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Abstract

In this paper, some new results on the the regularity of Kolmogorov equations
associated to the infinite dimensional OU-process are obtained. As an application, the
average L2-error on [0,T] of exponential integrator scheme for a range of semi-linear
stochastic partial differential equations is derived, where the drift term is assumed to
be Holder continuous with respect to the Sobolev norm || - ||z for some appropriate
B > 0. In addition, under a stronger condition on the drift, the strong convergence
estimate is obtained, which covers the result of the SDEs with Holder continuous drift.
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1 Introduction

Recently, the regularity of the Kolmogorov equation with singular coefficients is applied to
study the pathwise uniqueness of stochastic (partial) differential equations (S(P)DEs) with
singular drifts, which are, for instance, Holder continuous, Dini continuous or integrable etc.
The main idea is to construct Zvonkin’s transform ([33]) which is a homeomorphism map
depending on the solution of the Kolmogorov equation to transform the original S(P)DEs
to a new one, where the singular drift is killed with the aid of the Kolmogorov equation
and the pathwise uniqueness can be obtained. There are many results on this topic, see



4,7, 8,9, 10, 13, 20, 28, 29, 30, 31, 32|, and references therein. Encouraged by this idea,
some researchers have adopted Zvonkin’s transform to study the strong convergence rate of
the Euler Maruyama (EM) method for SDEs with singular drift, for instance, [14, 24, 25, 26]
and the SDEs with Jumps [17]. However, so far, there are no results on the numerical method
for the semi-linear SPDEs with singular drift. The main difficulty lies in the following.
After Zvonkin’s transform, compared to the exact solution, the SPDE for the numerical
solution contains two additional items produced by the temporal discretization, one of which
depends on the trace of the second-ordered gradient operator of the solution to the associated
Kolmogorov equation, see (4.3) and (3.8) below for more details. In R?, the trace of a linear
operator can be controlled by the operator norm, while this is generally not true in infinite
dimension case, for instance, the identical operator. Thus, in the SPDESs, the previous results
in [28] on the regularity of the Kolmogorov equation, i.e. the estimate for the operator norm
of the second-ordered gradient operator of the solution is not available. In other words,
to obtain the convergence rate of the numerical method for the semi-linear SPDEs with
singular drift, some new regularity, i.e. the trace of the second-ordered gradient operator of
the solution to the associated Kolmogorov equation is required. The trace strictly depends
on the spectrum of A and the regularity of the drift term b, which will be showed in Theorem
2.7 below by the gradient estimate of the semigroup. This is a new result in related fields.

Through out this paper, let (H, (-, )u, || - |m) be a real separable Hilbert space. Denote
by Z(H) (resp. Z5(H)) the space of all bounded linear operators (resp. Hilbert-Schmidt
operators) on H. Let || - || (resp. || - ||») stand for the operator norm (resp. the Hilbert-
Schmidt norm). Let (W};);>0 be an H-valued cylindrical Wiener process defined on a complete
probability space (2, ., (F)i>0,P), 1.e., Wy = >0, Bt(k)ek, where (3*));>; is a sequence of
independent real-valued Brownian motions on the probability space (2, %, (%#;)i>0, P) and
(ex)r>1 is an orthonormal basis of H. Fix 7' > 0 and set || f||7.c0 = supsepo r)zem [|.f(t 2|
for an operator-valued map f on [0,7] x H. Let %,(H; H) be the collection of all bounded
measurable functions from H to H.

Let (—A, Z(—A)) be a positive definite self-adjoint operator on H satisfying (—A)e; =
Aiei, i > 1, where (0 <)A; < Ay < -+ are all eigenvalues with counting multiplicities. For
any r € R, Let H, = {z € H, |(—A)"z| < oo} equipped the Sobolev norm ||z||, := [(—A)"z],
x € H,. Then (H,,| - ||,) is a Banach space and H, = H.

Convention: The letter ¢ or C' with or without subscripts will denote an unimportant
constant, whose values may change in different places. Moreover, we use the shorthand
notation a < b to mean a < c¢b. If the constant ¢ depends on a parameter p, we shall also
write ¢, and a <, b.

The remainder of this paper is organized as follows: In Section 2, we investigate the
new regularity of the Kolmogrov equation associated to the OU-process. In Section 4, as
an application of Section 2, we give a result on the average L*-error on [0, T] of exponential
integrator scheme for a range of semi-linear SPDEs with Holder continuous drift. Moreover,
under a stronger condition on the drift, the strong convergence rate is obtained.



2 New Regularity of Kolmogorov Equation Associated
to OU-process

In this section, we consider the Kolmogorov Equation with singular coefficients:
T
(2.) @)= [ NI (Vi +b)a)ds, @M, 1 [0.1],
t

where A > 0, b: [0, 7] x H — H, (P?);> is the Markov semigroup associated to the following
O-U process:

(2.2) dzf = AZdt+dW,, t>0, Zj==x.
To characterize the regularity of the solution to (2.1), we need some assumptions:

(A1) There exists a constant a € (0, 1) such that

o0

1
(23) Z F < 0.
=1 Vi
(A2) b is bounded, i.e.,
(2.4) 16| 7,00 < 00,

and there exist ¢ > 0, ¢ € (0,1) and 8 > 0 such that

(2.5) 1be(2) = be()ller < clle —ylZp, t€[0,T], 2,y e

Remark 2.1. Under (A1), it is well known that (2.2) has an up to modifications unique
mild solution (Z7)s>o (see, e.g., [6]) with the associated Markov semigroup (P?);>o-

Remark 2.2. The condition (2.5) means that the continuity of b; has weaker dependence
on the higher dimensional components. More precisely, for any ¢ > 1,

c
26)  b@) = blz+ {y —zeded)lu < Flly -z, €[0T, 2y €H.

On the other hand, (2.5) implies
(2.7) 1be(z) = o) lle < collz — yllfy, t€[0,T], z,yeH
for some ¢ > 0. Let ) satisfy (2.7), then b, = b9 o (—A)~# satisfy (2.5).

Before moving on, we introduce the results on the regularity of (2.1) in [28, Lemma 2.3].



Lemma 2.3. Assume (A1), (2.4). Then there exists a constant Ay > 0 such that for any
A > Ap, (2.1) has a unique solution u* € C([0, T|; C}(H; H)) satisfying

(2.8) lim {||u*| 700 + ||V || 7,00} = 0.
A—00

If moreover (2.7) holds, then for any A > Ar, [|[V2u*||10 < 0o and
(2.9) lim ||V?u?|| 7,00 = 0.
A—00

Remark 2.4. We should remark that [28, Lemma 2.3] gives the above result under (A1),
(2.4) and

(2.10) 1be(2) = be() e < ¢(llz — yllw), t€[0,T], x,ye€H,

where ¢ € ¥ with
1
D = {gb : [0,00) — [0, 00) is increasing, ¢? is Concave,/ @ds < oo}.
0o S

In fact, when ¢ € (0,1/2], take ¢(z) = 2, then ¢ € 2 and (2.7) implies (2.10). As for the
case € € (1/2,1), it is easy to obtain Lemma 2.3 by repeating the proof of [28, Lemma 2.3].

The main results in this section are the following;:

Theorem 2.5. Assume (A1), (2.4). For any A > \r, let u* be the unique solution to (2.1).
Then the following assertions hold.

(1) For any k € [0,1/2),

(2.11) lim || Vu*(—A)*| 7,00 = 0.
A—00
(2) For any 0 € [0, «),

(2.12) > NIV, < 0.

i=1
(3) If in addition, there exists 7 > 0 such that
(2.13) [(=A)7b][ 7,00 < 00,
then there exists A > Ar such that, for any A > A7, ||(—=A)"Vu? |70 < 0o and

(2.14) lim |[(—A)"Vut||7,00 = 0.
A—00



Proof. (1) Note that the following Bismut formula

f(ZF)
t

(2.15) v, PO f(x) = E( / (V, 2, dW, >), t> 0,2, € H, f e B(H;H)

holds; see, e.g., [28, (2.8)]. By Holder’s inequality and It6’s isometry, together with V, 2} =
e4n, we deduce that

E f Zw .
IV PO F (@) < DI / oA (= Ay ds

P°||f M = (=Y (n, ¢;)
HZ Y L kel0,1/2),

(2.16)

which, combining u* € C([0, T); C} (H; H)) with ||b||7.0 < oo and )\?“_1(1 — e Nty < ¢l
yields that

T
IV apitlln < [ €017 ey PL (Vi ) s
t

T
(2.17) < ||77||H/ e—AsS—(n—&-%)dS
0

< lmllaxs=2

Thereby, (2.11) follows immediately.
(2) Next, in (2.16), taking x = 0 and 1 = ¢;, we have

(1 — e )PP f (=) I
\it? '

(2.18) IVe, PP f (@)1 S

This, again together with v* € C([0,T7]; C}(H; H)) and ||b]|7.0 < o0, leads to

T
IVl < / e NV PO, (Ve + by) nds
t

T —)Xs —2X;5\ 1
1_ i
[,
0 A

Zs
(2.19) L
< 1_9/ e Ms2ds
A\ 20
1
S, 0€(0,1),
)\ 2

where we have used the elementary inequality

(2.20) le™ —eY| < colr —yl’, xy>0, 0€][0,1]



for some constant ¢y > 0. Hence, we deduce from (2.3) and (2.19) that

00 00 1
XV utE L <e <e¢, 0e€ (0,
izl () H % ||T,OO = 0 ZZI A/}—a — ( ]

for some constants co, ¢ > 0. As a result, (2.12) holds.
(3) Let 57 = C([0,T]; C}(H; H,)), which is a Banach space under the norm

[ulle : = [[(=A) ullr.00 + [(=A)"Vull 1,00, u € .
For any u € J¢, define
T
(Tu)s(x) = / e_’\(t_S)PtO_S(Vbtut +by)(x)dt, se€0,T].

Then we have I'¢ C . In fact, for any u € 5, by (2.4) and (2.13), it holds that

AV Tulre = sup
s€[0,T],zeH

T
/ e MIPY (=AY Vi up + (—A)by) (x)dt

H

T
< sup / M)l (= A) Vit 00 + (= A) Bl o)l

s€[0,T7]

T
< (Dol (=AY Vull 700 + (= A)Bll7:00) / oM
0

< Plrecll(=A)Vullroo + [(ZA) Bllroe
A
Again by (2.4), (2.13) and (2.16) with x = 0, we have

T
(A Vlulrm = sup / e NI, PO (— AV + (—A) b (x)dt
s€[0,T),z€H,|n|<1 s H
T e—A(t—s)
<C swp (b7l (— AV Tl + | (= A) Bl o)t

T Xt

s€[0,T] Js Vit —s
€

< C(||b]| 7,00 [[(=A)" V|7 00 + [[(—=A)7D Oo/ —dt
(Bl (=AY Ve + (=47 Blrcc) |~

— Y — Y
[Oll7.ccl[(=A)" V7,00 + (= A) bl _
VA

So, ' C 7. Next, by the fixed-point theorem, it suffices to show that for large enough

A > 0, I' is contractive on 5. To do this, for any u, 4 € 7, similarly to the estimates of
|(=A)Tul|r0 and ||[(—=A)YVI'u||1, we obtain that

<C

I(=A4)"Tu = (=A) Tt 1,00 < HbHATm 1(=A)Vu = (=A) Vi1,

b
|(—A)VI'u — (—A)"VI'|| 100 < C’””&H(—A)”VU — (—A)" Vi1 0

VA

(2.21)



So we can find A}, > Ar such that I' is contractive on . with A > M., by fixed-point theorem,
(2.1) has a unique solution u* € C([0,T]; C{(H;H,)). Finally, substituting I'u* = u* into
(2.21) and letting u = u*, @ = 0, we obtain (2.14). O

Remark 2.6. In the multiplicative noise case, i.e.

there is also Bismut derivative formula if the diffusion coefficient is non-degenerate, see [28,
(2.8)]. Differently, in this case, V,Z7 is no longer equal to e'p. Instead, V,Z7 satisfies an
SPDE:

dV,Z; = AV, ZFdt + Vv, zz0¢(Z;)dW,.
Thus it is very hard to obtain (2.17). We will leave the multiplicative noise case in the future
research.

The next theorem gives an estimate for the trace of V2u* we explained in the introduction,
which plays a crucial role in analyzing error of numerical schemes.

Theorem 2.7. Let (A1) and (A2) hold and assume further v := % +a—1>0.
Then, for any A > Ap,

(2.22) > NVe, Veut 100 < 00.
i=1
Proof. From (2.15) and V,Z¢ = ey, we have
At

e— %

: t/2
R2) VN6 = E(VPRNZ) [,

By Hélder’s inequality and Itd’s isometry, it then follows from (2.18), (2.20) with § = 1,
contractive property of et and semigroup property of PP that

e*)\it

1|l .
%EH(V@PE}J}( ] IE:

-\t 2
e ]
< TP ()

(Ve Vo P ) (@)l S
(2.24)

Furthermore, [t0’s isometry, (2.3) as well as (2.20) with § = « yield that
o 1 _ e—2>\it

t
(225) BIZF - ol = [ et ds = 30 S s 8
0 i=1 :

For a mapping f : H — H such that [|f(z) = f(y)|le S llz = yllf, let fi(y) = f(y) — f(e"x).
Taking (2.24) and (2.25) into account and employing Jensen’s inequality, we derive that
(Ve Vo P ) (@)l[E = (Ve Vo PP () 1
N alRENZ — el

(2.26) S 2
< eIl
~ {2—as

7



For notational simplicity, set
(2.27) f (@) = (Voud + by)(2).
It is easy to see from (2.7) and (2.11) that
1f2@) = RWla S lle =yl zyeH

Thus, combining (2.1) with (2.26) yields that
T A
IVl < [ e INTL TP Rt

T o=Ait/2
(2.28) N ||77||H/0 tl—T/zdt

_ lnls
~ )\QE/Q'

(3

For a mapping f : H — H satisfying
(2.29) 1f (@) = fWlle < llz —yllZy, zyeHl
for some By > 0 and ¢y € (0,1). Fixing = € H, let

fiy) = fly) = fly + (e —y.ee;), yeH
Now, (2.29), Jensen’s inequality and It6’s isometry imply that

(1 _ e—2Ait)80

(2.30) P fil(z) < ATPEIAP S \eot2h0

where . .
Al ::/ (e, €;) :/ e Nilt=9)qpl),
0 0

In terms of (2.24) with = e; and (2.30), together with the notion of f/, it follows from
(2.20) that

1(Ve, Ve, P f) (@) = II(VeiVei{’toﬁ)(w)llﬁ
e M PP fi I (=)

<
(2.31) S n
e—)w‘t
S 2—e08 \E0(1=0)+260 7 0 € (0,1].
Next, thanks to (2.6), ||b||1,.c < 0o and (2.28), we obtain
2
: : ~(8reg)
(2.32) 1£22) = fMe + (y =z ee)llm S A7 o — il

8



where f : H — H is defined in (2.27), Hence, in light of (2.31) with g = ¢ and 3, = 8 A QTEQ
and (2.32), one infers that

1 Te
e 2
VeVl S < | gt
P b
1
~ 5+26/\a£2
This, along with (2.3), implies (2.22). O

3 Approximation of Semi-linear SPDEs with Holder
Continuous Drifts

The numerical approximation of SPDEs has been a very active field of research. Due to
the infinite dimensional nature of state space, in order to be able to simulate a numerical
approximation on a computer, both temporal discretization and spatial discretization are im-
plemented. The temporal discretization is achieved generally by Euler type approximations,
Milstein type approximations, and splitting-up method (see, e.g., [2, 5, 12, 16, 21, 27]), and
the spatial discretization is in general done by finite element, finite difference and spectral
Galerkin methods (see, e.g., [19]). In contrast to substantial literature on approximations
of semi-linear SPDEs with regular coefficients, the counterpart with irregular terms (e.g.,
Holder continuous drifts) is scarce. Whereas, our goal in this section is to make an at-
tempt to discuss strong convergence of an exponential integrator (EI) scheme, coupled with
a Galerkin scheme for the spatial discretization (see (3.3) and (3.4) below), for a class of
semi-linear SPDEs with Holder continuous drifts. With regard to convergence of EI scheme
for SPDEs with smooth drift coefficients, we refer to [18, 22, 23] for further details, to name
a few. Also, there is a number of literature on approximation of SPDEs with non-globally
Lipschitz continuous nonlinearities; see, for instance, [15].
Consider the following semi-linear SPDE on H

(31) dXt - {AXt + bt(Xt>}dt + th, t c [0, T], X() =T € IHL

where A, b, W are introduced in Section 2.
Thus, according to [28, Theorem 1.1], under (A1) and (A2), (3.1) has a unique mild
solution, i.e., there exists a unique continuous adapted process (X;):>o such that P-a.s.,

t t
X, = ez +/ et=)4p (X,)ds +/ =4 W,,  t>0.
0 0

For any n € N, let 7, : H — H, := span{e;,---,e,} be the orthogonal projection,
A, = m,A, bE”) = m,b, and Wt(”) = m,W,. With the notation above, we consider the
following finite-dimensional approximation associated with (3.1) on H,, ~ R"

(3.2) dX™ = {4, X7 + o (XYt +dw™ ) t>0, XY =x, =,

9



which is the Galerkin projection of (3.1) onto H,,. Since A,z = Az for any = € H,, and b,
is Holder continuous in terms of (2.6), by virtue of [28, Theorem 1.1], (3.2) has a unique
strong solution.

Now we define a numerical scheme to approximate Xt(n) in time, which is called discrete-
time EI scheme: for a stepsize 6 € (0,1) and each integer k£ > 0,

(3.3) Y = M i Lo (v Ns + AWy, v = a,

which is also named as Lord-Rougemont scheme (see, e.g., [14, (3.2)]), where AWén) =

W)

(ht1)s — Wk(gl), and continuous-time EI scheme

t
(3.4) y;<”)’5:e“‘nxn+/ elt=sa)Anpn) (v (m) )ds+/ (t=s)dnq (™ >0,
0 0

where t5 := [t/0|§ with |t/J] being the integer part of t/d. It is easy to see that Yk(gl)’é =
Yk(g)’(s for any k£ > 0.

To obtain the convergence rate of the EI scheme, we need the continuity of b; with respect
to t, i.e.

(A3) For ¢ >0ande € (0,1) in (2.5),

(3.5) |bs(z) — be(z)||m < c|s —t|7, s,t€[0,T],z € H.

The main result of this section is stated as follows.

Theorem 3.1. Assume (A1)-(A3). Suppose M +a—1=1ve€(0,3) and z € Z(A).
Then, there exists some C' = C(v,T) > 0 such that the following assertions hold.

(1) The average L*-error on [0, 7] satisfies

n),0 v 1
(3.6) _/ Bl X, — ¥ jar < oo + 5 )

n

(2) If in addition, there exists an v € (3,1] such that ||(—A)7b||7c < oo, then one has the
strong convergence estimate:

. 1
(3.7) sup E||X, — V0|2 < 0{52" + }

t€]0,7] AV

Remark 3.2. If 1 — a < §, then we can take 3 = 0 and (2.5) reduces to (2.7). Otherwise,
to ensure v > 0, we have to take $ > 0. See the example in Section 4 for more details.

10



Remark 3.3. For each n, the EI scheme (3.3) is an explicit one in finite dimensional, this
means we can compute Yk s k =1,2,... explicitly given }70(")’6. Moreover, Theorem 3.1 (2)
covers the result of the finite dlmensmnal case, see [14]. In fact, when H is finite dimensional,
(—A)" is a bounded linear operator, and the second term on the right side of (3.7) disappears.
In this case, we can take a =1, § = 0 and then v = 5. Thus

sup E|X; — ;"2 < C§°.
te[0,7)

Remark 3.4. To obtain the strong convergence estimate, as in the proof of Theorem 3.1
(2), we need to deal with

E| / A (X) — b (V) s

Noting that f(f [eAt=9)(—A)||ds = oo, if ||(—A)"Vul|7,. < oo for some v € (1/2,1], then this
term can be treated as in (4.14) below. On the other hand, by Theorem 2.5 (3), ||[(—A)7b||7.0
implies ||(—A)"Vul|7.o < co. For more details, see the proof of the Theorem 3.1. In fact,
the above trick is used to prove the pathwise uniqueness of the neutral functional SPDE, see
[11], where the condition [11, (H3)] is something like ||(—A)°Vul|70 < oo for some § > 0.

Remark 3.5. To avoid complicated computation, in the present setup we work only on
the case that the drift is uniformly bounded. Nevertheless, employing the standard cut-off
approach (see, e.g., [1]), we of course can extend our framework to the setting that the drift
coefficient is unbounded.

The following lemma provides us with a regular representation of the continuous-time EI
scheme (3.4).

Lemma 3.6. For any t € [0,7] and A > A, it holds that
()
t
= ez, +uy(z,)} + / =D — A)ud (Y™ 0)ds
0

t
+ /0 e(t_S)A{e(S_S‘S)Abg:) (Y((sn),ﬁ) . bs(}/s(n),d)}ds

t
[T (e ()~ (00) ds
1 « t
+ 5 Z/ e(t_s)A(vz(sfsg)Aeiu;\ — Vi“i)(}/s(n)’&)ds

3> [

1=n+1

t t
T / AUy / AT oy gyt (YD),

in which I is the identity operator on H.

11



Proof. Since A,x = Ax for any = € H,,, (3.4) can be reformulated as
AV, = {AY 0 et (v dr 4 et AW >0, VI = g,
For any A > A, let u) be the solution to (2.1), then by Theorem 2.7, for any x € U, H,,,

1 o
(3.9) (&,u;\ + Vi, ul + by + 5 > Via+ VA.u;\> (z) = M)Mx), te[0,T], wu)=0,
i=1
where Vzi = V,,V,,, the second order gradient operator along the direction e;. Applying
[t6’s formula, for A > Ar we deduce from (3.9) that
A"+t ()}
= {AY0 el (V) 4 (0 () + (Vard) (v )

oy 1 n).6
+ (ve(tté)“‘bg)(ﬁ;)ﬁ)u?) (Yt(n) ) —+ 5 Z <V§(t7t§)Aekui\) (Yt( ) )}dt

4 e(tft(s)Ath(n) + (Ve(t—trs)Ath(")“tA Y;(n),a)

= {A}/;(n)’é + Aui\(n(n),(s) 4 e(tft(;)AbEn) (}/I;gn),(s) o bt(n(n)’é)

8

n

n),0
<V§<t—t5meku2\>(yt( ) )

k=1

DO | —

n),0 — n n),0 n),0
F V) (SO E) b (1))

1 — . - . :
) Z(ngui\)(yt( )’6)}dt + el té)Ath( )+ (ve(t—t(g)Ath(n)U?) (Y;( )’6).
k=1
This, in addition to integration by parts, further implies that

t
/ A=Ay (8 L Ay )6)1
0

t t
= el TV ui(}én)"s)}‘o -+ / DALY (S 4 A (Y o))
0
t
= — (" ) (V) + M + g (wn) } + / Ae(t=nAy Mgy
0

t t
_i_)\/o‘ e(tr)Au;\(Y;(")";)dr—i—/o e(tfr)A{e(rfrg)AbSq?)(Y;(én),&) —br<Y;(n)’6)}d?“
t
+/0 e(t—r)Avu;\(Y;(n),(S) (e(r—r,;)Abg:) (Y;((sn),zs) . br(Y7‘(n)76>) dr

1 t 1 t
- (t—r)A 2 A (n),0 = (t—r)A/x72 , A (n),6
+ EZ/Oe (Vs ) (V0 2k§:1:/0e (V2 ) (¥9)dr

t
+ / el Aqw i + / (T g ) (V9),
0 0

As a consequence, the desired assertion (3.8) is now available. O

12



The following lemma concerns the continuity in the mean L?-norm sense for the displace-

ment of (}/t(n)ﬁ)te[O,T}-

Lemma 3.7. Let (A1) and (A2) hold and assume that the inial value x € Z(A). Then,

n),0 n),0 «
(3.10) t:}épT]EHK( e R P

Proof. To make the content self-contained, we here give a sketch although the corresponding
argument of (3.10) is quite standard. By virtue of (3.4), it follows immediately that

Y;(n)’é _ }/;(n)va — (e(t—t(s)A _ I)et(;Ax
8 n

ts
t—ts)A ts—ss)An(n n),0
+/O (164 _ T)olts—+9Ap(m) (y () g

58

t
N / é(e(t—ta)A _ I)e(tg—sg)Adw(n)
0

t t
+ / o4 (Y5 / A qpy ),

ts ts

Recall the elementary inequalities: for any n € (0, 1],
(3.11) I(=A)e ) <t and  [(=A) (e = D) <.

Next, according to Holder’s inequality and [t6’s isometry and by taking contractive property
of e and [|b||7.0 < 00 into account, we derive from (3.11) that

B[V, — Y0 <p || (et >té%nu%ﬁ

ts
4 / B (et — T)olls—s)Ap(m (v |24
Ot(;
+ / ||(e(t—ts)A _ I)e(té‘sé)AHf%ds
0

t t
+3 / E|re<t*86>/*bgz><szg">ﬁ>H%Hds+ [ e
ts
r e = D(=A) ) Asll
ts
. / o194 = D) (=) 2P (A et AP () s
0

ts
4 / 14— T)(— A) /2|2 (— ) 2e—DA|2, ds
0
! ) ! A
5 [ B s+ [ et s
)

ts

ts 0 ts
Sr 67+ 6° / (ts — s5)"“ds + 6 ) A¢ / e Pl
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00 t—ts
+ Z/o e (g
i=1
ts oo ts oo t—ts
<ré*+ 50‘/ s %ds + 0 Z )\ZO‘/ e Mt ds + Z/ e ?%ds
0 i=1 0 i=1 70

e > 1 _ 672)\2‘(157155)

L D e
i=1 " i=1 v

1
Sty
i=1 7'

Sr o7,

where in the penultimate display we used (2.20) with § = « and in the last step utilized
(2.3). 0

4 Proof of Theorem 3.1

With Theorem 2.5, Lemma 3.6, and Lemma 3.7 in hand, we now in a position to complete
the proof of Theorem 3.1. In view of (2.11), we deduce that there exists Ay > Ar such that
for any A > Ap

T
K S 1
(4.1) IVt |70 + [V (—A4) !\2T,oo+3/0 e % dslI Vi 7o < 55

In what follows, we shall fix A > Ay so that (4.1) holds. Since

n),0 n n n
1X: — Y2 < 201X+ (X)) — V0 — (v >||H+2||ut<Xt> uM Y013
<X+ () = YO = PN+ X - YO,

we have
n (5 n),0 19 n),0 n),0
(42) T =EIX - YR < SEIX () - Y - ad ()

According to [28, Proposition 2.5], one has

X, +uMXy) = (x—i—uo /{)\I— (t=5)A u)(X,)}ds
(4.3)

t
* / =AW, + (Vaw,ud) (Xo)}.
0
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In view of (3.8) and (4.3), we find that
n),0
00 < 10{ e (@ = @) I + lle (1 (@) — u (w)) I
t 2
48] [ 01— () - )|
0 H

t 2
E (t—s)A (s—sg)Ab(n) Y(n),(5 . bs Y(n),d d H
| [ eI el 0700 70 as |

S8

2

t
+ E /O e(tfs)Avu;\(ifs(n),zS) (e(sfs(;)Abk(g;L) (}/s((sn)ﬁ) . bs(Y(n),§)> ds

S

H
2

n
i=

t
(4.4) +E| Y / e“—s)A(vis,Sé)Aeug—v;ug)(yjm)ds
i—1 0

00 t
+E| Y / e“*S)A(vﬁiug)(}g("%é)ds
i=n+10

t t
+E / = AqW, — / elt=sa)Aqy (™
0 0

H

2

H

2

H

t t 9
+E / eli=s)4 (vdWsU?> (Xs) — / elt=94 (ve(S*%)AdWs(”)u?) (Ys(n)’d) HH}
0

0
= 19(AM + AP -+ AP).

To achieve the desired assertion (3.6), in the sequel, we aim to estimate the terms Agi),i >1,
one-by-one. By the contraction property of e'* and thanks to (4.1) and z € Z2(A),

1A
A

1
>\_72l.

1 [e.e]
1 2
(4.5) A AP Sl -zl S 55 Y0 Mwe)’ S <

" j=n+1

Taking Holder’s inequality and (3.11) with n = ae/2 into consideration and taking advantage
of contractive property of et and ||b]|7.. < 0o as well as (A3), we deduce from ae € (0,1)
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that
t
A <, / E[bs, (Y9) — b, (V) s + / E[|b(Y9) — b,(Y)|2ds

b [ Bl ~ T, s

0

t
T / E[Je94 {54 _ T}b,(Y))|2ds
0

(4.6) NT §9° 4 Z / —2X;(t— 55)E (Y(n)d) 61>2d8

i=n+1

[ A AP )~ TR ) s

t
<y oy / e PR b, (Y0)|Bds + 57 / (= 5) " E||b(Y.)9) |2ds
0 0

§T 50(6 _|__

1

An

By the aid of Jensen’s inequality, in addition to (2.7), (2.11), (3.10), (3.11), (4.1), contractive
property of ¢! and ||b]|7.. < 0o along with (A3) yield that

AP < / E[by, (Y.09) — b, (V.4 |2ds

b [ Bl 029%) - b0 s
0

t
(4.7) T / B[V (Y09) (— A) /2 2] (— A)o=/2(eo=5)4 _ T)[2ds
0
t
T / B[V (V09) (— A 2] (— A) ™ (x, — T)[Pds
0
1

55a8+ )\%y’

where we have also used 3 > v = % +a —1>0. We thus obtain from (2.22) that

n

A [B(300 e 2 ) s

=1

<o / (ZA”H V2u) (V) ) ds

<0,
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where we have used sup,-{(1 —e *)z™"} < oo for v € (0,1). Also, with the help of (2.22),

A0S [E( D0 I ) as

0

1=n-+1
(4.9) L Vi (o2 y (m 2
- S = E(ZAHV i) ds
n J0 i=n+1
< 1

Employing It6’s isometry, (2.3) and (2.20) with 0 = a/2, we get that

n t
53 [leneoaney [eneon ey

i=n-+1
Z / —2); sd8+5a2)\a/ 2)\isd8
(4.10) =
R
s Z )\i o Z)\LO‘
i=n+1 =1 "7
1 a
S F +0°.

Let
/ [ DAV (X,) — (V) (V)12 dr

Again, an application of It6’s isometry implies that for any 6 € [0, «),
00t
A <s{o ) [ = e T 00 e

> [ BITad )

i=n-+1

g3@t+cl{aezxf [ BN o ar
. 0

20 S [ B ar)

i=n-+1

<30, + e {0% + X0,

(4.11)

for some constants ¢y, ca > 0, where we have used (2.12) in the last procedure.
Next, we will use different techniques to estimate Aig) and A§9) under the conditions of
assertion (1) and (2) respectively.
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(1) By Fubini’s theorem, we deduce that

t t
5 / ¢ 240, ds — 3 / VE|(Va)(X,) — (Vul) (v,)] ( /
0 0 "

T t
§3( / ||e5A||?%ds||v2uA||%,m) [ e
0 0

Thus, it follows from (4.11) that

t—r

e_2As||eSA||_2%ds) dr

t T t
(4.12) / e—2ASAg9>dsg3< / ||esA||;2ds||v2uA||2Tm> / P ds 1 067 4 A0},
0 0 0

Using Holder’s inequality and Fubini’s theorem, we deduce from (4.1) that

t
/ eiZASAgg)dS
0

E /0 t e /O A — AV (X,) — 1 (V) edr) ds

|
.Mg

=1

t S 2
E/ (/ MR A (W (X,) — (V). e)dr ) ds
0 0

t S
/ </ e~ AN (N 1 \))dr
7 Jo 0

/ ” AWM= (N 4 X\ E(u) (X,) — up (Y,), ei)er> ds
0

T T

I
AM8

=1

s

7

X

oo t s
< Z/ / e~ M HA==22r (N L OB (X,) — uM (V.9 e)2drds

=Z / ([ 04 s ) B w009,

t
= [ BB - ) s
0
t
< IV [ T,
0

which, combining with (4.4), (4.1) and (4.12), further leads to

t
/ e—2Angn),6dS <
0

N | —

/ e T 0ds + C{6” + A, %1 + 19 Z / e AVds.
0

i=1,i#3
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We therefore obtain that

t 8 t
(4.13) / e PMT(M0ds <38 ) / e MADds + {8 + N,01.
0 i=1,i#3 "0

Finally, taking 6 = ae, combining (4.5)-(4.10) with (4.13), noticing 2v € (0, ac), we arrive
at

t
1
—2Xs1(n),0 2v
/ ry°ds <rd +—)\2V
0

Thus, (3.6) holds. R
(2) If [[(=A)"D||7,00 < 00, then by Theorem 2.5 (3), taking A = max(Ar, \}) and noting
that v € (1/2, 1], we derive from Hoélder inequality that

] [ <o) - ol
< / A=Ay asE [ AT () — () s

(4.14) t t
< / 572005 (=AY T 3, / EJLX, — V9| 2ds
<c EJIX, - Y s,
0
So we have
A <co | EJIX, - Y9 s
0
(4.15) L CE Ot I ) ) (X) — (v

t
¢ [ Blx, - v s
0

On the other hand,

t
0, <E / P4, V2 X — Y00 2dr
0

T
< sup E|LX, — Y92 (/ e 412, drl| V2u A||Too)

rel0,t] 0

Combining this with (4.11) and (4.1), we obtain

T
A <3 ([ 1A s Ve B ) sup BIX, - YOS+ 008+ 177)
(4.16) N <04
< — sup E|X, — Y,[9Z + C{s? + \;%}.
38r€[0t]
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Then (4.4), (4.15) and (4.16) yield that

1 ¢ i .
sup T2 <~ sup T2 4 C{6? + X%} + C sup T"™9ds + 19 sup AW
re[0,] 2 refo 0 ref0,s] s el
We therefore obtain that
8 t
(4.17) sup T2 < 38 Z sup AW+ C{6% + X7} + C/ sup ['(M9ds.
0 re€l0,s]

rel0,t] i=1,i43 rel0,t]

Again, taking # = ae, combining (4.5)-(4.10) with (4.17), noting 2v € (0, ae), we arrive from
Gronwall’s inequality that at

sup D0 < 52 4

T 20"
rel0,t] )\ny

Thus, (3.7) holds. This therefore implies the desired assertion.
Finally, we give an example.

Example 4.1. (Stochastic reaction-diffusion equations) Let (A, Z(A)) be the Dirichlet
Laplacian on a bounded domain D C R? and let € > ¢ be a constant. Let H = L*(m) for
m be normalized Lebesgue measure on D. Let —A = (—A)¢ has a discrete spectrum with
eigenvalues {\, },,>1 satisfying

Cn% <A\ < Cn%é, n>1,
for some constant C' > 1. Consider the following semi-linear SPDE:

Since € > £, then we can take o € (0,1) with 1 — o > £ such that (A1) holds.

1) If € > d, then we can take a € (0,1) with £ < 1 — a < % such that (A1) holds.
2e 2

By Remark 3.2, we can take § = 0. In this case, we can choose ¢ € (0,1) such that
5+a—1>0. We assume that there exists ¢ > 0 such that

(4.19) 1be(2) = be(y)llee < el —yllg, ¢ €[0,T], x,yeH
Let § = Tn~ 4. Then the following assertions hold.

(i) If |b|l7.00 < 00, the average L2-error on [0, 7] satisfies

1 [T " ;
T/ EJ|X, — Y, [t < CndCH2e),
0
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(ii) If there exists an € (3, 1] such that ||(—A)"b||70 < o0, then the strong conver-
gence rate has the following estimate:

sup E”Xt _ )/t(n),(;HIZHI < Cn—%(€+2a—2).
t€[0,T

e € (5,d], then 1 —a > 5~ means 1 — a > 5. By Remark 3.2, as to be strictly

2) It 4 d], then 1 . 1 L. By Remark 3.2, § has to be strictl
positive such that % +a—1> 0 (the inequality: % +a—-1< % is always
true). In this case, we assume that there exists ¢ > 0 such that

(4.20) 16e(2) = be()llex < cllw —yllZp, ¢ €[0,T], x,y€H.

Let § = Tn~. Then the following assertions hold.

(i) If ||b||7.00 < 00, the average L2-error on [0, 7] satisfies
1 . (n),d)2 — 28 (e420—24+20Aae?)
0

(i) If there exists an v € (3, 1] such that ||(—A)7b||7. < oo, then the strong conver-
gence rate has the following estimate:

sup E||X; — Yt(n),éu]%I < O~ (e+2a—2+2BNac?)
te[0,7]

Remark 4.2. In this paper, we have only studied the average L?—error and strong conver-
gence for the EI scheme. In the future, on the one hand, we may extend the EI scheme to
some other equations with singular drift, for example: the stochastic Hamiltonian system in
infinite dimension with singular drift; on the other hand, we may develop other schemes to
SPDEs with singular drift, for instance: multilevel Monte Carlo method (see [3]).

Acknowledgement The authors would like to thank the associated editor and referees
for their helpful comments and suggestions.
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