Analysis and modeling of localized invariant solutions in pipe flow
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Turbulent spots surrounded by laminar flow are a landmark of transitional shear flows, but the
dependence of their kinematic properties on spatial structure is poorly understood. We here in-
vestigate this dependence in pipe flow for Reynolds numbers between 1500 and 5000. We compute
spatially localized relative periodic orbits in long pipes and show that their upstream and down-
stream fronts decay exponentially towards the laminar profile. This allows us to model the fronts by
employing the linearized Navier—Stokes equations, and the resulting model yields the spatial decay
rate and the front velocity profiles of the periodic orbits as a function of Reynolds number, azimuthal
wave number and propagation speed. In addition, when applied to a localized turbulent puff, the
model is shown to accurately approximate the spatial decay rate of its upstream and downstream
tails. Our study provides insight into the relationship between the kinematics and spatial structure
of localized turbulence and more generally into the physics of localization.

I. INTRODUCTION

Due to its stochastic and fluctuating nature, the classi-
cal approach towards understanding turbulent fluids has
been a statistical one, which dates back to Osbourne
Reynolds [1]. In recent years an alternative approach has
emerged, in which the (discretised) Navier-Stokes equa-
tions are viewed as a high-dimensional dynamical system
and the tools of bifurcation and chaos theory are applied
to describe turbulent motions [2—4]. The key idea of this
approach is that the turbulent dynamics is shaped by
simple exact invariant solutions to the governing equa-
tions such as traveling waves [5, 6] and relative periodic
orbits [7, 8] in pipe flow. The dynamically most relevant
solutions are mildly unstable so that a generic turbulent
trajectory spends a significant amount of time in their
vicinity [9-11]. Turbulent trajectories depart from the
vicinity of the solutions along their unstable manifolds,
which can subsequently govern the flow evolution for a
considerable period of time [12]. In principle, all proper-
ties of the turbulent flow can be derived by an appropri-
ate weighted average over the fundamental solutions [13—
17], but deploying this approach is extremely challenging
even at low (transitional) Reynolds numbers [11, 17, 18].

Transitional shear flows are characterized by localized
chaotic spots surrounded by laminar flow [19-22]. These
spots already contain all the salient features of fully tur-
bulent flow [23-25] and hence pose an ideal prototype
for a bottom-up study of turbulent dynamics. Because
of prevalence of intermittency at the onset of turbulent
shear flow [26-28], spatially localized invariant solutions
are indispensable for its successful description as a dy-
namical system. The first such solutions were discovered
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in plane Couette flow by Schneider et al. [29], who com-
puted spanwise-localized equilibria and traveling waves
in wide but streamwise short domains.

The first streamwise-localized simple invariant solu-
tion was found by Avila et al. in pipe flow [30]. Tt is
a relative periodic orbit with reflectional and two-fold
rotational symmetry appearing at a saddle-node bifur-
cation. In this symmetry subspace the lower branch so-
lution (shown in fig. la and referred to as LBs in the
following) has a single unstable direction, whereas the
upper branch solution is stable close to the saddle-node
bifurcation. As the Reynolds number increases, a bi-
furcation cascade culminating at a boundary crisis gives
rise to transient chaotic dynamics [30, 31], and subse-
quent changes in the phase-space progressively enhance
the spatio-temporal complexity of the flow [31, 32]. The
bifurcations of the coherent structures in pipe flow follow
the same pattern as observed in small computational cells
in plane Couette [17, 33] and plane Poiseuille flows [34].
The finding of spanwise- and streamwise-localized solu-
tions in both flows [35, 36] suggests that similar scenarios
may occur in spatially extended domains.

Gibson and Brand [36] observed that the amplitude of
spanwise localized equilibria in Couette flow decays ex-
ponentially far enough from their energetic core. Hence
they proposed to model their spatial decay by using the
linearized Navier—Stokes equations and solving the aris-
ing eigenvalue problem. Interestingly, their model gave
with high accuracy the observed spatial decay rates and
their dependence on streamwise wave number and the
Reynolds number. A simplified version of their model
was shown by the same authors to accurately reproduce
the spatial decay of their doubly-localized solutions in
the streamwise direction [37].

Recently, Zammert and Eckhardt [38] and Barnett
et al. [39] applied similar approaches to streamwise-
localized relative periodic orbits in channel flow, where
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the decay rates also depend on their group velocity, in
addition to the spanwise wave number and the Reynolds
number. In this paper, we investigate spatial localization
in pipe flow. For this purpose, we compute LBy and its
three-fold cousin [40] (LBsg, see fig. 1b) for a wide range
of Reynolds numbers. As in channel flows, we find that
the tails of the states decay exponentially in the stream-
wise direction and that the decay rates can be deduced
from the linearized Navier—Stokes equations. However,
pipe flow does not permit the simplified modeling ap-
proaches used by Brand and Gibson [37], and Zammert
and Eckhardt [38]. Furthermore, we extend the analysis
to the upstream and downstream tails of localized tur-
bulent puffs and verify that the correct decay rates are
obtained for such chaotically evolving states as well.

II. NUMERICAL METHOD

We consider the incompressible, isothermal flow of a
fluid with constant density p and kinematic viscosity v
in a cylindrical pipe of radius R driven at a constant
average speed U. This flow is governed by the Navier-
Stokes equations (NSE):
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where P is the pressure and U = [U,, Uy, U.|(r,0,z,t)
is the fluid velocity field in cylindrical coordinates. It
satisfies the no-slip boundary condition at the pipe wall
and periodic boundary conditions in the azimuthal and
axial directions. The length of the computational domain
was chosen sufficiently large in order to avoid interaction
of the two fronts via the axial periodicity. All results
shown in this paper were obtained in pipes of 200R (LB5)
and 160R (LB3) in length.

The Hagen-Poiseuille profile is the steady, parabolic
laminar solution and reads (subscript “b” is for base

flow):
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where U, is the maximum velocity at the centerline, and
2 denotes the axial unit vector. To facilitate both nu-
merical and theoretical treatment, the NSE are rendered
dimensionless by using U, pU. 31 and R as reference scales
for the velocity, pressure and length, respectively. As
a consequence, the dimensionless NSE are identical to
eq. (1) but setting p = 1 and replacing the viscosity with
the inverse of the Reynolds number 1/Re = v/(UqR),
which is the sole control parameter of the problem. The
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FIG. 1.

Structure of the investigated localized reflection-
symmetric relative periodic solutions obtained by directly
solving the Navier—Stokes equation with a Newton—Krylov
method at Re = 3000, (a) twofold (LB2), (b) threefold
(LBs3) rotational symmetry. The central image shows isosur-
faces and cross-sections of the streamwise velocity disturbance
(i.e. with the laminar flow subtracted). Red (blue) streaks
are faster (slower) than base flow. In order to highlight the
tails of the solutions, the isovalues have been chosen small:
+0.025 U,;. The axial extent of the shown isosurfaces is about
60R. The upper right panel shows the upstream front of the
same state, which appears shorter due to a different perspec-
tive.

velocity and pressure gradient of the dimensionless lam-
inar flow then take the form (1 —72)2 and 4/Re, respec-
tively. Throughout the paper the velocity disturbance
u = U — Uy, is used to visualize the structures.

The direct numerical simulations of the Navier—
Stokes equations (1) have been carried out using
openpipeflow.org [41], a hybrid spectral finite-difference
Navier-Stokes solver, which uses primitive variables and
a PPE-formulation with correct pressure boundary con-
ditions via the influence-matrix method [42, 43]. In or-
der to compute the localized structures, a two-step ap-
proach was employed. First, the edge-tracking technique
[44, 45] was used to bracket the relative periodic orbits to
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a sufficient degree so that it could be converged in a sec-
ond step with a Newton—Krylov-hookstep algorithm [46]
to relative error 107%. The necessary spatial resolution
of the periodic directions depends on the enforced rota-
tional symmetry. We used an axial resolution —K ... K
of + 768 Fourier modes for a pipe of length 200 R in case of
two-fold symmetry and the same amount of modes for a
160R pipe in the three-fold case. The spanwise resolution
was 12 (£ 16) Fourier modes for LB3 (LBs) capturing
up to 36th (32nd) wave number (of which a third/half
has the same amplitude due to symmetry). The code
uses the 3/2-rule for dealiasing (i.e. padding) resulting
in a physical grid which has three times as many points
as there are wave numbers K (3/2 % 2K). The radial di-
rection has been discretized with a minimum of 48 and
maximum of 72 finite-difference nodes depending on Re
and pipe length. The time step was fixed at a value of
0.01R/ Uy.

III. EXPONENTIAL LOCALISATION OF
SOLUTIONS

The approach of the fields to the asymptotic parabolic
flow is best visualized by the deviation u from the Hagen-
Poiseuille profile, since it has to decay to zero. The iso-
surfaces of streamwise velocity deviation from laminar
flow u, shown in fig. | illustrate the spatial arrangement
of streaks of the spatially localized relative periodic orbits
LB, and LB3 at Re = 3000. Far from the active core, all
three velocity components decay quickly with respect to
the streamwise direction z. The semilogarithmic repre-
sentation in fig. 2 shows that the decay is predominantly
exponential, with u, approximately two orders of mag-
nitude larger than the cross-stream velocities u,. and uy,
thus dominating the decay toward laminar flow. Inter-
estingly, the decay rate of the azimuthal velocity at the
downstream tail differs from that of the other two com-
ponents. To shed light on the origin of this difference,
isosurfaces of all three velocity components are shown
in fig. 3 for LB3. In the upstream tail all three veloc-
ity components feature a predominant sixfold rotational
symmetry, whereas in the downstream tail u, and u, are
predominantly axisymmetric and ugy features a threefold
symmetric structure. LBs exhibits the same features but
with fourfold and twofold symmetry, instead of sixfold
and threefold, respectively, and hence it is not shown
here.

The length of the core of LBy and LB3 remains nearly
constant, whereas its amplitude decreases as Re increases
(see fig. 4). This is not surprising because LBy and LBj3
are edge states and can thus be seen as minimal seeds to
trigger turbulence [47]. The decay rate of both their up-
stream and downstream tails decreases with Re, i.e. the
axial velocity profile gradually “opens up”. There is a
marked asymmetry, however. While the decay rates of
the downstream tails change little with Re, the decay
rates of the upstream tails decrease rapidly with increas-

S
= upstream downstream
0 50 o 200
pipe axis, Z
(b) : . .
1072 ¢
upstream downstream

104+

Il lleo / T

10°F

0 20 40 60 80 100 120 140 160
pipe axis, z/R

FIG. 2. Axial profiles of the infinity norm of the disturbance
velocity components at Re = 3000, (a) LB2. (b) LBs.

ing Re. This behaviour is similar to that for the relative
periodic orbits in plane Poiseuille flow [38, 39]. Overall,
the localization becomes weaker as Re increases.

IV. LINEAR MODEL OF SPATIAL DECAY
A. Mathematical formulation of the model

The exponential decay observed at the tails suggests
that these can be modelled with the linearised Navier-
Stokes equations (LNSE). Following Gibson & Brand
[37], we look for normal mode solutions of the form

u = a(r)exp [imd + u(z — ct)],
p =p(r)exp [imb + u(z — ct)],

(4)
where m is the azimuthal wave number dominating at the
tail, p the spatial decay rate at the tail and ¢ the group
velocity at which the localized solution (wave packet)
travels in the axial direction. The latter is not to be con-
fused with the phase velocity of individual waves within
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FIG. 3. Comparison of the spatial structure of the three

velocity components for LBs at Re = 3000. The color coding
is analogous to fig. 1 and the isovalues are given in paranthe-
ses. (a) ur (£5 x 1075U4), (b) ue (£5 x 1075U4), (c) us
(£0.015Uq1).

the solution (envelope). Note that p is generally com-
plex in a spatial setting. Its real part describes the spa-
tial attenuation (decay rate) and its imaginary part the
spatial modulation of the localized solution fronts. More-
over, note that equation (4) describes the tails in a refer-
ence frame moving with the group velocity ¢. Although
strictly speaking this equation is only valid for relative
equilibria (see [39]), the temporal variation is negligible
at the tails of our relative periodic orbits. Hence equa-
tion (4) is used here to model the spatial decay rates far
away from their core.

Inserting ansatz (4) into the dimensionless LNSE gives:
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FIG. 4. Axial profiles of the infinity norm of the axial velocity

disturbance for different Reynolds numbers. (a) LB2. (b)
LBs.
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Rearranging (5) with respect to p one obtains the follow-
ing quadratic eigenvalue problem (EVP):
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The radial derivatives were discretized with a spectral
method at Chebyshev collocation points. In order to re-
duce clustering of grid points near the origin (where the
solution is smoother), the differentiation matrices were
computed over the interval [-1,1] using N = 200 points.
The derivatives on (0,1] were obtained by “quotienting”
out the symmetry of the 2-to-1 map from (r —60) to (z,y)
in this representation using the appropriate parities, re-
spectively [48].

The quadratic EVP (6) can be linearized analogous
to the reduction of a second-order ODE to first-order,
namely by replacing it with a linear system with twice
as many unknowns and equations [49]. Here, we choose
the so-called “first companion form” (see [49]) by making
the substitution y = px = p[a,p]”. This yields the
generalized eigenvalue problem

X
=p
Yy

which is subsequently solved with QZ-factorization (gen-
eralized Schur decomposition, see [50]). Note that we use
the more descriptive label “LNSE”in the following for the
solutions of equation (6)/(7).
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B. Model results

For given Reynolds number Re, azimuthal wave num-
ber m and group velocity ¢, positive (negative) eigen-
values of EVP (6) give an approximation for the decay
rate at the upstream (downstream) tail of a localized
solution. The associated eigenvectors approximate the
velocity profiles at the tails.

The LNSE model predictions for the tails are com-
puted as follows. First, the Reynolds number is fixed
and the group velocity ¢ is determined from the DNS.
Fig. 5 shows the evolution of ¢ as a function of Reynolds
number. Close to their saddle-node bifurcation points,
LBs and LBj3 travel slightly faster than the mean flow
speed U = 0.5U, and the differences grow slowly as Re
increases.

Second, the azimuthal wave number is determined
from the velocity profiles. As shown in fig. 3, the up-
stream tail of LBs (LB3) is dominated by a m =6 (m =
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FIG. 5. Reynolds number dependence of the group velocity

¢ with which the localized solutions LBy (circles) and LB3
(squares) are advected downstream. The dashed lines are
supposed to guide the eye.

4) rotational symmetry for all components, whereas their
downstream tails are predominantly axisymmetric for u,
and wu,, but feature m = 3 (m = 2) in up. Thus, one
needs to consider both m = 0 and m = 3 (m = 2) sep-
arately in the model for the downstream tail. The case
m = 0 actually decouples the azimuthal velocity from
the other equations in EVP (6) leaving only the diagonal
block of the matrices A;. Since their sum is not singular,
g = 0 is obtained, which is not observed (fig. 3b) but
consistent with the fact that 4y decays with a different
rate than predicted by the axisymmetric mode for %, and
U.. Moreover, the mean azimuthal velocity (which is the
m = 0 mode) has to vanish because our localized solu-
tions are reflection symmetric, which precludes a mean
rotation.

Figure 6 compares the decay rate u of the streamwise
velocity disturbance obtained by exponential fits to u,
at the tails of the solutions (square/circular markers), to
the prediction based on the LNSE (dashed lines). The
agreement is excellent, which confirms the validity of the
model. The radial velocity profiles @(r) obtained from
the model are compared to the DNS data in fig. 7 for
LBj3. The agreement of the upstream eigenvectors (model
m = 6) with DNS is very good. At the downstream
tail, the axisymmetric (m = 0) model result for @, and
i, match the DNS result very well, too. To obtain a
model prediction for the azimuthal velocity, we solve the
LNSE with m = 3 as suggested by fig. 3b. This yields
R[u] = —0.198 R, whereas the decay rate obtained from
DNS is —0.266 R~1. However, the magnitude of @ is very
small. Note also that its decay is modulated in space (see
figs. 2b, 3b) and this is correctly predicted by the model
with S[u] # 0. In all other cases, the imaginary part of
u is zero, consistent with the absence of modulations in
the spatial decay. The results for LBy are very similar to
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FIG. 6. Axial decay rate p of u, for the localized solu-

tions as a function of Reynolds number. Circles (LB2) and
squares (LB3) denote DNS results. The error margins have
been produced by trying several axial ranges for which the
respective tail was fitted. Note that except for LB3 upstream
the error is smaller than the marker size and hence barely
visible. Dashed lines denote the decay rates obtained from
EVP (6). The downstream fronts have m = 0, the upstream
fronts m = 4 for LBy and m = 6 for LB3. Dotted lines show
the result of the advection-diffusion equation (8) for the up-
stream front (see IV C).

those of LB3 and hence not shown here.

C. Contribution of terms to the spatial decay at
tails

The decay rate of the streamwise tails of certain lo-
calized solutions in Couette [37] and channel [38] flows
can be accurately modeled with a single equation for
the streamwise velocity component of the disturbance.
These authors compare the contributions of all terms of
the streamwise momentum conservation equation at the
solution tails, and find that three terms dominate: linear
advection of the disturbance by the basic laminar flow,
and diffusion of momentum in the spanwise and wall-
normal directions. The model resulting from considera-
tion of only these three terms is an advection-diffusion
equation, which in pipe flow takes the following form

1 -
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We computed the decay rates from (8) and found that
they disagree with those of the DNS and full LNSE, as
also observed for spatially localized modulated Tollmien-
Schlichting waves in channel flow [39]. However, the
upstream rates and eigenvectors 4, computed from the
advection-diffusion model are at least comparable to the
full simulation (fig. 6), whereas the downstream rates are
utterly false (hence not shown in fig. 6). We assessed the
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FIG. 7. Comparison of radial profiles of (a, b) u,, (¢, d) ug,
(e, f) u. obtained from DNS (dashed) and the LNSE (solid)
for LB3s at Re = 3000. The left hand side profiles are located
up-, the right hand ones downstream.
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FIG. 8. Axial profiles of the infinity norm (maximum) for
each individual term in the axial component of the linearized
Navier-Stokes equations at Re = 3000 for LB3. Profiles are
very similar for LB2 and hence not shown here.



reasons underlying the failure of (8), by analyzing indi-
vidual contributions of all terms in the streamwise mo-
mentum conservation equation for LB3 (see Fig. 8, the
relative contributions are similar for LBs and hence not
shown here). The diffusive term g—; (yellow) is much
smaller than the in-plane contributions to V? and the
other terms. In fact, setting A3 = 0 and solving the
resulting linear eigenvalue problem does not have any ef-
fect on the decay rates, confirming that axial diffusion
can be neglected. The pressure gradient (violet) in the
upstream and downstream tails approaches its small and
constant value in the surrounding base flow. This value
is a consequence of the periodic boundary conditions and
further decreases in longer pipes and with higher Re.

The relative contribution of the lift-up term ur%%
(magenta) was found to be larger here than for the so-
lutions of Zammert and Eckhardt [38] in channel and of
Brand and Gibson [37] in Couette flows. In our solutions,
the lift-up term is of similar magnitude as the in-plane
diffusion. This suggests that the absence of the lift-up
term in the simple advection-diffusion model (8) is re-
sponsible for its failure. We gauged the role of the lift-up
term by solving EVP (6) without it (i.e. the term in
the first column and third row of Ag). The correspond-
ing upstream decay rates are nearly identical to those
from the advection-diffusion equation, whereas the down-
stream rates deviate strongly from the DNS (to a similar
degree as the advection-diffusion equation).

These findings indicate that the lift-up term plays a key
role in the decay of the tails of our pipe-flow solutions.
For certain solutions of Couette and channel flows, the
main coupling of the streamwise velocity with the other
components is via the mass-conservation equation result-
ing in a very small wall-normal velocity, which does not
influence the axial decay rate (see the vanishing value of
v in the tails in fig. 2a of [38]). In pipe flow, however, one
cannot neglect u, in the tails and the radial momentum
equation is strongly coupled to the axial one via u, aali L.
Hence it is not possible to formulate an accurate single-
equation model for the decay of the streamwise velocity
at the tails of LBy and LBg, exactly as for spatially lo-
calized modulated Tollmien-Schlichting waves in channel
flow [39], for which the lift-up term is also significant [51].

D. Application to a turbulent puff

Models based on LNSE have been so far applied to
describe the tails of exact coherent solutions, which can
be computed in symmetry subspaces only at the time of
writing. Mellibovsky et al. [32] showed that the tails of
a chaotic edge state and a turbulent puff at Re = 1900
decay exponentially, suggesting that the LNSE may cor-
rectly describe the spatial decay of such symmetrically
unconstrained and hence considerably much more com-
plex states, too. We here applied the LNSE to a turbu-
lent puff at Re = 2000 (see fig. 9), which propagates at
exactly the mean speed ¢/U = 0.5 & 0.00025 [28].
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FIG. 9. Axial profiles of infinity norm of the three velocity
components for a turbulent puff at Re = 2000 in a pipe of
360R in length. The data are from Song et al. [52]. The or-
ange dashed lines show the spatial decay rates obtained from
the LNSE, where m = 1 and m = 0 with ¢/Uq = 0.5 were
used to solve EVP (6) for the upstream and downstream tails,
respectively. The dotted vertical lines indicate the locations
of the velocity profiles shown in fig. 11.
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FIG. 10. Axial profiles of infinity norm of the axial veloc-

ity u, and its first four Fourier modes for the puff in fig. 9.
The black dashed line denotes the axial position of the cross-
section in fig. 12. Only part of the 360R-long pipe is shown.
The inset compares the decay rates of DNS and LNSE as a
function of the azimuthal mode m.

In order to decide which wave number m models the
fronts of the puff best, we decomposed the velocity field
into its first constituent Fourier modes. The axial pro-
files of these are shown in fig. 10. As in the case of
the edge states, the downstream front is axisymmetric
(m = 0), and the model gives u = —0.0399R~!, which
agrees very well with the slope of u, observed in DNS
(fig. 9). The downstream front presents more ambigu-
ous results though. The profiles in fig. 10 indicate that
m = 1 is the dominant mode with m = 2,3 decaying



I

08 r

|
50.6 r
S04t 1t
-~ DNS 6=210"
02t — LNSE m=1 | |
: -~ DNS 0=263 - DNS
oLk ) T INSEm=2 | [-LNSE
0 025 0.5 0.75 I 05025 0 025 05 075 1
umax(lu:l) U/ max(lu:l)

FIG. 11. Comparison of radial profiles of u, obtained from

DNS (dashed) and the LNSE model (solid) for a puff at Re =
2000. The left hand side profiles are located upstream, the
right hand one downstream, the axial positions marked by
dotted lines in fig. 9. In the model, m = 0 and m = 1,2 with
¢/Ua = 0.5 were used to solve EVP (6) for the down- and
upstream tails, respectively.

twice as fast and the velocity at their tail being almost
two orders of magnitude smaller. The LNSE, however,
produce the closest match for m = 2 but the inset in
fig. 10 also shows that the model decay rate computed
with m = 1, 4 = 0.0938R ™1, is still inside the error mar-
gin of the exponential fits to the DNS profiles of both
the full velocity field and the m = 1 Fourier mode. The
model slope computed with m = 1 is drawn in fig. 9 with
an orange dashed line and fits DNS reasonably well.

The eigenvectors of the LNSE model are compared to
radial profiles of the puff in fig. 11. The agreement is ex-
cellent downstream. Upstream, both m = 1 and m = 2
match the DNS profile at different azimuthal positions,
which is consistent with the above findings for the eigen-
values. Figure 12 is a look at the velocity field at the
axial position of the upstream radial profile (marked by
the dashed line in fig. 10). Although the velocity has no
rotational symmetry, its absolute value is approximately
two-fold symmetric, which might explain why the model
matches DNS so well for m = 2.

V. DISCUSSION

Localized exact coherent structures in pipe flow exhibit
exponential localization far away from their active core.
This allows for accurate models of the decay based on the
LNSE, as in the cases of Couette [36, 37] and channel flow
[38, 39]. The solution of the resulting spatial eigenvalue
problem yields two decay rates of different sign for the
velocity disturbance at the upstream (u > 0) and down-
stream tails (@ < 0), as a function of Reynolds number
Re, azimuthal wave number m and group velocity c.

The localized solutions investigated here are relative
periodic orbits and have either two- or three-fold rota-
tional symmetry and are reflectional symmetric. Their
upstream tails feature four/six streaks and all three com-
ponents of the velocity disturbance decay at the rates as
in the model for m = 4/6. Their downstream tails are
predominantly axisymmetric and consist of large scale

FIG. 12.  Cross-section of the velocity field of the puff in
fig. 9. The axial position is marked by a dashed line in fig. 10
and is the same where the upstream radial profile in fig. 11
was plotted. The in-plane components are denoted by vectors
and the axial velocity by color.

meridional circulation (u,,u.), whereas ug presents a
two-/three-fold symmetry, is much smaller and decays
at a much faster rate. The model accurately predicts the
decay rates for (u,,u,) using m = 0 at the downstream
tails, but the decay of uy is only qualitatively recovered
even when m = 2,3 are used in the model.

The decay rate of some solutions in Couette [37] and
channel [38] flows can be accurately modeled with a single
advection-diffusion equation for the streamwise velocity
disturbance. Interestingly, in this equation the Reynolds
number and decay rate appear only through the com-
bination pRe, so that one may expect p to decrease as
1/Re. However, the propagation speed of the structures
was found to increase with Re in channel flow leading to
a faster decrease of pu with Re upstream and a slower,
nearly constant increase downstream. For spatially lo-
calized modulated Tollmien-Schlichting waves in chan-
nel flow [39], and for our solutions, a simple advection-
diffusion equation cannot reproduce the results from the
full LNSE. We here showed that the lift-up term ur%
is significant enough so that it cannot be neglected. This
term couples the radial and axial momentum equations
and so it is no longer possible to retain a single equa-
tion model for the decay rate of the streamwise velocity
disturbance. Despite the key role of the lift-up term, we
still found that the scaling of the decay rates with Re cor-
responds to what one would expect from the advection-
diffusion equation (&) once the dependence on c(Re) is
taken into account, similar to channel flow [38, 39].

The LNSE were also applied to data from DNS of lo-
calized turbulence. Here a turbulent puff at Re = 2000
was analyzed. The spatial decay rates obtained from the
model with ¢/U, = 0.5, and m = 0,1 for the down-
stream and upstream tails, were found to be in excellent
agreement with the DNS data. This supports the validity



of the model for real turbulent patches and emphasizes
the crucial interdependence between propagation speed
of a localized structure and the spatial decay rate at its
tails. Note that the dependence of i on the group veloc-
ity ¢ suggests that in the transition from localized puffs
to expanding slugs the localization rate must change ac-
cordingly.
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