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Abstract—Running very complex applications on mobile de-
vices is still challenging since they are constrained by lim-
ited resources such as memory capacity, network bandwidth,
processor speed and battery power. Mobile Cloud Computing
(MCC) is a combination of cloud computing and mobile internet,
which could effectively alleviate the resource constraints of
mobile devices. How to efficiently offload computation-intensive
parts of mobile applications from mobile devices to capable
cloud servers is one of the keys. In mobile environments, the
resource heterogeneity of mobile devices and cloud services, the
interruption of heterogeneous wireless networks, the complexity
of mobile applications, the characteristic of transferring a large
amount of data, are the major bottlenecks that have prevented
this technology from being widely used. This paper takes these
constraints into account at the same time and explores methods
of multi-objective decision making for time- and energy-aware
task offloading for MCC. It is designed to ensure the right
computational tasks are executed in the right way, at the right
time and place.

Index Terms—Mobile cloud computing; mobile edge comput-
ing; offloading; decision-making; energy-efficient.

I. INTRODUCTION

MOBILE devices, such as tablets, smartphones, smart-
watches and notebooks, have limited resources in com-

putational capacity, battery lifetime and network connectivity,
which prevent them from running very complex applications
[1]. There is a rapid growth of power consumption of mo-
bile devices and seriously shorten their battery life as a
result when more and more computation-heavy or energy-
hungry applications are deployed on them. Responsiveness
is another primary constraint for mobile systems. Mobile
applications (face recognition, speech and object recognition,
natural language processing, mobile augmented reality, etc.)
are becoming increasingly intensive and sophisticated that
require increasing amounts of computational capabilities [2].
Especially for real-time and user-interactive applications, they
have to wait a long time to obtain the results due to the limited
processing speed of the mobile systems.

Mobile Cloud Offloading (MCO), which takes advantage of
abundant resources hosted by Clouds, is becoming a promising
method to solve a number of concerns affecting mobile com-
puting. Its main idea is to release the mobile devices from
intensive processing through migrating computation-intensive
tasks from mobile devices to remote cloud servers and then
receive results from them via heterogeneous wireless networks
[3]. MCO can bring many potential benefits, such as improving
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the performance of mobile applications, reducing the energy
consumption of mobile devices and so on.

Mobile network environments usually have a huge impact
on the performance of offloading systems since mobile users
are easily subject to dynamically changing network conditions
due to their mobility [4]. While traditional cloud applications
(e.g., iCloud and Siri) have been very successful, on mobile
devices they still suffer from a number of shortcomings due to
the response time of wireless communication at the network
edge. Intermittent connections of wireless networks will cause
additional costs in terms of energy consumption and response
time, and thus executing applications locally will be more ad-
vantageous than offloading them to the remote cloud [5]. Since
the extra cost involved in data transfer via a wireless network
may be greater than the cost savings from offloading in certain
circumstances, an offloading decision of which portion of an
application should be offloaded and which not, and where to
place the execution (either locally or remotely) should be made
based on different decision criteria. Therefore, it will always be
difficult to make high-quality offloading decisions at runtime
in mobile environments unless with a clear understanding of
current and near-future wireless network conditions.

Recently, several surveys on Mobile Cloud Computing
(MCC) have been conducted. In [6], the authors reviewed
mobile application models in MCC and highlight their advan-
tages and shortcomings. In [7], [8], the authors investigated
state-of-the-art mobile augmentation efforts that employ cloud
computing infrastructures to enhance computing capabilities
of resource-constraint mobile devices. They reviewed existing
offloading frameworks by using thematic taxonomy and ana-
lyzed the implications and critical aspects of current offloading
frameworks within the MCC domain. In [9], the problem of
resource heterogeneity in MCCs was tackled. The authors dis-
cussed the heterogeneity in convergent computing (i.e., mobile
computing and cloud computing) and networking (wired and
wireless networks). Further, the impacts of heterogeneity in
offloading decision-making were investigated, related oppor-
tunities and challenges were identified.

To cope with the stringent requirements of applications
on latency (e.g., real-time applications), an emerging concept
named Mobile Edge Computing (MEC) / Fog Computing
has been investigated [10], [11], [12], which offers connected
computing and storage resources at the Internet edge, in close
to mobile devices. Due to a wide potential of the MEC, there
is a lot of effort both in industry and academia focusing
on the offloading decision-making to ensure that the right
computational tasks are processed in the right way at the
right place and time. In [11], the authors surveyed current
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research related to the offloading decisions to the conventional
centralized clouds and MECs. In addition, it gave a high-
level comparison of MCCs and MECs, i.e., MECs can offer
significantly lower latency but have limited computational and
storage resources with respect to MCCs. In [12], the authors
provided a comprehensive survey of the state-of-the-art MEC
research and new designs ranging from computation offloading
techniques to network architectures.

All above-mentioned papers typically focus on one or two
offloading challenges such as resource heterogeneity, data
transfer or wireless communications and make offloading
decisions based on limited aspects like where to offload, e.g.,
MCC or MEC. Actually, making good time- and energy-
aware offloading decisions have to deal with multiple chal-
lenges, such as heterogeneous resources, large amounts of
computation and communication, intermittent connectivity and
network capacity. In contrast to the above-mentioned surveys,
we conduct a comprehensive survey of the research work
when taking all these challenges into account simultaneously
and analyze the tradeoff between energy consumption and
response time based on different offloading decision criteria.
If we could find out the optimal solution for offloading de-
cisions, the offloading benefits like performance improvement
of applications executing on the resource-constrained mobile
devices, could be enhanced. In one word, we need to find
what computational tasks and data (what), at what point in
time (when), in what way or through what channel (how) and
at what place (where) to offload.

The rest of this paper is organized as follows. Section II
describes characteristics of mobile cloud offloading, major
challenges and a list of issues related to offloading decision-
making. In each of the following four sections, we focus on the
aspects of when, what, where, and how to offload for mobile
cloud computing, respectively. Finally, the paper is concluded
in Section VII.

II. OFFLOADING DECISION MAKING

In this section, we first provide an elementary material on
mobile cloud offloading systems and then describe the major
challenges and issues associated with offloading decision-
making.

A. Generic Offloading System

Fig. 1 describes a generic offloading process.
• Profiling: On the mobile side, upon receipt of an of-

floading request, resource information about the device
and network characteristics are gathered by the profiling
module. There are three different kinds of profilers,
namely, program profiler, network profiler and energy
profiler. Among them, program profiler (static or dy-
namic) collects characteristics of applications, such as the
execution time, the memory usage and the size of data;
network profiler collects information about the network
bandwidth and the wireless connection status (connected
or unconnected); energy profiler is used to collect the
energy characteristics of mobile devices through software
and hardware monitors [14].

• Metrics: Offloading decisions are usually made based
on a selected cost criterion. On the one side, energy,
monetary cost and storage are cost criteria which are
the less the better, and on the other side, performance,
robustness and security are benefit criteria which need
to be maximized [15]. Among such criteria, energy and
performance are the two most important aspects mobile
users concern about.

• Application Partitioning: On the basis of the collected
information, the offloading decision making module takes
the decision according to the metrics module (i.e., mini-
mizing or maximizing some criteria), and then the parti-
tioning module is invoked to cut the classes that make up
an application into local and remote partitions, where the
former is executed locally on the mobile device and the
latter will be offloaded to a dedicated cloud server [16].
The application partitioning can be done either statically
or dynamically.

• Offloading Decisions: The cloud discovery module is
invoked to find an appropriate cloud service for offloading
(where to offload). When wireless networks and cloud
services are available, or when the offloading for the mo-
bile device is beneficial in terms of energy consumption
and/or execution delay (when to offload), remote partition
classes (what to offload) are migrated to the cloud side via
a wireless network by the offloading module for remote
execution (how to offload). The offloaded classes can
interact with the classes in the local partition [13]. Once
completed, the results are sent back to the mobile side.

Most benefits from offloading like time- and energy-saving,
can be achieved by optimally deciding when, what, where
and how to offload. Specifically, when is to decide whether
to offload or not, according to the knowledge on the amount
of computation and communication data, the wireless network
conditions and dynamic changes of context, since sometimes
offloading is not worthwhile at all; what is to decide how
much and what should be offloaded, it defines the name of
the candidate tasks to be offloaded through application parti-
tioning; where describes the type of surrogate and choosing the
appropriate offloading target (e.g., local, cloudlet and cloud)
in which the application has to be offloaded; how introduces
offloading plans that enable the device to schedule offloading
operations [16].

B. Major Challenges
Mobile Cloud Offloading (MCO) that migrates heavy com-

putation from mobile devices to remote cloud resources or
nearby cloudlets, has been widely used for time- and energy-
saving, however, it still faces many challenges. As depicted in
Fig. 2, offloading decisions in mobile cloud computing may
involve multiple factors, such as the resource heterogeneity
of mobile devices and cloud services (resource), the com-
plexity of mobile applications (component), the interruption
of heterogeneous wireless networks (intermittence) and the
characteristic of transferring a large amount of data (data),
which may significantly impede the improvement of service
quality [17]. Each of them will be illustrated in detail as
follows:



3

Offloading 
decision makingProfiling Metrics Offloading

Application

Local partition

Remote partition

ClassClassClass

ClassClassClassClassClassClass

ClassClassClass

Partitioning
Remote partition

ClassClassClass

Remote 
execution

Cloud 
discovery

Minimize
energy

Minimize
storage

Minimize
cost

Maximize
performance

Maximize
security

Maximize
robustness

CPU utilization 

Battery level 

Speed

Network

!

Transmit

Receive

Cloud SideMobile Side

Data flow

Control flow
Collect flow

Device load

Wireless 
Netorks

what

where

when how

Fig. 1: System architecture of the offloading service [13]

Resource

III. When to 
Offload

Component Intermittence Data

IV. What to 
Offload

V. Where to 
Offload

VI. How to 
Offload

Time- and Energy-Aware 
Offloading Decisions

One

Partial

Thin client

Never

Sometimes

Always

No

Partial

Full

Local

Cloudlet

Cloud

Target

Challenges

Criteria

Decisions
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• Resource: The heterogeneous resources include a vari-
ability of mobile devices and different cloud vendors
providing different services, infrastructures, platforms,
and various communication medium and technologies [9].
A mobile device can be thin (without any execution of
tasks to be offloaded) or thick (with executions of tasks
before being offloaded) [18]. If the resources of mobile
devices are not adequate either to execute the application
or to achieve the desired performance, mobile cloud
offloading will be a good option to short the response time
or reduce energy consumption. There are many types of
mobile devices, some devices are using android systems
while some with iOS systems; some devices are slow
while some are very fast; some are equipped with Cellular
and WiFi while some can only access WiFi. Besides,
a variety of cloud resources can be selected, a mobile
device can offload its application either to a remote cloud
or a nearby resource-rich middleware like cloudlet [19].
Mobile devices can also discover unknown surrogates
nearby by service discovery techniques and then offload
tasks to them [18].

• Component: A rich mobile application can be very
complex, which consists of several components, including
offloadable and unoffloadable tasks. Since offloading the
whole application to the cloud is not always possible or

effective, a decision of which portion of the application
should be offloaded and where to place the execution
(locally or remotely) should be made based on either
the minimum response time or the minimum energy
consumption [20], [21]. Further, a diversity of mobile
applications such as delay-sensitive and delay-tolerant
applications will cause different amounts of computation
and communication costs.

• Intermittence: The intermittent connectivity of mobile
wireless networks has a huge impact on the offloading
decisions. Mobile devices use heterogeneous wireless in-
terfaces (with various bandwidths and network latency) to
offload tasks to the cloud or access the cloud service. For
instance, application tasks that require high responsive-
ness should not be offloaded using long latency wireless
networks; data-intensive tasks should not be offloaded
using low-rate networks [18]. Issues such as unstable
connectivity and intermittent connectivity of mobile wire-
less networks may exist due to heterogeneous wireless
environments, device mobility and cloud resource avail-
ability, which incur high latency and energy consumption
[22]. Further, the offloading process will be interrupted
when a mobile device moves outside the coverage of
wireless networks, executing applications locally seems
more advantageous under such circumstances.

• Data: There is a huge growth in global mobile data traffic.
The amount of data during the offloading process can be
divided into three parts: (i) the amount of input data when
the task is offloaded to the cloud for remote execution, (ii)
the amount of communication data between the mobile
device and the remote cloud during remote execution, and
(iii) the amount of output data generated from the remote
execution of the task [18]. Transferring large amounts
of data, such as a large database of video, audio and
sensor data, from a mobile device to a remote cloud, will
incur additional communication costs, which could be
critical for data-intensive tasks that might not benefit from
offloading. For example, remote execution may reduce
task execution time, however, data transfer during the
remote execution may consume more energy than during
the local execution. Thus, offloading decisions should
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be made: how to effectively transmit data and when to
offload data from the mobile devices to the cloud server
for time- and energy-savings.

Hence, according to Fig. 2, the optimal decisions between
local and remote executions should be carefully made for
each application when considering the response time and the
energy consumption, as well as the status of mobile wireless
networks. To meet the goals of saving energy consumption of
mobile devices, improving application performance, or achiev-
ing both of them, offloading decisions can be made based on
multiple perspectives (e.g., when, what, where and how), each
describing the attributes a mobile device must meet. In order to
minimize the required programmer effort, offloading decisions
can be made to determine where to process an application
(e.g., local, cloudlet, or cloud); how many subtasks to be
offloaded to the cloud (e.g., one, partial or thin client); how
much data to be offloaded to the cloud (e.g., no offloading,
partial offloading or full offloading); when to do offloading
(e.g., never, sometimes or always) [16].

Many research efforts have been devoted to determining
the right time, the right component, the right place and the
right way to offload. The issues of time and energy saving on
mobile devices are becoming increasingly critical. For ease of
reference, related works are summarized in Table I.

C. Main Objectives

Response time and energy consumption are two primary
aspects for mobile systems that must be considered when
making offloading decisions. Especially for resource-scarce
devices, computation offloading is the key to empower these
devices and augment their performance (not only energy), i.e.,
they can run code by means of the cloud that would never run
locally. The performance of an offloaded task is judged based
on the goals set by the user. Accordingly, we consider three
objectives as follows:

• Shorten Response Time: From the perspective of a
mobile device, response time is defined as the duration
between sending the application to the cloud and receiv-
ing the results back from the cloud. Reducing the respon-
siveness is becoming increasingly important, especially
for computation-intensive mobile applications. When the
amount of computation is very large, it takes such a long
time to get results that it fails to meet the user’s need,
and thus it should be offloaded to the cloud, in order to
save time and improve performance. Therefore, we take
decisions to offload only if response time will reduce no
matter the impact on energy consumption.

• Reduce Energy Consumption: The energy spent on the
mobile device during the offloading period, is another
primary aspect that must be considered. We aim to
optimize the energy consumption of a mobile device
by estimation and evaluating the tradeoff between the
energy consumed by local processing versus offloading
the application for remote execution [54]. In this sit-
uation, offloading is taken only if energy consumption
is expected to reduce no matter the expected impact
on response time. Extending battery lifetime is one of

the most crucial design objectives of mobile devices
because they are usually equipped with limited battery
capacity when applications are becoming increasingly
complex [55]. Many research efforts have been devoted
to minimizing the energy consumption.

• Achieve combination of the above: both energy and
time saving are crucial design objectives of mobile cloud
offloading. We do offloading only if both the response
time and energy consumption are expected to improve
[32]. It is possible that achieving one offloading goal
may affect the realization of the other goal. For exam-
ple, executing a task on a service node might decrease
the response time of the task; however, it might not
conserve the mobile device’s battery energy. We study
the tradeoff between the mean energy consumption and
mean response time, which is a non-trivial multi-objective
optimization problem. For example, sometimes a short
remote execution time for a task is more important though
more energy will be spent due to offloading than locally
execution, and vice-versa [18].

III. WHEN TO OFFLOAD

Remote execution on a cloud server is not an always
advantageous strategy because of the need for additional data
communications, which may increase the response time and/or
energy consumption when the task-related data is transferred
[18]. Sometimes the time and energy saved from offloading is
not able to cover the extra communication costs between the
mobile device and the cloud, in which case, we will opt to
execute the application locally instead of offloading it to the
cloud. Therefore, mobile cloud offloading is an opportunistic
alternative, but not a must. We have to find the right time to
offload, e.g., when the wireless network is available, when the
amount of communication data is small or when the amount
of computation is large [16].

A. Computation vs. Communication

In Fig. 3 the local computation time is tm, the speedup
factor F indicates how powerful a cloud server is in terms
of execution speed when compared with that of the mobile
device. Mobile cloud offloading has the potential to shorten
the execution time and reduce the energy consumption on the
mobile device, but the savings from offloading need to exceed
the additional communication cost between the mobile device
and the cloud [56]. Therefore, offloading makes sense only
when on device execution cost is much larger than on server
execution cost, which can be decided on time- or energy-
saving criterion.

• Time-Saving: The time incurred by offloading is the sum
of computation time on the cloud server and the predicted
costs of transferring the related data and it should be
smaller than the execution time on the mobile device in
order to save time. Thus, it is worthwhile to offload the
computation rather than execute it locally when

tm >
tm
F

+
D

B
, (1)
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TABLE I: Comparison of Current Offloading Works

Year Paper Main Contribution Decisions Partitioning Time Energy Time & Energy
Saving Saving Saving

2004 [1] Adaptive offloading for pervasive computing what
√ √

2007 [23] Performance analysis of offloading systems when/how
√

2007 [24] Context-sensitive energy-efficient offloading when
√

2008 [25] Use bandwidth to make offloading decision when
√

2009 [26] Enable mobile phones as interfaces to cloud when/what
√ √

2009 [19] Cloudlet-based resource-rich mobile computing where
√

2010 [27] Dynamic partition between mobile devices and clouds what
√ √

2010 [28] Fine grained energy-aware code offload what
√ √

2010 [29] Study energy tradeoffs when
√

2010 [30] Stable and adaptive link selection algorithm when
√

2011 [31] Elastic execution between mobile devices and clouds what
√ √

2012 [32] Dynamic resource allocation and parallel execution where
√

2012 [33] Mobile Augmentation Cloud Services (MACS) what
√ √

2012 [34] Present a dynamic offloading algorithm what
√ √

2012 [35] Propose an efficient code partition algorithm what
√ √

2013 [36] Evaluate computation offloading trade-offs via an application when/how
√

2013 [37] An Efficient MultiSite Offloading (EMSO) algorithm where
√ √

2013 [38] Energy-efficient data transmission strategy how/when
√

2013 [39] An offloading framework, Ternary Decision Maker (TDM) when
√

2013 [5] Feasibility of mobile cloud systems in a real setting when/how
√

2013 [40] Measure the energy consumption what/when/how
√ √

2013 [41] Energy-efficient scheduling policy for offloading what
√ √

2014 [42] A partitioning scheme taking the bandwidth as a variable what
√ √

2014 [43] Energy and performance-aware task scheduling what
√ √

2014 [44] A queueing analytic model for delayed offloading when/how
√ √

2014 [45] A partitioning based workflow optimization algorithm what
√ √

2014 [46] On-demand service offloading with a decision support system when/how
√

2015 [47] A stochastic model for dynamic offloading when/how
√

2015 [22] A Genetic Algorithm (GA) based offloading method what/when
√ √

2015 [48] A model for computational offloading in realistic setups when
√

2016 [49] Performance analysis of offloading in heterogeneous networks how
√

2016 [50] Cloudlet deployment in local wireless networks where
√

2017 [51] A Client Aware Certification (CAC) model when
√

2017 [52] Analytical model of hybrid cloud offloading where/what
√

2017 [53] A novel statistical cost model for applications to be offloaded what/when
√ √

Speedup Factor
F > 1

Computation Time 

Communication Time 
tm
FD

B

Remote execution = Communication + Computation 

Computation Time 
tm

Fig. 3: The offloading process in mobile cloud computing

which holds true under several conditions: large F that
the server is much faster than the mobile device, small
D that only a small amount of data is exchanged, and
large B that the network bandwidth between the mobile
device and the server is high [55].

• Energy-Saving: A performance seeking offload cannot
guarantee energy reducing, as the energy overhead of
data transfer may exceed the energy savings from reduced
CPU usage [57]. The energy spent due to offloading
must be smaller than the energy consumed by the mobile

device, which has to satisfy:

pmtm > pidle
tm
F

+ ptr
D

B
, (2)

where pm is the power for computing at the device,
pidle is the power when the device is idle and ptr is
the power for sending and receiving data. Here for
easy of understanding, only gives a simple and intuitive
explanation. More complex power models can be found
in [58], [59], [60]. MCO could potentially save energy
for mobile users, but not all applications were energy-
efficient when migrated to the cloud. It depends on
whether the computational cost saved due to offloading
outperforms the extra communication cost or note.

Offloading decisions depend on whether the mobile device
benefits from offloading or not. As sometimes it may be not
worth offloading at all, decisions have to be made when en-
countering with large communication data or low bandwidth.
Some works [29], [55], [15] have tried to determine when it is
optimal to offload computational tasks to a dedicated server,
whereas on the contrary, local execution is more advisable.
As shown in Fig. 4, decisions should be made according
to the ratio of communication versus computation required



6

Computation C

C
om

m
un

ic
at

io
n 
D

Never 
offload

Depends on 
bandwidth B

Always 
offload

Fig. 4: Tradeoff between computation and communication [29]

by the application, by dividing three intervals, namely, never
offload, tradeoff and always offload. There exists a trade-
off between computation and communication. When a large
amount of computation combined with a very small amount
of communication such as face recognition and chess game,
it is better always offload for such applications. However, a
small amount of computation combined with a large amount of
communication such as image searching, it should preferably
never offload [36]. In the middle area, it depends on the
network bandwidth B.

B. Interrupted vs. Uninterrupted

Due to unstable network connections or cloud conditions,
the execution of an offloading task may suffer from failures.

• Connection Failures: The access to the cloud is usu-
ally influenced by uncontrollable factors, such as the
instability and intermittency of wireless networks. The
user mobility and quality of wireless connection may
lead to connection failures. When a network connection
suddenly breaks down, an offloaded computation will
suffer severe performance degradation since the request
may be dropped due to connection failures.

• Cloud Failures: The cloud servers cannot be seen as
perfectly reliable systems since the reliability is typically
ensured through the SLA negotiated with the provider.
The cloud servers sometimes will be unreachable during
data center downtime. According to a survey, 93% of
enterprises that suffered from a data center downtime for
more than 10 days, filed for bankruptcy within a year of
the outage1.

As shown in Fig. 5, once a failure occurs, the offloading
action will be interrupted and the offloading task will be re-
executed from the scratch. The mobile device has to wait
for the recovery, but how long should it wait? To deal with
this problem, we set a soft deadline Tdeadline. There are two
options, if we wait some time (≤ Tdeadline) and the connection
is repaired, the task will retry offloading in this case; if the
connection is not repaired before the deadline expires, then
the task will be executed locally on the mobile device.

This system can be described as an M/M/1 modulated
queue, where it suffers occasionally a disastrous breakdown
occurring in the offloading phase. A failure of the system

1https://lifelinedatacenters.com/data-center/data-center-downtime/
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Fig. 5: The offloading model with failures

rejects all jobs present, and a repair process starts immedi-
ately. When the connection is down and undergoing a repair
process, new arrivals become impatient: each individual job,
upon arrival, activates an ‘impatience timer’, exponentially
distributed with an abandonment rate ξ (=1/Tdeadline). If the
connection is repaired before the assigned deadline Td has
expired, it is then offloaded to the cloud. If the system does not
change its environment from the repair phase to the offloading
phase before Tdeadline expires, the job is arranged for immediate
local processing rather than offloaded to the cloud. Further,
optimality analysis of the energy-performance tradeoff for
delayed offloading systems has been analyzed, which captures
both energy and performance metrics and also intermittently
available wireless networks [47], [49]. They tried to answer
the following questions: (i) Given a deadline, how to choose
the best offloading model and what parameters do the response
time and energy depend on? (ii) How to choose the deadlines
to optimize the metric by trading off the response time and
energy consumption?

C. On-the-Spot Offloading vs. Delayed Offloading

From Fig. 6, there is a queue of data to be offloaded from
a mobile device to the remote cloud server. By dynamically
control the relationship between energy cost, data queue
backlog and estimated rate, we can optimally determine when
to make transmission decisions to save energy.

• On-the-Spot Offloading: When there is any wireless
network available, all traffic is immediately offloaded
to the remote cloud, regardless of the network quality
[61]. Since this kind of offloading strategy does not take
the network condition into account and the poor-quality
inferior channels may be used, which could be a waste
of energy.

• Delayed Offloading: When there is currently no high-
quality network available, the offloading process can be
delayed up to a given deadline, or until a suitable network
becomes available [44]. Instead of offloading the task to
the cloud directly, we can choose not to offload when the
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link is bad or when the amount of data is large. This is
an energy-efficient offloading strategy since we take the
network conditions into account.

Dynamic Transmission 

Scheduling Algorithm

Mobile device
Cloud server

New Arrivals Queue

offload

Fig. 6: Framework of delayed offloading [62]

Given a set of available links, such as 3G/EDGE, 4G LTE,
WiFi access points and even 5G, energy information and data
arrival queues, we can determine whether to use any link or
which link to use for data transfer, while keeping the transmis-
sion delay bounded. Ultra-dense small cell base stations will
be deployed in future wireless networks technologies (such as
5G), so the data has a high probability to be offloaded through
the small cell base stations [63], [64]. Dynamic transmission
scheduling algorithms based on the Lyapunov optimization
have been recently proposed in [30], [62], which determines
when and on which network to offload data so that the energy
cost is minimized by leveraging delay tolerance. They used the
transmission energy cost as a penalty function and dynamically
determined when offloading decisions are made in order to
minimize the energy cost by accepting a small delay (queue
length).

Different types of applications usually give different rela-
tive importance to both factors of response time and energy
consumption. There exists a fundamental tradeoff between
the mean energy consumption and mean response time for
different applications [30], [16]. As for Delay-Tolerant Ap-
plications (e.g., iCloud, Dropbox and participatory sensing)
deal with video, audio, sensor data, or access large databases
on the Internet, which are less sensitive to network delays.
Thus, response time is less critical and optimizing energy
usage is more relevant. But as for Delay-Sensitive Applications
(e.g., language translator, face recognition, video conferencing,
vehicular communications), mobile users desire a fast response
when using applications. The offloading scheme in which
cloud services are available with short network latencies (e.g.,
WiFi networks) can serve in a better way by providing low
response time [16].

Using WiFi to offload large volumes of data from a mobile
device to the cloud can be more energy-efficient than cellular
radio. Since WiFi connections are not always available, we
should decide when to transmit data and across which network
interface. Recently, several groups have worked on optimizing
the tradeoff between the energy consumption and response
time. Rahmati et al. [24] suggested seamless offloading op-
eration by switching between several transmission technolo-
gies, and examined the tradeoff between energy consumption
for WiFi search and transmission efficiency when the WiFi
network was intermittently available. Energy-efficient delayed

network selection has been used to optimize the tradeoff
between energy usage and delay in data transmission by
intentionally deferring data transmission until the device meets
an energy-efficient network [38]. Researchers have further sug-
gested the use of “delayed offloading”: if no WiFi connection
is available, (some) traffic can be delayed up to a chosen
deadline, or until WiFi becomes available [44].

IV. WHAT TO OFFLOAD

Usually mobile applications can be decomposed into a
set of fine-grained or coarse-grained tasks which consists of
sequential and parallel components. It is not always necessary
or effective to offload all computation components to the
remote cloud since sometimes high communication delay will
be generated or because some tasks must access local features.
Therefore, we should find the right component to offload, i.e.,
judiciously determine what should be deployed on the cloud
server and which parts of the application should be left on the
mobile device to achieve a particular performance target such
as the lowest response time or the least energy consumption
[20].

A. Classification of Application Tasks

Different applications emerge in a mobile device according to
some process and each consists of several tasks. Since not all
the application tasks are suitable for being offloaded to the
cloud server for remote execution, they need to be weighted
and distinguished as:

• Unoffloadable Tasks: Some should be unconditionally
executed locally on the mobile device, either because
transferring relevant information would take tremendous
time and energy or because these tasks must access
local components (e.g., camera, GPS, user interface,
accelerometer or other sensors) [28]. Tasks that might
cause security issues when executed in a different place
should also not be offloaded (e.g., e-commerce). Local
processing consumes the battery power of the device, but
there are no communication costs or delays.

• Offloadable Tasks: Some application components are
flexible tasks that can be processed either locally on the
processor of the mobile device, or remotely in a cloud
infrastructure. Many tasks fall into this category, which
are hard to be simply classified as “tasks suitable for
offloading” or “tasks suitable for local processing”, the
offloading decision depends on whether the communi-
cation costs outweigh the difference between local and
remote costs or not [55].

We do not need to take offloading decisions for unof-
floadable components. However, as for offloadable ones, since
offloading all tasks of an application to the remote cloud is
not necessary or effective under all circumstances, it is worth
considering what should be executed locally on the mobile
device and what should be offloaded onto the remote cloud
for execution based on available networks, response time or
energy consumption. The mobile device has to take offloading
decisions based on the results of the dynamic optimization
problem.
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B. Application Partitioning

Application partitioning is a method to split the execution
of the application between the mobile side and cloud side
so that the total execution cost is minimized [65]. It plays
a critical role in high-performance offloading systemsg. The
more accurate and lightweight the profiling information is, the
more correct decisions can be made, and the lower overhead
is introduced [32].

Remote execution

Local execution

Tasks: Time1 2 3 4 5 6

Transmission of program states

Fig. 7: The execution flow of an application

Application partitioning is used to decide which part of
the computations may be advantageously offloaded and which
not. As shown in Fig. 7, tasks 1, 2 and 6 are processed
locally on the mobile device while tasks 3, 4 and 5 are
offloaded to the cloud server for remote execution. Through
partitioning, a mobile device can benefit most from offloading.
Applications can be partitioned statically during development
or dynamically during execution:

• Static Partitioning: It is determined beforehand which
parts of the application should run locally and which parts
should be offloaded, depending on contextual parameters,
such as computational intensity of each module, the size
of data and state to exchange, battery level, delay con-
straints and channel state [66]. The optimal partitioning
for offloading is calculated based on the estimation of
communication cost and computational costs before the
program execution. The former depends on the size of
transmitted data and the network bandwidth, while the
latter is impacted by the computation time [20]. The
advantage of static partitioning is that it only requirs
a low overhead during execution and thus applies to a
fixed number of partitions, however it works well only
if the parameters related to the offloading decisions are
accurately known in advance or predicted [22].

• Dynamic Partitioning: The requirement of resources for
a task may change in its input data and the user-defined
goals (e.g., response time, battery consumption). Also,
the availability of resources may change at the service
nodes (available CPU power, memory, file cache, etc.)
and at the wireless network (bandwidth, network latency,
etc.) [18]. Thus, optimal partitioning decisions must be
made dynamically at runtime in order to adapt to different
network conditions, server state, delay constraints, and
so on. Given the variability of the wireless channel,
dynamic partitioning seems more appropriate, but it has
an associated higher signaling overhead, which must be
taken under control [67].

Among the sets of partitions offered by the partitioning
result, a mobile device should judiciously determine what
portion of an application is worth offloading to the cloud and
what should be executed locally [20]. An offloading strategy
selects a subset of tasks to be offloaded, considering the
balance between how much the offloading saves and how much
extra cost is induced. According to different CPU speeds of the
mobile devices, network bandwidths, transmission data size,
and the speed of the cloud servers, we will have different par-
titioning results. Therefore, the partitioning algorithm should
be dynamically adapted to changing environment.

C. Partitioning Algortihms
CloneCloud [31] used a combination of static analysis

and dynamic profiling to partition applications automatically
at a fine granularity while optimizing execution time and
energy use for a target computation and communication en-
vironment. However, this approach only considers limited
input/environmental conditions in the offline pre-processing
and needs to be bootstrapped for every new application built.
Dynamic partitioning of applications between weak devices
and clouds was presented in [27] and [42], to better support
applications running on diverse devices in different environ-
ments. They addressed how dynamic partitioning can address
these heterogeneity problems by taking the bandwidth as a
variable. ThinkAir [32] exploited the concept of smartphone
virtualization in the cloud and provided method-level com-
putation offloading and enhanced the power of mobile cloud
computing by parallelizing method execution using multiple
VM images.

Calculations can naturally be described as graphs in which
vertices represent computational costs and edges reflect com-
munication costs [68]. By partitioning the vertices of a graph,
the calculation can be divided among processors of local
mobile devices and remote cloud servers. Traditional graph
partitioning algorithms (e.g., [69], [70], [71]) cannot be applied
directly to the mobile offloading systems, because they only
consider the weights on the edges of the graph, neglecting the
weight of each node.

We can adopt partitioning technologies to identify offloaded
parts for energy saving. The energy cost of each application
task was profiled. Then a cost graph is constructed according
to the profiling results, in which each node represented a
task to be performed, and each edge indicated the data to
be transmitted between the mobile device and the remote
cloud. Finally, the remote parts were executed on remote
cloud servers for reducing energy consumption. Some works
[72], [20] have explored the methods of how to deploy
application tasks in a more optimal way, by dynamically and
automatically determining which portions of the application
should be offloaded to the cloud, what should be performed
on the mobile device.

Estimating the energy consumed on the mobile device for
task offloading to the cloud is fundamental to making a correct
offloading decision [59]. Some works [29], [40] built energy
models to approximate the energy consumption of offloading.
The energy models can be used to construct the aforemen-
tioned cost graph or make offloading decisions. However,
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they did not provide an effective method to obtain optimal
offloading decisions. MAUI [28] was a system that enables
energy-aware offloading of mobile code to the infrastructure
by deciding at runtime which methods should be remotely
executed, and achieves the best energy savings possible under
the mobile device’s current connectivity constraints. Its main
aim is to optimize energy consumption of a mobile device,
by estimating and trading off the energy consumed by local
processing vs. transmission of code and data for remote
execution.

Some works [73], [41] considered a response time constraint
when partitioning application tasks for execution on mobile
devices and servers, which is an important issue for many
interactive applications. To achieve energy saving while sat-
isfying a given deadline, some works [34], [74] showed low
complexity to solve the problem of offloading decision making
(i.e., to determine which software components to execute
remotely under mobile network environments). Beraldi et
al. [5] showed that rather than always offloading the whole
application remotely, running partial components locally can
be more advantageous. They proposed a novel generic ar-
chitecture that can be integrated into any mobile application,
which aims to automate the offloading decision and improve
the application’s response time while minimizing the overall
energy consumed by the mobile device. The partitioning algo-
rithm introduced in [35] aims at reducing the response time of
tasks on mobile devices. It finds the offloading and integrating
points in a sequence of calls by depth-first search and a linear
time searching scheme, which can achieve low user-perceived
latency while greatly reducing the partitioning computation on
the cloud. Some application partitioning solutions [26], [1],
[33] heavily depend upon programmers and middleware to
partition the applications, which limits their uses.

V. WHERE TO OFFLOAD

We need to find suitable cloud service to carry out offloading
best, i.e., to find the right place to offload. With the develop-
ment of MCC and MEC, where to offload has become a crucial
issue.

A. Multi-Criteria Decision Making

A variety of Clouds with different characteristics are emerg-
ing these days for data storage and processing, e.g., Amazon
EC2, Apple iCloud, and Google App Engine. Such systems
use proprietary cloud platforms to provide different types of
services. For example, cloud data centers designed specifically
for healthcare services can provide a platform for big data
storage and parallel computing capabilities for data mining
[75]. Offloading the same program to different clouds may
perform different amounts of computing within the same
duration due to the different speeds of cloud servers, and may
cost different communication time due to the wireless network
and cloud’s availability. Therefore, a method for optimal cloud
service selection is needed [76].

The goal of cloud service selection is to find an optimal
cloud among a certain class of clouds that provide the same
service, which best carries out the offloaded tasks [77]. As

shown in Fig. 8, three basic steps are required in the process
of cloud service selection, namely, matching, ranking and
selecting.

• Matching: To find a list of available cloud services that
are functionally matched with a service request by a
mobile user. On the mobile device side, upon receipt of
an offloading request, the service request module invokes
the cloud discover module to find an appropriate cloud
service according to the task of SLA management that
keeps track of SLA of customers with cloud providers
and their fulfillment history. The candidate cloud services
are registered based on the collected information in the
cloud register module.

• Ranking: To evaluate and rank the available cloud ser-
vices according to QoS values and the results of criteria
and sub-criteria calculation. The criteria calculator mod-
ule depends on the tasks of qualitative and quantitative
measurements. Qualitative criteria are those that cannot
be quantified and are mostly inferred based on previous
user’s experiences, e.g., security. Quantitative criteria are
those that be measured by using software and hardware
monitoring tools [78], e.g., bandwidth, VM cost and
speed.

• Selecting: The decision maker module is invoked to
choose the optimal cloud service according to the ranked
list of cloud services. And then the offloading invoker
module is triggered to partition the application into local
and remote partitions, and the latter is then offloaded to
the selected cloud.

There are three decision hierarchies listed in Fig. 9. The
first level is called target hierarchy, meaning what the ob-
ject is. Here, it aims at finding the optimal cloud service
amongst available cloud services which satisfy the essential
requirements of the mobile device. The second level is called
criteria hierarchy, and five criteria: performance, security,
bandwidth, availability and cost are considered for cloud
service selection. The criteria can be classified into two cat-
egories: subjective criteria and objective criteria. The former
is defined in linguistic/qualitative terms while the latter has a
monetary/quantitative definition. Root criteria can be made up
of sub-criteria. The bottom level is named decision hierarchy,
in which we can make the final decision in choosing one of the
alternative clouds based on the analysis in criteria hierarchy.

The selection process can be a hard task since a variety
of data needs to be analyzed and many factors need to be
considered. Some works [77], [76] combine the methods of
analytic hierarchy process (AHP) and fuzzy technique for
order preference by similarity to ideal solution (TOPSIS),
which are ideal ways to do multi-criteria decision making.
AHP is employed to obtain weights of the criteria for each
cloud service and fuzzy TOPSIS is to determine the priori-
ties of the alternative clouds in the decision-making process
[79]. Thus, we should make offloading decisions carefully to
determine which resource to use and then offload tasks to the
most appropriate server according to the energy and computing
demand of the task.
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B. Cloudlet-based Decision Making

Except for several similar cloud services (from different
cloud vendors) that can be offered to a mobile device, nearby
cloudlets are also alternative destinations for offloading. Mo-
bile users can also offload applications to nearby mobile
resource-rich devices to reduce energy consumption and im-
prove performance. Satyanarayanan et al. [19] proposed a
VM-based cloudlet in mobile computing, to which a mobile
device connects over a WLAN network, with the argument
against the use of the cloud due to higher latency and lower
available bandwidth when connecting. In essence, Cloudlets
make use of mobile devices simply as a thin-client to access
local resources, rather than using the mobile devices’ capabil-
ities directly and offloading only when required. A Mobile
Cloud Middleware (MCM) was also introduced in [80] as
an intermediary between the mobile device and the cloud in
order to manage the asynchronous delegation of mobile tasks
to cloud resources and decrease the time it takes to offload
tasks from mobile devices to the cloud.

Fig. 10 illustrates a generic MCO system, organized as a
two or three-level hierarchy:

• Two-Level Offloading: Rather than running applica-
tions locally and directly requesting data from content
providers, a mobile device can offload parts of its work-
load to a cloud server via one or more communication
networks, taking advantage of the abundant cloud re-

iCloud

Cellular 
Network

WiFi AP

Cloudlet

Mobile device

Cloud

WiFi AP

Local Cloud

Fig. 10: A general offloading model

sources to help gather, store, and process data. This kind
of offloading scheme depends critically on a reliable end-
to-end communication and the availability of the cloud
[38]. In addition, it suffers from high network access
latency and low network bandwidth. Access to the cloud
is often affected by uncontrollable factors, such as the
instability and intermittency of wireless networks.

• Three-Level Offloading: Rather than relying on a remote
cloud to address the resource poverty of a mobile device,
we can use a nearby resource-rich middleware (e.g.,
cloudlet, MEC or local cloud) via a WLAN hotspot to
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decrease latency and lower battery consumption [19].
The application task is first offloaded to the middleware,
which is well-connected to the internet and available for
use by nearby mobile devices, and then it is migrated onto
the remote cloud through a stable internet connection.
This architecture reduces latency by using a single-hop
network and potentially saves battery by using WiFi or
short-range radio instead of broadband wireless which
typically consumes more energy [28].

Therefore, an application can deploy their components on
multiple application processing nodes such as mobile device,
cloudlet and cloud, i.e., there could be multiple offloading
destinations and targets [81]. Based on the computational
requirements and constraints, offloading decisions should be
made on where to offload: (i) tasks are executed locally
on the mobile device; (ii) tasks are executed on a nearby
cloudlet or edge server [10] with data transferred between the
mobile device and the cloudlet, e.g., via Bluetooth; (iii) tasks
are executed on a remote cloud server with data transferred
between the mobile device and the cloud, e.g., via a cellular
network.

C. Hybrid Offloading Decision-Making

Considering the cloud is far from the mobile users, Mobile
Edge Computing (MEC) has been proposed to shorten the
delay of offloading data. Compared with the cloud, the mobile
edge is much closer to the user and thus has much low
latency or response time. However, compared with conven-
tional MCCs, MECs are constrained by computing capacity,
especially under the scenario of dense population.

Offloading 
decision

���	�	������	��

µm

!

λ1

λN

Mobile 
requests

X
���

Outsourcing
decision

 
���	�	�
	

��
��

µc

!

 
���	��	���	�

µ1

µN

µe

X1

XN

local

offload

X
����

X
�����

!

Fig. 11: A hybrid scheme of where to offload (Mobile edge or Cloud)
[52]

Therefore, we should consider both the advantages of the
Mobile edge and Cloud, when making offloading decisions on
where to offload. Hybrid schemes of where to offload (either
Mobile edge or Cloud) has been proposed in recent research
works. In [52], the authors proposed a Cloud Assisted Mobile
Edge computing (CAME) framework as shown in Fig. 11,
in which cloud resources were leased to enhance the system
computing capacity while mobile edge resources were used to
reduce the latency. Specifically, the system delay was analyzed
by modeling the CAME system as a queuing network. Consid-
ering the heterogeneity of computation resources and mobile
tasks, offloading decisions were made which optimized the
usage of cloud resources and balances the workloads between
the cloud and the mobile edge [52].

Energy saving from mobile cloud offloading is not guaran-
teed if the evoked data transfers via wireless networks con-
sume an unpredictable amount of energy. Therefore, running
a certain part of the application locally on the mobile device
can be more advantageous and may save both energy and
response time, especially in the presence of intermittent wire-
less connectivity. The offloading inference engine proposed
in [1] can adaptively make decisions at runtime, dynamically
partition an application and offload part of the application
execution to a powerful nearby surrogate like Cloudlet, MCM
or edge server. Some recent works [80], [16] developed
dynamic offloading decision algorithms for mobile users when
taking the nearby cloudlet or middleware into account. They
derived an adaptive offloading decision algorithm based on
Lyapunov optimization, which determines where to perform
each application task (locally, cloud or cloudlet) such that the
energy consumption is minimized with a low delay penalty.

VI. HOW TO OFFLOAD

Offloading can be performed statically or dynamically via
different wireless networks like WLAN and cellular networks.
Since the transmission techniques differ in energy require-
ments and speeds, we should determine how to leverage the
complementary strength of WiFi and cellular networks by
choosing heterogeneous wireless interfaces for offloading, i.e.,
to find the right way to offload.

A. Heterogeneous Wireless Environments

Cellular WiFi

Delay High Low

Availability High Low

Energy-

Efficiency
Low High

Fig. 12: Comparison of WiFi and cellular networks

Mobile devices, such as smartphones usually have multiple
wireless interfaces (e.g., WiFi and cellular networks) with
varying availability, delay, and energy cost for data transfer.
The differences between them are summarized in Fig. 12.
Thus, the cellular interface usually has higher availability than
WiFi and can providenearly ubiquitous coverage for mobile
devices in a wide area, but it has lower data transmission
rate and is less energy-efficient than the WiFi interface for
transmitting the same quantity of data [38].
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TON TOFF
Fig. 13: The WiFi network availability model
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To facilitate the analysis of decision-making, most research
works [82], [47], [83] assume that cellular networks are always
available to mobile users, whereas the availability of WiFi
networks depends on the location. Mobile users move in and
out of a WiFi coverage area. The time variation of the WiFi
connection state can be modelled by the ON-OFF alternating
renewal process

(
T

(i)
ON , T (i)

OFF

)
, i ≥ 1, as shown in Fig. 13

[49]. The ON periods represent the presence of the WiFi
connectivity, while the OFF periods denote the interruption
of the WiFi connectivity [84]. During the latter periods data is
either not transmitted (the interface is idle) or it is transmitted
only through the cellular network. The duration of each ON
period T

(i)
ON , is assumed to be an exponentially distributed

random variable and independent of the duration of other ON
or OFF periods [61]. Further, the WiFi availability ratio (AR)
can be defined as AR = E[TON]

E[TON]+E[TOFF]
.

Mobile cloud offloading migrates heavy computation from
mobile devices to powerful cloud servers using one or more of
possibly several available wireless networks. There are several
ways to offload tasks to a dedicated resource, either using a
cellular connection or via an intermittently available WLAN
hotspot [47]. The unstable connectivity of wireless links,
which is caused by the mobile nature of mobile devices, plays
an important role in the offloading decision-decision making
process. A weak and even intermittent wireless network affects
the offloading process seriously and raise power consumption
on the mobile device. Therefore, how to offload tasks through
different wireless channels to achieve an overall optimal object
is worth studying.

B. The Queueing Model

Many recent works [47], [85], [84], [49] consider a queueing
model for mobile offloading systems as depicted in Fig. 14.
The mobile device, the cloud, and the wireless networks
are represented as queueing nodes to capture the resource
contention and delay on these systems [86].

As indicated in Fig. 14, job arrivals at the mobile device are
assumed to follow a Poisson process with an average arrival
rate of λ+λ0, where λ and λ0 are the rates of offloadable and
unoffloadable jobs, respectively. The arrival rate is based on
the behavior of the application. The unoffloadable jobs with

an arrival rate λ0 are unconditionally executed locally on the
mobile device. As for the offloadable ones with an arrival
rate λ, the mobile device chooses to offload each job with a
probability 0 ≤ π ≤ 1. In the extreme cases, if π = 0 all the
offloadable jobs are executed locally, and if π = 1 they are
all offloaded to the cloud. According to the properties of the
Poisson distribution [88], the jobs are offloaded to the cloud
following a Poisson process with an average arrival rate of
λc = π ·λ, the offloading rate. Similarly, jobs that are proceed
locally instead of being offloaded follow a Poisson process
with rate λm = (1− π) · λ.

There are two dispatchers: α1 is used to allocate offloadable
jobs either to the cloud or the mobile device, while α2 is to
offload the jobs either via a cellular connection or a WLAN
network to the cloud. The total cost, in terms of energy or
response time for processing all offloadable jobs, is composed
of remote costs (sending some jobs to the cloud and waiting
for the cloud to complete them), and local costs (processing
the remaining jobs locally on the mobile device) [87].

Offloading decisions can be made in a fixed, static manner
while others are able to perform offloading in accordance with
the dynamic behavior of the application [89].

Some researchers apply different offloading policies (static
and dynamic), where arriving jobs are processed either locally
on the mobile device or remotely on a cloud server. The
dynamic offloading policy considers the increase in each queue
and the change in a metric that newly arriving jobs bring
in should they be assigned to that queue, while the static
policy does not capture the dynamic increase [90]. A stochastic
model for dynamic offloading has been developed in [47] using
various performance metrics and also intermittently available
access links.

Some researchers develop different offloading strategies
(uninterrupted and interrupted): (a) the uninterrupted offload-
ing strategy uses WiFi whenever possible, but switches to a
cellular interface if no WiFi connection exists [61], and data
is continuously transmitted while switching between different
channels; (b) the interrupted offloading strategy assign jobs
upon arrival to one of two parallel queues which describe
cellular or WiFi transmission. Data transmission of the WiFi
queue can be interrupted for short periods when the connection
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is lost [91]. A comparative analysis of these strategies has been
performed.

VII. CONCLUSION

This paper presents a comprehensive survey of current
research works conducted on decision-making for mobile
cloud offloading. Offloading decisions play a crucial role in
improving the performance of applications executing on the
resource-constrained mobile devices and saving energy at the
side of mobile devices.

The resource heterogeneity of mobile devices and cloud ser-
vices, the complexity of mobile applications, the interruption
of heterogeneous wireless networks and the characteristic of
transferring a large amount of data have seriously prevented
mobile cloud offloading from being widely adopted.

To address these challenges, the time- and energy-aware
offloading decisions have to be made based on multiple per-
spectives. A good offloading decision is made by determining
the right time to offload (when to offload) under different
conditions of the device, such as available bandwidth, amount
of data to be transferred, and energy to execute; choosing the
right component to offload by splitting a specific application
into local and remote parts (what to offload); finding the right
place in which to be offloaded (where to offload) under differ-
ent cloud resource conditions and determining the right path to
offload (how to offload) by balancing different communication
networks.
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