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ABSTRACT. Retinex theory deals with compensation for illumination effects in
images, which has a number of applications including Retinex illusion, med-
ical image intensity inhomogeneity and color image shadow effect etc.. Such
ill-posed problem has been studied by researchers for decades. However, most
exiting methods paid little attention to the noises contained in the images
and lost effectiveness when the noises increase. The main aim of this paper
is to present a general Retinex model to effectively and robustly restore im-
ages degenerated by both illusion and noises. We propose a novel variational
model by incorporating appropriate regularization technique for the reflectance
component and illumination component accordingly. Although the proposed
model is non-convex, we prove the existence of the minimizers theoretically.
Furthermore, we design a fast and efficient alternating minimization algorithm
for the proposed model, where all subproblems have the closed-form solutions.
Applications of the algorithm to various gray images and color images with
noises of different distributions yield promising results.

1. Imtroduction. Decomposition an image into meaningful components is the real
substance of many tasks in image processing, such as image denoising, which de-
composes the image into signal parts and noise parts [1, 2]; image structure-texture
decomposition, where images are modeled as a combination of geometrical infor-
mation and textural information [3, 4]. Retinex [5] is a related but different topic,
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which was originally proposed by Land and McCann [5] as a model of color percep-
tion of the human visual system. It reveals that human vision tends to see the same
color in a given image regardless the light and the color of objects remains relatively
constant under varying illumination. Thus, the goal of Retinex is to decompose the
illumination from the reflectance in given images. In fact, such problem also exists
in medical image processing, the so-called intensity inhomogeneity, which leads to
the intensity variation even for the same tissue within an image. The importance
of Retinex is that it can facilitate other image analysis techniques such as segmen-
tation, registration, etc., that relying on the assumption of uniform intensity.

To set up the Retinex problem mathematically, we focus on decomposing a given
image I into the reflectance component R and the illumination component L as

The following general assumptions exists as the basic laws for Retinex:

e The reflectance R(x,y) is a piecewise constant function;
e The illumination L(z,y) is a spatial smooth function.

Since the logarithmic transform can preserve image edges and simplify the relation-
ship between R and L, most Retinex algorithms are proposed in the logarithmic
domain, which gives

z(x,y) :T(xvy)—i_l('x’y)v (2)

where i =log(I), | =log(L), r = log(R).

Various implementations and algorithms have been studied for Retinex problem.
Path-based methods were originated by Land and McCann [5, 6], and further s-
tudied in [7, 8]. Recursive algorithms were proposed by using a recursive matrix
calculation to replace the path computation in [9, 10]. Homomorphic filtering type
Retinex algorithms modeled the reflectance as a low-pass version of the given im-
age based on a convolution with a wide Gaussian kernel [11, 12]. Bertalmio et al.
[13] proposed a kernel-based Retinex algorithm relying on the computation of the
expectation value of a suitable random variable weighted with a kernel function.
Retinex was also considered in an alternative perspective [14, 15], the so-called
color correction, both of which were built up in the variational framework.

In PDE-based models and variational formulations, Morel et al. [16] formulated
the illumination as a spatially smooth image and the reflectance as a piecewise
constant image, which was solved as a Poisson equation by Fast Fourier Transform
(FFT). Based on the assumption of the spatial smoothness of the illumination,
Kimmel et al. [17] proposed a variational model by penalizing on the reflectance.
Elad [18] proposed a noniterative Retinex algorithm by utilizing two bilateral filters
as the regularization term. Ng and Wang [19] proposed a similar model by penalizing
both the reflectance and illumination images. Ma and Osher [20] developed a Total
Variation (TV) [1] based model to extract the reflectance image with a data term in
gradient field. Zosso et al. [21] further extended the TV-based Retinex models to
a unified non-local formulation. Chang et al. [22] proposed a variational model for
Retinex by representing the reflectance component with more details by a learned
dictionary. Duan et al. [23, 24] investigated variational models for Retinex using
9 quasi-norm to regularize the reflectance image. Liang and Zhang [25] proposed
a convex Retinex model, which decompose the gradient field of images into salient
edges and relatively smoother illumination field.
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Various algorithms have gained great success in dealing with Retinex problems.
However, these methods paid little attention to the noises contained in given im-
ages, as they are all based on the image model (1), which does not model noises
as a component. Especially, when the logarithmic transform is taken as (2), the
distribution of the noises becomes more complicated, and even harder to remove.
In fact, illusion (intensity inhomogeneity) and noises may simultaneously exist in
given images, such as MR images, ultrasound images etc.. Therefore, when the
observed images are corrupted by noises, these methods lost their effectiveness in
recovering the reflectance image with high quality.

1.1. Our contributions. In this paper, we propose a general variational model
for images in presence of both illusion and noises, that is we consider the following
image model

I(z,y) = (R(z,y) - L(z,y)) ® n(z,y). (3)

The multiplicative relation between R and L can be transformed into the addition
one as follows

I(J?,y) = V(a:,y) D n(x’y)v s.t., U(I,y) = T(a:)y) + l(x,y), (4)

where v = log V', @ represents the effect of noises, which indicates 4+ for additive
noise and x for multiplicative noise. Based on (4), we reported in [26] the idea
of recovering the noise-free image V from the given image I, and decomposing it
into the reflectance r and illumination [ in the logarithmic domain. However, only
preliminary results were presented and some advantages were observed, where we
extend the idea in both theoretically and numerically in this work. To be specific, we
use total variation as the regularization for V" and choose the date fidelity according
to the distribution of the noise model. For the decomposition, the first- and second-
order TV regularization are implemented as [25]. Furthermore, we propose an
efficient alternating minimization (AM) algorithm, all subproblems of which can be
efficiently solved by the closed-form solutions. Numerous experiments on synthetic
and real images demonstrate that our model gives better results in comparison
with other state-of-the-art Retinex methods, especially when noises is significant.
In addition, three main contributions are presented:

1. We propose a variational model to recover images corrupted by illusion and
noises, which is guaranteed with the existence of minimizers.

2. Our proposed model is capable to deal with different types of noises, such as
Gaussian noise, impulsive noise [27] and Poisson noise [28] etc., as long as we
modify the data fidelity term according to the noise distribution.

3. Our framework can be easily extended to other Retinex models, such as Ng
and Wang’s Retinex model [19], £° regularized Mumford-Shah model [23, 24],
etc..

The rest of the paper is organized as follows. In Section 2, we introduce the
notations that will be used in the rest of the paper. We briefly review the variational
models for Retinex. In Section 3, we propose our new model for recovering images
corrupted by illusion and noises. Furthermore, the existence of the solution to the
proposed model is provided and the proofs of the mathematical results are shown.
In section 4, we design an alternating minimization algorithm for the proposed
model and discuss the solutions to each sub-minimization problem. In Section 5,
we present the numerical experiments on both synthetic medical images, visual
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illusion images and real medical images, color images. We then conclude the paper
in Section 6 with some final remarks and future prospects.

2. Setting and previous works.

2.1. Discretization. Without loss of generality, we present a grayscale image as
a two dimension matrix of size N x IV, the size of matrix here can also be M x N.
We denote X the Euclidean space RY*¥ which is equipped with the usual inner
product and Euclidean norm as (-,-) and [ - ||z, respectively. The discrete gradient
operator is a mapping V : X — Y, where Y = X x X. For u € X, Vu is given by

(Vu)jn = ((DFu)je. (DFu)je),

with
o Uj k4+1 — Ujk ].S/{ISN*].
(DFu)jr = { ’ ’
uj1 —ujN, k=N,
. Ujpie — Ujk, 1<FSN-—1
(Dyw)jk = { o o ’
Uik —ungk, J=2DN,

where j,k = 1,...,N. Here we use D;” and D;‘ to denote forward difference
operators with the periodic boundary conditions.
We also equip the space Y with the inner product (p,q) = (p*,q¢') + (p?,¢?)

and the norm ||p|; = (pi;)? + (p7 ;)% and ||pll2 = \/(p,p). The discrete
1<i,j<N
divergence operator div = —V* is a mapping Y — X, where V* is the adjoint of

V. Given p € Y, we have
(divp); = (Drph)ju + (Dyp*)

with
1 1
(Drph) = 4 Do T Pak-u 2<k<N,
zP )ik = 11 E—1
Pj1 =~ Pj,N> =5
2 2 .
(-57 2)_ o pj,k_pj—l,ka ZSJ SNv
y P )ik = 2 2 i1
P1k = PNk> J=1

where lo); and Dy_ to denote backward difference operators with the periodic bound-
ary conditions.

2.2. TVH1 model. We review some important variational models for Retinex.
Kimmel et al. [17] proposed a variational Retinex model as follows

1 . B .
min S = i3 + ol Vel + 2196 = )3, 5)

where o and /3 are positive constants. The first term in (5) is used for the fidelity,
while the reflectance part and the illumination part are regularized by the TV norm
and H' norm, respectively.

Ng and Wang further studied the total variation model for Retinex in [19], where
they explicitly minimized both r and [ in the energy functional with box constraints

. 1 ) B T
Jmin o= r =il + ol Vi + SV + ZIE, ()

where 7 is a positive constant, and the constraint [ > ¢ is given based on the
assumption that R is the reflectivity and 0 < R < 1.
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2.3. HoTVL1 model. Recently, Liang and Zhang [25] presented a high order TV
based model for reflectance and illumination decomposition, which reads
. L. 2 2 T2
repin o olli—r =iz + (Ve + IV + 513, (7)
where the first- and second-order TV are introduced to regularize the reflectance
and illumination, respectively. The box constraints are imposed on both r and I,
which vary with different applications.

2.4. LOMS model. Duan et al. [24] built up an unconstrained variational model
based on the Mumford-Shah formulation for images with intensity inhomogeneity
as follows

1 B 2 T2
min S&(r,1) + [ Vrlo + LIVUB + 23 ®)

T7

where E(r,l) = Y. (Y K(zp — xq)(ig — 7q — I)?)), and for a given pixel p € ©,
pEQ  qEN,

N, = {q| Ip — ¢q| < p} is its neighborhood with a radius p. In (8), r and [ are
regularized by the ¢° quasi-norm and the H' norm, respectively. Unlike other
methods, LOMS model gives an exact piecewise constant solution of r, which is a
preliminary results for structural segmentation. Thus, the ¢° regularized Retinex
model has been reformulated for three-dimensional applications based on the high-
order regularization in [29].

3. Problem formulation.

3.1. The proposed model. In real applications, the observed images are usually
contaminated by both illusion and noises. Consequently, we aim to recover the
noise-free image, and decompose it into reflectance image and illumination image.
More specifically, we propose a novel Retinex model by combining the HoTVL1
model (7) and a data fidelity term deriving from the noise models. We use the
additive Gaussian noise as an example, and propose the following unconstrained
minimization problem

min F(v,7,0) i= S IT=€" I3+ alVe |+ BIVrll +1V2 + S o —r U5+ 213, 9)
where V' = eV according to the image model (4). The main advantage of using
the exponential function other than the logarithmic function is its convexity [30].
Obviously, the above model can be easily adapted to other noise models by choosing
an appropriate data fidelity term, which will be discussed in the section of numerical
experiments.

3.2. Existence of solution. Although the energy functional F(v,r1) in (9) is
non-convex, we are still able to show the existence of its minimizers. On the first
place, we prove that the objective function F(v,r,1) is coercive as follows.

Lemma 3.1. Assume that Ker(V) N Ker(V?) = {0}, the functional F(v,r,l)
defined in (9) is coercive.

Proof. The proof is motivated by Lemma 3.8 in [30]. The lower bound of the discrete
TV is given by

Vil = V(uu,m)ﬂ(ryu,k))gz%nuul,

1<j,k<N
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where L is the first-order difference matrix defined by the one-sided difference matrix
on the horizontal direction D, and the vertical direction D, as

1= (1)

The null space of L is the set {c¢;1} with ¢; being a scalar. On the other hand, the
lower bound of the discrete high-order TV is given as

IV = (el 1)+ (g ) + (e (s 1))+ + (1 (G, )

1<5,k<N
1 ) . . . 1
>0 S el B+ ey G+ e (G ] + Ly (G )] = 5 1,
1<5,k<N
where H is defined as
D$$
_ | Day
H = D, |’
Dy,

with Dy, Dyy, Dy, and Dy, being the second-order difference matrixes. The null
space of H is the set {c21} with ¢z being a scalar.

Let Fi(v,r,l) = |lv —r —1||3 and Fa(r,1) = B||Lr|1 + v|[HI||;. Based on the
assumption that Ker(V)N Ker(V?) = {0}, we can denote

T ={(v,r1) ]| gfl(v,r,z) + Fo(r,1) = 0}.

We consider two cases: (i) (v,7,1) ¢ I with ||(v,r,1)[l2 = oo ! and (ii) (v,r,1) €T
with ||(v,r,1)||2 = oo, respectively.

For case (i), consider (v,r,1) ¢ T with ||(v,7,1)]|]2 = 0o, we can discuss according
to the value of v, r and [ and easily obtain

1
Fo.r) 2 50T =3+ SR n ) + Fatr) + 2l - ox.

For case (ii), consider (v,r,l) € T, there is v =r+1, r = ¢11, and | = ¢21. Since
[[(v, 7, D)|l2 — o0, i.e., at least |c1| — o0 or |ca| — co,we have

1 » T
Flo,m,1) 2 51T [3+ 23 - oo.
O

In order to establish the existence of the minimizers for (9), we first present
some preliminaries for the bounded Hessian (BH) space. Let € be an open subset
of RV*N with Lipschitz boundary. Then we set BV(Q) = {u| |u|rv < oo}, where
lulry = > |Du|. We consider v, r in the bounded variation space BV(Q2) and
[ in the bounded Hessian space BH((2), where BH(Q2) = {I| ||D?l||; < o}. We
extend some main properties of the high-order total variation space in [25, 31] to
the following forms of the discretized space BH({2).

e Suppose that {u*} ey is bounded in BH(2), then there exists a subsequence
{uki};en and u € BH(Q) such that {u*i},cy weakly* converges to u.

I, +, )|z is the usual £2 norm defined as ||(v,7,1)||2 = Vv + r2 + 2.
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e If O has a Lipschitz boundary and it is connected, then it can be shown that
there exists positive constants Cy,Cs such that

[Vully < C1||D?ully 4 Col|ulls. (10)

Theorem 3.2. The problem (9) has at least one solution (v*,r*,1*) € BV(Q) x
BV(2) x BH(Q).

Proof. Let us pick a minimizing sequence (v™, 7™, ") € BV(Q) x BV(Q) x BH(2).
Since F is coercive, (v™,r™ ™) must be bounded. So we have F(v",r™ ") —
inf F(v,r,1) asn — oo. Then, there exists a constant M > 0 such that F(v™, r", ") <
M. Thus each term in F(v™, ™ ") is bounded, i.e.,
Vel < M, (I3 < M, V27 < M,
Ve |lr < M, [T = e |I3 < M, o =" =1"||3 < M.

First, since r™ € [A,0], [|r"[1 = [, |r"|dz < |A[|Q], where A = minlog(),] €
(0,1] and |2] is the area of 2. Hence, [|7"|gy(q) is uniformly bounded. By the
compactness property of BV(Q2) and the relative compactness of BV({2) in ¢}(Q),
up to a subsequence also denoted by {r"} after relabeling, there exists a function
r* € BV(Q) such that (a) 7™ — r* strongly in £*(Q), (b) ™ — 7* ae. z € Q,
(¢) Vr™ — Vr* in the sense of measure. The lower semi-continuity of the total

variation leads to
([Vr*||y <liminf ||Vr™||;. (11)
n— 00

Similarly, we can derive that {I"} is bounded in £*(£2). By virtue of the embedding
inequality (10), we also have

IV |ly < CLID?M |y + Calli™ ||y < M,

where M’ is a constant number for all n € N. Thus {I"} is uniformly bounded
in BH(2), up to a subsequence also denoted by {I"} after relabeling, there exists
a function * € BH(Q) such that (a) I — [* strongly in ¢1(Q), (b) " — [* a.e.
x € €, (¢) V2" — V2* weakly in BH(f2). The lower semi-continuity of ¢2-norm
and ¢'-norm leads to

10°[3 < tim i 073
- (12)
1921 |y < liminf [[V207 .
Next, similarly since v™ € [A,0], [[o"||1 = [, [v"|dz < |A[|Q|. Hence, [[v"||gv(q)
is uniformly bounded. So ||€vn||BV(Q) is uniformly bounded. The proof of v is
the same as r, up to a subsequence also denoted by {v"} after relabeling, there
exists a function v* € BV(Q) such that v™ — v* a.e. x € Q. Then, by the lower
semi-continuity of the total variation and £?>-norm, we also have

Ve ||; < liminf || Ve*"
n—o0

13
, (13)

(I[T— e 5

2 <liminf |I — "
n— o0

Finally, since " — r* a.e. € Q, I = [" a.e. x € Q, v — v* a.e. x € (2, Fatou’s
lemma gives that

" = = [} < limming o — " = 173 (1)

Combining inequalities from (11) to (14), we deduce that
F*,r*, ") < liminf F(o", r", ") = inf F(v,r,1).
n—oo
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which indicates that (v*,r*,1*) is a minimizer of problem (9). This completes the
proof. O

4. The alternating minimization algorithm. In this section, we discuss the
minimization of (9). Since the variables v, r and [ are coupled together, an accu-
rate joint minimization can be costly. Thus, we use the alternating minimization
algorithm to solve the minimization problem (9), through which one can obtain the
minimizer approximately [32, 33, 34]; see Algorithm I.

Algorithm I: Alternating minimization algorithm for (9)

1. Initialization: choose v* = 0 = log(I) and select the parameters a, 3, v, ,
T
2. Iterations:

1
o' = argmin S — €3+ a| Vel + Sl —r =073 (15)
r" = argmin B|Vr|; + gHv”H —r=1"3% (16)
. . fyon n T
T N 1 (17)

3. End till the stopping criterion meets:
max(R(r™,1")) <1075 or n > 5 x 10°,

where the R(r", ") is defined in section 5.

4.1. Sub-minimization problem with respect to v. In (15), the gradient and
exponential function are coupled together, which increases the difficulty of com-
putation. Therefore, we introduce a new variable u = e”, and reformulate the
minimization problem (15) as the following constrained minimization problem

1 %
min  =||I — ul]? + o||Vul[i + = |lv —r = 1|3,
win <1 =l + ol Vally + S0 - — 113 "

s.t., u=-¢e".

We are going to minimize the variable u, which belongs to the category of £!-
regularized problems with the general form as follows

min [ ®(u)], + H(u), (19)

where both ||®(u)||; and H(u) are convex functions. The key idea to efficiently
solve the minimization problem (19) is to split the two portions in (19) as [33, 34].
For our case, rather than considering (18), we introduce another auxiliary variable
p and consider the following constrained optimization problem

1 %
min =[] —ul|? + o +Zlv—r—=13
min 27— ull3+ allplly + 5o —r — 1]3 o0
v

st., u=-e", p=Vu.
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Based on the augmented Lagrangian method, we can obtain the equivalent uncon-
strained optimization problem as
. 1 v
max min £(v,u,p; Ar, Az) = 2|1 —ul3 + allplls + Eflo —r — 13 + (Ar,u—e?)
Aq,Aq v,u,p 2 2 (21)
r » T
0~ e¥3 + (A, — V) + 22 lp — Vul,

where Ay and Ag are Lagrange multipliers, and rq, ro are positive penalty param-
eters. It is straightforward to separate (21) into the following three subproblems

" = argmin (AT, —e") + %1 lu™ —e”|13 + gHU — " =13 (22)
.1 r ntt AT 2 7 A3 2
+1 _ 2 1 1 2 2 .
S argmin §||[ —ullz + EHU — (" - Z)HQ + EHV“ - (" + E)Hy (23)

n . n T2 n
P =argmin allp|i + (A3, p) + 5 [lp — VU 5. (24)
P

The subproblems (22), (23) and (24) can be efficiently solved based on closed-
form solutions. For (22), its Euler-Lagrange equation gives a nonlinear equation
due to the exponential function of v. Let g(v) = (A}, —e”) 4+ 3 |lu™ — €"[|3, which
is linearized by its Taylor expansion as follows [35]

g(v) ~ < 117 _e'un> i %Heun _ ’LLn”% + << ;L7 _eq,"> r <eyn . un7 ey">7v . ,Un>'
By adding an extra proximal term [36] and deleting the constant terms, we arrive
at the following minimization problem for v

n

n n 1
mvin <r1<ev —u e’y — Ale? ,v>+§||v—v"\|§+g||v—r”—l”||§,

the solution of which gives us

gt ATe” e (e —ut) $ o 4 p(r" + 1)

. 25
T (25)

For (23), its optimality condition gives us the following linear equation
(T4+r)T —raA)u=1+ ree? - AT — rodivp™ — divAg, (26)

where 7 is the identity operator. By the periodic boundary condition for wu, (26)
becomes a block circulant system, which can be efficiently solved by the fast Fouri-
er transform (FFT). Denoting F(u) as its Fourier transform, we can express the
solution to u as follows:

un+1 :]__,1 <]:(I+T16vn+l —Ai‘)—]—'(b;)]‘—(rzpn’l _'_A;L,l)_]_—(ﬁy)]_—(szn,2+A;L,2)>

(1 +11)Z — r2(F(Dz )F(DF) + F(Dy ) F(Dy))
(27)
where p" = (p™',p™?), Ay = (A3, A7)
For (24), we can efficiently solve it using the shrinkage operator as follows

); (28)

n
p" ! = shrink(Vu" ™! — =2 @
T2 T2
where shrink(w, ) = %~ * max(||w|; — A, 0).
. Tl b0 . _
Besides, we update the Lagrange multipliers A; and As according to their gra-
dient ascent direction as

AT = AT g (T — e,
AT = AL +rp(p" T = Vut).

n+1
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4.2. Sub-minimization problems with respect to » and [. As observed, both
the sub-minimization problems with respect to r and [ are ¢! regularized optimiza-
tion problems. Therefore, we can discuss the solutions to (16) and (17) together.
Similar to the subproblem of u, we separate the ¢! term and ¢2 term by introducing
new variables £ = Vr and y = V?I, and solve the corresponding constrained opti-
mization problems based on the augmented Lagrangian method. Here, we omit the
implementation details and provide the updating scheme to all variables as follows

Pt = argmin Sllo™! —r 173 — (A3, Vr) + e - V3 (29)
s

"t = argmin B|z|)1 + (A§, x) + EHCC — Ve tg; (30)

2
P4 = argmin G0t 1S - (A, V) + -V S ()

n : n r4 n
y"! = argmin vyl + (AL y) + 5 lly = VIS (32)
Yy

where Ag and A4 are Lagrange multipliers, and r3, r4 are penalty parameters.

For the subproblem (29) and (31), we can solve them using the FFT under the
periodic boundary conditions. For the subproblem (30) and (32), there are the
closed-form solutions based on the shrinkage operators. In addition, we update the
Lagrange multipliers as follows

AT = AR 4 rg(xm T — Vet
APt = AL+ (y" T = VA,

5. Numerical experiments. In this section, we conduct a series of experiments
on synthetic images with different illusions and noises of different distributions to
demonstrate the performance of the proposed method.

5.1. Tests of gaussian noises. There are several parameters in our model (9), i.e.,
the regularization parameters «, [3, 7, the penalty parameter p and the theoretical
parameter 7. The regularization parameter o and 3 are most critical parameters in
our model. In the numerical tests, we choose a from a = 0.001 to a = 0.1 according
to the severity of noises while choose g from $ = 0.001 to f = 0.05 depending on
the illusion. For different test images, the parameters v, u, 7 are fixed as v = 0.08,
p = 0.7and 7 = le — 5. All other penalty parameters are set to r; = 0.2, for
1=1,2,3,4.

Three other variational methods, including TVH1 model [19], HoOTVL1 model
[25] and LOMS model [24], are evaluated and compared with our model. We list the
implementation details of each algorithm as follows

® TVHI: the model is sensitive to the parameter of the regularization term on
reflectance. We adjust § from 5 =0.1to =25, and fix a =0.1, 7 =1e — 5
for different examples.

@ HoTVLI: the model is sensitive to the parameter of the regularization term on
reflectance. We tune « from o« = 0.01 to « = 0.1, and set § = 10, 7 = le — 5.
The box constraints are fixed as B, = [—20,0] and B; = [—20, 0] for the best
performance.

® LOMS: the model is sensitive to the parameter of the regularization term on
reflectance. We choose « from @ = 0.01 to @« = 0.1, and fix =1, 7 = le— 5.
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5.1.1. Stable performance for noises. In magnetic resonance imaging (MRI),
the reconstructed images are often corrupted by the bias field due to the inhomoge-
neous illuminations. We use two slices of T7-weighted brain MR image as examples,
which are contaminated by 3%, 5%, 7%, 9% noise and 40% intensity non-uniformity
(downloaded from McGill BrainWeb: http://www. bic.mni.mcgill.ca/brainweb/).
Both the recovered results and zoomed details of TVH1 model, HoTVL1 model,
LOMS model and our model are displayed in FIGURE 1. It can be seen that al-
1 comparable methods are sensitive to noises, while the proposed model can well
remove the noises and the intensity inhomogeneity simultaneously. On the other
hand, we compute the Peak Signal to Noise Ratio (PSNR) and Mean Structural
Similarity (MSSIM) to quantitatively evaluate the results, which are listed the re-
sults in TABLE 1. As observed both PSNR and MSSIM are in accordance with
the visual results, that better values are always achieved by the proposed model.
Since our model uses the same regularization terms for reflectance and illusion as
HoTVL1, high PSNR and MSSIM are mainly due to the effective control of the nois-
es. Note that we are using ETV to represent our model in FIGURE and TABLE.

3% 5% 7% 9%

PSNR  MSSIM| PSNR  MSSIM| PSNR  MSSIM| PSNR  MSSIM

TVH1 26.8369 0.9436 | 25.2879 0.9174 | 24.4622 0.8933 | 23.2509 0.8629

Test HoTVL1| 29.7605 0.9515 | 27.4964 0.9342 | 26.6143 0.9214 | 25.2707 0.9063
Imagel| LOMS 29.6193 0.9198 | 27.4895 0.9033 | 26.1466 0.8915 | 24.3937 0.8650
ETV 32.6749 0.9904| 31.1170 0.9844| 29.1291 0.9767| 28.4244 0.9686

TVH1 27.3897 0.9229 | 26.4466 0.8932 | 25.4457 0.8655 | 23.7962 0.8334

Test HoTVL1| 29.5698 0.9321 | 28.7948 0.9142 | 27.1248 0.8988 | 25.4362 0.8833
Image2| LOMS 31.8155 0.9227 | 28.5140 0.8950 | 27.1074 0.8746 | 24.8900 0.8374
ETV 33.4328 0.9911| 31.4092 0.9842| 29.8200 0.9764| 28.6543 0.9698

TABLE 1. PSNR and MSSIM of T} -weighted brain MR images with
different levels of noises.

For this example, we set 8 € [10, 24] for TVH1 model, a € [0.02,0.05], 7 = le—3
for HoTVL1 model and « € [0.04,0.07] for LOMS model according to the noise
levels. For our model, we choose a € [0.01,0.04] and fix 5 = 0.002.

5.1.2. Stable performance for intensity inhomogeneities. We select one slice
from the T)-weighted brain volume and generate 10 images by adding Gaussian
white noise of mean 0 and variance 0.001 and intensity inhomogeneities of different
profiles. We plot the PSNR and MSSIM obtained from the four methods in FIGURE
2, which illustrates that our model gives the best denoising results. Indeed, our
model is shown stable with respect to different profiles of intensity inhomogeneities.
Moreover, we present two of the 10 examples and the corresponding results in
FIGURE 3. The ground truth and the estimated bias field of the proposed model
are given in FIGURE 4. Despite the great difference of the bias field, the proposed
method can correctly estimate its distribution. As shown in FIGURE 4 (c), the
improvement of the image quality is further demonstrated by the histograms, where
four well-defined peaks can be observed in the histograms of the bias corrected image
corresponding to the background, Cerebrospinal Fluid (CSF), Gray Matter (GM)
and White Matter (WM). In contrast, the histograms of the original images do not
present such well-separated peaks due to the existence of the bias field.
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(a) nput ) TVHI(R) () HoTVLI(R) ) LOMS(R) ) ETV(R

FIGURE 1. Performances of four methods on Tj-weighted brain
MR images with different levels of noises.
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F1GURE 2. Comparison among the four methods in terms of PSNR
and MSSIM for images with different intensity inhomogeneities.

On the other hand, we evaluate the performance of bias correction using the
coefficient of variations (CV), which is defined for each tissue T as

—= x 100%,
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(a) Input (b) TVHI(R) (c¢) HoTVLI(R) (d) LoMS(R)  (e) ETV(R)

FIGURE 3. Performances of four methods on Tj-weighted brain
images with different intensity inhomogeneities.

—Original
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(a) Truth L (b) Estimated L (C) Histogram

—Original
—Corrected

.

FIGURE 4. Ground truth and estimated bias field of the proposed
method with examples in FIGURE 3.

where o(T) and p(T) are the standard deviation and the mean of the intensities in
the tissue T. The CV values of white matter, gray matter and cerebrospinal fluid
are evaluated on the bias corrected images and plotted by the boxplots in FIGURE
5. We can see that the CV obtained by our model is significantly better than other
methods, which demonstrate the advantages of the proposed model in dealing with
noises and intensity inhomogeneities.

For this experiment, we set § = 0.15 for TVH1 model, a = 0.08 for HoTVL1
model, and o = 0.06 for LOMS model in order to achieve the best results. For our
model, we fix a = 0.01 and 8 = 0.02.

5.1.3. Convergence analysis. To check the convergence of the iteration process,
we monitor the relative errors of the solution ™ and [™, which are defined as
n—11|2 n n—11(2
—r" s [l -1 ||2)
2 ) 2
|3 127113

n n /rn
R(™, 1™ = (H ‘
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We use the first image in FIGURE 3 as an example, and plot the relative errors in

FIGURE 6 (a) and (b). Besides, we also track the numerical energy of the objective
function in FIGURE 6 (c). It is shown that both the relative errors of r, [ and the
numerical energy decay as the iteration increase, which demonstrate that our model

converges well numerically.
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FIGURE 6. The relative errors of r and [ and numerical energy of
our model for the first image in FIGURE 3.

5.1.4. Applications on real data. In this experiment, we test the proposed model
on the real MR images including an MR image of bladder and two MR images of
brain, which are shown in FIGURE 7 (a). The results of R and L in FIGURE 7 (b)
and (c) demonstrate that the proposed model can well recover the real intensities
and enhance the quality of the images.

5.2. Extension to color images. The proposed model can be extended to shad-
owed color images as shown in FIGURE 8. We use the HSV (hue, saturation, value)
color space and process in the Value (V) channel, which means both the shadow and
noise contaminate the V channel. The results of HoOTVL1 model and our model are
exhibited in FIGURE 8 (b) and (c), respectively. It is obviously that the proposed
model can remove the noises as well as the shadow effect.

For this example, the parameters used in HoTVL1 model are a = 0.15 for Test
image and o = 0.3 for Wall image, other parameters are the same as the previous
experiments. For our model, the parameters are § = 0.002, v = 0.004 for Test
image and 8 = 0.045, v = 0.08 for Wall image. Other parameters are fixed as
a=0.05, 4 =006, 7=1e—5and r; =0.05 fori =1,--- ,4.

5.3. Extension to impulsive noise. One advantage of the proposed model (9) is
its flexibility in dealing with different noises. The impulsive noise is often generated
by malfunctioning pixels in camera sensors, faulty memory locations in hardware,
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(a) Input (b) R (C) L

FIGURE 7. Tests on real MR images. The parameters used in our
model are a = 0.03 and g = 0.015.
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FicURE 8. Tests on color images of HoTVL1 model and our model.

or erroneous transmission [27]. Based on the Bayesian statistic, one can derive a ¢!
fidelity term, which can exactly fit uncorrupted pixels and perfectly regularize the
corrupted pixels by the impulsive noise. Indeed, the ¢! fidelity term only affects
the sub-minimization problem w.r.t. v, which has the fast numerical solver [37]. In
particular, we consider the following minimization problem for images corrupted by
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salt-and-pepper noise:
: v v lj' T
min |7 — e[y + af[Ve® |y + BlIVrih + VUL + Sllo —r = 1I3 + S5 (33)

We use the Adelson’s checkerboard shadow image and the Logvinenko’s cube
shadow image as examples, which are two typical test images for Retinex illusion.
We add the salt-and-pepper noise from 20% to 50% to both images. The reflectance
component R and illumination component L obtained by the proposed method are
displayed in FIGURE 9 and FIGURE 10. The visual results demonstrate that our
model can well decompose the reflectance and illumination although the test images
contain impulsive noises.

&

(a) 20% (b) 30% (c) 40% (d) 50%

FIGURE 9. Decomposition of the checkboard image.

For the impulsive noises, we fix § = 0.05, v = 0.08, x = 0.6, 7 = le — 5 and
r; = 0.5 for i =1,--- 5, while we select a according to the level of the noises from
a=0.6toa=0.9.

5.4. Extension to Poisson noise. The Poisson noise is another common seen
noise, which may be contained in radiography, fluorescence microscopy and positron-
emission-tomography images [28]. According to the the characteristic of Poisson
distribution, the Kullback-Leibler (KL) divergence is used as the fidelity term.
Therefore, we propose the following minimization problem for images containing
Poisson noise:

s v v T
min (" — To, 1) + o[ V'l + BIVrlly + V20 + Sl —r 13 + TR (39)

In FIGURE 11, we add Poisson noise into two synthetic images. Both R and
L are presented in FIGURE 11, which show that the proposed model can obtain
visually preferable results compared to the original ones.

For this experiment, we set « = 0.03, 8 = 0.015, v = 0.08, u = 0.6, 7 = 1le — 5
and r; = 0.5 fori=1,--- 5.
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FIGURE 11. Denoising and decomposition of the images contain-
ing Poisson noise.

6. Conclusion and future works. In this paper, we have presented an efficient
variational model for Retinex, which was developed based on a new image model by
decomposing a given image into reflectance, illumination and noises. The proposed
model was shown coercive, which guarantee the existence of the minimizers. We
designed an efficient alternating minimization algorithm, where all subproblems
can be solved by the closed-form solutions. The framework is easy to be adopted
to other Retinex models and robust with noises of different modalities. Various
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numerical results were implemented to demonstrate the advantages of our model
over the existing method for Retinex applications. In the future, we may consider
to extend the proposed model to the multiplicative noises, and discuss the convexity
and the global convergence of the proposed model.
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