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Abstract. This paper studies image decomposition models which involve functional
related to total variation and Euler’s elastica energy. Such kind of variational models
with first order and higher order derivatives have been widely used in image pro-
cessing to accomplish advanced tasks. However, these non-linear partial differential
equations usually take high computational cost by the gradient descent method. In
this paper, we propose a proximal alternating direction method of multipliers (ADM-
M) for total variation (TV) based Vese-Osher’s decomposition model [L.A. Vese and
S.J. Osher, J. Sci. Comput., 19.1 (2003), pp. 553-572] and its extension with Euler’s
elastica regularization. We demonstrate that efficient and effective solutions to these
minimization problems can be obtained by proximal based numerical algorithms. In
numerical experiments, we present numerous results on image decomposition and
image denoising, which conforms significant improvement of the proposed models

over standard models.
AMS subject classifications: 68U10, 90C25, 49M37
Key words: Alternating direction method of multipliers, total variation, Euler’s elastica,

proximal method, image decomposition, image denoising.

1. Introduction

Assume that Q C R? is a bounded, open, and connected subset (usually a rectangle
in image processing). The image decomposition task is to decompose a given image
f:Q — R as the sum of two components

f=u+to,
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where v is geometric part or “cartoon” component, and v is an oscillating one. In
general, © models homogeneous regions with sharp boundaries and v contains oscillating
patterns such as texture and noise; See, e.g. [3,15,25,26,34, 39,44, 45]. The origins of
these ideas are the remarkable book by Y.Meyer [34], in which the author showed
that the well-known Rudin-Osher-Fatemi (ROF) model [37] does not always represent
texture or oscillatory details well.

An eligible and successful choice to detect textures is the generalized functions space
G = G(Q) [3,30,34,46], where

GQ)={v=V-g=0.91+9yg2: 8= (91,92), 91,92 € L®(QL,R?)}

endowed with the norm

vl = inf{“’g|||L°°(Q,R2) 10 =Vg, g=(g1,92), 91,92 € L°(Q,R?),|g| = \/ g} +9§}

The (BV, G) model proposed by Meyer in [34] is to solve the problem

nf B
(u,v)EB‘l/I%Q)xG(Q) {/Q lul gy + Blv|a, f = u + v}

where BV (Q) is the bounded variation functions space.

There is no standard calculation of the associated FEuler-Lagrange equation due to
the term coming from an L*°-norm (in the G-norm), which maps a series of work out
to overcome this difficulty; See, e.g., [2,4,45,46].

In [45,46], Vese and Osher proposed to model oscillatory components v as first
order derivatives of vector fields in LP, (1 < p < co) (approaching to the L>*-norm) to
approximate Meyer’s (BV, G) model. As the first practical image decomposition mod-
el, total variation (TV) based Vese-Osher’s decomposition model solves the following
convex minimization problem

gl}gn{/ﬂmu‘;‘/Q|f—u—v12+ﬁ(/ﬂ|g\ﬂ);} (1.1)

where «, § > 0, are tuning parameters, v =V - g, g = (g1,92) and 1 < p < oo. The
model (1.1) was solved by sequential descent approach to its Euler-Lagrange equation.
It has been shown that the advantage of the model (1.1) is that it is not sensitive to
the choice of p. The authors recommended to set p = 1 to yield faster calculations per
iteration [45]. In fact if we generate the model (1.1) to the case p = oo, then we can
easily handle the L®-norm in the discrete setting by the ADMM method proposed in
this paper.

In [12], the authors showed that TV regularization suffers from the undesirable s-
taircase effect for image denoising application, which also exists in image decomposition
problems. To overcome this, high order models have been proposed [13,32,49]. Euler’s
elastica is one of the higher order energy functionals, which has a number of interesting
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applications in elasticity, computer graphics and in image processing. To improve the
quality of an image in the sense of cartoon u and texture v and improve other applica-
tions like image denoising, we can use a non-convex and non-linear regularization such
as curvature based regularization.

Euler’s elastica energy, which was based on the curvature of the level curve of image,
can effectively discriminate local behavior and global trends of the geometry hiding in
certain image [14]. Euler’s elastica energy was first introduced into computer vision
by Mumford [35] and successfully applied to a number of applications, such as image
restoration [1,6], image segmentation [21,33,36,52] and image inpainting [7,9,40].

In recent years, fast numerical optimization methods, such as split Bregman method
[27] and augmented Lagrangian method [38,47,48], have been widely used to solve
variational methods arising from image processing. In [43], Tai, Hahn and Chung
propose a fast and efficient algorithm for Euler’s elastica model via augmented La-
grangian method. The algorithms for curvature based variational model, one can
see [18,42,50,51] for details.

1.1. Contribution

1. In this paper, we use the Euler’s elastica as regularization for geometric compo-
nent u and propose the following minimization problem

. Vau \? o 2 ’
Lo e tes( )

(1.2)
where a > 0 and 8 > 0 are tuning parameters, v =V -g, g = (g1,92) and p > 1.

2. We propose alternating direction method of multipliers (ADMM), to solve the
Vese-Osher’s decomposition model (1.1). We show one subproblem can be easily
solved with a closed form solution and the other subproblems can be transformed
into a Fourier linear system and solved by block Gaussian elimination. Besides,
we use the proximal method to further reduce the computational costs. Similarly,
we implement same proximal ADMM for Euler’s elastica model (1.2). Owing to
the use of suitable proximal step and fixed-point technique, each subproblem can
be solved easily. Numerical results illustrate the effectiveness and efficiency of the
proposed method.

The paper is organized as follows. In the next section, we present the ADMM
and proximal ADMM for Vese-Osher’s decomposition model with total variation and
Euler’s elastica. In Sect. 3, we explain numerical discretization of the subproblems
associated with ADMM and proximal ADMM, and give the convergence analysis in
case of TV. In Sect. 4, we show some numerical experiments to illustrate the efficiency
and effectiveness of our proposed algorithm. A concluding remark and future works
are given in Sect. 5.
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2. Proximal ADMM for Vese-Osher’s decomposition model

In current paper, we study a variational decompositional model that is based on
a prior model for plane curve, i.e. Fuler’s elastica. A remarkable feature of elasticas
revealed by Mumford [35], which positively support the role of elasticas in image and
vision analysis as an interpolation tool. It also shed light on the choice of 72" for
curvature power in the Euler’s elastica energy formula. In brief, our proposed elastica
decomposition scheme combines both Vese-Osher’s model and Euler’s elastica energy.
It thus provides a theoretical foundation for earlier works on PDE based image decom-
position. In particular, we assume that our proposed fast proximal method for both
TV and Euler’s elastica based decomposition models will be feasible.

In this section, we propose a fast and efficient algorithm for minimization problems
related to Vese-Osher’s decomposition model. We assume that the image domain 2 is
normally taken as a rectangle or a grid for a rectangle domain, i.e., Q = [1, N] x [1, M].
For mathematical notation, we will use the standard inner product (u,v) = [,u - v
and norm [lu|| = [ |ul* in L? space. The adjoint operator of V denote by V*, i.e.
Vig=-V.-g.

2.1. ADMM for TV based Vese-Osher’s decomposition model

In order to use ADMM, we should transfer the unconstrained minimization prob-
lem (1.1) to an equivalent constrained minimization problem by using an operator-
splitting technique. We introduce two new variables p = Vu and q = g and reformulate
the problem (1.1) to be the following constrained minimization problem

rﬁign{/ﬂ|p]+§/ﬂ|f—U—V'g2+5(/Q’qw);} (2.1)

st. p=Vu,q=g.

For simplicity of presentation, we let x = (u>, y = <p) and 4 = (Z 3.) with
g a

identity maps Z. The adjoint operator of A is given by A" = (VO g) It is
straightforward to see that the minimization problem (2.1) is equivalent to the following
minimization problem:

win {H(x) + J(y)}
* (2.2)
s.t. y=Ax.

0 [ el ) /lpl+5</‘q'p>

where
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We define the augmented Lagrangian function of (2.2) as
2
Lxy;A) = H(x) +J(y) + Ay — Ax) + Sy — Ax|*. (2.3)

A
where A = p> is the Lagrange multiplier and v is a positive constant. Then the

q
ADMM for solving (2.2) can be described in Algorithm 2.1.

Algorithm 2.1: ADMM for TV based decomposition model
Initialization: x°,y? \°;
while stopping criteria not satisfied do

xFH = arg m}in L(x,y%; AR, (2.4)

y* e arg rr;in L(xFTL y: AR, (2.5)

AL = AR oy (ph - AxRL), (2.6)
end

The x—sub problem (2.4) is a quadratic optimization problem,

xFH = argmxinﬁ(x,yk; APy = argm}in {H(X) — (A Ax) + %Hyk - Ax||2} ,

whose optimality condition gives a linear equation
VH(x) — AN 4 7 A" (Ax —y*) =0 (2.7)

with the periodic boundary condition. Since we have

7160 = (vrg) = (avts a5 ') &

the equation (2.7) can be written explicitly as

aw+Veog=f)\ (V' 0\ A5, (VT 0\ (Vu-pt\ _
aV(f-u—-V-g) 0 Z)\\j o z)\g-a") 7
Note that A = V2 =V .V = —V*V, we have
a(u+V-g—f)+ V- A +49V - p" —yAu =0,
a0y (f — u— 0zg1 — Oyga) — My + (g1 — af) =0, (2.9)
ady(f — u— Ovg1 — Oyg2) — iy + (g2 — @) = 0.

In the linear system (2.9), taking the Fourier transform of both sides, we will have a
Fourier linear system. With an FFT implementation, the solutions of the Fourier linear
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system can be obtained via block Gaussian elimination in discrete setting, which will
be showed in section 3.2.

For the y—sub problem (2.5), it has a closed form solution. We can separate the
minimization problem (2.5) into two minimization problems independently, that is,

2
)\k
min /|p|+;/ p—Vutl 4 B (2.10)
p Q Q Y
and )
1
b AF
min B(/ \qyp) +7/ q-gtt+ (2.11)
q Q 2 Ja g

The minimizers of (2.10) and (2.11) (p = 1) can be obtained as follows:

1
p-max(O,l—)(andq—max <0,1—B> 7,
7[¢] |

P Ak
where ¢ = Vbt — “2 and n = ghtt — 2.
Y Y

2.2. Proximal ADMM for TV based Vese-Osher’s decomposition model

The Algorithm 2.1 is costly in practice due to the linear system (2.9). Thus we
modify the (2.4) by taking a proximal step and propose the proximal ADMM scheme
to solve (2.2). We will show that the solutions of each subproblem of proximal ADMM
scheme can be obtained inexpensively.

Let
7L aV*
S = (aV 7L — OzVV*) ’ (2.12)
where 7 > @(Amax(VV™) + Amax(V*) + Amax(V)). According to the definition (2.12),
S is a self-adjoint positive semidefinite operator. We define the induced norm ||x||s =
(Sx,x)'/2. Our proximal ADMM for solving (2.2) is described in Algorithm 2.2.

In fact, the difference between ADMM scheme (2.4)-(2.6) and proximal ADMM
scheme (2.13)-(2.15) is only the x—sub problem, where (2.13) can be solved more
efficiently in computation owing to the proximal term 3|x — x*||%.

The x—sub problem (2.13) is the following quadratic optimization problem,

k+1

1
M = argmin £(x, y*; AF) + Z||x — x¥||%
X

2
1
= arg m}in {H(x) — (A, Ax) + %Hyk - AXH2 + §Hx — ka%} ,

whose optimality condition gives a linear equation

VH(x) — A*X 4 7 A" (Ax — y*) + S(x — x*) = 0, (2.16)
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Algorithm 2.2: Proximal ADMM for TV based decomposition model
Initialization: x°,y? \°;
while stopping criteria not satisfied do

1
Xkt = argm}inﬁ(x,yk; AF) 4 in — x"||%, (2.13)
y**1 € argmin E(Xk+1,y; )\k), (2.14)
y
AL = AF oy (yF T — AR, (2.15)
end

by the periodic boundary condition. Taking (2.8) and (2.12) into consideration, we
obtain the explicit form of (2.16) as follow

afu+divg—f) |  [(V* 0 )\]f) N A 0\ /Vu—pF
aV(f —u—divg) 0o z)\\k o 7)\eg—qg
TL aV* u— uF
+ =0,
aV 7L —aVV* ) \g— gk

1.e.

?

{ a(u+ divg® — f) + div /\g + ~vdivp® —yAu+ 7(u —uF) =0 (2.17)
0. ‘

aV(f —u* —divg") — A + (g — d") + T(g — g")

Because of the variables u and g are independent in the linear system (2.17), we can
easily obtain the solution with less cost in discrete setting, which will be showed in
section 3.3.

2.3. Proximal ADMM for Euler’s elastica based Vese-Osher’s decom-
position model

The Euler’s elastica energy based minimization problem (1.2) is composed of its
total variation semi-norm and a curvature term. In fact, elastica is a combination of
total variation suppressing oscillation in the gradient direction, and a curvature regu-
larization term that penalizes non-smooth level set curves. Due to high non-linearity in
elastica model, it is difficult to minimize and require high computational cost. To tackle
the non linear constraint arising in the model, a proximal based approach is proposed so
that all subproblems either is linear or has a closed-form solution. In this subsection, we
propose a proximal ADMM for Euler’s elastica based Vese-Osher’s decomposition mod-
el. We first introduce four new variables p, q,h and n, then reformulate the problem
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(1.2) to be the following equality constrained problem

. 2 o . ol2 p%
L L (AL

st. p=Vu,p=|pn,h=V-nq=g.

u p \Y% 0 0
For simplify of notations, we denotex = [ g |,y = [ q | and A=10 7 0
n h 0 0 -V
Vu v* 0 0
It follows that Ax = g and A* = [ 0 7z 0 |. Then we rewrite (2.18)
V-n 0 0 -V
min {ﬁ(f{) + j(y)}
xy (2.19)

st y=Ax,p= |p|n.

where

) =5 [ 1 —u-V-gf

J() = /Q (a -+ bh2)[p| + 8 ( /Q qrﬂ>;.

The augmented Lagrangian functional of (2.19) is defined as

Tn
+ (P = [pIn) + P - Ipn|?, (2.20)

Ap
where A = Aq | ; An are the Lagrange multipliers and 4, v, are the positive constants.
An
Our proximal ADMM for solving (1.2) is described in Algorithm 2.3.
In the Algorithm 2.3, we let Sisa self-adjoint positive semidefinite operator, which
is defined as

) L aV* 0
S=|aV 1L -aVV* 0 , (2.24)
0 0 L —yVV*

where 71 > @(Amax(VV*) + Anax(VF) + Amax(V)) and 72 > yAnax(VVF).
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Algorithm 2.3: Proximal ADMM for Euler’s elastica based decomposition model
Initialization: x°,y% A, A
while stopping criteria not satisfied do

. ~k 1

K = argmin £(%, 3% AT N + gflx - %3 (221)
xX

ka € argmin ﬁ(f{kﬂ,y; 5\k, )\fl), (2.22)
y

ck+1 ok A ~
bY = + 7(yk+1 o Axk+1)7

AEFL — K k+1 k1) k+1 (223)
n - n+7n(p ‘p ‘1’1 )

end

In the following, we show how to solve the subproblems in the each iteration of
Algorithm 2.3. For the x—sub problem (2.21), it is a quadratic optimization problem,

R <k 1
KFH = argmin £(%, % X7, A5 + 2 |1x — %F|%
x 2 S

<k

= argmin { A1 (%) — (N AR) + 215" = A% — (%, [p" o)

Y k k L. ok
+ 5 Ip* = Ip*n)* + S 1% — ||§},

whose optimality condition gives a linear equation

0
VH(%)—A* Ay A" (Ax—3*) - 0 +S8(x—%F) =0 (2.25)
IP¥|AL — y|p¥|(Ip*n — p¥)

by the periodic boundary condition. Combining (2.24) and using the fact that

) VI:{H(X) alu+V-g—f)
VH(x)= VI:Ig(X) =|aV(f-u—-V-g)|,
V Hy(x) 0

we rewrite the equation (2.25) explicitly as

alu+V-g—f) V- —Au+V - p* 0
aV(f—-u—-V-g) |+ —)\g + g—d" —10
0 VAR V(hF -V -n) 4
Nl aV* 0 u— uk
+aV  nZ-avVV* 0 g—gh| =0,

0 0 L —~yVV* n —n*
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where 7 = |p¥|\E — 44 |p*|(|p¥|n — p¥). Thus, we have

a(u+V~gk—f)+V-)\]f)+’yV-pk — yAu+ 71 (u — uF) =0, (2.26a)
aV(f —u* = V-g") =N+ (g —d") + (g —g") =0, (2.26D)

YV (R* =V -n*) + VAL — [p*|AL
+7alp*|(|p"In — p*) + m2(n —n*) = 0. (2.26¢)

Note that in the linear system (2.26), since the variables u, g and n are independent,
we can get the solution from (2.26a), (2.26b) and (2.26¢) easily.

For the y—sub problem (2.22), it is difficult to solve due to the non-differentiability
element |p| in the quadratic term and the variables p and h are strong coupled to-
gether. Following [18,43], we replace p = |p|n**! by p = |p*|n**! in the quadratic
penalty term in (2.22) with considering to utilize the fixed-point formulation to the
nonlinear constraint p = |p|n, and separate the minimization problem (2.22) into three

minimization problems, i.e.
win{ [ cipl+ [ 1p-c2}. (2.27)
P Q Q

1

mqiln{ﬁ </Q\q\p>p +;/Q\q—77|2}, (2.28)

and
min{/(a+bh2)\pk\+//\h-h+7/ \h—V~nk+1]2}, (2.29)
b U Q 2 Jo
0 k| k+1 k:+1_>\ _An
where ¢ = a + b(h*)? — AE - n*T (= TulpT T 49 Vu P and n =
Y+ Tn
Ak
gk+1 _ 9
v

The minimization problems (2.27) and (2.28) (p = 1) have closed form solutions,
which read

c B
— 01— —— dq= 0,1— - )n.
P max(’ ('H%)CI)CMl 4 max(’ '7|17|>?7

When p = oo, problem (2.28) can also be solved explicitly; See [23, Lemma 4.1, 4.2].
The optimality condition for the minimization problems (2.29) gives a linear equation

2b|p*|h + A, 4+ y(h — divn*+h) =0,
with a closed form solution

ydivaFtt — )\,
h = -
20|p*| + v
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(i =15 +1) (1) (i +1,j+1)
P ?
| |
| |
| |
i)
1R SRR
| |
| |
(i-1,j) L ) (i+1.9)
| |
| |
| |
| |
i Lo 1§
| |
| |
(i —1,5—1) (1,7 —1) | (i+1,7—1)

Figure 1: Grid definition. The rule of indexing variables in the augmented Lagrangian
functional (2.20): u, h, A, are defined on e-nodes. The first and second components of
g,P,q, N, Ap, \q, An are defined on o-nodes and [-nodes, respectively.

3. Numerical implementation and convergence analysis

In this section, we present the details of numerical algorithms for ADMM and
proximal ADMM. In Section 3.1, we introduce some basic notations. The numerical
implementations of Algorithm 2.1, Algorithm 2.2 and Algorithm 2.3 are described in
Sect. 3.2, Sect. 3.3 and Sect. 3.4, respectively.

3.1. Notation

Without loss of generality, let Q = [1, N] x [1, M] be a set of N x M points in
R2. For the convenience of description, we denote V as the Euclidean space RV*M
and Q =V x V. Then for a given (i,j) € [1, N] x [1, M], we denote u(i,j) € R and
p(i,7) = (p1(i,7),p2(i,5)) € R% for u € V and p € Q, respectively. We equip the
standard Euclidean inner products as follows:

(u,v)v = Zu(iaj)v(ivj) and (p,q)q = (p1,q1)v + (P2, @2)v-
/[:7‘7.
Note that the induced norm || - ||y is the f— norm on the vector spaces V' and Q. In
addition, we mention that

‘p(l7])| = |(p1(i7j)ap2(iaj))‘ = \/(pl(i,j))2 + (pQ(i,j))Q,

the usual Euclidean norm in R2.
The discrete backward and forward differential operators for © € V' are defined with
periodic boundary condition as follows
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) u(i+1,7) —u(i,j), 1<i<M,
1,7) = . . .
(17])_U(M7.7)7 Z:Ma
(

i) —u(ij), 1<j<N
ofuli,j) = { “hI F N —ulig) LS <N,
U(’L,l)—U(Z,N), J:Na

+
Oy u
u

The discrete gradient operator V : V — @ is given as follows: For u € V,
Vu(i, j) = (07 uli, §), 0y (i, 5)).

Considering inner products on V' and @), the discrete adjoint operator div: Q — V
of —V is given by

When a variable defined on o-nodes (or O-nodes, see Fig. 1) needs to be evaluated
at (i,7) € O-nodes (or o-nodes), for example p = (p1, p2), we use the average operators:

Cop1(6, i+ 1)+ o= 1,5+ 1)+ pi(i, §) +pi(i —1,7)

10 ~ pai 4+ 1,5) +p2(i, §) +p2(i+ 1,5 — 1) +pa(i, j — 1)
i,j(pQ) = 1 )

where p; and py are defined on o-nodes and [J-nodes respectively. We need to define a
special operator to measure the magnitude of p at (7,j) € e-nodes using the following
operator:

AL () = \/<p1<z',j> T 1,j>>2+ <m<z’,j> TR 1))2_

We compute the divergence of p at (,j) € e-nodes using the following operator:
divy ;(p) = p1(4,j) — p1(i — 1,7) + p2(3,5) — p2(i,j — 1).

3.2. Solve the subproblems in Algorithm 2.1

For the x—sub problem (2.4) in Algorithm 2.1, we discretize (2.9) as follows:
alu — gAu +0,91 + 83792) =af — div()\]f, =+ ’ka)’
(Ofu+ 070, g1 — 591 + 00, g2) = ady [ — (N + 7ah), (3.1)
(O u+ OF 0, g1 + 050 g5 — %gz) = a0 f — (N +745).
Applying Fourier transform to both side of (3.1), we have

KF(x) =F — B, (3.2)
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where
I-3F(4A) F(0;) F(9y)
K=a For)  FOHF©0;) -1  F5HF©Oy) ;
]-'(8;) ]-'(8;).7:(3_) ]-'(8;)}'(8;) — %I
F(u) F(f) F(div) F(AL 4 vp¥)
Fx)=| Flg) |, F=a| FOI)F(f) | and B= F(Ney +va)
F(g2) F(05)F(f) F(Age +742)

Clearly, the matrices F(A), F(0;), F(0,), F(0; ), F(9, ), F(div), K and F only need
to be computed once before iteration.

The x—sub problem can be solved in three steps. Firstly, we apply discrete FFTs
to both sides of (3.1). Secondly, we solve the resulting systems (3.2) by block Gaussian
elimination for F(x). Finally, we apply 7! to F(x) to obtain a new x.

For the y—sub problem (2.5), we have the following closed-form solutions:

) (i, ) and q(i, j) = max (0, 1- M%)\) n(is ),

p(lvj) = max <07 1-

YI¢G, 5)]
where o
CGi.g) = Vb, ) - ”7”)
k . .
n(i,j) = " (i,5) - Aq:’] !

At last, the update of the Lagrangian multiplier A = (Ap, A\q) is as follows:
pl{?'i‘l _ 8;-uk+1)7

k+1 +, k+1
p2 - 8y u )7

)‘];fq = A1+

Mpa h = Ay

k k k k
A= 20+ (g = gtth,
k+1 k k+1 k+1
)\qj = A2+t q2+ —gf ).

3.3. Solve the subproblems in Algorithm 2.2

For the x—sub problem (2.13) in Algorithm 2.2, we have the following discrete form:

a4 7)u—yAu = of — adivg® — div A\E — v div p* + Tu*, 3.3a
P

(v + )91 = Xy + a1 + 79t — a0 (f — v — divg), (3.3b)

(v + )92 = Ao + 745 + 795 — a0y (f —u* —divgh).  (3.3¢)

The linear system (3.3) can be efficiently solved. First, we use Fourier transform to
solve the (3.3a),

_ 1 (0F () — oF(div)F (") — F(div) F(AE) — v F (div) F (p*) + 7F (uF)
o T :
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From (3.3b) and (3.3¢c), we have

_ M tad gl — adf (f —ut — divgh)
91 o )

_ )\];24"7(]]5-4-79]2‘3—a@J(f—uk—divgk)

T

In Algorithm 2.2, the calculation y- sub problem (2.14) and the update of the
Lagrangian multiplier A = (Ap, A\q) at each pixel (i, ) are similar to Algorithm 2.1.

3.4. Solve the subproblems in Algorithm 2.3

The discretization scheme used in subsection 3.4 which has been inspired by vari-
ous techniques in classical fluid dynamics, see in [40,43]. It has a great advantage over
conventional discretization scheme because this discretization scheme is more focus on
locality of image, and focusing on locality is an important practice in numerical math-
ematics. In this computational scheme, we need to specify the half point values of the
quantities g, p, q,n, Ap, Aq, An. For example for z-half-point, we need to take (i+1/2, j)
and for y-half-point, take (i, + 1/2). Numerical experiments in Section 4 have shown
the advantage of discretization scheme used for Euler’s elastica based decomposition.
In the next subsections, we briefly discuss about the solution of all other subproblems
by using the staggered grid as shown Fig. 1.

3.4.1. The discretization for g-sub problem
From (2.26b), we have

A4+ ydF + gt — aV(f —uF — divgh)

g=(91,92) = poar )

Denote fixed variables u*, g¥. )\Z, q* by u, g, Aq» q respectively. Since for g-sub prob-
lem, we use the proximal method to minimize the computational cost and here g shows
the value of g at k' iteration. According to the rule of indexing variables in Fig. 1,
the first and second component of g are defined on o-nodes and [J-nodes, respectively.
The discretization of g at (i,j) € o-nodes is obtained as follows:

1
v+ T

61(i,7) = (Mmun+wmaﬁ+nm@ﬁ—aﬂxwdﬁ,

where
Similarly, the discretization of g at (i,j) € O-nodes is obtained as follows:

1
0006.9) = —— (M) + 42(i. ) + i) — 00 X))
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3.4.2. The discretization for n-sub problem

From (2.26¢), we have

_ PP+ mlpFIpF + mon® — 4V (R* — dive®) - VA

ni,n2
( ) Yn|P¥|? + T2

Denote fixed variables pk,nk,hk,/\ﬁ,)\’fb by p,n,h, An, A\p, respectively. Similarly
since for n-sub problem, we use the proximal method to minimize the computational
cost and here n shows the value of n at k" iteration. According to the rule of indexing
the dicretization of n at (i, ) € o-nodes as follows:

_ P[P An1 (6 5) + nlpiy°p1 (s 5) + 7om1 (0, §) = 10,Y (i, §) = 05 An (i 5)

2
fyn(pi,jw) T

where Y = h(i, j) — div} (1), and modulus of p at (4,7) € o-nodes is defined as

nl(ivj)

)

(e} . . 2 o 2
pagl® =/ (pr(6,9)) + (42, (p2))™.
Similarly the dicretization of n at (i, ) € O-nodes as follows:

ng(’i ]) o ’pi,j‘D)\n2(i7j> + 7n|pi,j’Dp2(i7j) + 72ﬁ2<i7j) - ’Yagjy(%.]) - ajAh(Za])
) - 2
T (PiylD)” + 7

)

where modulus of p at (4, 7) € O-nodes is defined as

pagl” = /(A2 (1) + (p2(iv )™

3.4.3. The discretization for p-sub and g-sub problems
For the p- subproblem (2.27) and g-sub problem (2.28), we have

1, j) = max — (i, J) i,7) an i,7) = max __B i, 9
o) = e (0,1 2 5 ) <G o) = e (01 6 )t

where

k
+1 )‘q

’}/n’pk’nkJrl 4 ,yvukJrl o )‘]1?) o )\Itfl .
= andn=g"" " ——.
Y

Yo+

Denote fixed variables u*t1, p¥ gttt nk*1 pk, )\f,, )\2, A by w, P, g, 0,k Ap,Aq, An
respectively. According to the rule of indexing for ¢, ¢ and 7 at (i,j) € o-nodes is
obtained as follows:

b(h(i+1,j)+h
2

c= a+b(hk)2—)\f)~nk+1, ¢

(i,5)\
i) =a+ J ) (602 9) — A2 () A2 5 (n2),
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('Yn +/7)C11(Z7]) = ’}/<U(Z + 17]) - U(Z,])> + 7n‘ﬁi,j|onl(i¢j) - Anl(%]) - /\pl(iuj)v

u(i ] w(i,7+1)  wu(i j— wli.i—1
() ) = (M LT F T D) u(E L) ki =)

+ lPij|A; j(n2) — A7 ;(An2) — A7 ;(Ap2)-
. o 1 .
ni(i,4) = g1(i,5) — ;)\ql(%])a
. . e} ]' e}
77% (i,7) = Ai,j(QQ) - ;Ai,j()‘(ﬂ)*

Similarly, the discretization of ¢, ¢ and 7 at (i,j) € O-nodes is obtained as follows:

h(i,j +1
cQ(i,j):aer( (l’”;

+ h(i,5)\? o
( )> — A7 (An1) A7 (1) = Ana(i, §)nali, §),

2 2
+ | Pig [P AT (1) — AT (An1) — AT (Ap),

(v + 7)C2(i,j) = ;(“(” Lj+1)+ul+1,7) u@—1,74+1)+u(i- 1,j))

( + )G ) = ’y<u(i,j T - u(z‘,j)> - yalBigmais ) — Aualis ) = Apais ).

R6.9) = ALyon) = ZAL On)
1(0.) = 920,9) = ~haa(in )
Therefore, we have the discretization of (2.27) and (2.28):
(i, 5)
(v + V) (G022 + (G4, 5))?

pali,j) =max [ 0,1 — Cii,j),d € {1,2},

and

8
32 + (0, )2

qd(i,j):max O,].— ng(za.])ade {172}

3.4.4. The discretization for h-sub problem

The optimality condition for the minimization problems (2.29) gives a linear equation
2b[p"|h + A\ + v (h — divn*Tt) =0,

with a closed form solution

o divy;(n*) — A}
20| A[5 ;(P*) +~
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3.4.5. Update Lagrange multipliers

Finally, the update of the Lagrangian multipliers A=

17

(Aps Aqs An) and A, according to

the algorithm. Using the staggered grid as shown in Fig. 1, the discretized form for
equations (2.23) is written as

AR =
At =
)\k+1
A’;jl
Xl =
oy =

k+1
)‘h

)\p1+7( FHL gy bty
p2+7( k+1 8+ k1

_ )\kl + (gt E+1 k+1)
q2+’Y( k+1 k+1)

_ + (Pt k-+1 |pl+l|o k+1)

— Ak + a0k k+1 ’pk+1||]nl§+1)

= X (R -

3.5. Convergence analysis

dlvi,j( k+1))

at o-nodes,
at [J-nodes,
at o-nodes,
at [J-nodes,
at o-nodes,
at [J-nodes,

at e-nodes.

The TV based Vese-Osher’s texture model is a convex minimization problem. The
convergence analysis of the ADMM scheme (2.4)-(2.6) and proximal ADMM scheme

(2.13)-(2.15) have been widely studied, one can refer to [16,17,22,24,29].

For the sake of completeness, we give the convergence theorems for the ADMM
scheme (2.4)-(2.6) and proximal ADMM scheme (2.13)-(2.15) in discrete setting but

without proof, one can refer in [29] and [22, Appendix B] for more details.

Theorem 3.1. We assume that (x*,y*, X*) is a KK T solution of (2.2). Let {(x*

be generated from the ADMM scheme (2.4)-(2.6).
verges to an optimal solution to (2.2) and {\¥} converges to an optimal solution to the

dual problem of (2.2), i.e. limy_,o x* = x*,

Then the sequence {(x

Ly AR}

"yM)} con-

limg 00 yk =y", limg o0 )‘k =A%

Since H(x) is twice differentiable convex function with a Lipschitz continuous gra-
dient, there exists a self-adjoint positive semidefinite linear operators 37, such that for

any x,x’,

where 0°H

and

Theorem 3.2. We assume that (x
yA* A is positive definite.
scheme (2.13)-(2.15).

Sy =W, VYW e d*H

(x) is the Clarke’s generalized Hessian at x.

H(x) > H(X')+

(VH(x) -

Let {(x*
Then the sequence {(x*

VH(x'),x —x') >

(VH(x'),x —x') +

(%),

1
iHX - Xl”%]{?

e = x'[13,, -

*y*, A") is a KKT solution of (2.2) and g+ S+
Y5 XY be generated from the prozimal ADMM
. Y¥)} converges to an optimal solution

to (2.2) and {\F} converges to an optimal solution to the dual problem of (2.2), i.e

. kE_
limg_ oo X¥ = X*,

limy00 Y =y,

limg oo AF = A*.
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(a) Barbara, size: (b) Geometry, size: (c) Fingerprint, size: (d) Man, size: 256 X

256 x 256 256 x 256

] 256

(e) Floor, size: 300x  (f) Flower, size: (g) Wall, size: 210 x
400 250 x 250 236

Figure 2: Test Images.

Table 1: Numerical results of correlation Corr(u,v) for natural images

Barbara | Geometry | Fingerprint | Man
CTV-L2 [20] 0.2581 0.1134 0.1462 0.2629
BLMV [10] 0.0364 0.0117 0.0875 0.0875
AD-aBLMV-ADE [41] | 0.0222 0.0055 0.0192 0.0492
TV-L1 [31] 0.2775 0.0629 0.0589 0.1882
DF [11] 0.0758 0.02293 0.0539 0.1074
ADMM-TV 0.0386 0.0146 0.023 0.1125
PADMM-TV 0.0412 0.0148 0.0249 0.1125
PADMM-EE 0.0155 | 0.0058 0.0167 0.0751

4. Numerical experiments

In this section, we provide some numerical examples. We will present some results of
proposed methods for image decomposition and image denoising. All the experiments
were performed using Windows 7 and MATLAB, R2013b (version 2.0) on a HP 7228
with Intel(R) Core(TM) i7-4790 CPU @3.60GHz and 8 GB memory.

4.1. Test images, practical implementation and stopping condition.

In this paper, we tested lots of images, for example the Barbara, Geometry, etc.
(see Fig. 2). For all of the tested algorithms, we used the following stopping condition:
”uk _ ulc-i-l” ”Uk _ Uk+1||

[/ P

max

) <€
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(1) zoom in (o) u+w

Figure 3: Barbara decomposition comparison between TV and Euler’s elastica based
models. From top to button, the results are form ADMM-TV, PADMM-TV, PADMM-
EE, respectively. We chose the parameters in the following way, for ADMM-TV we set
a=0.07,6=0.8,7 = 0.35. For PADMM-TV,a = 0.07,3 = 0.8,v = 0.35,7 = 0.3. For
PADMM-EE, o = 0.09,5 = 0.99,~v = 0.04,7, = 0.016,7, = 0.01,71 = 75 = 1.5,a =
1.1,b = 100.

where € > 0 is stopping tolerance, in our proposed algorithms, we set ¢ = 1.0e — 3. For
simplicity of presentation, we denote our developed methods as follows:

e ADMM-TV: ADMM for TV based Vese-Osher’s texture model;
e PADMM-TV: proximal ADMM for TV based Vese-Osher’s decomposition model;
e PADMM-EE: proximal ADMM for Euler’s elastica based Vese-Osher’s decompo-

sition model.

Before we show our numerical results, we give some remarks on choosing pa-
rameters and stopping criterion. There are three parameters (o, 3,) coming from
ADMM-TV, four parameters (a, 3,7, 7) coming from PADMM-TV, and eight param-
eters (a, 8,7, Vn, T1, T2, a, b) coming from PADMM-EE. The parameter « is regulariza-
tion parameter associated with the cartoon part of image. For decomposition case this



20 Zhifang Liu et al.

(b) p = o0, Corr(u,v) = 0.0128
Figure 4: Image decomposition on clean images by PADMM-EE with p =1 and p = oo

Table 2: Numerical results of correlation Corr(u,v) for synthetic images

Fig. 9(a) | Fig. 9(b) | Fig. 9(c) | Fig. 9(d) | Fig. 9(e)
CTV-L2 [20] 0.2506 0.3724 0.2294 0.2195 0.1391
BLMV [10] 0.1086 0.2747 0.0593 0.0247 0.0148
AD-aBLMV-ADE [41] | 0.0214 0.0194 0.0196 0.0086 0.0147
TV-L1 [31] 0.1469 0.18801 0.1733 0.1319 0.0697
DF [11] 0.1554 0.2901 0.0815 0.0268 0.0162
ADMM-TV 0.0278 0.0232 0.0356 0.0377 0.0260
PADMM-TV 0.0286 0.0229 0.0354 0.0273 0.0228
PADMM-EE 0.0174 0.0134 0.0176 0.0053 0.0132

Table 3: Computational time (in Seconds) of the different methods for Barbara image
(256 x 256).

Computational time

CTV-12 [20] 3.39
BLMV [10] 0.23
AD-aBLMV-ADE [41] | 5.694
TV-L1 [31] 0.44
ADMM-TV 0.7520
PADMM-TV 0.3444
PADMM-EE 1.1408

parameter is need to be small for better subtraction of cartoon from the image. For
the pure cartoon-texture decomposition problem, we would like to remove the texture
component without removing other key features such as edges, shading, etc. The pa-
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(2) (h)
Figure 5: Separation of cartoon and texture components (Barbara). (a) CTV-L2 [20].
(b) BLMV [10]. (c) AD-aBLMV-ADE [41]. (d) TV-L1 [31]. (¢) DF [11]. (f) ADMM-
TV. (g) PADMM-TV. (h) Proposed PADMM-EE.

rameter 3, which is the texture norm coefficient in the energy is related to the texture
components of image. v and v, are associated with Lagrange multipliers. All 7, 71 and
79 are the proximal parameters. These proximal parameters play an important role for
the effectiveness of the proposed methods. a and b are Euler’s elastica coefficients. The
ratio a/b indicates the relative importance of the total length versus total squared cur-
vature. For b = 0, the minimization problem (1.2) becomes TV problem (1.1). We used
different setting for the parameters in different applications of our proposed methods.
We tuned all the parameters by the above stopping criterion with tolerance.

4.2. Image decomposition

The main objective of decomposition model is to decompose an image into its car-
toon and texture part. Various approaches to image decomposition have been proposed
in the literature, among these approaches variational based image decomposition is one
of the successful approaches and it has numerous applications in the field of image
processing and computer vision. Interesting application of image decomposition are
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3

b

c)
)

b

N

(

(e (f)
(2) (h)
Figure 6: Separation of cartoon and texture components (Geometry). (a) CTV-L2 [20].

(b) BLMV [10]. (¢) AD-aBLMV-ADE [41]. (d) TV-L1 [31]. (e) DF [11]. (f) ADMM-
TV. (g) PADMM-TV. (h) Proposed PADMM-EE.

explored in [8,45]. In this subsection, we illustrate the efficiency and effectiveness of
the proposed algorithms via many examples in image decomposition.

As in the literature [5], we assume that the cartoon and texture parts in an image
are not correlated. We thus take the correlation between the cartoon u and the texture
v, which is computed by

Corr(u,v) = Cov(u,v)
Ou-Oy
to measure the quality of decomposition, where o) and Cov(-, ) refer to the standard
deviation and covariance of given variables, respectively.

For image decomposition, we do not have ground-truth generation in case of real
images as well as synthetic images. Therefore we consider the best result for smallest
correlation value. To evaluate the quality of different methods, we show the decompo-
sition result for test images (see Fig. 2(a), 2(b), 2(c) and 2(d)). But we also evaluate
numerically the competing methods on synthetic images (see Fig. 9). In our numer-
ical experiments, we observed that the most of the decomposition results for p = 1
and p = oo in Euler’s elastica decomposition model (1.2) are look similar (see Fig.
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(h

Figure 7: Separation of cartoon and texture components (Fingerprint). (a) CTV-L2
[20]. (b) BLMV [10]. (c) AD-aBLMV-ADE [41]. (d) TV-L1 [31]. (e) DF [11]. (f)
ADMM-TV. (g) PADMM-TV. (h) Proposed PADMM-EE.

4). Therefore we decided to show and compare the results with p = 1 in all experi-
ments. We compared our proposed PADMM-TV and PADMM-EE methods with the
following decomposition methods: CTV-L2 [19,20], AD-aBLMV-ADE [41], BLMV fil-
ters [10], TV-L1 [31], DF [11] and ADMM-TV. The codes for [41] was provided by
author, for [20], [10], [31], [11], we used online demo provided on web by IPOLT. We
used them with best tuned parameters in each individual test case.

The most commonly used image for texture evaluation is the Barbara image, which
has precise edges and it also favors the TV-based methods, especially ADMM-TV and
PADMM-TV (see Fig. 3). However, some artifacts can be seen on cartoon image of
TV-based decomposition, as the cloth on the table has some texture in cartoon part
(see zoom-in images in Fig. 3 ). PADMM-EE can completely eliminate the texture
from the table cloth. Furthermore, it is obvious that we can get better contour by
using cartoon part extracted by PADMM-EE algorithm (see third column Fig. 3 ).
For numerical evaluation, we used the parameters that gave the minimum correlation

"Tmage Processing On Line. http://www.ipol.im/
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(8) (h)

Figure 8: Separation of cartoon and texture components (Man). (a) CTV-L2 [20]. (b)
BLMV [10]. (c) AD-aBLMV-ADE [41]. (d) TV-L1 [31]. (e) DF [11]. (f) ADMM-TV.
(g) PADMM-TV. (h) Proposed PADMM-EE.

and also gave the best visual result. Every image has different kind of cartoon as well
as texture, so the parameters need to be different, for example the parameters are
simulated for the Barbara (see caption in Fig. 3).

To see how strong the cartoon edges on the texture image and precise the cartoon
part, we used the Geometry image. All methods eliminate the texture part from car-
toon, but methods [19,20], [10], [31], [11], ADMM-TV and PADMM-TV bring some
cartoon edges on the texture (see Fig. 6). For this image, adaptive image decom-
position method [41] has best results, however Euler’s elastica-based decomposition
has better results among all TV-based decomposition methods and its results are very
closed to adaptive decomposition method [41].

Most of decomposition methods like [10], [41] and [11] blur some parts of cartoon
image (see Fig. 5,7.8), and adaptive decomposition [41] method also sightly blur the
texture part. But on the other hand Euler’s elastica-based decomposition has best
results as compare to all TV-based methods [19], [31], ADMM-TV and PADMM-TV
and as well as other methods.

We report the numerical results for real and artificial images in Table 1 and Ta-
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(k) @ (m) (n) (0)
Figure 9: Synthetic images (256 x256) used for numerical evaluation. Top row: original
image. Middle row: cartoon component. Bottom row: texture component.

ble 2, where the obtained correlations (Corr) of the decomposed two parts are reported
for all decomposition methods. The computational time for PADMM-TV is increased
compared to the fast BLMV method, but it is faster then CTV-L2, AD-aBLMV-ADE,
TV-L1, and ADMM-TV. Similarly, the computational time for PADMM-EE is in-
creased compared to the BLMV, TV-L1, ADMM-TV and PADMM-TV methods, but
it is faster than CTV-L2 and AD-aBLMV-ADE (see Table. 3).

Moreover, we also compared the decomposition results of generalized TV-stokes
model [28] and our proposed Euler’s elastica-based model. We used TVS-L2 + TV,,-L?
models for image decomposition from the general TV-stokes model. The TV-stokes
model is aimed to separate the jump discontinuities of an image, where u contains all
the discontinuities of f and v is a continuous function (see Fig. 10). These separated
parts could be used for a large number of image processing purpose. Note that the
TV-stokes model do not separately obtain texture parts from an image. However, our
proposed Euler’s elastica-based model can better decompose an image into its texture
parts (see also Fig. 10).

To show the convergence of our proposed method: PADMM-EE, we plot the numer-
ical energy, relative error in u**1, correlation, residuals and relative error in lagrange
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(9)u

(h)v
Figure 10: Synthetic images (108 x108) compared between TV-Stokes [28] and Euler’s
elastica decomposition model. (a) is the original image, (b) is the surface plot of the
original image. (c) to (f) are results of our proposed Euler’s elastica model while (g)
to (j) are results of T'V-stokes model.

e)u+v

(iju+v

"B
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PHu+v

(u+v

multipliers verses number of iterations for the image Man (see Fig. 11). From these
plots, it is easy to see the proposed algorithm for Euler’s elastica based decomposition
has converged. The plots of residuals and relative error in lagrange multipliers also
give important information about tuning of parameters and one can see in Fig. 11 that

they converge to zero faster before 50 iterations.

4.3. Image denoising

Table 4: Number of iteration and CPU time for image denoising

Tmages ADMM-TV | PADMM-TV | EEALM [43] | PADMM-EE
Nit | Time | Nit | Time | Nit | Time | Nit | Time

Floor 19 | 0.9507 | 26 | 0.5054 | 30 | 6.1270 | 28 | 2.0494
Flower | 17 | 0.4484 | 23 | 0.2765 | 30 | 2.9618 | 26 | 1.1291
Wall 18 | 0.3712 | 24 | 0.2520 | 20 | 1.7888 | 29 | 1.0009
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Jo1d sl energy Reistrvn Ervor inu**! . Comsuhon
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e

(d)
Figure 11: Plots of numerical energy, relative error of u
relative error of Lagrange multipliers of our proposed Euler’s elastica-based decompo-
sition model for Fig. 2(d).

k41 correlation, residuals and

In this example firstly, we compare the very basic and pioneer ROF model [37] with
Vese-Osher’s decomposition model (1.1). During our experiments, we observed that
although the ROF model is faster than the Vese-Osher’s decomposition model, but it
removes small texture and little stairs appeared in the denoised image see Fig. 12. Sec-
ondly, we compare the Euler’s elastica-based model [43] (EEALM) with our proposed
Euler’s elastica-based decomposition model (1.2). We observed that Euler’s elastica-
based decomposition model has better results in the sense of SNR and also quality,
see Fig. 13. In these experiments, we show the cartoon plus texture (u + v) as a re-
construction or denoised image for decomposition model while in the original model
the minimizer u is as a denoised image. We compare the CPU time and number of
iteration of these models in Table. 4, where our proposed PADMM-TYV is faster than
the ADMM-TV. Similarly, PADMM-EE is more faster than EEALM.

The performance is evaluated by using the signal to noise ratio (SNR) and the SNR

is defined as: I a2
A u—1u
SNR = 10log [u—al

where u is the original signal, @ is the mean intensity value of u and 4 is recovered
signal, in decomposition case the recovered signal becomes u + v. For each experiment,
the parameters are estimated so that the best SNR is obtained.

In our experiments, Gaussian white noise with zero mean and the standard deviation
17, 15 and 10 are used for images in Fig. 2(e), Fig. 2(f) and Fig. 2(g) respectively.
As we have reduced the parameters associated with lagrange multipliers in Section 2
and 3, but for the better results of image denoising and for minimizing of lagrange
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— o

(a) Noisy, o =17, S- (b) ROF,SNR:13.1478 (c¢) ADMM-TV, S- (d) PADMM-TV,
NR:10.3215 NR:14.5366 SNR:14.5457

(e) Noisy, o =15, S- (f) ROF,SNR:17.9577 (g) ADMM-TV, S- (h) PADMM-TYV,

NR:13.4393 NR:20.111

SNR:20.2018

"-{_. -}

o SR

(i) Noisy, o =10, S- (j) ROF,SNR:10.8806 (k) ADMM-TV, S- (1) PADMM-TV,
NR:7.9816 NR:11.3328 SNR:11.3296

Figure 12: Image denoising caparison between TV based models. The results for ROF,
ADMM-TV and PADMM-TV are shown from left to right respectively. Parameters
for ADMM-TV, Floor (o = 0.11,3 = 10,7, = 0.1,7q = 0.1), Flower (a = 0.09,5 =
9.5,7%p = 0.1,7q = 0.1) and Wall ( @ = 0.2, 5 = 10,~vp = 0.09, 74 = 0.1). For PADMM-
TV, Floor ( @ = 0.11,3 = 10,7 = 0.2,7q = 0.1,71 = 1), Flower (o = 0.09,5 =
9.5,7% = 0.1,7q = 0.1,77 = 0.8) and Wall (a = 0.17,5 = 10,vp = 0.12,74 = 0.1, 71 =
1).

multipliers individually, we tuned all the parameters (see captions in Fig. 12 and Fig.
13). Finally, we plots numerical energy, relative error in u**! and SNR verses number
of iterations for the image Floor (see Fig. 14). As we can observe from these plots in
Fig. 14, our proposed algorithm for model (1.2) has converged.
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(g) Noisy, o =10, S- (h) EEALM, SNR:11.2021 (i) PADMM-EE, S-
NR:7.9816 NR:11.7696
Figure 13: Image denoising caparison between Euler’s elastica based models. The
results for Euler’s elastica [43] and PADMM-EE are shown from left to right respec-
tively. Parameters for PADMM-EE, Floor ( o = 0.12,8 = 12.5,a = 0.9,b = 10,7p =
0.15,7m = 03,7, = 0.01,7q = 0.09,71 = 7» = 1.1), Flower(ov = 0.1, = 10.5,a =
0.9,b = 10,7, = 0.1,7m = 0.45,v, = 0.01,7q = 0.09,71 = 7 = 1.2) and Wall (o =
0.17,8=9,a=0.6,b = 10,7p = 0.105,7n = 0.6,7,, = 0.002,74 = 0.1, 71 = 1 = 1.5)

5. Conclusion

Vese-Osher’s model is used for texture extraction and image denoising in the litera-
ture of applied mathematics and image processing. Although the classical ADMM can
be used to solve these problems but it is very challenging to construct efficient algo-
rithms when minimization problem has non-linear high order derivatives. In this paper,
we observed that one can solve these problems more fast by proximal ADMM in which
one more subproblem has closed form solution. Firstly, we solved Vese-Osher’s decom-
position model by proximal ADMM in which we linearized g-subproblem to have a close
form solution. Secondly, we solved Vese-Osher’s model having Euler’s elastica energy
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Figure 14: Plots of numerical energy, relative error of u and SNR of our proposed

Euler’s elastica-based decomposition model for Fig. 2(e).

term instead of total variation based on the proximal ADMM. All the subproblems are
easy to solve and the method is globally convergent at a linear rate for Vese-Osher’s
model. We also present some preliminary numerical results, which indicate that our
method is not only efficient but it also can improve the quality of images in case of
image denoising.
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