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Abstract. Phase retrieval plays an important role in vast industrial and scientific applications.
We consider a noisy phase retrieval problem in which the magnitudes of the Fourier transform (or
a general linear transform) of an underling object are corrupted by Poisson noise, since any optical
sensors detect photons, and the number of detected photons follows the Poisson distribution. We
propose a variational model for phase retrieval based on a total variation regularization as an image
prior and maximum a posteriori estimation of Poisson noise model, which is referred to as “TV-
PoiPR”. We also propose an efficient numerical algorithm based on alternating direction method of
multipliers and establish its convergence. Extensive experiments for coded diffraction, holographic,
and ptychographic patterns are conducted using both real and complex-valued images to demonstrate
the effectiveness of our proposed methods.
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1. Introduction. Phase retrieval (PR) plays a very important role in vast in-
dustrial and scientific applications, such as in astronomical imaging [21, 43], crystal-
lography [31, 49], and optics [58, 56], etc. The goal is to reconstruct an object where
pointwise magnitudes of the Fourier transform (FT) of the object are available. Since
the phase of the FT is missing, this procedure is referred to as “phase retrieval”.

Throughout the paper, we consider PR in a discrete setting, i.e., an underlying
object u : Ω = {0, 1, · · · , n − 1} → C is of size n with n = n1 × n2, in which we
represent a 2-dimensional (2D) object with n1 × n2 pixels in terms of a vector of
size n by a lexicographical order. The measured data are magnitudes of the Fourier
transform of u, i.e., |Fu|2, where | · |2 denotes the pointwise square of the absolute
value of a vector, F : Cn → Cn denotes the discrete Fourier transform (DFT)

(Fu)(ω1 + ω2n1) := 1√
n1n2

∑
0≤tj≤nj−1,

j=1,2

u(t1 + t2n1) exp(−2πi(ω1t1/n1 + ω2t2/n2)),

∀ 0 ≤ ωj ≤ nj − 1, for j = 1, 2 and i =
√
−1. In fact, DFT can be replaced with an

arbitrary linear operator, thus leading to a general phase retrieval problem [3, 57, 36],

(1.1) To find u ∈ Cn, s.t. |Au|2 = b,

where A : Cn → Cm is a linear operator in the complex Euclidean space and b : Λ =
{0, 1, · · · ,m − 1} → R+. In general, phase retrieval is ill-posed and yet challenging,
since it does not have a unique solution without additional information.
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2 TV based phase retrieval for Poisson noise removal

The computational tools for phase retrieval can be classified into two categories.
The first category is based on alternating projection since a pioneer work of error
reduction (ER) by Gerchberg and Saxton [28], and its variants such as hybrid input-
output (HIO) [25], hybrid projection-reflection [4, 5], iterated difference-map (DF)
[23], relaxed averaged alternation reflection (RAAR) [42], and a saddle point opti-
mization method [47]; please refer to [46, 62] and the reference therein. However,
these methods are lack of convergent guarantees due to nonconvex constraint sets for
alternating projection. Recently, Netrapalli et al. [50] analyzed the global conver-
gence for Gaussian measurements, while the convergence under general settings was
established by Marchesini et al. [48]. Chen and Fannjiang [17] provided local and geo-
metric convergence to a unique fixed point for a Douglas-Rachford splitting algorithm.
In addition, gradient-type methods [12, 19] become popular. For example, Candés et
al. [12] proposed Wirtinger flow (WF), which is comprised of a careful initialization
by spectral method and adaptive steps in gradient descent. The WF approach was
further improved by truncated Wirtinger flow (TWF) [19]. More general spectral
initialization methods for PR were rigorously analyzed by Lu and Li [41], who gave a
precise asymptotic characterization of spectral methods for Gaussian measurements.
Gradient-based approaches often have first-order convergence, while a higher-order
method was proposed by Qian et al. [51] to accelerate the convergence in a ptycho-
graphic PR problem. The second category is convex methods based on semi-definite
programming (SDP) or convex relaxation of the quadratic equations in (1.1). For ex-
ample, Candés et al. proposed PhaseLift [13] that formulates a convex trace (nuclear)
norm minimization by a lift technique of SDP. PhaseCut by Waldspurger et al. [57]
convexified the PR problem by separating phases and magnitudes. PhaseLiftOff, a
nonconvex variant of PhaseLift by subtracting off Frobenius norm from the trace nor-
m, was proposed by Yin and Xin [64] to retrieve the phase with less measurements
than PhaseLift. It is well-known that the SDP-based methods are hardly scalable.
In order to overcome this drawback, Friedlander and Macdo [27] considered a dual
formulation based on the fact that the dimension of the dual problem grows much
more slowly than the one of the primal problem. Another convex approach was ad-
dressed by Bahmani-Romberg [2] and independently by Goldstein-Studer [30] to relax
quadratic equations of PR and meanwhile maximize the inner product between an
“anchor” vector and the unknown.

In addition to computational tools, researchers also devote to theoretical analysis
on phase retrieval, particularly focusing on the uniqueness of solution. In general,
there exist trivial ambiguities [56], such as global phase shift, conjugate inversion,
and spatial shift. Furthermore, it is well known [34, 7, 54] that there exist many non-
trivial solutions for one-dimensional signals. In this paper, we focus on 2D image and
4n measurements are required to uniquely recover real-valued images as indicated in
[32] for irreducible signals. Following the idea of holography, Candés et al. [10] proved
exact phase retrieval from 3n Fourier measurements, in which the linear operator A
can be expressed as

(1.2) Au =

 Fu
F(u+ Ds1,s2u)
F(u− iDs1,s2u)

 ,
where

(Ds1,s2u)(t1 + t2n1) = exp
(

2πis1t1
n1

+ 2πis2t2
n2

)
u(t1 + t2n1), 0 ≤ ti ≤ ni − 1,
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with i = 1, 2 and integers s1, s2 coprime to n1, n2 respectively. However, they found
this amount of measurements is practically insufficient to recover u exactly and stably,
and 7n measurements are suggested instead. It is demonstrated that 3n measurements
with s1 = s2 = 1/2 can recover phase information both theoretically and empirically
in [16]. Furthermore, additional sparse prior information [37, 13, 59, 55] is helpful
to establish the uniqueness of solution as well as to design efficient PR algorithms.
For example, Jaganathan et al. [37] proved that signals of aperiodic support can be
uniquely recovered with high probability if the DFT dimension is no less than 2n,
while Wang and Xu [59] focused on the minimal number of measurements required
to deal with sparse signals in both real and complex cases. The study of minimal
number of measurements for unique recovery extends to general PR (not limited
to Fourier measurements), mostly discussing about the injectivity of the quadratic
operator |A(·)|2. Denote a nonlinear mapping M : (Cn/S1)→ Rm+ as

(1.3) M(u) = |Au|2,

where (Cn/S1) can be obtained by identifying u ∈ Cn with exp(iθ) for θ ∈ (0, 2π]1.
Generally speaking, the injectivity is guaranteed by collecting m ≥ 2n − 1 [3] and
m ≥ 4n − 4 [20] measurements for real u ∈ Rn and complex u ∈ Cn signals respec-
tively, provided that the transform A is generated by a generic frame2. In particular,
Shechtman et al. [56] showed that the lower bound 2n− 1 can be achieved with high
probability by collecting full-spark random measurements for real-valued signals. Al-
though Fourier type of measurements is emphatically not generic, the uniqueness of
the phase retrieval can be proved under additional information, such as collecting
multiple measurements by coded diffraction pattern (CDP) [11, 24] and holographic
pattern [13, 16].

In this paper, we consider the phase retrieval problem from the measurements
that are contaminated by the Poisson noise. It is very useful, since any optical sensor
detects photons, and the number of measured photons varies following the Poisson
distribution in the sense that the noise level depends on the ground-truth intensity,
i.e., stronger noise appears at lower intensity. Furthermore, when the intensity value
is high enough, the Poisson noise at this pixel behaves like a “Gaussian” noise and
therefore Poisson noise can be approximated by a Gaussian distribution via Anscombe
transformation [1, 45]. In order to denoise the data from such measurements, prior
information is important in the reconstruction procedure, and please refer to [39, 65,
53, 29, 38] for various ways of imposing prior knowledge.

We formulate a variational model by introducing a total variation (TV) regular-
ization to enforce sparsity, which is widely used in image processing since the seminal
work of [52]. We extend our previous work [16] (focusing on holographic pattern
for real-valued images) to more general PR setting (1.1) and further deal with the
Poisson noise in measurements for both real and complex-valued images. We prove
the existence and uniqueness of the minimizer to our proposed model and design an
efficient alternating direction method of multipliers (ADMM) [63, 6] with convergence
guarantees. Numerical experiments are based on Fourier measurements generated by
CDP [11], holographic pattern [13, 16] in (1.2), and ptychographic pattern [62]. We
show that satisfactory PR results can be obtained from noisy measurements of these
three patterns for both real and complex-valued images. Furthermore, the proposed

1 The quotient space is needed to study the injectivity up to a global phase shift
2Generic frame means a K−element frame belongs to an open dense subset of the set of all

K−element frames in Rn or Cn [3]
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method can deal with a large amount of downsampling; especially 0.4n measurements
for CDP are shown to be sufficient for natural images with simple structures.

The rest of this paper is organized as follows. In Section 2, a TV regularized model
for Poisson noise removal in a PR problem, referred to as TV-PoiPR, is established,
where the existence of the minimizer to the proposed model is obtained. Section
3 discusses an ADMM algorithm for TV-PoiPR, referred to as “Algorithm I”, with
convergence analysis. Section 4 devotes to a special case, in which TV is not present,
referred to as PoiPR. In this case, we further investigate the uniqueness of the solution.
We also present an efficient ADMM referred to as “Algorithm II” for PoiPR and an
accelerated algorithm, referred to as “Algorithm III”, for a large number of CDP
measurements. Numerical experiments are performed in Section 5 to demonstrate the
effectiveness and robustness of the proposed methods for image recovery from noisy
and incomplete phaseless data. Conclusions and future works are given in Section 6.

2. Proposed Model.

2.1. Maximum a Posteriori (MAP) Estimation. Poisson noise is one of the
most common types of noise that occurs for photon-counting. Its name is stemmed
from Poisson distribution, defined as follows

Prµ(n) =
e−µµn

n!
, n ≥ 0,

where µ is mean and standard deviation. The number of photons measured at each
pixel, denoted as f(i), follows i.i.d. Poisson distributions with µ being the ground-
truth value, g(i), for i ∈ Ω, denoted as

(2.1) f(i)
ind.∼ Poisson(g(i)), ∀i ∈ Ω.

Given the measured data f , the denoising problem is then formulated via MAP of a
clean image g, which can be expressed as max Pr(g(i)|f(i)). By Bayes’ Law, we have

(2.2) Pr(g(i)|f(i)) =
Pr(f(i)|g(i))Pr(g(i))

Pr(f(i))
.

Therefore, max Pr(g(i)|f(i)) is equivalent to max Pr(f(i)|g(i))Pr(g(i)). It follows from
the definition of Poisson distribution that

(2.3) Pr(f(i)|g(i)) = Prg(i)(f(i)) =
e−g(i)g(i)f(i)

(f(i))!
,

which suggests minimizing the logarithm of the Pr(f(i)|g(i))Pr(g(i)) instead, i.e.

ming≥0

∑
i∈Ω
− log Pr(f(i)|g(i))− log Pr(g(i))

= ming≥0

∑
i∈Ω

(g(i)− f(i) log g(i))− log Pr(g(i)),
(2.4)

where the first term is related with the famous Kullback-Leibler (KL) divergence, and
define 0 log 0 = 0 and log 0 = −∞.

Le et al. [39] further incorporated a TV regularization term to improve the image
reconstruction from Poisson noise, i.e.,

(2.5) ming≥0 λTV(g) +
∑

i∈Ω
(g(i)− f(i) log g(i)),
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where TV(g) = ‖∇g‖1 =
∑
j

√
|(∇xg)(j)|2 + |(∇yg)(j)|2, and ∇x and ∇y define the

x−direction and y−direction forward difference operators respectively. The model
(2.5) can be regarded as incorporating a Gibbs prior distribution Pr(g) = exp (−λTV(g)

)
,

into the MAP for Poisson noise removal. As indicated in [39], Poisson maximum likeli-
hood (KL divergence) gives better recovery results than standard Gaussian maximum
likelihood in that low contrast features are better preserved and the reconstructed
images have higher contrast. More efficient methods were proposed to solve the TV
regularized model, such as gradient descent [39], expectation-maximization (EM) [8],
multigrid [15], and splitting methods [26, 9, 14, 61].

2.2. TV-PoiPR. In this paper, we consider a phase retrieval problem in which
the measurements b = |Au|2 in (1.1) are corrupted by Poisson noise, that is,

f(i)
ind.∼ Poisson(b(i)), ∀i ∈ D,

with an undersampling set D ⊆ Λ. In the light of (2.5), we establish a minimization
problem, referred to as “TV-PoiPR”,

(2.6) minu∈Cn G(u) := λTV(u) +
1

2

∑
i∈D

(|(Au)(i)|2 − f(i) log |(Au)(i)|2).

where u ∈ Cn is an underlying image that we want to reconstruct from intensity data.
The rest of the section devotes to theoretical analysis of TV-PoiPR. In particular,

we prove existence of solutions to (2.6) under mild conditions. The uniqueness of
solutions to (2.6) with λ = 0 is studied in Section 4. Note that we only focus on
the discrete setting, while it is straightforward to extend the analysis to a continuous
setting using the compactness property of bounded variation (BV) space and lower
semi-continuity of the objective functional G.

Theorem 1. Assume that there exists a positive number β for the operator A,
such that

(2.7) β‖u‖2 ≤ ‖Au‖2,D, ∀u ∈ Cn,

with ‖z‖2,D =
√∑

i∈D |z(i)|2, z ∈ Cm, then there exists a minimizer u∗ for (2.6),
i.e. u∗ = arg minu∈Cn G(u).

Proof. Define a data fidelity for Poisson noise,

(2.8) J (u) =
∑

i∈D
(|(Au)(i)|2 − fi log |(Au)(i)|2).

Since x− f(i) log x ≥ f(i)− f(i) log f(i),∀x ≥ 0, and i ∈ {i ∈ D : f(i) > 0}, we have

J (u) ≥
∑
{i∈D: f(i)>0}

(f(i)− f(i) log |f(i)|), ∀u ∈ Cn,(2.9)

such that G(u) is bounded below. Therefore, we can choose a minimizing sequence
{un}, such that G(u0) ≥ G(u1) ≥ · · · ≥ G(uj) ≥ · · · . We have

G(u0) ≥ λTV(uj) +
∑

i∈D
(|zj(i)|2 − f(i) log |zj(i)|2)

≥
∑
{i∈D: |zj(i)|≥1}

|zj(i)|2 − ‖f‖∞
∑
{i∈D: |zj(i)|≥1}

log |zj(i)|2

=
∑
{i∈D: |zj(i)|≥1}

|zj(i)|2 − ‖f‖∞ log
∏
{i∈D: |zj(i)|≥1}

|zj(i)|2

≥
∑
{i∈D: |zj(i)|≥1}

|zj(i)|2 −m0‖f‖∞ log
(

1
m0

∑
{i∈D: |zj(i)|≥1}

|zj(i)|2
)

(2.10)
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where zj = Auj , and m0 = #{i ∈ D : |zj(i)| ≥ 1} ≤ m. Therefore, one readily
obtains that {‖Auj‖2,D} is a bounded sequence such that {‖uj‖} is also bounded by
(2.7). By the compactness of discrete L2 space, one can readily select a convergent
subsequence {ujk} ⊆ {uj}, such that limk→+∞ ujk = u∗. By the continuity of the
objective functional G, we have limk→+∞ G(ujk) = G(u∗). That concludes the proof.

Note that we can relax the assumption (2.7) as

(2.11) ‖A1‖2,D 6= 0,

where 1 ∈ Cm whose elements are all equal to one, and obtain a similar results.
Proposition 1. If the assumption (2.11) holds, there exists a minimizer u∗ for

(2.6), i.e. u∗ = arg minu∈Cn G(u).
Proof. Since G(u) is bounded below by (2.9), we can choose a minimizing sequence

{un}, such that G(u0) ≥ G(u1) ≥ · · · ≥ G(uj) ≥ · · · . We will show the minimizing
sequence is bounded. Rewrite

(2.12) uj = ûj + cj1,

where the constant cj =
∑
i∈Λ uj(i)/m. Since it exists a positive constant C, such

that

‖z − 1

m

∑
i∈Λ

z(i)1‖ ≤ C TV(z), ∀ z ∈ Cm,

we have the boundedness of {ûj}. By (2.10), we obtain the boundedness of ‖Auj‖2,D.
Since

|cj |‖A1‖2,D = ‖Aûj −Auj‖2,D ≤ ‖Aûj‖2,D + ‖Auj‖2,D
≤ ‖Aûj‖+ ‖Auj‖2,D ≤ ‖A‖‖ûj‖+ ‖Auj‖2,D,

(2.13)

with the help of assumption (2.11), one can see that {cj} is bouneded. It follows from
(2.12) that {uj} is bounded. Due to the lower semi-continuity of G, we can complete
the proof by similar analysis as in Theorem 1.

Remark 2.1. We can extend the existence proof for any lower semi-continuous
regularization term, not limited to the TV. In other words, we can prove that there
exists a minimizer of min

u∈Cn
R(u) + J (u), for any lower semi-continuous functional

R(u) and J (u) defined in (2.8).
Remark 2.2. The assumptions of (2.7) and (2.11) are satisfied for some special

patterns such as CDP and holographic patterns without undersampling, i.e., D = Λ.
In general, it is difficult to show that a nonconvex minimization problem has a

unique solution. We will investigate the uniqueness of the minimizer (2.6) without
regularization term i.e. λ = 0 in Section 4.

3. Numerical Algorithms. We apply the ADMM algorithm [6] to solve the
proposed model (2.6), which is equivalent to

(3.1) minu∈Cn λ‖p‖1 +
1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2), s.t. z = Au, p = ∇u,

where ∇u = (∇xu,∇yu) denotes the gradient operator and we assume zero boundary
conditions for these two gradient operators. One can readily construct the augmented
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Lagrangian as

Lr1,r2(u, z,p; v, q) := λ‖p‖1 +
1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2)

+ Re(〈z −Au, v〉) + Re(〈p−∇u, q〉) +
r1

2
‖z −Au‖2 +

r2

2
‖p−∇u‖2,

(3.2)

where 〈·, ·〉 denotes the complex inner product of two vectors, and v, q are called
Lagrange multipliers or dual variables. Alternating minimization for the above La-
grangian consists of solving three subproblems w.r.t. u, z,p, followed by updating
dual variables. Below we elaborate on solving each subproblem.

3.1. u-subproblem. The u-subproblem is

minu∈Cn Re(〈z −Au, v〉) + Re(〈p−∇u, q〉) +
r1

2
‖z −Au‖2 +

r2

2
‖p−∇u‖2,(3.3)

which can be simplified as

minu∈Cn

r1

2
‖z + v/r1 −Au‖2 +

r2

2
‖p + q/r2 −∇u‖2.(3.4)

The operator A can be rewritten by the summation of two real linear operators
A = A1 + iA2. In a similar way, u = u1 + iu2 with ui ∈ Rn. One can obtain
Au = A1u1 −A2u2 + i(A1u2 +A2u1). Letting v0 = z + v/r1,p0 = p + q/r2, (3.4) is
equivalent to

r1

2
‖v0 −Au‖2 +

r2

2
‖p0 −∇u‖2

=
r1

2
‖A1u1 −A2u2 − Re(v0)‖2 +

r1

2
‖A1u2 +A2u1 − Im(v0)‖2

+
r2

2
‖Re(p0)−∇u1‖2 +

r2

2
‖Im(p0)−∇u2‖2.

(3.5)

By computing the derivative w.r.t. ui, one obtainsr1(AT1 A1 +AT2 A2)− r2∆ −r1(AT1 A2 −AT2 A1)

r1(AT1 A2 −AT2 A1) r1(AT1 A1 +AT2 A2)− r2∆

u1

u2



=

 r1(AT1 Re(v0) +AT2 Im(v0))− r2(∇ · Re(p0))

r1(−AT2 Re(v0) +AT1 Im(v0))− r2(∇ · Im(p0))

 ,
(3.6)

with suitable boundary condition for ui, where ∆u = ∇·(∇u), the divergence operator
∇(·) denotes the conjugate operator of gradient ∇. Readily we haver1(Re(A∗A))− r2∆ −r1(Im(A∗A))

r1(Im(A∗A)) r1(Re(A∗A))− r2∆

u1

u2


=

r1(Re(A∗v0))− r2(∇ · Re(p0))

r1(Im(A∗v0))− r2(∇ · Im(p0))

 ,
(3.7)

since

(3.8) AT1 A1 +AT2 A2 = Re(A∗A), AT1 A2 −AT2 A1 = Im(A∗A).
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Note that there is a unique solution to the u−subproblem, as characterized in Propo-
sition 2.

Proposition 2. The linear equations (3.7) admit a unique solution.
Proof. Let

(3.9) B :=

r1(Re(A∗A))− r2∆ −r1(Im(A∗A))

r1(Im(A∗A)) r1(Re(A∗A))− r2∆

 .
We show that the linear operator B is nonsingular. For this purpose, we calculate

〈B(u1, u2)T , (u1, u2)T 〉 = 〈r1Re(A∗A)u1 − r2∆u1, u1〉 − 〈r1Im(A∗A)u2, u1〉
+ 〈r1Im(A∗A)u1, u2〉+ 〈r1Re(A∗A)u2 − r2∆u2, u2〉

= 〈r1Re(A∗A)u1 − r2∆u1, u1〉+ 〈r1Re(A∗A)u2 − r2∆u2, u2〉
= r1 (〈Re(A∗A)u1, u1〉+ 〈Re(A∗A)u2, u2〉) + r2 (〈−∆u1, u1〉+ 〈−∆u2, u2〉) .

Since the operator ∆ is negative definite with the difference scheme of zero boundary
condition and Re(A∗A) is semi-positive by (3.8), we have 〈B(u1, u2)T , (u1, u2)T 〉 > 0,
for (u1, u2) 6= 0, which implies that B is nonsingular and hence the solution to u-
subproblem (3.7) is unique.

Remark 3.1. We can simplify the solution of u-subproblem if the matrix A
involves Fourier measurements with masks {Ij}Jj=1 as

(3.10) Au =


F(I1 ◦ u)
F(I2 ◦ u)

...
F(IJ ◦ u)

 ,
where ◦ denotes the pointwise multiplication, Ij is a (mask) matrix indexed by j, each
of which is represented by a vector in Cn in a lexicographical order. Therefore we have
A∗A = diag(

∑
j I
∗
j ◦ Ij), which is a real-valued matrix. In this case, we can obtain

u = u1 + iu2 by

(3.11)

{
u1 = (r1(Re(A∗A))− r2∆)

−1
(r1Re(A∗v0)− r2∇ · Re(p0)) ,

u2 = (r1(Re(A∗A))− r2∆)
−1

(r1Im(A∗v0)− r2∇ · Im(p0)) ,

which solves the following block-diagonal equations

r1Re(A∗A)− r2∆ 0

0 r1Re(A∗A)− r2∆

u1

u2

 =

r1Re(A∗v0)− r2∇ · Re(p0)

r1Im(A∗v0)− r2∇ · Im(p0)

 ,
(3.12)

with the zero matrix 0. A simplified form can be written as

u = (r1Re(A∗A)− r2∆)
−1

(r1A∗v0 − r2∇ · p0) .

In our experiments, we consider CDP, holographic and ptychographic patterns,
leading to a diagonal matrix A∗A with different values for diagonal entries. As a
result, FFT can not be directly used. Since the coefficient matrix B is sparse and
symmetric, one can use the conjugate gradients (CG) method or bicojugate gradient
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(BICG) to solve (3.12). We observe empirically that one or two CG/BICG iterations
are sufficient to yield satisfactory results.

Remark 3.2. If we consider real-valued image u ∈ Rn, then the auxiliary vari-
ables p, q ∈ R2n are also real-valued. In other words, we confine the minimization
problem (3.3) w.r.t. u on a real-valued space and the corresponding Euler equation
w.r.t. real-valued u is given as

(r1Re(A∗A)− r2∆)u = r1Re(A∗v0)− r2∇ · (p + q/r2).

3.2. z-subproblem. We rewrite the z-subproblem as

minz∈Cm

1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2) +
r1

2
‖z −Au+ v/r1‖2.(3.13)

It is straightforward that the minimization w.r.t. z is equivalent to minimizing w.r.t.
each entry z(i) independently and for i ∈ Λ \ D, an optimal solution is z∗(i) =

(Au)(i)− v(i)
r1
.

As for all i ∈ D, we can decompose the minimization problem w.r.t. z(i),

z∗(i) = arg minz(i)∈C
1

2
(|z(i)|2 − f(i) log |z(i)|2) +

r1

2
|z(i)− (Au)(i) + v(i)/r1|2.

(3.14)

into two subproblems, i.e., |z(i)| and sign(z(i)) (sign(z(i)) = z(i)
|z(i)| if z(i) 6= 0; oth-

erwise sign(0) = c with an arbitrary constant c ∈ C with unity length). One can
readily obtain sign(z∗(i)) = sign((Au)(i) − v(i)/r1). To minimize the subproblem
w.r.t. |z∗(i)|, we have

|z∗(i)| = arg minρ∈R+

1

2
(ρ2 − f(i) log ρ2) +

r1

2

(
ρ− |(Au)(i)− v(i)/r1|

)2
,

which has a closed-form solution,

|z∗(i)| = r1|(Au)(i)− v(i)/r1|+
√
r2
1|(Au)(i)− v(i)/r1|2 + 4(1 + r1)f(i)

2(1 + r1)
.

Letting w = Au− v/r1, we arrive at a simplified expression of

z∗(i) =
r1|w(i)|+

√
r2
1|w(i)|2 + 4(1 + r1)f(i)

2(1 + r1)
sign(w(i)), ∀ i ∈ D.

3.3. p-subproblem and overall algorithm. At last, we consider the p-subproblem

minp∈C2n λ‖p‖1 +
r2

2
‖p−∇u+ q/r2‖2,(3.15)

The solution is a soft shrinkage of variable ∇u− q/r2 as

p∗ = Threshλ/r2(∇u− q/r2),

with Threshη(q) = max {0, |q| − η} sign(q).
In summary, a pseudo code of ADMM for solving TV-PoiPR is provided in Algo-

rithm I.



10 TV based phase retrieval for Poisson noise removal

Algorithm I: ADMM for TV-PoiPR (2.6)

1. Initialization: Set q0 = 0, v0 = 0, u0, z0 = Au0,p0 = ∇u0. j = 0.
2. Solve uj+1 = uj+1

1 + iuj+1
2 by solving the following equations as

B

uj+1
1

uj+1
2

 =

r1Re(A∗vj0)− r2∇ · Re(pj0)

r1Im(A∗vj0)− r2∇ · Im(pj0)

 ,
with vj0 = zj + vj/r1,p

j
0 = pj + qj/r2, and the operator B defined in (3.9).

3. Solve zj+1 and pk+1 in parallel by
(3.16)

zj+1(i) =


r1|wj(i)|+

√
r2
1|wj(i)|2 + 4(1 + r1)f(i)

2(1 + r1)
sign(wj(i)),∀ i ∈ D,

wj(i), ∀i ∈ Λ \D,

with wj = Auj+1 − vj/r1, and

(3.17) pj+1 = Threshλ/r2(∇uj+1 − qj/r2).

4. Update multipliers as

vj+1 = vj + r1(zj+1 −Auj+1),

qj+1 = qj + r2(pj+1 −∇uj+1).
(3.18)

5. If some stopping condition is satisfied, stop the iterations and output the
iterative solution; else set j = j + 1, and goto Step 2.

3.4. Convergence analysis. We then discuss a convergent behavior of the pro-
posed algorithm. We show that the algorithm converges to a saddle point by satisfying
Karush-Kuhn-Tucker (KKT) conditions, which is a typical situation for nonconvex
problems. The KKT conditions for the Lagrangian Lr1,r2(u, z,p; q, v) in (3.2) are
defined as follows,

(3.19)



∂uLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0,

∂zLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0,

∂pLr1,r2(ũ, z̃, p̃; ṽ, q̃) 3 0,

∂vLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0,

∂qLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0.

for any saddle point (ũ, z̃, p̃, ṽ, q̃). Since the Lagrangian Lr1,r2(u, z,p; q, v) is non-
convex w.r.t. u, z,p, we detail the KKT conditions corresponding to these three
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variables:

A∗ṽ = ∇ · q̃,(3.20)  z̃(i) =
|ṽ(i)|+

√
|ṽ(i)|2 + 4f(i)

2
sign(ṽ(i)),∀ i ∈ D,

0 = ṽ(i),∀ i ∈ Λ \D,
(3.21)

{
0 3 λ∂p1

‖p̃1‖1 + q̃1,

0 3 λ∂p2
‖p̃2‖1 + q̃2,

(3.22)

z̃ = Aũ,(3.23)

p̃ = ∇ũ,(3.24)

where ũ = ũ1 + iũ2, p̃ = p̃1 + ip̃2 and q̃ = q̃1 + iq̃2.
Theorem 2. Assume that the successive differences of the two multiplies {vj −

vj−1}, {qj − qj−1} converge to zero and {uj} is bounded, then there exists a subse-
quence of iterative sequences of Algorithm I converging to an accumulation point that
satisfies KKT conditions of the saddle point problem (3.2).

Proof. We complete the proof in two steps. First, we show the boundedness of all
the variables. Due to the update of two multipliers (3.18) and the assumption that
their successive differences converge, one can derive that

(3.25) lim
j→+∞

zj −Auj = 0, lim
j→+∞

pj −∇uj = 0,

which implies the boundedness of {zj} and {pj}. By (3.16), we have

|zj+1(i)| =


r1|wj(i)|+

√
r2
1|wj(i)|2 + 4(1 + r1)f(i)

2(1 + r1)
, ∀ i ∈ D,

|wj(i)|, ∀ i ∈ Λ \D,

which demonstrates that {wj} is bounded and so is {vj} since wj = Auj+1 − vj/r1.
By (3.17), we have

|pj+1| = max
{

0, |∇uj+1 − qj/r2| − λ/r2

}
≥ |∇uj+1 − qj/r2| − λ/r2 ≥ |qj |/r2 − |∇uj+1| − λ/r2,

(3.26)

which gives the boundedness of {qj} due to the boundedness of {uj} and {pj}.
The boundedness of all variables guarantees that there exists a subsequence

{(ujl ,pjl , zjl , vjl , qjl)} ⊂ {(uj ,pj , zj , vj , qj)} and (ũ, p̃, z̃, ṽ, q̃), such that

lim
l→+∞

(ujl ,pjl , zjl , vjl , qjl) = (ũ, p̃, z̃, ṽ, q̃).

We then prove that the accumulation point (ũ, p̃, z̃, ṽ, q̃) satisfies the KKT conditions.
It follows from (3.25) that the KKT conditions w.r.t. z and p, i.e., (3.23) and (3.24),
are satisfied. Since B is a linear operator in a finite dimensional space, (3.20) is
straightforward. By the continuity of (3.16), (3.21) is obtained. Finally one can
obtain that p̃ = Threshλ/r2(∇ũ − q̃/r2), which implies (3.22). Hence the proof is
completed.

Although the assumption for the convergence of the successive difference of mul-
tipliers in Theorem 2 seems strong, we observe through our numerical results that
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the proposed algorithm is always convergent; see Figure 11. Theoretically speaking,
it is challenging to prove the convergence of ADMM for a nonconvex nondifferential
optimization problem without any Lipschitz differentiable term. As for the bound-
edness assumption in Theorem 2, it can be removed for image reconstruction as its
lower/upper bounds are often known a priori and a box constraint can be enforced
in the model [33, 16].

4. A special case. In the case of noiseless data, we consider a special case of
TV-PoiPR by setting λ = 0 in (2.6), referred to as “PoiPR”,

(4.1) minu∈Cn H(u) :=
1

2

∑
i∈D

(|(Au)(i)|2 − f(i) log |(Au)(i)|2).

We remark that this model can also be used for PR with noisy measurements, which
produces noisy reconstructed results. The existence of the solution has been given in
Theorem 1 and we can further prove that the solution to (4.1) with noiseless data is
unique under some conditions.

Theorem 3. For f ∈ Range(M) and D = Λ, if the phase retrieval problem has
a unique solution up to global phase shifts, then the minimizer to (4.1) is also unique
up to global phase shifts.

Proof. We consider a minimization problem w.r.t. w as follows,

(4.2) w∗ = minw(i)∈R+

1

2

∑
i∈Λ

(w(i)− f(i) logw(i)),

which can be solved pointwisely. Particularly for each entry w(i), the minimization

problem has a unique solution, i.e., w∗(i) = minρ∈R+

{
ρ−f(i) log ρ

}
= f(i). Therefore

f is the unique minimizer to (4.2). Furthermore, since f ∈ Range(M), there exists
a vector u ∈ Cn such that f = M(u). Since M(u) admits a unique solution up to
global phase shifts, the solution to (4.1) is also unique up to global phase shifts.

Generally speaking, it is a strong assumption that the phase retrieval problem
has a unique solution up to global shift. It follows from the work of Conca et al. [20]
that if one defines a linear operator AΦ generated by an m−element complex frame
Φ = {φ0, φ1, · · · , φm−1} in the sense of (AΦu)j = 〈φj , u〉, then the mapping M(u)
is injective for a generic frame Φ with m ≥ 4n − 4. However, it is usually difficult
to verify that the frame Φ is generic. In our experiments, we consider Fourier type
of measurements, which are often not generic. Fortunately, the uniqueness of Fourier
measurements can be proven regardless of generic frame. For example, in the case
of oversampled3 CDP, Fannjiang [24] proved that the solution to one pattern for
real-valued images (two for complex-valued) is unique with overwhelming probability;
in standard CDP defined in (3.10) with the admissible modulation, Candés et al [11]
proved that with probability at least 1 − 1/n, the solution for PR is unique up to
global phase shift using Jn measurements, if the masks number J ≥ c log4 n for some
constant c. For deterministic holographic pattern in (1.2), u can be recovered up to
global phase if the DFT of u is nonvanishing, si is prime with ni, and n1 is prime
with n2. In [16], by setting s1 = s2 = 1/2 in (1.2), the uniqueness can be obtained for
real-valued images if the DFT of Dsu and u are nonvanishing and n1 is prime with
n2.

3“Oversampled” means using the oversampled DFT on an enlarged grid.
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Computationally, one can construct the augmented Lagrangian for PoiPR, simi-
larly to (3.2),

max
v

min
u,z

1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2) + Re(〈z −Au, v〉) +
r

2
‖z−Au‖2.(4.3)

Following a similar procedure of solving TV-PoiPR, we obtain an ADMM-based al-
gorithm for PoiPR. The pseudo-code is summarized in Algorithm II, which has much
simpler form compared to Algorithm I (for solving TV-PoiPR).

Algorithm II: ADMM for PoiPR (4.1)

1. Initialization: Set v0 = 0, u0, z0 = Au0 and j = 0.
2. Solve uj+1 = uj+1

1 + iuj+1
2 by solving the following equations as

(4.4)

Re(A∗A) −Im(A∗A)

Im(A∗A) Re(A∗A)

uj+1
1

uj+1
2

 =

Re(A∗vj0)

Im(A∗vj0)

 ,
with vj0 = zj + vj/r.

3. Solve zj+1 by (3.16).
4. Update the multiplier as

(4.5) vj+1 = vj + r(zj+1 −Auj+1).

5. If the some stopping condition is satisfied, stop the iterations and output the
iterative solution; else set j = j + 1, and goto Step 2.

Remark 4.1. We want to reveal the equivalence between ADMM and Douglas-
Rachford splitting algorithm (DRS) [22] applied to PoiPR. Assuming that D = Λ, we
reformulate the proposed PoiPR (4.1) to an equivalent form,

(4.6) minz∈Cm Φ(z) + IK (z).

where Φ(z) := 1
2

∑
i

(|z(i)|2 − f(i) log |z(i)|2) and IK denotes the indicator function

with K = {z ∈ Cm : ∃u ∈ Cn, s.t. z = Au}. We introduce a proximal operator
ProxΦ as ProxΦ(z) = arg minz̄ Φ(z̄) + 1

2‖z̄ − z‖
2 and assume Im(A∗A) = 0. Then it

follows from Remark 3.1 and (3.16) that applying DRS to (4.6) can be expressed as

(4.7) zk+1 = zk − z̄k + ProxIK (2z̄k − zk), z̄k = ProxΦ/r3(zk),

with a positive parameter r3 and

ProxIK (z) = A(A∗A)−1(A∗z),

(ProxΦ/r3(z))(i) =
r3|z(i)|+

√
r2
3|z(i)|2 + 4(1 + r3)f(i)

2(1 + r3)
sign(z(i)), ∀i ∈ Λ.
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By introducing new variables and switching orders of subproblems4, we can get an
equivalent form of (4.7) as

zk+1 = ProxIK (xk + v̄k), xk+1 = ProxΦ/r3(zk+1 − v̄k), v̄k+1 = v̄k + zk+1 − xk+1,

(4.8)

which is exactly the ADMM for solving an equivalent problem of (4.6) as

(4.9) min
x,z

Φ(x) + IK (z), s.t. x = z.

Obviously, Eqn. (4.8) by replacing u by z = Au has the same form as Algorithm II,
which implies the equivalence between DRS and ADMM applied to PoiPR.

Similar theoretical results of PoiPR can be obtained from the analysis of TV-
PoiPR. In particular, we can prove that there exists a unique solution of u−subproblem
(4.4) and Algorithm II converges to a stationary point, as characterized in Proposi-
tion 3 and Theorem 4 respectively. The proofs are omitted here.

Proposition 3. Assume that the operator Re(A∗A) is positive, then the linear
equations (4.4) admit a unique solution.

Remark 4.2. Note that the assumption in Proposition 3 holds for the Fourier
measurements (3.10) without undersampling, since each entry of

∑
j I
∗
j ◦Ij is nonzero.

Note that it also holds for holographic pattern (1.2). For ptychographic pattern, if one
measures the data with sufficient number of frames under the periodical boundary
condition, the operator Re(A∗A) is also positive.

Theorem 4. Assume that the successive differences of the multiplier {vj−vj−1}
converge to zero and {uj} is bounded, then there exists a subsequence of iterative
sequences of Algorithm I converging to an accumulation point that satisfies KKT con-
ditions of the saddle point problem (4.3).

In the rest of the section, we consider to accelerate Algorithm II in the case of
a sufficiently large number of CDP measurements. Denote individual masked mea-
surement matrices Aj and data fj such that A = (AT1 ,AT2 , · · · ,ATJ )T , and f =
(fT1 , f

T
2 , · · · , fTJ )T with Aj ∈ Cn×n, fj ∈ Rn. By introducing the operators T AP

j as

T AP
j (u) := A∗j (

√
fj ◦ sign(Aju)), serial alternating projection (SAP) [18] is given as

(4.10) uk+1 =

(∏J

j=1
T AP
j

)
uk,

where Aj is assumed to be isometric, i.e. A∗jAj = I with identity operator I. SAP is
essentially an alternating projection algorithm to find the intersection u? of multiple
sets, i.e. u? ∈

⋂J
j=1{u ∈ Cn : |Aju| = fj}.

For simplicity, we assume that D = Λ and A∗A is invertible (not necessarily to
be isometric). Motivated by the SAP and discussions in Remark 4.1, we heuristically
establish a variant of Algorithm II, referred to as “Algorithm III”, as follows:

(4.11) Algorithm III : uk+1 =

(∏J

j=1
Tj
)
uk,

where

Tju := (A∗jAj)−1A∗j (Aju− z̄j + ProxIKj
(2z̄j −Aju)), z̄j = ProxΦj/r3(Aju),

4 http://www.seas.ucla.edu/~vandenbe/236C/lectures/dr.pdf

http://www.seas.ucla.edu/~vandenbe/236C/lectures/dr.pdf
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and Kj = {z : ∃u ∈ Cn, s.t. z = Aju} and Φj(z) = 1
2

∑
i∈Ω(|z(i)|2−fj(i) log |z(i)|2).

One readily knows that Algorithm III is derived based on DRS (4.7) (or equivalent-
ly ADMM in Algorithm II) and SAP. As demonstrated in Section 5, not only does
Algorithm III accelerate Algorithm II when a large number of noiseless CDP mea-
surements are available, it also yields better recovery quality than the SAP for noisy
CDP measurements.

5. Numerical experiments. Although the proposed approaches are applicable
to phase retrieval in general, we only focus on Fourier measurements in the experi-
mental section. In particular, we consider three different types of linear operators A:
coded diffraction pattern (CDP) with random masks, holographic pattern [13] with
deterministic masks, and ptychgraphic pattern [62, 51], the last of which is currently
a very popular and powerful imaging tool to generate high resolution images with
large field of view. For coded diffraction pattern, we use octanary CDPs; specifical-
ly each element of Ij in (3.10) takes a value randomly among the eight candidates,
i.e., {±

√
2/2,±

√
2i/2,±

√
3,±
√

3i}. For holographic pattern, the linear operator A
is given in (1.2) and we choose s1 = s2 = 1/2, which is shown in our previous work
[16] to give better results with less measurements than s1, s2 taking integer values as
in [10]. For ptychographic pattern, the operator A is defined as follows,

(5.1) Au =


F(ω ◦R1u)
· · ·

F(ω ◦Rju)
· · ·

F(ω ◦RJu)

 ,
where Rj is a (binary) restriction matrix that selects a window for an index j ∈
{1, · · · , J} with J = 16 × 16 frames in total and ω denotes the illumination mask
generated by a zone plate len with size of 64 × 64. We assume that Rj and ω are
known in this paper; for unknown ω please refer to a recent work [33].

The testing images shown in Figure 1 include three real-valued images: “Flower”
with resolution 256× 256, “Leaf” with resolution 363× 378, and “Cameraman” with
resolution 256 × 256, as well as a complex-valued image “Goldballs”with resolution
256 × 256. As discussed in Section 2, the amount of Poisson noise at each pixel
depends on its intensity value. Therefore, we introduce a scale factor η ∈ (0,∞)
to control the scale of the image intensities (or the number of photons), which is
inversely proportional to the amount of noise added to the data. Let uη = ηu, and

the measured data is expressed as f(i)
ind.∼ Poisson(|(Auη)(i)|2), ∀i ∈ D.

Quantitatively, we use Signal-Noise-Ratio (SNR) to measure the reconstruction
quality, defined as

SNR(u, ug) = −10 log10

∑
i∈Ω |u(i)− c∗ug(i)|2∑

i∈Ω |u(i)|2
,

where ug is the ground truth image of size n, u is the reconstructed image, and c∗

denotes the global phase factor as c∗ = arg min{c∈C: |c|=1} ‖u − cug‖. We also use
“SNR-Intensity” to measure the noise level in the measurement domain. Particularly,
we look at SNR-Intensity of the measurement data, defined as SNR(f, |Aug|2), and
SNR-Intensity of the recovered image u, defined as SNR(|Au|2, |Aug|2).

5.1. Effectiveness of TV regularization. We first show the effectiveness of
TV regularization by comparing Algorithm I (with TV) and Algorithm II (without
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(a) (b) (c) (d) (e) (f)

Fig. 1. Testing images. Real-valued images: (a) “Flower” with resolution 256 × 256, (b)
“Maple” with resolution 363 × 378, and (c) “Cameraman” with resolution 256 × 256. A complex-
valued image “Goldballs” with resolution 256× 256: (d) its amplitude, (e) real components, and (f)
imaginary components.

Table 1
SNRs of image reconstructed by different algorithms. The data format is SNR/SNR-Intensity,

“NULL” means the raw data (hence no SNR values), and “I”, “II” are short for Algorithm I and
Algorithm II.

η Algorithms Flower Maple Cameraman

0.01

NULL ——/8.34 ——/7.19 ——/6.57

II 4.41/8.02 3.66/8.10 4.79/8.33

I (TV) 19.94/19.98 18.93/18.74 17.99/18.41

0.02

NULL ——/11.57 ——/12.53 ——/11.82

II 10.07/13.89 11.09/14.92 10.37/14.17

I (TV) 22.95/23.48 22.75/23.08 20.74/21.62

0.05

NULL ——/19.20 ——/20.32 ——/19.57

II 18.58/22.08 19.64/23.19 18.88/22.45

I (TV) 27.18/28.27 27.67/28.72 24.96/26.55

TV) for phase retrieval from three types of Fourier measurements corrupted by Poisson
noise. For both algorithms, we choose the initial condition u0 by assuming zero
phases and solving it from Au0 =

√
f , i.e.,

(5.2) u0 = (Re(A∗A))−1(A∗
√
f),

and terminate the algorithms after 50 iterations as a default stopping condition. The
choices of parameters (λ, r, r1, r2) are provided in the caption of resulting figures.
Please refer to Section 5.3 for detailed discussions about the influence of parameters
on the performance of the proposed algorithms.

We start with phase retrieval of real-valued images from CDP measurements
with J = 2 in (3.10). In this setting, the operator M takes 2n measurements. We
consider η = 0.01, 0.02, 0.05 to generate three different scales of ground truth images
in the sense that the smaller η is, the more noisy the image exhibits. We record
the SNR/SNR-Intensity values for all the testing images in Table 1, which shows at
least 8dB/4dB improvement of Algorithm I (with TV) over Algorithm II (without
TV). Due to page limit, we only present the PR results of “Cameraman” in Figure
2. Readily, one can infer the TV’s effectiveness from the reconstructed images having
sharper edges, cleaner background, and higher contrast than the non-TV version.
Improvement of TV over non-TV is more obvious for smaller η, which corresponds to
larger amount of noise in the data or lower amount of photon counts.

We then consider phase retrieval of the complex-valued image “Goldballs” (in
Figure 1 (d)-(f)). We observe empirically that J = 4 in (3.10) often gives the robust
recovery for complex data, and hence the experiments are based on J = 4. Figure
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Fig. 2. Comparison of Algorithm I (with TV, top row) and Algorithm II (without TV,
bottom row) to recover real-valued “Cameraman” from noisy CDP measurements. From left to right:
η = 0.01, 0.02, 0.05 (the smaller η is, the more noisy the image exhibits.) We fix the parameters
r2 = 5 × 104, λ = 200 for different η; set r = r1 = 5 for η = 0.01 and r = r1 = 2 for η = 0.02, 0.05.

3 shows the phase retrieval results, which again illustrates the improvement of using
TV regularization over non-TV by at least 6dB/3dB increase of SNR/SNR-Intensity
values.

For holographic patterns with s1 = s2 = 1/2 in (1.2), it seems to require more
iterations for such deterministic masks than CDP’s random masks; and therefore we
stop Algorithms I-II after 500 iterations. The results are given in Figure 4. Without
TV, Algorithm II produces a lot of ringing artifacts and distortions, which are differ-
ent to homogeneous noise in the reconstructions from CDP measurements as shown
in Figures 2-3. With the help of TV, these severe artifacts inherited from noisy mea-
surements are removed with at least 4dB increase of SNR compared to the non-TV,
although no obvious increase in the SNR-Intensity values.

Finally, we perform the experiments for ptychographic phase retrieval using the
complex-valued image “Goldballs.” As shown in Figure 5, ptychographic pattern is
more challenging than CDP in that the non-TV algorithm gives very blurry results for
both small scale features and the edges. By using the TV regularization, the edges of
large scale features are well recovered in Figure 5 (b), although small scale structures
still looks blurry. When the noise level decreases, the TV can recover the images
with sharp edges and repetitive small scale structures as shown in Figure 5 (d). The
SNR/SNR-Intensity of recovery images are increased at least 4dB/5dB by using the
TV regularization.

5.2. Oversampling and undersampling. We examine the performance of the
proposed algorithms w.r.t. oversampling in the sense that one collects noisy data
with different number of masks, i.e. J = 1, 3, 5, which acts as an oversampling factor.
Figure 6 shows that the more data we have (larger J), the better the phase retrieval
results by either Algorithm I or Algorithm II. When comparing results across different
J values, there is a diminishing gain of using the TV regularization in terms of SNR
as J increases.

We also study the effects of undersampling, the amount of which can be controlled
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(a) 3.04/6.10 (b) 9.45/13.07

(c) 10.66/10.91 (d) 15.64/16.76

Fig. 3. Comparison of Algorithm I (with TV, top row) and Algorithm II (without TV, bottom
row) to recover a complex-valued image “Goldballs” from noisy CDP measurements. From left to
right: η = 0.08, 0.2 with the corresponding SNR-Intensity values of noisy measurements as 4.64 and
11.07 respectively. Set λ = 200, r1 = r = 5, r2 = 5.0×104 for different noise levels. The data format
is SNR/SNR-Intensity.

by the subset D. In particular, we define the undersampling ratio as rs = |D|/m. The
sampling subset D is randomly generated according to a probability density function
with polynomial variable density sampling5; please refer to [44] for details about
various sampling schemes. We show one realization of sampling masks corresponding
to rs = 0.1, 0.2, 0.4 in Figure 7. Due to page limits, we only provide the PR results of
“Cameraman” with J = 2, η = 0.05 in Figure 8, while SNRs of all the testing images
are given in Table 2. Both Figure 8 and Table 2 show large improvements of Algorithm
I over Algorithm II both visually and in terms of SNRs. Figure 8 also demonstrates
that TV can give satisfactory results at 20% undersampling ratio. As J = 2, the
number of measurements at rs = 20% is 0.4n, which is below the theoretical limit
capped at 2n for real signal recovery.

5.3. Discussion on Algorithms I-II. We want to illustrate some properties of
the proposed algorithms, specifically impact by parameters and convergent behaviors.
All the results in this section are based on numerical simulation with Poisson noise
level at η = 0.02.

Impact by parameters. The parameters λ, r1, r2 in Algorithm I and r in
Algorithm II are chosen by hand in order to obtain visually satisfactory results.

We first discuss the impact of r for Algorithm II by choosing r from {r0×2−l, r0×
2−l+1, · · · , r0×2l−1, r0×2l} with l = 7, r0 = 2. We plot the corresponding SNRs of the

5SparseMRI V0.2, http://www.eecs.berkeley.edu/~mlustig/Software.html

http://www.eecs.berkeley.edu/~mlustig/Software.html
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(a) 13.40/46.17 (b) 14.48/54.19 (c) 15.98/63.80

(d) 17.44/47.40 (e) 20.25/55.12 (f) 23.19/63.92

Fig. 4. Comparison of Algorithm I (with TV, top row) and Algorithm II (without TV, bottom
row) to recover “Cameraman” from noisy measurements of holographic patterns. Left column: η =
0.01, r = 0.3, r1 = 5, r2 = 2 × 105, λ = 200; middle column: η = 0.02, r = 0.4, r1 = 3, r2 =
8 × 104, λ = 140; right column: η = 0.05, r = 0.1, r1 = 1, r2 = 5 × 104, λ = 100; the corresponding
SNR-Intensity values for η = 0.01, 0.02, 0.05 are 44.92, 53.57, and 58.00 respectively. The data
format is SNR/SNR-Intensity.

Table 2
Downsampling: SNRs for the recovery images and the corresponding intensities by different

algorithms. “NULL” means the raw data with no operations. The data format is SNR/SNR-
Intensity, and “I”, “II” are short for Algorithm I and Algorithm II.

rs Algorithms Flower Maple Cameraman

10%

NULL ——/-9.43 ——/-9.54 ——/-9.47

II -1.94/-5.69 -2.83/-6.39 -1.88/-5.75

I (TV) 15.21/15.00 7.72/6.08 13.73/13.46

20%

NULL ——/-6.07 ——/-6.01 ——/-5.94

II 0.81/0.57 -0.56/-0.54 0.94/0.65

I (TV) 21.14/21.42 11.62/11.17 18.44/18.99

40%

NULL ——/-1.81 ——/-1.73 ——/-1.77

II 3.45/6.31 1.43/3.96 3.78/6.42

I (TV) 24.19/24.88 24.41/25.13 21.36/22.37

reconstructed images in Figure 9, where we include the results of running Algorithm
II 1000 iterations (red plus) versus default 50 iterations (blue dots). It seems that the
parameter r only affects the convergence rate and Algorithm II is rather insensitive
to r in the range of [1, 100].

As for Algorithm I, the impact of r1, r2, and λ is illustrated in Figure 10, in
which we fix λ ∈ {100, 200, 400} and vary the parameters (r1, r2) ∈ {r0

1 × 2−l1 , r0
1 ×

2−l1+1, · · · , r0
1×2l1−1, r0

1×2l1}×{r0
2×2−l2 , r0

2×2−l2+1, · · · , r0
2×2l2−1, r0

2×2l2} with
r0
1 = 2, r0

2 = 5 × 104, and l1 = l2 = 7. For the sake of better visualization, we raise
the negative SNR values to zeros in Figure 10, which shows that Algorithm I is less
sensitive to λ than to r1, r2. The first two rows of Figure 10 are about different iter-
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(a) 8.37/31.00 (b) 15.12/36.90

(c) 11.22/36.22 (d) 17.06/41.55

Fig. 5. Comparison of Algorithm I (with TV, top row) and Algorithm II (without TV,
bottom row) to recover ‘Goldballs” from noisy measurements of ptychographic patterns. The resulting
magnitudes are shown here and the data format is SNR/SNR-Intensity. From left to right: η =
0.5, 0.8 with corresponding SNR-Intensity values of the noisy measurements as 29.48, 33.59. Set
λ = 10, r1 = 0.5, r2 = 100 for Algorithm I and r = 0.08 for Algorithm II.

ations numbers, which implies that the parameters r1, r2 affect the convergence rates
of Algorithm I (some combinations make Algorithm I divergent.) We also show the
best results among various combinations of r1, r2 for each λ = 100, 200, 400 in Figure
10. One can see that large λ leads to over-smoothed image recovery, and hence a
moderate λ should be chosen for the best results. In addition, we observe heuristi-
cally that Algorithm II is less sensitive to parameters than Algorithm I, as the TV
regularization in Algorithm I introduces a non-differential term, which mysteriously
interacts with the non-convex fidelity term.

In summary, for TV-PoiPR model, λ is the model parameter to control the qual-
ity of recovery results, while r1 and r2 are algorithmic parameters that determine
whether the algorithm converges and/or how fast it converges. We observe through
various experiments, such as Figures 2-3 for CDP and Figure 5 for ptychographic
pattern, Figure 6 for different number of measurements of CDP, that Algorithm I is
relatively insensitive to different images and problem sizes for a specific pattern; and
we nearly use the same λ for different images and even for different noise level. As
for downsampling of CDP (Figure 8), we find a bigger value of λ is desired when
noise level increases or number of measurements decreases. As shown in Figure 2 and
Figure 4, the parameter r1 should be smaller when noise level decreases, and it can
be fixed for different images or different number of measurements. The parameter
r2 should be smaller as the noise level increase for holographic pattern as shown in
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(a) 4.38/11.98 (b) 14.79/15.96 (c) 17.60/18.19

(d) 18.94/19.16 (e) 22.47/22.55 (f) 23.75/23.76

Fig. 6. Performances w.r.t. oversampling factor J = 1, 3, 5 (from left to right) with corre-
sponding SNR-Intensity values of noisy measurements as 11.80, 11.78, 11.81 ( η = 0.02). First row:
results by Algorithm II for PoiPR; Second row: results by Algorithm I for TV-PoiPR. The data
format is SNR/SNR-Intensity. Set r1 = 2, r2 = 5 × 104, λ = 200.

Fig. 7. Sampling masks D w.r.t. undersampling ratios rs = 10%, 20%, 40% from left to right.

Figure 4, while be kept fixed for other cases w.r.t. different images and problem sizes.
It is helpful to determine optimal parameters automatically, which will be left as a
future work.

Convergence. We want to demonstrate the convergence of the proposed algo-
rithms by plotting objective functional values G(uj) and H(uj) as well as successive

errors6 ‖uj−uj−1‖
‖uj‖ w.r.t. the iteration number j in Figure 11, based on “Cameraman”

and noise level at η = 0.1. We consider both CDP and holographic measurements.
As illustrated in Figure 11, all the curves are monotonically decreasing, which em-
pirically validate the convergence. In addition, we observe that 30∼50 iterations are
sufficient to obtain a satisfactory recovery result from noisy CDP measurements, while
more iterations are required for holographic PR to converge. Note that the conver-
gence of Algorithm II for noise free measurements is further examined in Figure 12,
in comparison with the other state-of-the-art methods in Section 5.4.

5.4. Comparison to other PR methods. We compare our proposed algo-
rithms with six PR methods: error reduction (ER) [28], hybrid projection-reflection

6When ground-truth solution for the regularized problem is not available, it is standard to ex-
amine the convergence by plotting the objective functional values and the successive errors.
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10% 20% 40%

Fig. 8. Performances w.r.t. different sampling masks D shown in Figure 7 (using the same
examples in Figure 1 and η = 0.05). 1st row: results by Algorithm II for PoiPR; 2nd rows: results
by Algorithm I for TV-PoiPR. From the left to right: rs = 10%, 20%, 40%. Set r = r1 = 2, r2 =
2.0 × 104, λ = 300 (rs = 0.1) or λ = 200 (rs = 0.2, 0.4).

10-2 100 102 104
0

5

10

15
50 Iterations
1000 Iterations

Fig. 9. The performance of Algorithm II w.r.t. r stopped after 50 iterations in blue dots and
after 1000 iterations in red plus. The y-axis gives the corresponding SNR values.

(HIO) [25], difference map (DF) [23], relaxed averaged alternating reflection (RAAR)
[42], truncated Wirtinger flow (TWF) [19], and SAP [18]. The Matlab implemen-
tation of TWF can be found on authors’ website7, while we implement the other
projection algorithms by ourselves. Assuming that AA∗ is invertible and Im(AA∗) =
0, we introduce two projection operators as PM (z) =

√
f ◦ sign(z), and PS(z) =

A(A∗A)−1A∗z, with measurements f . The ER algorithm can be written as zk+1 =
PSPM (zk), for k = 0, 1, · · · , and uk+1 can be computed as

(5.3) uk+1 = (A∗A)−1A∗zk+1.

7http://web.stanford.edu/~yxchen/TWF/code.html

http://web.stanford.edu/~yxchen/TWF/code.html
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Fig. 10. The performance of Algorithm I w.r.t. r1, r2 for λ = 100, 200, and 400 (from left to
right). 1st-2nd row: the SNR values w.r.t. r1, r2 for each λ stopped after 50 iterations in 1st row
and 1000 iterations in 2nd row and bottom row: the image recovery results corresponding to the
highest SNR.
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Fig. 11. Convergence histories of Algorithm I (3rd-4th columns) and Algorithm II (1st-2nd
columns) for CDP (top) and holographic pattern (bottom) by plotting objective functional values
and relative errors to the ground-truth image w.r.t. the iteration number.

Similarly, we can obtain algorithms for HIO, DF, and RAAR with relaxed parameters
δ, γ1 and γ2 as follows,
(5.4)

HIO: zk+1 = ((1 + δ)PsPM + I− PS − δPM ) (zk),

DF: zk+1 =
(
I + δ

(
PS((1 + γ2)PM − γ2I)− PM ((1 + γ1)PS − γ1I)

))
(zk),

RAAR: zk+1 = (2δPSPM + δI− δPS + (1− 2δ)PM ) (zk),
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and uk+1 can be immediately solved by (5.3). We remark that for real-valued images,

we use the modified projection operator P̃S as P̃S(z) = A Re((A∗A)−1A∗z) instead
of PS and update u as uk+1 = Re((A∗A)−1A∗zk+1). Since SAP (4.10) requires that
each Aj is isometric and TWF only works for CDP patterns, the following discussion
is based on the CDP measurements with each illumination Ij replaced by sign(Ij) to
yield isometric Aj .

Since all the competing methods are not designed to deal with any types of noise,
we only compare them with the non-TV version (i.e., PoiPR solved by Algorithm II)
in the noise free case. As all the methods can find the ground-truth image from
noiseless measurements, we compare them in terms of convergence speed. We use the
same initial value (5.2) for all the algorithms except for TWF, which uses a truncated
spectral initialization as default and set the stopping condition as

Error := min
|c|=1

‖cuk − u∗‖ ≤ 1.0× 10−14,

or iteration number reaches 200, where u∗ denotes the ground truth image, and uk is
the solution after the kth iteration. We conduct the experiments for CDP measure-
ments of real-valued image “Cameraman” with J = 2, 12 and complex-valued image
“Goldballs” with J = 38, 12. We remark that TWF requires more measurements,
and we only report its performance with J = 12. We plot the convergence curves in
Figure 12. For fewer measurements (J = 2), Algorithm II converges the fastest for
real-valued image, while Algorithm III and SAP converge the fastest for complex-value
image. When more measurements are collected with J = 12, Algorithm III and SAP
converge much faster than others for both real and complex images. We also observe
very close convergence speed between Algorithm II and RAAR as well as between Al-
gorithm III and SAP. The relations between these algorithms should be investigated
in the future. It seems that the iterative errors of HIO and DF algorithms decrease
fast within first ten iterations and then stagnate. In addition, a linear convergence
rate is observed practically, which motivates the future study of theoretical analysis
on convergence rate.

We then test on noisy CDP measurements with J = 12 and η = 0.005. It seems
the iterations of HIO and DF algorithms are unstable, and we only show the best re-
covery results (with highest SNR) among 50 iterations. We show the recovery results
of “Cameraman” in Figure 13 and the SNR/SNR-Intensity values of all the testing
images in Table 3. The recovered image by TWF is very noisy, so we exclude it in
Figure 13. One can see that Algorithms II-III without TV produce better results
visually, which also have higher SNRs than other competing algorithms; and the TV
regularization (Algorithm I) significantly improves the results as in Table 3. We also
plot the convergence curves in Figure 14, which implies that errors of ER/RAAR de-
crease fastest within the first ten iterations, followed by stagnation at a higher error
level than that by Algorithms I-III. Also the error by Algorithm III decreases more
quickly than that by Algorithm II. Based on Figures 13-14 and Table 3, we remark
that the proposed Algorithms II-III using Poisson maximum likelihood estimate pro-
duce recovered results with higher contrast visually and higher accuracy compared
with other non-TV algorithms such as ER/RAAR that do not consider the noise
distribution.

6. Conclusion. In this paper, we proposed a total variation regularization mod-
el “TV-PoiPR” to recover an image (taking real or complex values) from its partial

8With isometric masks, J = 3 masks can empirically produce exact recovery
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Fig. 12. Convergence curves (Error v.s. Iteration Number) of Algorithm II (“II” in short)
and Algorithm III (“III” in short) in comparison to ER, HIO, DF, RAAR, and TWF for noise free
CDP measurements of real-valued “Cameraman” (top) with J = 2 (left), J = 12 (right) masks and
complex-valued “Goldballs” (bottom) with J = 3 (left), J = 12 (right) masks. Set r3 = 0.01 for
Algorithm III, δ = 0.6 for HIO and γ1 = −γ2 = −1 for DF. Set r1 = 1 for Algorithm II and δ = 0.7
for RAAR in (a); Set r = 1.8 for Algorithm II and δ = 0.55 for RAAR in (b); Set r = 0.65 for
Algorithm II, and δ = 0.75 for RAAR in (c); Set r = 1.6 for Algorithm II and δ = 0.55 for RAAR
in (d).

Table 3
SNR/SNR-Intensity values of the recovered images by different algorithms. The two best SNRs

are marked in bold. For HIO and DF algorithms, we only show the best recovery results among 50
iterations with highest SNRs. η = 0.005, J = 12.

Algorithms NULL ER HIO DF RAAR TWF SAP III II I

SNR —— 4.53 -2.15 1.81 4.54 -2.45 -0.39 9.26 9.48 17.85

SNR-Intensity 2.76 -0.53 -8.71 -2.92 -0.53 1.05 -0.68 9.61 9.80 17.46

and noisy magnitude measurements. Numerically, an efficient ADMM was designed
with guaranteed convergence, which was validated by numerical experiments. TV reg-
ularization shows great potential for robust phase retrieval with very heavy noise, and
our proposed methods can recover the images with sharp edges and clean background.

As a future work, we aim to analyze the global convergence of ADMM for the non-
convex optimization problem with non-Lipschitz continuous gradient. Recently, the
global convergence for ADMM in [35, 60, 40] was provided for noncovex optimization
problems, whose objective functionals contain a Lipschitz differentiable term. We al-
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(a) ER (b) HIO (c) DF (d) RAAR

(e) SAP (f) III (g) II (h) I

Fig. 13. Comparison of PR methods from noisy CDP measurements (3.10) with J = 12 and
η = 0.005. The proposed methods are labeled by “I”, “II” and “III”, short for Algorithm I (with
TV) and Algorithms II/III (without TV) respectively. For HIO and DF algorithms, we only show
the best recovery results (with highest SNR) among 50 iterations.
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Fig. 14. Convergence curves (Error v.s. Iteration Number) of Algorithms I/II/III in compar-
ison to ER, HIO, DF, RAAR, WF and TWF for noisy data “Cameraman” with J = 12 for CDP.
η = 0.005. Set r1 = 10, r2 = 5 × 104, λ = 500 for Algorithm I, r = 10 for Algorithm II, r3 = 60 for
Algorithm III, δ = 0.6, 0.45, 0.1 for HIO, RAAR, DF respectively; Set γ1 = −γ2 = −1 for DF.

so notice that a proximal heterogeneous block implicit-explicit method was proposed
in [33] to solve a blind ptychographic phase retrieval problem, where the objective
functional also has such term. Since our proposed models do not contain any Lips-
chitz differentiable term to guarantee the sufficient decrease of the functional values of
augmented Lagrangian, we need to assume that the successive difference of multiplier
is vanishing. It is our intention to get rid of this assumption in the future. We are
interested in applying the proposed methods to real ptychography data, which is also
a future work.
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