof of Theo-

rem 4.1, we have the following Claims 1 and 2.
Claim 1. For g ≥ 3, each 1 ≤ i ≤ g and each 2 ≤ j ≤ k − 1,

V (H(i−1)(k−1)+j) = {v(i−1)(k−1)+j}.

Claim 2. If m ≥ 4 and g ≥ 3, then for each 1 ≤ i ≤ g, H(i−1)(k−1)+1 is a k-uniform
hyperstar with center v(i−1)(k−1)+1.

Suppose that m = 4. If g = 2, then since G � Ck
2 (m−2, 0) and by similar argu-

ment as in Claim 1 in the proof of Theorem 4.1, we have G ∼= Ck
2 (1, 1), F k

2 (2) or Hk
2 ,

and if g = 3, 4, then by Claim 1, we have G ∼= Ck
3 (1, 0, 0) or C4k−4,k. By Lemmas 4.5

and 4.6, we have ρ(C4k−4,k) < min{ρ(Ck
2 (1, 1)), ρ(F k

2 (2)), ρ(Hk
2 ), ρ(Ck

3 (1, 0, 0))} if
k = 3 and ρ(Ck

3 (1, 0, 0)) < min{ρ(Ck
2 (1, 1)), ρ(F k

2 (2)), ρ(Hk
2 ), ρ(C4k−4,k)} otherwise.

Therefore G ∼= C4k−4,k if k = 3, and G ∼= Ck
3 (m− 3, 0, 0) otherwise, as desired.

Suppose that m ≥ 5.
Claim 3. g is odd.

Suppose that g is even. Suppose that g ≥ 6. Then m ≥ 6. For 1 ≤ i ≤
g, let ti = |E(H(i−1)(k−1)+1)|. By Claims 1 and 2, G ∼= Ck

g (t1, . . . , tg), where∑g
i=1 ti = m − g. Suppose without loss of generality that t1 = max1≤i≤g ti. Let
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G′ = Ck
g−2(t1 + t2 + tg + 2, t3, . . . , tg−1). Obviously, G′ is a k-uniform unicyclic

hypergraph of size m and G′ � Ck
2 (m − 2, 0). By Corollary 3.1, we have ρ(G) >

ρ(G′), a contradiction. Thus g = 2 or 4.
Suppose that g = 4. Obviously, by Claims 1 and 2, G ∼= Ck

4 (t1, t2, t3, t4) with
t1 = max1≤i≤4 ti ≥ 1. Obviously, Ck

3 (t1 + t2 + 1, t3, t4) is a k-uniform unicyclic
hypergraph of size m and it is not isomorphic to Ck

2 (m − 2, 0). By Lemma 4.5,
we have ρ(G) ≥ ρ

(
Ck

3 (t1 + t2 + 1, t3, t4)
)
, a contradiction. Thus g = 2 and G ∼=

Ck
2k−2(H1, . . . , H2k−2).

Let mi = |E(Hi)|, where 1 ≤ i ≤ 2k − 2 and
∑2k−2

i=1 mi + 2 = m. Suppose
without loss of generality that m1 ≥ mk ≥ 0 and m2 = max{mj : 2 ≤ j ≤
2k − 2, j 6= k}.

We will show that m2 = 0. Suppose that m2 ≥ 1. Then G � Ck
2 (m− 2, 0). By

similar argument as in Claim 2 in the proof of Theorem 4.1, each Hi is a k-uniform
hyperstar with center vi for 1 ≤ i ≤ 2k − 2.

Suppose that m1 ≥ 1. Let G′ be the hypergraph obtained from G by moving
each edge of EG(v2) \ e1 from v2 to vk. Obviously, G′ is a unicyclic hypergraph
of size m and G′ � Ck

2 (m − 2, 0). Let x = x(G′). From the eigenequations of
G′ at v2, vk and vk+1, we have ρ(G′)

(
xvk + xvk+1

− xv2
)
≥ −xvk+1

+ 3xv2 . Then
(ρ(G′) + 1)

(
xvk + xvk+1

− xv2
)
≥ xvk + 2xv2 > 0. Thus xvk + xvk+1

− xv2 > 0.
As we pass from G to G′, the distance between a vertex of V (H2) \ {v2} and v2
is increased by 1, the distance between a vertex of V (H2) \ {v2} and a vertex of
{vk, vk+1} is decreased by 1, and the distance between any other vertex pair is
decreased or remains unchanged. Then

1

2
(ρ(G)− ρ(G′)) ≥ 1

2
x>(D(G)−D(G′))x

≥ σG′(V (H2) \ {v2})
(
xvk + xvk+1

− xv2
)

> 0.

Thus ρ(G) > ρ(G′), a contradiction. Thus m1 = mk = 0.
Suppose that there exists some i ∈ {j : 3 ≤ j ≤ 2k − 2 and j 6= k} such

that mi ≥ 1. Let G′ be the hypergraph obtained from G by moving each edge
of EG(vi) \ e1 from vi to vk if 3 ≤ i ≤ k − 1, and the hypergraph obtained from
G by moving each edge of EG(vi) \ e2 from vi to vk if k + 1 ≤ i ≤ 2k − 2.
Obviously, G′ is a unicyclic hypergraph of size m and G′ � Ck

2 (m − 2, 0). By
similar argument as above, we have ρ(G) > ρ(G′), a contradiction. Thus mi = 0
for i ∈ {j : 3 ≤ j ≤ 2k − 2 and j 6= k}.

Since mi = 0 for 1 ≤ i ≤ 2k−2 with i 6= 2, we have G ∼= F k
2 (m−2). Obviously,

Ck
3 (m − 3, 0, 0) is a unicyclic hypergraph of size m and it is not isomorphic to

Ck
2 (m− 2, 0). By Lemma 4.6 (i), ρ(G) > ρ(Ck

3 (m− 3, 0, 0)), a contradiction. Now
we have m2 = 0.

Suppose that mk ≥ 1. Note that m1 ≥ mk and m1 + mk = m − 2. By
similar argument as in Claim 2 in the proof of Theorem 4.1, both H1 and Hk are
k-uniform hyperstars with centers v1 and vk, respectively. Then G ∼= Ck

2 (m1,mk).
By Lemma 4.4, we have G ∼= Ck

2 (m−3, 1). Now by Theorem 3.2, ρ(G) > ρ(Ck
3 (m−

3, 0, 0)), a contradiction. It follows that mk = 0.

21



Let u0 be the vertex in V (H1) such that dG(u0, v1) is as large as possible. Let
p = dG(u0, v1). Since m2 = mk = 0 and G � Ck

2 (m − 2, 0), we have p ≥ 2. Let
(u0, e

′
1, u1, . . . , e

′
p, up) be the unique path connecting u0 and v1 inH1, where up = v1.

Note that e′1 is a pendant edge at u1. Let e′p = {w1, . . . , wk}, where wk−1 = up−1
and wk = up. Let Wj be the component of G− e′p containing wj for 1 ≤ j ≤ k− 1.

Then G = He′p,0(W1, . . . ,Wk−1), where H = G[V (G) \ ∪k−1j=1(V (Wj) \ {wj})]. Note
that |E(Wk−1)| ≥ 1.

Suppose that p ≥ 3. Let G′ = He′p,k−1(W1, . . . ,Wk−1). Obviously, G′ is a k-

uniform unicyclic hypergraph of size m and G′ � Ck
2 (m−2, 0). By Lemma 2.2, we

have ρ(G) > ρ(G′), a contradiction. Thus p = 2, implying that Wi is a k-uniform
hyperstar with center wi for 2 ≤ i ≤ k − 1.

Let G′′ be the hypergraph obtained from G by moving e1 from vk to wk−1(= u1).
Let x = x(G′′). By Lemma 2.1, the entry of x corresponding to each vertex of
e′1 \ {wk−1} is the same. Let z0 ∈ e′1 \ {wk−1}. From the eigenequations of G′′

at z0, wk−1 and vk, we have ρ(G′′)
(
2xz0 + xwk−1

− xvk
)
≥ −2xz0 + 8xvk . Then

(ρ(G′′) + 1)
(
2xz0 + xwk−1

− xvk
)
≥ xwk−1

+ 7xvk > 0. Thus 2xz0 + xwk−1
− xvk > 0.

As we pass from G to G′′, the distance between a vertex of e1 \ {v1, vk} and a
vertex of V (Wk−1) is decreased by 1, the distance between a vertex of e1 \ {v1, vk}
and vk is increased by 1, and the distance between any other vertex pair remains
unchanged. Then

1

2
(ρ(G)− ρ(G′′)) ≥ 1

2
x>(D(G)−D(G′′))x

= σG′′(e1 \ {v1, vk}) (σG′′(V (Wk−1))− xvk)

≥ σG′′(e1 \ {v1, vk}) (σG′′(e
′
1)− xvk)

≥ σG′′(e1 \ {v1, vk})
(
(k − 1)xz0 + xwk−1

− xvk
)

≥ σG′′(e1 \ {v1, vk})
(
2xz0 + xwk−1

− xvk
)

> 0.

Thus ρ(G) > ρ(G′′), also a contradiction. Now Claim 3 follows.
By Claim 3, g is odd. By Claims 1 and 2, G ∼= Ck

g (t1, . . . , tg) with t1 =
max1≤i≤g ti and

∑g
i=1 ti + g = m. Suppose that g ≥ 5. Let G∗ = Ck

g−2(t1 + t2 +
tg + 2, t3, . . . , tg−1). Obviously, G∗ is a k-uniform unicyclic hypergraph of size m
and G∗ � Ck

2 (m− 2, 0). By Corollary 3.1, we have ρ(G) > ρ(G∗), a contradiction.
It follows that g = 3. Therefore we have G ∼= Ck

3 (t1, t2, t3) with t1 ≥ t2 ≥ t3 ≥ 0
and t1 + t2 + t3 = m− 3. By Lemma 4.3 (i), we have t1 = m− 3 and t2 = t3 = 0,
i.e., G ∼= Ck

3 (m− 3, 0, 0).

5 Maximum distance spectral radius of uniform

unicyclic hypergraphs

In this section, we discuss the unique hypergraphs with maximum distance spectral
radius in the set of k-uniform unicyclic hypergraphs of fixed size.
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Lemma 5.1. For k ≥ 4, let G be a k-uniform unicyclic hypergraph with cycle
length 2. Let e be an edge on the cycle of G containing two vertices u and v of
degree 1. For p ≥ q ≥ 1, ρ(Gu,v(p, q)) < ρ(Gu,v(p+ 1, q − 1)).

Proof. Let H = Gu,v(p, q). Let C be the cycle of G with edges e = e1 = {v1, . . . , vk}
and e2 = {vk, . . . , v2k−1}, where v2k−1 = v1. Let Hi be the component of H−E(C)
containing vi for 1 ≤ i ≤ 2k − 2. We may assume u = v2 and v = vk−1. Let
H2 = (v2, e

′
1, u1, . . . , up−1, e

′
p, up) and Hk−1 = (vk−1, e

′′
1, y1, . . . , yq−1, e

′′
q , yq), where

e′1 = {v2, u1, w1, . . . , wk−2} and e′′1 = {vk−1, y1, w′1, . . . , w′k−2}.
Let x = x(H). Suppose that σH(V (H2)) ≥ σH(V (Hk−1)). Let li = |E(Hi)| for

1 ≤ i ≤ 2k − 2. Let I = {i : li ≥ 1, 3 ≤ i ≤ k − 2}. Let H ′ be the k-uniform
hypergraph obtained from H by moving each edge of EH(vi) \ e1 from vi to w′i−2
for all i ∈ I, moving each edge of EH(v1) \ e1 from v1 to w′k−3, and moving each
edge of EH(vk) \ e1 from vk to w′k−2. It is easily seen that H ′ ∼= Gu,v(p+ 1, q − 1).

As we pass from H to H ′, for i ∈ I, the distance between a vertex of V (Hi)\{vi}
and a vertex of V (H2)∪ (e1 \ {v2, vi, vk−1}) is increased by 1, the distance between
a vertex of V (Hi) \ {vi} and vi is increased by 2, the distance between a vertex
of V (Hi) \ {vi} and a vertex of V (Hk−1) \ {vk−1, w′i−2} is decreased by 1, and the
distance between a vertex of V (Hi) \ {vi} and w′i−2 is decreased by 2, the distance
between a vertex of V (H1) \ {v1} and a vertex of V (H2) ∪ (e1 \ {v1, v2, vk−1}) is
increased by 1, the distance between a vertex of V (H1) \ {v1} and v1 is increased
by 2, the distance between a vertex of V (H1) \ {v1} and a vertex of V (Hk−1) \
{vk−1, w′k−3} is decreased by 1, the distance between a vertex of V (H1) \ {v1}
and w′k−3 is decreased by 2, the distance between a vertex of V (Hk) \ {vk} and
a vertex of V (H2) ∪ (e1 \ {v2, vk−1, vk}) is increased by 1, the distance between a
vertex of V (Hk) \ {vk} and vk is increased by 2, the distance between a vertex
of V (Hk) \ {vk} and a vertex of V (Hk−1) \ {vk−1, w′k−2} is decreased by 1, the
distance between a vertex of V (Hk)\{vk} and w′k−2 is decreased by 2, the distance

between a vertex of
⋃2k−2

i=k+1 V (Hi) and a vertex of V (H2) ∪ (e1 \ {v1, vk−1, vk}) is

increased by 1, the distance between a vertex of
⋃2k−2

i=k+1 V (Hi) and a vertex of

{v1, vk} is increased by 2, the distance between a vertex of
⋃2k−2

i=k+1 V (Hi) and a
vertex of V (Hk−1) \ {vk−1, w′k−3, w′k−2} is decreased by 1, the distance between a

vertex of
⋃2k−2

i=k+1 V (Hi) and a vertex of {w′k−3, w′k−2} is decreased by 2, and the
distance between any other vertex pair remains unchanged. Note that σH(e1) ≥
xv1 + xv2 + xvk−1

+ xvk . Let A =
⋃2k−2

i=k+1 V (Hi). Then

1

2
(ρ(H ′)− ρ(H))

≥ 1

2
x>(D(H ′)−D(H))x

=
∑
i∈I

σH(V (Hi) \ {vi})
[
σH(V (H2)) +

(
σH(e1)− xv2 − xvi − xvk−1

)
+ 2xvi

−
(
σH(V (Hk−1))− xvk−1

− xw′i−2

)
− 2xw′i−2

]
+σH(V (H1) \ {v1})

[
σH(V (H2)) +

(
σH(e1)− xv1 − xv2 − xvk−1

)
+ 2xv1
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−
(
σH(V (Hk−1))− xvk−1

− xw′k−3

)
− 2xw′k−3

]
+σH(V (Hk) \ {vk})

[
σH(V (H2)) +

(
σH(e1)− xv2 − xvk−1

− xvk
)

+ 2xvk

−
(
σH(V (Hk−1))− xvk−1

− xw′k−2

)
− 2xw′k−2

]
+σH(A)

[
σH(V (H2)) +

(
σH(e1)− xv1 − xvk−1

− xvk
)

+ 2xv1 + 2xvk

−
(
σH(V (Hk−1))− xvk−1

− xw′k−3
− xw′k−2

)
− 2xw′k−3

− 2xw′k−2

]
=

∑
i∈I

σH(V (Hi) \ {vi})
(
σH(V (H2))− σH(V (Hk−1)) + (σH(e1)− xv2) + xvi − xw′i−2

)
+σH(V (H1) \ {v1})

(
σH(V (H2))− σH(V (Hk−1)) + (σH(e1)− xv2) + xv1 − xw′k−3

)
+σH(V (Hk) \ {vk})

(
σH(V (H2))− σH(V (Hk−1)) + (σH(e1)− xv2) + xvk − xw′k−2

)
+σH(A)

(
σH(V (H2))− σH(V (Hk−1)) + σH(e1) + xv1 + xvk − xw′k−3

− xw′k−2

)
>

∑
i∈I

σH(V (Hi) \ {vi})
(
σH(V (H2))− σH(V (Hk−1)) + xvi + xvk−1

− xw′i−2

)
+σH(V (H1) \ {v1})

(
σH(V (H2))− σH(V (Hk−1)) + xv1 + xvk−1

− xw′k−3

)
+σH(V (Hk) \ {vk})

(
σH(V (H2))− σH(V (Hk−1)) + xvk + xvk−1

− xw′k−2

)
+σH(A)

(
σH(V (H2))− σH(V (Hk−1)) + xv1 + xv2 + xvk−1

+ xvk − xw′k−3
− xw′k−2

)
,

and thus

1

2
(ρ(H ′)− ρ(H))

≥
∑
i∈I

σH(V (Hi) \ {vi})
(
xvi + xvk−1

− xw′i−2

)
+σH(V (H1) \ {v1})

(
xv1 + xvk−1

− xw′k−3

)
(5.1)

+σH(V (Hk) \ {vk})
(
xvk + xvk−1

− xw′k−2

)
+σH(A)

(
xv1 + xv2 + xvk−1

+ xvk − xw′k−3
− xw′k−2

)
.

For w ∈ W = V (H) \ {vi, vk−1, w′i−2} with 3 ≤ i ≤ k − 2, we have dH(vi, w) +
dH(vk−1, w)−dH(w′i−2, w) ≥ 0. From the eigenequations of H at vi, vk−1 and w′i−2,
we have

ρ(H)(xvi + xvk−1
− xw′i−2

)

≥ −xvi + 3xw′i−2
+
∑
w∈W

(dH(vi, w) + dH(vk−1, w)− dH(w′i−2, w))xw

≥ −xvi + 3xw′i−2
,
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implying that (ρ(H) + 1)(xvi + xvk−1
− xw′i−2

) ≥ xvk−1
+ 2xw′i−2

> 0, and thus xvi +
xvk−1

−xw′i−2
> 0. Similarly, we have xv1 +xvk−1

−xw′k−3
> 0, xvk +xvk−1

−xw′k−2
> 0

and xv1 + xv2 + xvk−1
+ xvk − xw′k−3

− xw′k−2
> 0. Thus by (5.1),

1

2
(ρ(H ′)− ρ(H)) ≥ σH(A)

(
xv1 + xv2 + xvk−1

+ xvk − xw′k−3
− xw′k−2

)
> 0.

It follows that ρ(H) < ρ(H ′).
Suppose that σH(V (H2)) < σH(V (Hk−1)). LetH ′′ be the k-uniform hypergraph

obtained from H by moving each edge of EH(vi) \ e1 from vi to wi−2 for all 3 ≤
i ≤ k− 2, moving each edge of EH(v1) \ e1 from v1 to wk−3, and moving each edge
of EH(vk) \ e1 from vk to wk−2. It is easily seen that H ′′ ∼= Gu,v(p− 1, q + 1). By
similar argument as above, we have ρ(H) < ρ(H ′′).

Now we have proved that

ρ(Gu,v(p, q)) < max{ρ(Gu,v(p+ 1, q − 1)), ρ(Gu,v(p− 1, q + 1))}. (5.2)

If p = q, then the result follows easily. Suppose that p > q. Suppose
that ρ(Gu,v(p, q)) < ρ(Gu,v(p − 1, q + 1)). Note that Gu,v(dp+q+1

2
e, bp+q−1

2
c) ∼=

Gu,v(bp+q−1
2
c, dp+q+1

2
e). Using (5.2) repeatedly, we have

ρ(Gu,v(p, q)) ≤ ρ

(
Gu,v

(⌈
p+ q + 1

2

⌉
,

⌊
p+ q − 1

2

⌋))
< ρ

(
Gu,v

(⌊
p+ q − 1

2

⌋
,

⌈
p+ q + 1

2

⌉))
,

which is impossible. Thus ρ(Gu,v(p, q)) < ρ(Gu,v(p+ 1, q − 1)), as desired.

For k ≥ 3, let C̃k
2 (l1, l2) = Gv2,vk+1

(l1, l2), where G = C2k−2,k and l1 ≥ l2 ≥ 0.

Theorem 5.1. For k ≥ 3, let G be a k-uniform unicyclic hypergraph of size m ≥ 2
with maximum distance spectral radius. Then G ∼= C̃k

2 (l1, l2), where l1 ≥ l2 ≥ 0
and l1 + l2 + 2 = m.

Proof. It is trivial if m = 2. Suppose that m ≥ 3. By Theorem 3.2, the cycle
length of G is 2. Let C be the unique cycle with edges e1 = {v1, . . . , vk} and
e2 = {vk, . . . , v2k−1}, where v2k−1 = v1. Let Hi be the component of G − E(C)
containing vi, which is a k-uniform hypertree, where 1 ≤ i ≤ 2k − 2. Then
G ∼= Ck

2k−2(H1, . . . , H2k−2). Let x = x(G).
Claim 1. |V (H1)| = |V (Hk)| = 1.

Suppose that there is at least one edge inH1. We may assume σG

(⋃k−1
i=2 V (Hi)

)
≥

σG

(⋃2k−2
i=k+1 V (Hi)

)
. Let G′ be the k-uniform hypergraph obtained from G by mov-

ing each edge of EG(v1) \ {e1, e2} from v1 to v2k−2. As we pass from G to G′, the

distance between a vertex of V (H1) \ {v1} and a vertex of {v1} ∪
(⋃k−1

i=2 V (Hi)
)

is increased by 1, the distance between a vertex of V (H1) \ {v1} and a vertex
of V (H2k−2) is decreased by 1, and the distance between any other vertex pair
remains unchanged. Then

1

2
(ρ(G′)− ρ(G)) ≥ 1

2
x>(D(G′)−D(G))x
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= σG(V (H1) \ {v1})

(
xv1 + σG

(
k−1⋃
i=2

V (Hi)

)
− σG(V (H2k−2))

)

> σG(V (H1) \ {v1})

(
σG

(
k−1⋃
i=2

V (Hi)

)
− σG

(
2k−2⋃
i=k+1

V (Hi)

))
≥ 0,

and thus ρ(G′) > ρ(G), a contradiction. Therefore |V (H1)| = 1. Similarly, we
have |V (Hk)| = 1. Claim 1 follows.
Claim 2. Each Hi with |V (Hi)| > 1 is a pendant path at vi, where 2 ≤ i ≤ 2k− 2
and i 6= k.

Suppose that dHi
(vi) ≥ 2. Let U1, . . . , UdHi

(vi) be the vertex-disjoint subhyper-

graphs of Hi − vi with ∪dHi
(vi)

j=1 V (Uj) = V (Hi) \ {vi} such that Hi[V (Uj) ∪ {vi}]
is a k-uniform hypertree for 1 ≤ j ≤ dHi

(vi). Note that dHi
(w) = dG(w) for each

w ∈ V (Uj), where 1 ≤ j ≤ dHi
(vi).

Suppose that there is one vertex of degree at least 3 in V (Uj) for some j with
1 ≤ j ≤ dHi

(vi). Choose a vertex u of degree at least 3 such that dG(vi, u) is as
large as possible. Let N1, . . . , NdG(u) be the vertex-disjoint subhypergraphs of G−u
with ∪dG(u)

l=1 V (Nj) = V (G) \ {u} such that G[V (N1)∪{u}] is a k-uniform unicyclic
hypergraph and G[V (Nl) ∪ {u}] is a k-uniform hypertree for 2 ≤ l ≤ dG(u).

Suppose that G[V (Nl) ∪ {u}] is not a pendant path at u for some l with 2 ≤
l ≤ dG(u). Then there are at least three vertices of degree 2 in some edge of
E(G[V (Nl) ∪ {u}]). We choose such an edge e = {w1, . . . , wk} by requiring that
dG(u,w1) is as large as possible, where dG(u,w1) = dG(u,wr) − 1 for 2 ≤ r ≤ k.
Then there are two pendant paths, say P and Q with lengths p and Q at different
vertices ws and wt of e respectively, where 2 ≤ s < t ≤ k. We may assume that p ≥
q. Then G ∼= Fws,wt(p, q), where F = G[V (G) \ (V (P ∪Q) \ {ws, wt})]. Obviously,
dF (ws) = dF (wt) = 1 and G′′ = Fws,wt(p + 1, q − 1) is a k-uniform unicyclic
hypergraph of sizem. By Lemma 2.4, we have ρ(G) < ρ(G′′), a contradiction. Thus
for each l with 2 ≤ l ≤ dG(u), G[V (Nl) ∪ {u}] is a pendant path at u, the length
of which is denoted by pl. We may assume that p2 ≥ p3. Then G ∼= Nu(p2, p3),
where N = G[V (G) \ V (N2 ∪ N3)]. Obviously, G∗ = Nu(p2 + 1, p3 − 1) is a k-
uniform unicyclic hypergraph of size m. By Lemma 2.3, we have ρ(G) < ρ(G∗), a
contradiction. Thus for 1 ≤ j ≤ dHi

(vi), each vertex of V (Uj) is of degree at most
2.

By similar argument as above, there is no edge in E(G[V (Uj) ∪ {vi}]) with at
least three vertices of degree 2, and thus G[V (Uj)∪{vi}] is a pendant path at vi for
1 ≤ j ≤ dHi

(vi). Let qj be the length of G[V (Uj)∪{vi}], where 1 ≤ j ≤ dHi
(vi). We

may assume that q1 ≥ q2. Then G ∼= Ñvi(q1, q2), where Ñ = G[V (G)\V (U1∪U2)].

Obviously, G∗∗ = Ñvi(q1 + 1, q2− 1) is a k-uniform unicyclic hypergraph of size m.
By Lemma 2.3, we have ρ(G) < ρ(G∗∗), a contradiction. Therefore dHi

(vi) = 1.
By similar argument as above, each vertex of V (Hi) \ {vi} is of degree at most

2, and there is at most two vertices of degree at least 2 in each edge of E(Hi),
Thus Hi is a pendant path at vi in G. This proves Claim 2.

By Claims 1 and 2, |V (H1)| = |V (Hk)| = 1 and each Hi with |V (Hi)| > 1 is
a pendant path at vi, where 2 ≤ i ≤ 2k − 2 and i 6= k. Let mi = |E(Hi)| for
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1 ≤ i ≤ 2k − 2. Then m1 = mk = 0.
If k = 3, then G ∼= C̃k

2 (m2,m4) with m2 + m4 + 2 = m, and thus the result
follows.

Suppose that k ≥ 4. Suppose that there exist at least two integers i and
j with 2 ≤ i < j ≤ k − 1 such that mi ≥ mj ≥ 1. Then by Claims 2, we
have G ∼= Hvi,vj(mi,mj), where H = G[V (G) \ (V (Hi ∪ Hj) \ {vi, vj})]. Let
G′ = Hvi,vj(mi + 1,mj − 1). By Lemma 5.1, ρ(G) < ρ(G′), a contradiction. Thus
there exists at most one integer i with 2 ≤ i ≤ k − 1 such that mi ≥ 1. Similarly,
there exists at most one integer j with k+ 1 ≤ j ≤ 2k− 2 such that mj ≥ 1. Thus

G ∼= C̃k
2 (mi,mj) with 2 ≤ i ≤ k − 1, k + 1 ≤ j ≤ 2k − 2 and mi + mj + 2 = m,

and the result follows.

By direct calculation, we list ρ
(
C̃k

2 (l1, l2)
)

for k = 3, 4 and l1 + l2 = 2, 3, 4 in

Table 1.

Table 1: ρ
(
C̃k

2 (l1, l2)
)

for k = 3, 4 and l1 + l2 = 2, 3, 4.

G C̃3
2(1, 1) C̃3

2(2, 0) C̃3
2(2, 1) C̃3

2(3, 0) C̃3
2(2, 2) C̃3

2(3, 1) C̃3
2(4, 0)

ρ(G) 14.7150 14.1580 22.3219 21.4508 31.5138 31.2036 30.1133

G C̃4
2(1, 1) C̃4

2(2, 0) C̃4
2(2, 1) C̃4

2(3, 0) C̃4
2(2, 2) C̃4

2(3, 1) C̃4
2(4, 0)

ρ(G) 23.2481 23.8118 35.5228 34.6496 49.5106 49.1982 48.1116

Based on Table 1, we conjecture that ρ
(
C̃k

2

(
dm

2
e − 1, bm

2
c − 1

))
> ρ

(
C̃k

2 (l1, l2)
)

for l1 and l2 with l1+ l1+2 = m and (l1, l2) 6=
(
dm

2
e − 1, bm

2
c − 1

)
. If this is proved,

then by Theorem 5.1, C̃k
2

(
dm

2
e − 1, bm

2
c − 1

)
is the unique k-uniform unicyclic hy-

pergraph of size m ≥ 2 with maximum distance spectral radius for k ≥ 3.
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