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Abstract: In this note, we show that, for domains satisfying the separa-
tion property, certain weighted Korn inequality is equivalent to the John
condition. Our result generalizes previous result from [13] to weighted
settings.

1 Introduction

Let Ω be a bounded, connected domain in Rn, n ≥ 2. Let 1 ≤ p <∞, and ρ(x) be the
distance from x to the boundary ∂Ω, i.e., ρ(x) := dist (x, ∂Ω). For each a ≥ 0, the space
Lp(Ω, ρa) is the collection of functions f satisfying

‖f‖Lp(Ω,ρa) :=

(∫
Ω
|f(x)|pρ(x)a dx

)1/p

<∞.

For every Sobolev vector filed v = (v1, · · · , vn), let Dv denotes its gradient matrix, ε(v)
the linear part of the strain tensor, i.e.,

εi,j(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

and κ(v) = {κi,j(v)}1≤i,j≤n be the anti-symmetric part of Dv as 1
2(Dv −DvT ).

Due to its fundamental role in the development of linear elasticity, Korn’s inequality has
been investigated intensively, see [1, 2, 6, 8, 9, 10, 12, 16, 19] and the references therein.
The Korn inequality has been extended to John domains (see Section 2 for the definition)
by Acosta, Durán and Muschietti [2], and was proved by Jiang-Kauranen [13] that the
Korn inequality also implies the John condition if the domain additionally satisfies a so-
called separation property (see Section 2), which was introduced by Buckley-Koskela [4].
The Korn inequality with weights on John domains were studied in [7, 14, 17]. In this
note, we show that, under the separation property, certain weighted Korn inequality also
implies the John condition.
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Theorem 1.1. Let Ω be a bounded domain of Rn, n ≥ 2. If Ω satisfies the separation
property, then the following conditions are equivalent:

(i) Ω is a John domain;

(ii) for some p ∈ (1,∞) and some a ∈ [0,∞), for all u = (u1, · · · , un) ∈ W 1,p(Ω, ρa)

satisfying
∫

Ω( ∂ui∂xj
− ∂uj

∂xi
)ρa dx = 0, 1 ≤ i, j ≤ n, it holds that

(Kp,a) ‖Du‖Lp(Ω,ρa) ≤ CK‖ε(u)‖Lp(Ω,ρa);

(iii) (Kp,a) holds for all p ∈ (1,∞) and a ∈ [0,∞).

Notice that, on the plane, any finite connected domain satisfies the separation property,
see [13, Section 6] for a detailed discussion of the separation property.

The note is organized as follows. In Section 2, we first recall the definitions of Sobolev
spaces and John domain, then we recall some known result on weighted Korn inequalities.
In Section 3, we provide the proof for Theorem 1.1. Throughout the paper, we denote by
C positive constants which are independent of the main parameters, but which may vary
from line to line. For matrices S ∈ Rn×n we use the norm ‖S‖ := max{|si,j | : 1 ≤ i, j ≤ n}.

2 Preliminaries

2.1 Sobolev spaces

Let D(Ω) denote the set of smooth functions compactly supported in Ω. Let u ∈ L1
loc (Ω)

and 1 ≤ i ≤ n, fi ∈ L1
loc (Ω) is a weak partial derivative of u, i.e.,∫

Ω
u(x)

∂

∂xi
φ(x) dx = −

∫
Ω
fi(x)φ(x) dx

holds for each φ ∈ D(Ω). In what follows, we will denote such fi by ∂
∂xi
u. For p ∈ [1,∞)

and a ≥ 0, the weighted Sobolev space W 1,p(Ω, ρa) is then defined as the set of all u ∈
Lp(Ω, ρa) with ∇u ∈ Lp(Ω, ρa). For u ∈W 1,p(Ω, ρa), define its norm by

‖u‖W 1,p(Ω,ρa) := ‖u‖Lp(Ω,ρa) + ‖∇u‖Lp(Ω,ρa).

The Sobolev space W 1,p
0 (Ω, ρa) is then defined as the completion of D(Ω) with respect to

the norm of W 1,p(Ω, ρa). We denote W 1,p(Ω, ρa) (resp. W 1,p
0 (Ω, ρa)) by W 1,p(Ω) (resp.

W 1,p
0 (Ω)) if a = 0. Notice that as ρa is continuous positive functions in Ω, the subspace

C∞(Ω) ∩W 1,p(Ω, ρa) is dense in W 1,p(Ω, ρa); see [11, Theorem 3].

Let p ≥ 1 and b ≥ a ≥ 0. We say that the (Pp,a,b)-Poincaré inequality holds, if there
exists C > 0 such that for every u ∈W 1,p(Ω, ρa), it holds

(Pp,a,b)

∫
Ω
|u(x)− uΩ,a|pρ(x)a dx ≤ C

∫
Ω
|∇u(x)|pρ(x)b dx,

where we denote by uΩ,a := 1∫
Ω ρ

a dx

∫
Ω uρ

a dx and uΩ := uΩ,a for a = 0.
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2.2 John domain and weighted Korn inequality

In this subsection, let us recall the definition of John domain and some known results
on weigthed Korn inequalities. This class was introduced by F. John in [15], then named
after John by Martio and Sarvas in [18].

Definition 2.1 (John domain). A bounded domain Ω ⊂ Rn with a distinguished point
x0 ∈ Ω is called a John domain if it satisfies the following “twisted cone” condition: there
exists a constant CJ > 0 such that for all x ∈ Ω, there is a curve γ : [0, `]→ Ω parametrised
by arclength such that γ(0) = x, γ(`) = x0, and d(γ(t),Ωc) ≥ CJ t for each t ∈ [0, `]. We
call such a curve a John curve for x.

Notice that, any point can act as the distinguished point in the John domain, all
Lipschitz domains and certain fractal domains are John domains.

As a consequence of the Poincaré inequality, the following Korn inequality holds; see
[14, Theorem 2.1].

Proposition 2.2. Let Ω be a domain in Rn, n ≥ 2. Let p > 1 and a ≥ 0. Suppose the
Poincaré inequality (Pp,a,a+p) holds. Then there exists C = C(p, a,Ω) such that for every
v ∈W 1,p(Ω, ρa) satisfying

∫
Ω κi,j(v)ρa dx = 0 for all 1 ≤ i, j,≤ n, the following inequality

holds

(Kp,a)

∫
Ω
|Dv(x)|pρ(x)a dx ≤ C

∫
Ω
|ε(v)(x)|pρ(x)a dx.

Remark 2.3. Notice that the Korn inequality from [14, Theorem 2.1] is in a different
form, but the same proof there will give the Korn inequality (Kp,a) as above; see also [13,
Section 2].

On each John domain Ω, by [5], it was known that the Poincaré inequality (Pp,a,p+a)
holds for any p ∈ [1,∞) and a ≥ 0.

Corollary 2.4. Let Ω be a John domain in Rn, n ≥ 2. Then for any p > 1 and a ≥ 0, there
exists C = C(p, a,Ω) such that for every v ∈ W 1,p(Ω, ρa) satisfying

∫
Ω κi,j(v)ρa dx = 0

for all 1 ≤ i, j ≤ n, the following inequality holds

(Kp,a)

∫
Ω
|Dv(x)|pρ(x)a dx ≤ C

∫
Ω
|ε(v)(x)|pρ(x)a dx.

Diening, Ružička and Schumacher [7] obtained solvability of the divergence equation
with Aq weight. Very recently, López Garćıa [17, Theorem 1.1] obtained a sharper weighted
Korn inequality on John domains.

3 Weighted Korn inequality implies John

In this section, we prove our main result, namely, the weighted Korn inequality also
implies John condition, if the domain additionally satisfies the separation property.

The separation property was introduced by Buckley and Koskela [4].



4 M. Jiang & R. Jiang

Definition 3.1. (Separation property). A domain Ω ⊂ Rn with a distinguished point x0

has the separation property if there is a constant Cs ≥ 1 such that the following holds :
for each x ∈ Ω there is a curve γ : [0, 1] → Ω with γ(0) = x, γ(1) = x0, and such that for
each t either γ([0, t]) ⊂ B := B(γ(t), Csρ(γ(t))) or for each y ∈ γ([0, t]) \ B belongs to a
different component of Ω \ ∂B than x0. In the later case, we call B a separating ball, and
call the union of components of Ω \B not containing x0 as B-end and denoted by EB.

Every domain Ω, which is quasiconformally equvialent to a uniform domain has the sep-
aration property (see [4]). In fact, each finitely connected plane domain has the separation
property; see [13, Section 6].

The following result was proved in [3].

Lemma 3.2. Let 1 ≤ b < ∞ and let xj be a sequence of nonnegative numbers such that
for all k ∈ N

Σ∞j=kxj ≤ bxk.

Then for every α ∈ (0, 1]there exists a constant c ≥ 1, depending only b, α, such that for
all k ∈ N

Σ∞j=kx
α
j ≤ cxαk .

We also need the well-known Whitney decomposition.

Lemma 3.3. For any Ω ⊂ Rn there exists a collection W= {Qj}j∈N of countably many
closed dyadic cubes such that

(i) Ω = ∪j∈NQj , and the cubes have disjoint interiors, (Qj)
◦ ∩ (Qk)

◦ = ∅,
(ii)
√
n`(Qk) ≤ dist(Qk, ∂Ω) ≤ 4

√
n`(Qk) and

(iii)1
4`(Qk) ≤ `(Qj) ≤ 4`(Qk) whenever Qj ∩Qk 6= ∅.

Notice that Whitney decompositions of a domain might not be unique, in what follows
we fix a decomposition in the proof.

The following result was proved in [13, Proposition 3.3].

Proposition 3.4. Let Ω ⊂ Rn be a domain satisfying the separation property with constant
Cs ≥ 1 and a distinguished point x0. For each point x ∈ Ω, there is a curve γ connecting x
to x0 that satisfies the separation property with constant 5Cs, and for each Whitney cube
Q ∈W , the set Q ∩ γ has at most one component.

We can now provide the last step towards our result.

Theorem 3.5. Let Ω be a bounded domain of Rn, n ≥ 2. Assume that Ω satisfies the
separation property. Then if there exist p ∈ (1,∞) and a ∈ [0,∞), such that for all

u = (u1, · · · , un) ∈ W 1,p(Ω, ρa) satisfying
∫

Ω( ∂ui∂xj
− ∂uj

∂xi
)ρa dx = 0, 1 ≤ i, j ≤ n, it holds

that

(Kp,a) ‖Du‖Lp(Ω,ρa) ≤ CK‖ε(u)‖Lp(Ω,ρa),

Ω is a John domain.
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Proof. Suppose that Ω satisfies the separation property w.r.t. x0 ∈ Ω. Let Q0 be the
Whitney cube such that x0 ∈ Q0 ⊂⊂ Ω.

Let x ∈ Ω be a point and let γ : [0, 1]→ Ω with γ(0) = x, γ(1) = x0 be a curve given by
the separation condition. Consider the collection Wγ of all Whitney squares that intersect
γ. By Proposition 3.4, we may assume that for each Whitney cube Q in Wγ , there is only

on component in Q∩ γ. Therefore, we can order them so that they form a chain {Qj}
Wγ

j=0

with x0 ∈ Q0 and Wγ ∈ N depending on x.
By the work of Martio and Sarvas [18], to show that Ω is an John domain, it suffices

to show that there exists an absolute constant C > 0, independent of the starting point x
such that for each t ∈ [0, 1], its has ρ(γ(t)) ≥ Cdiam(γ([0, t])).

Claim: For any z = ρ(γ(t)) with t ∈ [0, 1], let r := Csρ(z), and Qk ∈ Wγ such that
z ∈ Qk. There exists C > 0, independent of x, z, such that

(3.1)
∑
j≥k
|Qj |

n+a
n ≤ C|Qk|

n+a
n .

Assuming the Claim is proved, then Lemma 3.2 implies that∑
j≥k

`(Qj) ≤ C`(Qk),

which further implies that

diam(γ([0, t])) ≤
√
n
∑
j≥k

`(Qj) ≤ C(n)`(Qk) ≤ C(n)ρ(γ(t)).

This guarantees that Ω is a John domain.
Thus we only need to prove the claim (3.1).
Let B := B(z, r), where r = Csρ(z) and z = γ(t), t ∈ [0, 1], and Qk ∈ Wγ be such that

z ∈ Qk.
If B ∩Q0 6= ∅, then one has

5Cs`(Qk) ≥ Csρ(z)/
√
n ≥ `(Q0)/2,

and hence,

(3.2)
∑
j≥k
|Qj |

n+a
n ≤ C(n)

∫
Ω
ρ(x)a dx ≤ C(n)|Qk|

n+a
n .

Suppose now that B ∩Q0 = ∅. If γ([0, t]) ⊂ B then it holds automatically that

(3.3)
∑
j≥k
|Qj |

n+a
n ≤ C(n)

∫
∪j≥kQj

ρ(x)a dx ≤
∫

2B
ρ(x)a dx ≤ C(p, a,Ω)|Qk|

n+a
n .

Otherwise, let EB be the B-end. If

|B| ≥

(
πn/2

Γ(1 + n
2 )

) a
n+a |Q0|

C
np
n+a

K 32p22n
,
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then once more it holds

5Cs`(Qk) ≥ Csρ(z)/
√
n ≥ `(Q0)/2,

and similar to (3.2) one has

(3.4)
∑
j≥k
|Qj |

n+a
n ≤ C(n)|Qk|

n+a
n .

Suppose now

(3.5) |B| <

(
πn/2

Γ(1 + n
2 )

) a
n+a |Q0|

C
np
n+a

K 32p22n
.

If EB ⊂ 4B then the conclusion is obvious. Otherwise, set

φ(x) :=


0, ∀x ∈ Ω \ EB;
1, ∀x ∈ EB \ 2B;

d(x,B)
r , ∀x ∈ EB ∩ (2B \B).

(3.6)

then φ is a Lipschitz function that vanishes on B.
For each x = (x1, · · · , xn) ∈ Ω, let v = (v1, v2, 0, · · · , 0) with{

v1(x1, · · · , xn) = (x2 − z2)φ(x1, · · · , xn),
v2(x1, · · · , xn) = (z1 − x1)φ(x1, · · · , xn),

(3.7)

where z = (z1, · · · , zn) is the center of B. Then for each x = (x1, · · · , xn) ∈ EB \ 2B,

Dv(x) =


0 1 0 · · · 0
−1 0 0 · · · 0
0 0 0 · · · 0
· · ·
0 0 0 · · · 0

 ;(3.8)

Dv(x) = 0 for all x ∈ Ω \ EB and

|Dv(x)| ≤ 2r|∇φ(x)|+ φ(x) ≤ 3

for all x ∈ EB ∩ (2B \B). Choose a vector field w on Ω as

w(x) = w(x1, · · · , xn) = (−C̃x2, C̃x1, 0, · · · , 0),

where C̃ satisfies

2C̃

∫
Ω
ρ(x)adx =

∫
Ω

(
∂v1

∂x2
− ∂v2

∂x1

)
ρ(x)adx,

Now set u = v+w. One has that u = (u1, u2, · · · ), where ui = vi+wi, i = 1, 2, is Lipchitz
continuous on Ω and satisfies∫

Ω

(
∂u1

∂x2
− ∂u2

∂x1

)
ρ(x)adx =

∫
Ω

(
∂v1

∂x2
− ∂v2

∂x1

)
ρ(x)adx− 2C̃

∫
Ω
ρ(x)adx = 0.
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Applying the weighted versions of the Korn inequality (Kp,a) to u, and noticing that
ε(w) ≡ 0, we obtain

‖Du‖Lp(Ω,ρa) ≤ CK‖ε(u)‖Lp(Ω,ρa) = CK‖ε(v)‖Lp(Ω,ρa)(3.9)

= CK

(∫
EB∩2B

|ε(v)|pρ(x)a dx

)1/p

≤ 3CK

(∫
EB∩2B

ρ(x)a dx

)1/p

≤ 3CKr
a/p|EB ∩ 2B|1/p.

By the construction of v we have v = 0 on Ω \ EB, and therefore by (3.5),

|C̃|
(∫

Q0

ρ(x)a dx

)1/p

≤

(∫
Ω\EB

|Du|pρ(x)a dx

)1/p

(3.10)

≤ 3CK(2Csρ(z))a/p|EB ∩ 2B|1/p

≤ 3CK(2Csρ(z))a/p|2B|1/p

≤ 3CK2(2a+n)/pra/p|B(z, r)|1/p

= 3CK2(2a+n)/p

(
Γ(1 + n

2 )

πn/2

)a/np
|B(z, r)|(n+a)/np

(3.5)

≤ 1

3
|Q0|(n+a)/np.

On the other hand, one has(∫
Q0

ρ(x)a dx

)1/p

≥ (
√
n`(Q0))a/p|Q0|1/p ≥ |Q0|(n+a)/np.

From this, we see that |C̃| ≤ 1/3. This together with (3.9) implies that

C

(∫
EB\2B

ρ(x)a dx

)1/p

≤ ‖Du‖Lp(Ω,ρa) ≤ CK‖ε(u)‖Lp(Ω,ρa) = CK‖ε(v)‖Lp(Ω,ρa)

= CK

(∫
EB∩2B

|ε(v)|pρ(x)a dx

)1/p

≤ 3CK

(∫
EB∩2B

ρ(x)a dx

)1/p

≤ C

(∫
Q∈W :Q∩γ(t)6=∅

ρ(x)a dx

)1/p

.

≤ C|Qk|
n+a
np .

This together with the separation property then implies that

(3.11)
∑
j≥k
|Qj |

n+a
n ≤ C(n)

∫
EB∪B

ρ(x)a dx ≤ C(n)|Qk|
n+a
n .
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The estimates (3.2), (3.3), (3.4), (3.5) and (3.11) together imply (3.1), which completes
the proof of the theorem.

We can now finish the proof of the main result.

Proof of Theorem 1.1. (i) → (ii) was contained in Proposition 2.2, while (ii) → (i) was
contained in Theorem 3.5.

Finally, (iii) implies (ii) obviously. On the other hand, (ii) implies (i), i.e., Ω is John,
which implies (iii) by Corollary 2.4.

Acknowledgments

R. Jiang was partially supported by NNSF of China (11671039).

References

[1] G. Acosta, R.G. Durán, A.L. Lombardi, Weighted Poincaré and Korn inequalities for
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