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AssTrACT. For d > 2, we prove the existence and uniqueness of heat kernels to the following
time-dependent second order diffusion operator with jumps:

d d
% = % Z Cl,'j(l, x)aizj + Z bi(t, x)0; + .,%K,
ij=1 i=1

where a = (a;;) is a uniformly bounded, elliptic, and H6lder continuous matrix-valued function, b
belongs to some suitable Kato’s class, and £ is a non-local a-stable-type operator with bounded
kernel x. Moreover, we establish sharp two-sided estimates, gradient estimate and fractional
derivative estimate for the heat kernel under some mild conditions.
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1. INTRODUCTION

Let Co(RY) be the Banach space of all continuous functions on R vanishing at infinity e-
quipped with uniform norm, and C.(R¢) the space of all continuous functions on R¢ with com-
pact support. Let .Z be a linear operator on Co(R?%) with domain Dom(.%). Suppose that
Cj"(Rd) c Dom(.Z). We say .Z satisfies a positive maximum principle if for all f € C§°(Rd)
reaching a positive maximum at point x, € RY, then .2 f(xo) < 0. The well-known Courrége
theorem (cf. [I, Theorem 3.5.3]) states that .# satisfies the positive maximum principle if and
only if .Z takes the following form

1 d d
LI =5 3 a0 + ) bl ) + ) f ()
i,j=1 i=1 (1.1

+ Ld (f(x+2) = f(x) = Ljgenz - V() uo(d2),

where a = (a;j(x))1<; j<a 1S @ dXd-symmetric positive definite matrix-valued measurable function
onR?, b(x) : RY —» R4, ¢ : R — (—00,0] are measurable functions and u,(dz) is a family of
Lévy measures, with that a, b, ¢, 4 enjoy some continuity with respect to x (see [22]). On the
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other hand, from the probabilistic viewpoint, consider the following SDE with jumps:

dX, = o(X,)dW, + b(X,)dt + f g(X,_,2)N(dt, dz)
lzI<1 (1.2)
+ f g(X;_,2)N(dt,dz), Xp = x,
lz>1

where o(x) = Va(x), g(x,7) : R x RY — R, W is a d-dimensional standard Brownian mo-
tion, while N is a Poisson random measure with intensity measure v, and N is the associated
compensated Poisson random measure. Under some Lipschitz assumptions in x-variable on
o(x), b(x) and g(x,z), it is well known that the above SDE admits a unique strong solution,
which defines a strong Markov process whose infinitesimal generator . is of the form (L.I)
with p,(dz) = v o g7!(x, -)(dz) (see [21]]). A natural question is whether SDE (1.2) has a (weak)
solution without Lipschitz assumption on o(x), b(x) and g(x, z), and how about its density.

In this work we are concerned with the existence, uniqueness, and estimates of fundamental
solutions of time-dependent version of the operator .Z in (I.1)), with minimal regularity as-
sumptions on a(t, x), b(t, x) and k(t, x, z), where k(t, x, z) := |z|**%u, (dz)/dz. More precisely, we
shall consider the following time-inhomogeneous and non-symmetric non-local operators:

Lif(x) =L f(xX) + b - V(x) + ZF f(x), (1.3)
where
d
Lo = %Z} (1, DTS, by~ V() = Zb(r X6.F(2)
L) = f (Fx+2) = £ = Tggenz ) “ o
Here a(t,x) := (a;j(t,X))i<ij<a 15 @ d X d-symmetric matrix-valued measurable function on

[0, 00) X R?, b(t,x) : [0,00) x R — R? and «(t,x,7) : [0,00) x R x RY — R are measur-
able functions, and a € (0, 2).

With different choices of a,b and k, we get different types of operators .Z;. For example,
when a = Iy, b = 0 and «(t, x,2) = A(d, —a)x for some k > 0, .Z = %A + kAY? is the
generator of independent sum of Brownian motion and rotational a-stable process with weight
k. Here A(d, —a) is a positive constant: A(d, —a) := a2* '77?T'((d + a)/2)[(1 — a/2)~" and
I is the Gamma function defined by I'(1) := fooo t*~le7'dt, A > 0. Moreover, the heat kernel of
IA + kA" exists, denoted by p“(t, x,y) = p*(t,|y — x|). It is shown in [14, Theorem 1.4] (see
also (25, Theorem 2.13] and [[10, Corollary 1.2]) that , there are constants C, A > 1 depending
only on d, & such that for all # > 0 and x € R?,

Cc! (t—d/z A (Kt)—d/a) A (t—d/2e—/1|x|2/t 4 K ) p “(t, x)

| x|d+a

< C (2 A Gy ) A (P Iy )

‘x|d+{1 .

(1.4)

The above in particular implies that for each T, M > 0, all « € [0, M], t € (0, T] and x € R,

-~ _ _ 2 _ =~ _ 1142 _
CH (eI y a2 A ) < pi(tx) < C (1P r a2 A ) (15)

where C > 1 depends on T, M, d, a. For notational convenience, define for y,4 € R, r > 0 and
xeR4,

2 —d—
é:/l,y(t’ x) = t(’}’—d)/ze—/llxl /t and na,y(t’ X) = t)’/z(lxl + t1/2) d @ (1.6)
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It is easy to check that we can rewrite (1.5]) as

C™ (€20t %) + K0 2(8, %)) < PY(t, %) < C (E1,0(E X) + K121, X)) (1.7)
for some C > 1 depending on 7', M, d, .
When «(t, x,z) = A(d, —a) 1 <1, £ is just the truncated fractional Laplacian operator A%/2:

B f(x) = L 9= 0 =29/ Ad. —a) 4

|Z|d+a

It follows from [9] that the heat kernel of A%/?, denoted by p,(t, x,y) = po(t, x — y), exists and it
is jointly continuous and has the following estimates: there are constants C; = Cy(d, @) > 1, i =
1, 2 such that

_ Colxl _d _
cy' ((ﬁ) T + (l @ A ulﬁ) 1\x|<1) < Pal(t, x)
e ) (1.8)
<C1 ((t) ? 1|x|>1 +(l_5 /\lx‘%) 1|x|<1)7 tE(O,l],XERd.

|x|

Throughout this paper, we assume d > 2 and make the following assumptions on a and «:
(H%) There are ¢; > 0 and 8 € (0, 1) such that for all # > 0 and x, y € R¢,

la(,y) = a(t, )| < cily = «F, (1.9)
and for some ¢, > 1,
&5 Tyxa < alt, x) < calyxa. (1.10)

Here 1.4 denotes the d X d identity matrix.

(H“) «(t, x, z) is a bounded measurable function and if @ = 1, we require forany 0 < r < R <
(o.¢]

2

f zk(t, X, 2)|zl™'dz = 0. (1.11)
r<|zI<R

Let Z(t, x; 5, y) be the fundamental solution of {.£%; ¢ > 0}; see Theorembelow for details.
Since ., can be viewed as a perturbation of .Z¢ by £ := b -V + £¥, heuristically the
fundamental solution (or heat kernel) p(z, x; s, y) of .Z; should satisfy the following Duhamel’s
formula: forall 0 < ¢ < s < coand x,y € RY,

p(t, x;5,y) = Z(1, X; 5, y) + f f P, ;1,2 L7Z(r, 5 5, y)(@)dadr, (1.12)
t JRY
or
p(t,x;s,y) = Z(t, x; 5,y) + ff Z(t, x;r, z),,%rb”‘p(r, - 8, y)(z)dzdr. (1.13)
t JRY

For any T € (0, 0] and € € [0, T), we write

ID)Z = {(t,x;s,y):x,yeRdands,t>Owith8<s—t<T}.

The following are the main results of this paper. See (2.28]) below for the definition of space-
time Kato class K, of functions on R x R?. We will see from Proposition below that K,
contains LY(R; LP(R¥)) for any p, q € [1, co] with 1% + % < 1.

Theorem 1.1. Let a € (0,2). Under (H*), (H) and b € K,, there is a unique continuous

function p(t, x; s,y) on Dy that satisfies (1.12), and
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(1) (Upper-bound estimate) For any T > 0, there exist constants Cy, Ay > 0 such that on D!,

P, x;.5, )| < Co(E250 + lKlleotta2)(s = 2,y = ). (1.14)

Moreover, the following hold.
(2) (C-K equation) Forall 0 <t <r < s < oo and x,y € R,

f p(t, x;r,2)p(r,z; s,y)dz = p(t, x; s, ). (1.15)
Rd

(3) (Gradient estimate) For any T > 0, there exist constants Cy, 4y > 0 such that on ]Dg ,

[V.ip(t, x; 5, 0| < Ci(€x, -1 + |IKlloo?0,1)(s — £,y — X). (1.16)

(4) (Fractional derivative estimate) If in addition for a« € (0,1], b € K, and for a € (1,2),
b € K, (see (2.29) below for a definition), then for any T > 0, there exists a constant C, > 0
such that on D,

A p(t, -5 5, )X < Catao(s — 1,y — X). (1.17)
Meanwhile, equation (1.13)) holds on D).
(5) (Conservativeness) For any 0 < t < s < co and x € RY,

fRdP(t,X;s,y)dy: 1. (1.18)

(6) (Generator) For any f € Ci(Rd), we have

Py f(x) = f(x) = f SPz,r.i”rf (x)dr, (1.19)

t

where P, f(x) := fRd p(t, x5 8,y) f(y)dy.
(7) (Continuity) For any bounded and uniformly continuous function f(x), we have

Jim 1Pf = fll = 0. (1.20)

Remark 1.2. Estimate (1.17) is new even for k = 0.

Note that in Theorem [I.1} we do not assume «(t, x,z) > 0 and so the fundamental solution
p(t, x; 5,y) can take negative values; see Remark [I.4] below. The following theorem gives the
lower bound estimate.

Theorem 1.3. Under the same assumptions of Theorem u if for each t > 0 and x € R,
k(t,x,2) >0, a.e.z€eR’, (1.21)
then p(t,x;s,y) > 0 on DJ. Moreover, for any T > 0, there are constants Cs3, A3 > 0 such that
Pt x35,y) > C3(€n, 0 + Midla2)(s — 1,y — x) on D, (1.22)
where m, := inf ;) essinf cga k(2, X, 2).
Remark 1.4. Under the hypothesis of Theorem[1.3] if in addition, k satisfies that for each t > 0,
x > k(1, x,7) is continuous  a.e. 7 € R%,

then, we can prove that (I.21)) is also a necessary condition to the positivity of p(t, x; s,y). For
example, see the proof of [15, Theorem 1.2], or [8, Lemma 4.5] or [26].

The following corollary follows immediately from Theorems|I.1]and
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Corollary 1.5. Let a € (0,2). Under (H%), (H¥), b € K; and (1.21)), for every T > 0, there are
positive constants C, A > 1 such that on Dg ,

C™M (10 + Mapa2)(s = 1.y = X) < p(t. x15,y) < C(Epr0 + Kllootga2)(s = £,y = ).

In the truncated case, we consider the following two conditions on «:
(HU*) 0 < «(t, x,2) < kol;<1(z) for some kg > 0.

(HL*) «(t, x,z) > kol <1(z) for some «p > 0.
Theorem 1.6. Suppose that (H*), (H") and b € K, hold. Let T > 0, and for A > 0, set
Toa(ts %) = 116l + 272 o+ /1) o . (1.23)
(1) If in addition « satisfies (HU"), then there are constants Cy, 1y > 0 such that

p(t’x; S’)’) <C‘l (5/11,0+7_7a,1/8)(5_t,y_x) on Dg
(1) If in addition k satisfies (HLX), then there are constants C,, 1, > 0 such that

p(t’x; S,)’) = C2 (f/lz,o +7_701,8) (S_l’y_-x) on Dg

Heat kernel analysis takes an important place in PDE and in probability theory, as heat kernel
encodes all the information about the corresponding generator and the corresponding Markov
processes. Since explicit formula can only be derived in some very special and limited cases,
the main focus of the heat kernel analysis is on its sharp estimates. While it is relatively easy
to get some crude bounds, obtaining sharp two-sided bounds on the heat kernel is typically
quite delicate and challenging. It requires deep understanding of the corresponding generator.
For second order elliptic operators and diffusion process, a lot is known and there are many
beautiful results. For instance, the celebrated Aronson estimate [2] asserts that the heat kernel
for uniformly elliptic operators of divergence form with measurable coeflicients has two-sided
Gaussian-type bounds. Aronson’s estimate also holds for non-divergence form elliptic operators
with Holder continuous coefficients; see Theorem 2.3 below.

The study of heat kernel for non-local operators is relatively recent, propelled by interest in
discontinuous Markov processes, as many physical, engineering and social phenomena can be
successfully modeled by using discontinuous Markov processes including Lévy processes. The
infinitesimal generators of discontinuous Markov processes are non-local operators. During
the past several years there is also many interest from the theory of PDE (such as singular
obstacle problems) to study non-local operators; see, for example, [5, 24] and the references
therein. Quite many progress has been made in the last fifteen years on the development of the
DeGiorgi-Nash-Moser-Aronson type theory for symmetric non-local operators. For example,
Kolokoltsov [23] obtained two-sided heat kernel estimates for certain stable-like processes in
R9, whose infinitesimal generators are a class of pseudo-differential operators having smooth
symbols. Bass and Levin [3] used a completely different approach to obtain similar estimates
for discrete time Markov chain on Z¢, where the conductance between x and y is comparable
to |[x — y|7" for @ € (0,2). In Chen and Kumagai [12], two-sided heat kernel estimates and
a scale-invariant parabolic Harnack inequality (PHI in abbreviation) for symmetric a-stable-
like processes on d-sets are obtained. Recently in [13]], two-sided heat kernel estimates and
PHI are established for symmetric non-local operators of variable order. The DeGiorgi-Nash-
Moser-Aronson type theory is studied very recently in Chen and Kumagai [[14] for symmetric
diffusions with jumps. We refer the reader to the survey articles [6, 20] and the references
therein on the study of heat kernels for symmetric non-local operators. However, for non-
symmetric non-local operators, much less is known. In [4], Bogdan and Jakubowski considered

a fundamental solution to the non-local operator A%? +b(x)-V with @ € (1,2) and b belonging to
5



some Kato’s class, and obtained its sharp two-sided estimates. The uniqueness of fundamental
solution to A%? + b(x) - V and its connection to stable processes with drifts are settled in Chen
and Wang [16]]. In [27], Xie and Zhang studied the critical case a(t, x)A'? + b(t, x) - V. Heat
kernels for subordinate Brownian motions with drifts have been studied in [8]] and [7]. Chen
and Wang [[13] studied heat kernel estimates for A%/? under non-local perturbation, while Wang
[26]] investigated heat kernel for A perturbed by non-local operators. Recently, Chen and Zhang
[17] obtained sharp two-sided estimates, gradient estimate and fractional derivative estimate of
the heat kernel for general non-local and non-symmetric operator .£’* with «(t, x, 7) = «(x, z) by
using Levi’s parametrix method.

In this paper, we concentrate on the study of heat kernel for non-symmetric operators .Z of
type (1.3), which have both diffusive and non-local parts . When «(z, x,y) > 0, its fundamental
solution p(t, x; s,y) becomes a family of transition density and so it determines a Feller process
X having strong Feller property. Clearly, the law of X is a solution to the martingale problem
for (.Z, C3(R?)). Is the solution to the martingale problem for (.Z, C*(R?)) unique? It is also
tempting to ask that when «(z, x, 7)/|z|4* is of the form v o g7!(¢, x, -)(dz) for some g(t, x, 7) :
RY x RY — R? and a o-finite measure v on R \ {0}, whether this Feller process X satisfies the
following SDE:

dX, = o(t, X,)dW, + b(t, X,)dt + f g(t, X,_, 2)N(dt, dz)

lzI<1

+ f g(t, Xt—a Z)N(dt’ dZ)’ XO = X, (1'24)
|z/>1

where o(t,x) = +a(t,x), W is a d-dimensional standard Brownian motion, N is a Poisson
random measure with intensity measure v, and N is the associated compensated Poisson random
measure? We plan to address these questions in a separate work.

The rest of the paper is organized as follows. In Section 2, we present some key estimates
that will be used later. In Section 3, we prove our main result Theorem The main crux
of this work is on various gradient and fractional derivative estimates, which is crucial for the
iteration procedure and rigorously establishing the Duhamel’s formula. In Section 4, we first
show the positivity of p(¢, x; s,y) by the maximum principle under the non-negativeness of «.
We then derive the lower bound estimate by a probabilistic approach after obtaining the on-
diagonal estimate of p(z, x; s, y). In Section 5, we consider the truncated case. In the Appendix,
we show a maximum principle and derive two-sided Aronson-type Gaussian estimates for heat
kernels of time-dependent second-order elliptic differential operators.

We conclude this introduction by mentioning some conventions that will be used throughout
this paper. The letter C or ¢ with or without subscripts will denote an unimportant constant. For
two quantities f and g, f < g means that C"'g < f < Cg for some C > 1, and f < g means
that f < Cg for some C > 1. The letter N will denote the collection of positive integers, and
Ny := N U {0}.

2. PRELIMINARIES

2.1. Basic estimates. We first prove the following elementary but important estimates (which
can also be called 3 P-inequalities) for later use. Recall that the functions &, , and 7, ,, are defined

in (L.6).

Lemma 2.1. (i) Foranya € (0, +00) and A > 0, there exist positive constants C; = Ci(d, a, 1)
and Cy = Cy(d, @) such that for all t > 0 and x € R¢,

g/l,O(ta x) < Clna/,a/(t’ .X), (21)
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and forall y > 0 and t > 0,
fR ,1 Nay(t, X)dx < Cot 7072, (2.2)

and for some C3 = C5(d, @) > 0and all t,s > 0, x € R4 andy € [0, a],
fRa Nay(t, X = Do, 2)dz = C3nq (1 + 5, X). (2.3)

(ii) Forany 0 < a <Bandforallt,s > 0, x,y € R?, we have
D0t )05, Y) < 2% (10t X) + 105, 3)) Nt + 5. + ¥). (2.4)
Moreover, there is a constant Cy = C4(d, a, ) > 0 such that for all y,,y, >  — 2,
f i[Rd Nay (S =1,y — DNy, (r — t, 2 — x)dzdr

< C4B()%g + 1’ )/2%3 + 1)77(1,2+’)/1+’)/2—ﬁ(s - t’y - .X),

(2.5)

where B(B,y) = fol(l — sy~ 1s7"lds is the usual Beta function.
(ii1) For any a € (0,2), there exists a constant Cs = Cs(d, a, A) > 0 such that for all y, > -2
andy, > a -2,

f f 1 Eay (r = 1,2 = X)May,(s — 1,y — 2)dzdr
t JRA

S CsB(5 + 1, B52 + Doy, 49, (s = £,y = ). (2.6)

(iv) For any A > 0, we have

f Ero(t, x = MéEro(s,y)dy = (A H2E10(t + 5, ), (2.7)
Rd

and for all y,,y, > -2,

ffd Eay (r = 1,2 = X)&a,(s — 1,y — 2)dzdr
t JR

= @A YPBE + 1,2 + Déiiyen(s — 1,y — x). (2.8)

Proof. (i) If |x| < ¢'/2, then
é:/l,()(t’ X) < t_d/z < 2d+and,a(ta x)'
If |x| > '/2, then

Eo(t, x) = 11|34 (15 1)

Moreover, we have

d+a
f Nay(t, x)dx < 171 ( f 3 dx + f | xl—d—adx) < {2,
R |xl<e!/2 x|>1/2

To prove (2.3), it suffices to show it for y = a@. Thus, by symmetry we may assume s < .
Noticing that for |z| < 5'/2,

d+a)2 .0 B
e M < PR < gy o (8, ).

Ix = z| + 172 < x| + |2) + 7% < |x] + 2(¢ + 5)'2,
we have
ta/2
t,x—2z s,2)dz > s, z2)dz
jRjd na/,oz( )77(1,(1( ) =z j|;|<sl/2 (lx _ Zl + t1/2)d+ana’a( )
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2—(1/2(t+ S)a/2 f —a/2
> Naa(8,2)d2 2 ——"aq(t + 5, X) Nae(l, 2)dz.
(|x| + 2(t+ S)I/Z)d+a <s!/2 Dd+a i<l

(ii) Estimate (2.4) follows by the following easy inequality:
(b + 31 + (¢ + )V <27 (1nd + 125 4 (] + 5'2))

<25 (d + T + (al + 1B+ 5,

where the second inequality is due to b* < a® + a®#bP for 0 < @ < S and a,b > 0. Moreover,

by (2.4) and (2.2)), we have

f f , ey, (8 = 1Y = DM, (r — 1,2 — x)dzdr < 27, 0(s — £,y — X)
t JR

x f (s — ,,)71/2(’, _ t)n/2j‘ (Uﬁ,o(s —ny—2)+ngolr—t,z— x))dzdr
t R4

IA

Nao(s — 1,y — x)f ((S _ r)(yl—ﬁ)/Z(r _ t)72/2 +(s— r)71/2(,, _ t)(yz—ﬁ)/Z) dr
t

Nazipanp(s =6y =0 (BEEL + LE + D+ 8% + 1,52 + 1))

< B+ 1L L 4 Doy syp(s — 1,y — X).

(iii) It follows by (2.1) with &, ,,(, x) < C17a,q+y, (t, x) and 2.5) with 8 = a.

(iv) It follows by Chapman-Kolmogorov’s equation for Brownian transition density function.

IA

O
2.2. Fractional derivative estimates of Gaussian kernel. For a € (0, 2), set
749 = Zlac2) + 2lg<t Lo=1-
Let J : RY — R be a bounded measurable function. For a function f(x) on R?, define
L) = f 80 I (el dz, (2.9)
R4
where
852 = fx+2) = f0) =2 V(). (2.10)
The following lemma will play an important role in the sequel.
Lemma 2.2. Given a € (0,2), let J : RY — R be a bounded measurable function with
f 2-J@ ™ dz=0, 0<r<R<oo. (2.11)
r<|zI<R

Let T > 0 and G,(x) : (0,T) x R? = R be a C? function in x. Suppose that for each j = 0, 1,2,
there are C; > 0 and B; > 0 such that for t € (0,T) and x € RY,

VG0l < Cttaa—p,- (1, ). (2.12)

Then for any vy € [0, (2 — @) A 1), there exists a constant C = C(y,d, a) > 0 such that

Bo B

|27G,(0| < Cll(Cor™® + it + Cler
8

Moo, %), (2.13)

YB1+(1-y)B)
=)



Proof. By definition (2.9)-(2.10), (2.11) and (I.11), we have

|.§1Gt<x)|<||f||w[ f AC R f IGy(x + 2)| - | dz
lzl<t

|Z|>11/2

* G/l |27z + Loe 2| VG,(0)] || - Izl‘d‘“dz]

Jz|>1/2 |2|>!/2

= [Wllo|ly + L+ I + L.
Notice that for a € (0, 1),
S (x;2) = f (2. VG (x + 626,
and for a € [1,2), '
05 (x;2) = fo 1f01 0z ® 2, VG, (x + 0/62))d6’ do).

By (2.12), we have for all |z| < /2,

1
166 (s 2)l < I f IVGi(x +02)/d0 + Lepr o2l - [VGi(x)]
0

1
<G (f Naa-pi-1(E, X + 02)d0 + 14e1 2)00-p,-1(1, X) | I2]
0
< 2d+aCl na,a—ﬁl—l(t, )C) |Z|7
and if @ € [1,2), we alternatively have
165 (x: 2| < 29°C) Ngsapy-(t, X) |2

Thus for I, if @ € (0, 1), then

d —d- -
I, <277°C, Noa-p,-1(L, X) 2" dz < Cit ﬁ'/zna,o(l, x);

|zl<et/?

if @ € [1, 2), then by interpolation, we have for all y € [0,2 — ),

(¢4 Y 1_7 —a—a
L < 2% f (€160 1) (Coloappoats W) 2F) Il
lzl<t
< C?C;‘Vt—v’ﬁl/2—(1—7),32/277&’00, x).
For I, by (2.4) and (2.2), we have

I, < Cot*Pol f No(t, X + 2|z dz
|Z|>tl/2

< 2d+acotd—ﬁo/2 f Nao(t, X + 2Ny (t, —2)dz

le|>!/2
< 4T ICot" PP, (21, X) f o, X +2) + 11, —2)]dz
R
< Cot P 14,0(1, x).
For I5 and 1, it is easy to see that
L+1 < (Col_ﬁ()/2 + le_ﬁl/z)ﬂa,o(f, Xx).

Combining the above calculations, we get (2.13).
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Under (H%), it is more or less well known that there exists a fundamental solution to the oper-
ator 9, — £ (cf. [19]). However, to the best of our knowledge, most of the proofs also require
the Holder continuity of a with respect to the time variable 7. For the readers’ convenience, a
proof of the following result is provided in Appendix [6.2]

Theorem 2.3. Under (H"), there is a unique continuous function Z on Dy such that for a.e.
t € (0,s), and every x,y € R¢,

0. Z(t, x;8,y) + L Z(t,-; 5,y)(x) = 0, (2.14)
and

(1) (Upper and gradient estimate) For j = 0,1,2 and T > 0, there exist constants C, A > 0 such
that on D),

IVIZ(t, x; 5, )| < Céaj(s = 1,y = X). (2.15)
Moreover, Z(t, x; s,y) enjoys the following properties.

(2) (Holder estimate in y) For j = 0,1, B’ € (0,8) and T > O, there exist constants C,A > 0
such that on D},

IVIZ(t, x5 5,1) = ViZ(t 53 8,9 S Ci =y ) &g f(s=tyi=0.  (2.16)
i=1,2

(3) (Continuity) For any bounded and uniformly continuous function f(x),
Jim P f = flle =0, 2.17)
t—s|— ’
where Pi%) f(x) := [, Z(t,%; 5, 9) f()dy.
(4) (C-K equation) Forall0 <t <r < s < oo, we have
PoOPAf = pPYf. (2.18)
(5) (Conservativeness) For all 0 <t < s < o0, we have
P21 =1. (2.19)
(6) (Generator) For any f € Ci(Rd), we have
P2 f(x) - f(x) = f P22 f(x)dr = f ZL4PY f(x)dr. (2.20)

t t

(7) (Two-sided estimates) For any T > 0, there exist constants C, A > 1 such that on ]D)g ,
Cléo(s— 1,y —x) < Z(t, x;5,y) < CEpag(s — 1,y — X). (2.21)

We call Z(t, x; s, y) the fundamental solution or heat kernel of .Z“. The following corollary
gives fractional derivative estimates of Gaussian kernels.

Corollary 2.4. Let & € (0,2) and J : RY — R be a bounded measurable function satisfying
(2.10). Let Z(t, x; 5,y) be as in Theorem[2.3} B € (0, 1) be as in (1.9), and T > 0.
(i) There is a constant C > 0 such that on DI,
2721, 5 5,9)(x)| < Clllsotao(s = £,y = ). (2.22)

(ii) Foranyy € [0,(2 — @) A 1), there is a constant C > 0 such that on D,
[ 2721, 5 5,9)x0) = L7285 5, 0))| < Mokt = 02 D Tlay(s =6y = %) (203

i=1,2
10



(iii) Foranyy € [0,(2 —a) A 1) and 8 € (0,B), there is a constant C > 0 such that on DT,
| L7201, 5, 90(0) = L7215 5,3)(0] < Clllelys =327 ) a5 = 13 = 0. (2.04)

i=1,2

(iv) For anyy € (0, 1], there is a constant C > 0 such that on DT,

V.21, 15 5,3) = ViZ(t, 335 5,0)| < Clxi = 3" ) Enoyei (s = 1,y = 30, (2.25)
i=1,2

Proof. (i) By (2.15)) and (2.1)), estimate (2.22)) follows by applying Lemma[2.2]to function
(r,x) = Z(t,x+y;t+r,y)
withgB; =0, j=0,1,2, and letting r = s — .
(i) For fixed t < s and x;, x»,y € RY, let us define
G, (2):=Z(t,z+y;t+ry)—Z({t,x, —x1 +2+Yy;t+71,).

Clearly,
1:= L7, 5,9)(x) = L2, 8,9)(x) = LGy i(x1 —y).
If |[x; — x5| > Vs — ¢, then by (i), we have

1 < L7215 5,90 + 1LV 2t 5,9) ()
< Cl (a0 = £,y = 1) + Mao(s = £,y = 1))
< Cllloolx1 = ol Moy (5 = 1,3 = X1) + Taey (s — 1,7 = X)) (2.26)
If |x; — x,| < Vs — ¢, then by (2.13), we have for j = 0, 1,

1
VG2 < 131 = x| f VI Z(t 2+ y + 0(x2 = x1); 5, y)|d6
0

1
< |x — x2 f Ea-j-1(s —1,—2—0(xy — x1))d0
0

< |x1 = xa| - Epp—joi(s = 1,2),
and
V2G| < IV3Z(t 2+ y; 8, 9| + [VaZ(t, X2 — x1 + 2+ 3 8,9)| < Ea.2(s — 1, 2).
Hence, by (2.I) and Lemma [2.2) with 8y = 8; = 1 and 8, = 0, we obtain that for |x; — x;| <
Vs —1,
111 < Cllo(lx1 = Xal(s = 72 + 1xy = 2" (5 = )72 Jag(s = .31 = 3)

< ClMleolx1 = %27~ (s — 1, X1 = y).
Combining this with (2.26]), we obtain (2.23).
(ii1) As above, for fixed 7 < s and x, y;,y, € R4, let us define

G2 :=Z(t,z+yist +1,y1) = Z(LZ+ Y131+ 1, )2).

Clearly, . - .

L= 2771, 5,y0(0) = L2, 5 5,y)(x) = L7 G i(x = y0).
If [y, — y»| > Vs — ¢, then by (i), we have

1< LL7Z(t, 5 5, )|+ LL7Z(1, 5 5, 72) ()]

< W koo = £ 31 = X) + Mao(s = 1,32 = )
11



< W llsolyt = Y2 (Mapry(S = .31 = X) + Ty (s = 1,32 = 1)). (227)
If ly; — y2l < Vs —t, then by (2.16)), we have for j = 0, 1,
VG (@) 21 = 3o (Erp-i(s = 1.=2) + Erp—i(s = L.y2 = y1 = 2))
<y - }’2|ﬁ/§x/2,—ﬂ'—j(5 - 1,2),
and by (2.15),
VG- (D) < IVAZ(t, 2+ yi5 8, y0)| + [VIZ(t, 2+ yi; 8, y2)| < Exals — 1,2).
Hence, by (2.1)) and Lemma 2.2) with 8y = 8; = 8’ and 8, = 0, we obtain that for [y; — y,| <
Vs —1,
5 - By £y
11 < Cllo(y1 = 32 (s = 77 + Iy = 327 (s = 177 Jao(s = £, x = y1)
< Cllleolyt = y2l Moy (s = 1, X = y1).
Combining this with (2.27)), we obtain (2.24)).

(iv) It follows from (2.13) and the same argument as above. o

2.3. Kato’s class. We introduce the following Kato’s class of space-time functions. Recall
that functions &,,(z, x) and 7,,(t, x) are defined in (L.6). For a function g(z, x), we will use
g(t £ s,x £ y) as an abbreviation for Z},k:o gt + (=1)s, x + (=Dy).

Definition 2.5. (Generalized Kato’s class) Let 1, be given by (1.6). For a € [1, +c0), define

K, = {f : RxR! > R satisfies lim K} (6) = o}, (2.28)
Ro = {f : RXR’ - R satisfies KJ(1) < oo}, (2.29)
where
)
k(@)= sup [ [ 110 5.x% s G5.00bds (2.30)
(t,x) JOJRY
_ 0
K/ (6) := sup f |f1(2 £ 5, X £ Y)Na0(s, y)dyds. (2.31)
(t,x) JOJIRA

For a = +00, we define
Ko = {f : RxR! > R satisfies lim N{(8) = 0 for every A > o},

where
N/(6) := sup f |f1(z £ 5, x £ y)Ea—1(s, y)dyds.
(t,x) JOJRA

Remark 2.6. K, is the same as the Kato class defined in [28]. For any A > 0 and « € [1, o), by
(2.1), it is easy to see that there exists a constant C = C(d, a, A) > 0 such that for all § € (0, 1),

N (8) < CKL(9). (2.32)
Moreover, for any time-independent function f(t, x) = f(x), we have f € K, if and only if
1 (1+a)/2
M}’(é) = sup |f(x+y)|-T(1/\—2) dy—-0 aso—0.
xeRd JR? Iyl Iyl
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Indeed, it follows by noticing that

5 (@-1/2q 2 (1+a)/2 (1+a)/2
) s AO 1 0
f”"""l(s’y)ds - 2ydra = di = (1 " 2) '
0 o (Iyl+ st/z)dre ly[*+e Iyl Iyl

We have the following results about the above Kato classes.

Proposition 2.7. Let @ € [1,0), p,g € [1,00] and f : RxR? — R.
(1) There is a constant C = C(d, @) > 0 such that for all 5 > 0 and j € N,

K/ (jo) < CjKL(6), KI(jo) < CjKL(5) (2.33)

and

sup f I£1(f + 5, x £ y)dyds < C ((5‘““”%({,’(5)) A (5*"“””1‘(5(5))). (2.34)
(t,x) JOJRI
(ii) 1f§ +2 <1, then
LIR; L’(RY) c K, c K, c K;
and if @ € [1,2) and%+ %1 <2 —a, then

LYR; LP(RY)) c K, c K,.
Proof. (i) By definition (2.30), we have

J—1 (k+1)8
K;(j6) = sup Z f [F1Ct £ 5, X £ Y)1a.0-1(5, y)dyds
(t,x) k=0 ko R4

o (2.35)
< KJ(6) + Z sup f | |fI((2 £ k6) + 5, X + Y)aq-1(s + k6, y)dyds.
0 JR

k=1 (%)
Denoting the term in the above sum by I, by (2.3)) and (2.2), we have foreachk = 1,---, j—1,

5
I < supf LfI((t £ k6) £ s, x £y) Naa-1(8,Y — 2DNa.o(ko, 7)dzdyds
0 JRA

(t,x) R4

= Squ (ff IfI((t £ ko) £ 5,(x £ 2) £ )’)Ua,a—l(S,y)dde) No,a(k6, 2)dz
R \Jo Jre

(t,x)
< K.(©6) f Na.a(k6,2)dz = K1 (6) ( f na,a(l,z)dz).
R4 R4

Substituting this into (2.35]), we get the first inequality in (2.33)). Similarly, we can prove the
second inequality in (2.33). On the other hand, for any (¢, x) € R X R,

Naa-1(5,Y)

dyds
Tea1(59) "

") 25
f fI(t £ 5, %% y)dyds = f FIG£8) % 5,5+ )
0 JRA § R4

(25)(071)/2 25
S S@won SuP f |f1((z £ 6) £ 5, % £ Y)g.0-1(s, y)dyds
tx) Jo JRA

< 2((1—1)/25—(d+1)/2Kf(25) < (S_(d+1)/2Kf((5).

Similar, we have

f IfI(t + 5, x + y)dyds < 52K (6).
0JRY
13



(i) The inclusions of K; ¢ K, c K, and K, c K, follow by definitions and (2.32)). Let us
prove LY(R; LP(R?)) C Ngs1K,. Let f € LY(R; LP(RY)). By Holder’s inequality, we have

K/(6) < ( f ( f |f<s,y)|f’dy)pds)qla(6),
R R4

1
(e=)p" /24 P i
If,(é)::(f(f - ) ds) ,
0 \Jas (] + s1/2) "

with ¢* := q%] and p* := 1%' Noticing that

-1)p*/2 . .
sl@e=bp*/ dy < (a-p'f _ @y d dy < d-a+1yp
@rap S8 § Y+ @rap | =5 ’
R4 (lyl + Sl/z) lyl<st/2 [y[>s1/2 |y|

we have 1
0 M_(thl)q* ‘T*
1,(6) < s 2 ds| .
0

Thus 1,(6) converges to zero as ¢ — 0 provided that
dg d+1 d
q* -—qg'+1>0 —+-<1.
2p 2 P q

Similarly, we can show that LY(R; LP(R%)) c K, provided ‘;l + %1 <2-a. o

where

Next we study the mollifying approximation of f € K,. Let p(t,x) : R¥! — [0,1] be a
smooth function with support in the unit ball and f p = 1. For € € (0, 1), define a family of
mollifiers p, as follows:

pe(t, x) 1= E_d_lp(é‘_lt, e 1x).
For f € K,, we define

Je(t, x) 1= [ pe(t, x) = f ) f(s,y)pe(t = s, x — y)dyds. (2.36)
Rd+1
By Fubini’s theorem, it is easy to see that
K%:(6) < K1(6). (2.37)

Lemma 2.8. For a € [1, ) and f € K,, we have

1
lim f f o= F1(t £ 5% % Vw5, y)dyds = 0.
&0 Jo Jre

Proof. First of all, notice that

: ? :
lim sup ff |fe = fI(t £ 5, x £ Y)Nga-1(s,y)dyds < 21im K{:((S) =0.
5—)0 86(0,1) 0 Rd 5—)0
So, it suffices to prove that for fixed ¢ € (0, 1),
1 (a—1)/2
e — fl(t £ s, x
lim f f e Al 25, x 2 0ST 44 o, (2.38)
5 JRd

o0 (b1 + 5Pyt

Let f"(¢,x) := (-=n) V f(t,x) Anand f! := f" * p.. Since p, has support in {(z, x) : |(, x)| < €},
by the definition of convolution, we have

YOO = Sl s x £ y)s D
sup dyds
5 JRd

£€(0,6/4) (Iyl + s!/2)d+a
14




<

PO | f7 = fIG £ s, x £ Y)(s + §/4)e D2
dyds
R4

35/4 (Iyl = 6/4 + (s — 6/4)1/2)d+
<f““'|ﬂ—fwi&xiwawwwz
= Jasja Jma (Iy| + s172/4)d+a

which converges to zero as n — oo by the dominated convergence theorem. On the other hand,
for fixed n € N, since lim,_, f = f" a.e., by the bounded convergence theorem, we have

1 n n (a-1)/2
-+ s,x+
lim Ve = S 25 XENST 44620,
£20 Js Jrd (Iyl + st/z)d+e

Combining this with (2.39)), we obtain (2.38). o

dyds, (2.39)

3. ProoF oF THEOREM [I_1]

In the remaining part of this paper, we shall fix @ € (0, 2) and assume (H%), (H*) and b € K.
Below, a function f(¢, x) on [0, c0) X R? will be automatically extended to R X R4 by letting
f(t,-) = 0fort < 0. Notice that

LK = b, V4 L= b,V + L, (3.1)
where <) is defined by (2.9), and

b(t, x) == b(t, x) + 1ae(1,2)f

|z>1

M@L@m%ﬂ@—lmmkf w0z (32)

lzI<1

By definition, it is easy to see that for some ¢ = c¢(d, @) > 0,
K3(r) < K5(r) + clikllr™?, 7> 0. (3.3)

Let Z(¢, x; 5, y) be the heat kernel of .Z* constructed in Theorem We will construct the
fundamental solution p(t, x; s, y) of .Z; by using Duhamel’s formula (I.12)). To solve that integral
equation, let py(t, x; s,y) := Z(t, x; 5,y), and for n € N, define

palt, X5 8,y) 1= f f Pur (8%, 1,2 LV L1, 5 5, y)(2)dzdr. (3.4)
t JRA
We first prepare the following lemma for later use.

Lemma 3.1. Forany A > 0and j = 0,1, there exists a constant C; = C;(d,a, 1) > 0 such that
forall (t,x;s,y) € D,

f f Maa=j(r = 1,2 = D)[b(r )lEa-1(s = 1,y — 2)dzdr
t JR

< Cszb(S — DMNep-j(s =1,y — X),

(3.5)

and

L[flikﬂr—Lz—xmﬂndﬁurﬂs—ny—ZMKV
1 IR
< Cng(S D& (s =1,y —x),
where K5(s — 1) is defined by (2.30).
Proof. Notice that by (2.1,

(3.6)

Ei—j(s—t,y—x)Zmo_j(s—t,y—x), j=0,1.
15



Hence, by (2.4)), we have
f f a2~ r=t,z2=x) b(r,2)| &,-1(s — r,y — z)dzdr
t JR

< TNeo(s — 1,y — X) ff (r =0 2(s = r)'2|b(r, 2)|
t JRA

X (ﬂz,o(r —t,z2=X)+mo(s—r,y— z))dzdr

< Nop-j(s =1,y — X) ff |b(r, 2)I
t JRY

X (772,1(r —tz=Xx)+n(s—ry— z))dzdr
< CJKS(S - t)']a,Z—j(S - t$y - .X),

where the last step is due to the change of variables and the definition of K2. Thus (3.3) is
proved. Estimate follows from [28, Lemma 3.1] and (2.32)). o

Lemma 3.2. For eachn € Nand j = 0,1, Vf;p,,(t, X;8,Y) is a jointly continuous function on
D, and for any T > 0, there exist constants ¢, A > 0 such that for alln € N and (1, x; s, y) € D},

IVLpu(t, X3 5, 9| < c(clp (s = )" |IKllooTa - (s — 1,y — X)
+ (Cfb,K(S - t))né:/l,—j(s - t’y - X),

where (1) := ||kl (rl‘% + rl/z) + K2 (r).
Proof. (1) First of all, by definition, (H¥), (2.22) and (2.13]), there is a 2 > 0 such that
| LIZ(t, 5 5, )| S Klleolao(s = £,y = %), [V Z(t x5 5,0 < mai(s— 1,y —x).  (3.8)

For r > 0, let

(3.7)

Lp(P) = lIKllor' ™% + K2(1),

where b is defined by ll In view of 1) and li it is enough to prove (3.7) with 2’;,,,(
instead of €. Forn = 1, by and we have

VPt x; 5, ) 5ff E1-j(r = t,z= 0)(Ib(r, Dl - Ea1 1 (s = 1,y = 2)
t JR?

+ Klleao(s = 1.y = 2))dzdr
< CO?b,K(S —1)-&E-j(s =1,y — x) + cillkllcoNap-j(s — 1,y — X).

Suppose that (3.7) holds for ¢, and for some n € N. By (3-8) and the induction hypothesis, we
have

IV a1 (2, x5 5, 9)|
< ffd(c(c?b,K(r — 1)) NkllooTan—1(r = £,2 = X) + (clp(r = D))" Ex_(r — 1,2 — x))
t JR
X (1B(r, D)l - £a1,-1(s = 1,y = 2) + [KlloNao(s = 7,y = 2)) dedr
< c(cly(s = D) MKl Uy + D) + (clp,(s — D)'(I3 + 1),
where

I = ffd Nap-j(r —t,2= x) - |b(r,2)| - €24-1(s — r,y — 2)dzdr,
t JR
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b = ||kl ffd Naa-j(r —t,2 = X) - M o(s = r,y — z)dzdr,
t JR
L= ffd 2 = 1,2= %) - |b(r,2)| - E2a-1(s = 1,y — 2)dzdr,
t JR

L = ||kl ffd Ea—j(r—1,2—Xx)  Nao(s —r,y — z)dzdr.
R

t

By and (2.5)), one sees that
L+hL <l (s—1)- Na2-j(s — £,y — X),
and by and (2.6)),
L= b5 =0 &uj(s =1,y = 0, L < [Klolfaz-i(5 = 1,y = 2).
Therefore,
V2 pusr (1, %3 5, 9)| < €26(cly(s = D)™ Cpls = D) - kot j(s = 1,y = %)
+ (clyuls = D) (c3bpuls = 1) - 15 = £,y = %) + CallKlletara (5 = 1,y = %))
< (e + ea)(€lp(s = )" - IKllooTtap- (5 = 1,y = X)
+ C3(clpuls = D) Couls = 1) - 1 j(5 = 1,y = X).
Finally, by choosing ¢ = ¢y V ¢; V (¢; + ¢4) V ¢3, we obtain the desired result.
(2) We use induction to show the joint continuity of V{;pn. First of all, by Theorem Vf;po

is jointly continuous. Suppose now that V4p,_; is jointly continuous for some n € N. For fixed
e>0and o € (0,g/2), we write

s +0
VIpa(t, x;5,y) = ( f + f ) f ) VI puoi(t, X, 1,2) L% Z(r, - 5, y)(2)dzdr
5—0 t KR

s—0
o [ ipesna 220 s @
t+6 JRI
= [(6, 1, x;5,y) + L(6, 1, x; 5, y).
For I, as in step (1), there is a C, > 0 such that for all (¢, x; s, y) € DI and § € (0, &/2),
1116, 2, x; 5, y)| < Celp (6). (3.9)

For I,, by the dominated convergence theorem and induction hypothesis, one sees that for fixed
0 €(0,e/2),

(t,x;5,y) > L(6,1, x; 5,y) is continuous on DI .
Combining this with (3.9), we obtain the continuity of Vip,onD. Since &, T > 0 are arbitrary,
V.px is jointly continuous on DF’. The proof is complete. O

Lemma 3.3. Let J : R? — R be a bounded measurable function satisfying (2.11).

(1) If € (0,1] and b € K, then for any T > 0, there is a constant ¢ > 0 such that for all
n € Ny and (t, x; s,y) € DI,

1L pult, -5 5, V)D)] < c(clpi(s = D)W leoTa0(s = 1,y — X), (3.10)

where £y, (r) = lIklle (r'=% + r112) + K2(7).

(i) Ifa € (1,2) and b € K,, then (BX0) still holds with €, (r) := Ikl (r'=% + r1/2)+ "7 K(1).
17



Moreover, for the above two classes of Kato’s functions b, we have

Pnri(t, X3 8,y) = f f Z(t, x;1,2) L pu(r, -5 5, ¥)(2)dzdr. (3.11)
t JRA
Proof. As before, we set for r > 0
Up (1) = IIKlloor™2 + K2(r).

By (3.1) and (3.3, we only need to prove (3.10) with ¢, instead of £,,. By (2.22), one sees
that (3.10)) and (3.11) hold for n = 0. Now suppose that (3.10) and (3.11)) hold for ¢, and for
some n € Ny. By Fubini’s theorem, (2.22), (3.8) and (2.5)), we have

f f »37/ Pulty 5 1, 2)(X) L Z(r, - 5, y)(z)dzdr
t JRA

ﬁff (clou(r = DY o0 (r = 1,2 = %)
t JRY

X (1B(r, D)l £a1.-1(5 = 1,y = 2) + [Klleoltaro(s = 1,y = 2))dzdr
= (clpuls = DYl + 1),

1L prsi (8,5 5,9)(X)] =

where

he= ffd Nao(r = 1,2 = x) - |b(r, 2)| - E24-1(s — 1,y — 2)dzdr,
¢ Jr

I = [l f f ool = 1,2 0) Mgl = 7,y - edr
1 Jr
For I;, by (2.1) and (2.4), we have

I < (s —p@Vi-biz ff Na0(r = 1,2 = %) |B(r, 2)| - Navio(s — 1,y — 2)dzdr
t JRI

< Naavi-1(s =1,y — X) ffd |b(r, Z)|(77av1,o(r —6LZ2—=X)+Novio(s =1y — Z))dZd”-
¢t IR

If « € (0, 1], then N
I < ngo(s—t,y— x)K{’(s —1).
If a € (1,2), then
L < oo (s = 1,y = 0KUs = 1) = (s = )T K2(s = Dijero(s — £,y — ).
For I, by (2.5) we have
L 2 IKllsno—a(s — £,y = X) = llKlleo(s — '™ 2100(s — £,y — X).

Combining the above calculations, we obtain (3.10).
Moreover, by Fubini’s theorem again and the induction hypothesis, we have

Dui2(t, X5 8,y) = f f Pt (t, X1, 2). L% Z(r, - 5, y)(2)dzdr
t JRY

= ff ff Z(ta X5 rla Z,)o?i,lf’Kpn(r,’ 7, Z)(Z’)dzldr/
t JRIJt JRA

X .,S”rb’KZ(r, -3 8, y)(z)dzdr

= f f Z(t,x;r',7) f Lpu(r 51, 2)(@)
t JRI rJRI

X LPZ(r, -5 5, y)(2)dzdrdZ dr’
18



) f f Z(t, 57, )L Puar (r 5 5, y)( )
t JRY
The proof is complete. O

Under additional regularity assumptions on b and «, we can show further regularity of p,(z,x; s,y)
as given in the following lemma.

Lemma 3.4. If b and « are bounded measurable and for some Cy > 0 and y € (0, 1),
|b(tay) - b(t’ -x)l + |K(tay’ Z) - K(ta X, Z)l < C0|y - xl)’, re R+a X, ¥,Z € Rda (312)

then V2p, is continuous on Dy, and for any T > 0, there are two constants A > 0 and C; > 0
such that for all n € N and (t, x; s, y) € DI,

2-a)Al

n—1
Viput, x5 s, < CL(Ci(s = 1) 7 ) (ao + Expo)(s = £,y = X). (3.13)

Proof. Below, we always assume that 0 < s —# < T and x;, x», X,y € R%.

(1) By 2.15), (2.23) and (3.12), we have
1By - VZ(2, 5 5,)(x1) = by - VZ(t, 5 5, 1)) < by = 52l ( D €apyea(s = 1,y = x),

and by (2.23), (2.22) and (3.12),
L, 55, 0)00) = LEOL 55,00 S =1l ( D Ty (s = 1y = 1),

Let H,,(t, x) := ,i”,b *Z(t,; s, y)(x). By the above two estimates, we have
[Hoy(t,30) = Hoy(t, )] < 161 = 0 ( D Oy + &1y D5 =1y = x)). (3.14)

Moreover, by (2.135) and (2.22)), we also have

|Hyy (1, Ol < (a0 + Ea-1)(s — 1,y — X). (3.15)
(2) We use induction to prove (3.13). First of all, for n = 1, by below, we have

V2pi(t, x;s,y) = f f ) V2po(t, x;r,2)Hy (r, 2)dzdr = I + I + I,
t JR

where

Il = f f ViZ(l, X, T, Z)Hs,y(r? Z)dZdr,
st Jpd
2
st
L= f f V2Z(t, x; 1, 2)(H, (1, 2) — Hy (1, x))dzdr,
' R4

S+t

2
13 = f (f ViZ(t, X, r, Z)dZ) Hs,y(r’ )C)dl".
t R4

For I,, by 2.15)), (3.15), (2.6) and (2.8)), we have

1| < f &1 = 1.2 = (g + E0)(s = 1y = 2)dadr
wJR
2

<(s—-0" ff Ero(r = 1,2 = X)(Nao + Ea-1)(s — 1,y — 7)dzdr
t JRA

SNao(s—t,y—x)+& (s =1,y — x).
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For I, by (2.15)), (3.14), (2.6) and (2.8)), we similarly have

st

2
|| < f JGaalr=tz— Xl =z ((n(x,—y +&—y-)(s =1y —2)
t R

+ (amy + E1my-)(s — 11y = X))dzdr

st

2
< f fd Eappyo(r—16,z2—x)- ((ﬂa,—y +&y 1) =1y —2)
t R
+ (ay + E1my-)(s — 11y = X))dzdr
S Nao(s =1,y —X) + &y 1(s — 1,y — X).

For I3, by (6.31]) below and (3.15)), we have

S+t

: B_
5] < (f (r—1)? ld”) (a0 + Ea-)(8 =1,y = X) = (Moo + E2-1)(S = 1,y = X).
t
Combining the above calculations, we obtain (3.13)) forn = 1.

(3) Suppose (3.13)) holds for some n € N. By the induction hypothesis, (3.15) and Lemma[2.1]

2-a)Al

IV2pusi(t, x5 5,9 < C1(Ci(s —£) = )"

X ffd(ﬂa,o + &) —t,2— X)Nap + Er-1)(s — 1,y — 2)dzdr
¢ JR

Q2-a)Al

SCiCi(s =0 2 )" (Map + Exp-1)(s — 1,y — X).
Thus we obtain (3.13).

(4) The joint continuity of V2p, follows by the same argument as in Lemma The proof is
complete. O

Now we can prove the solvability of the integral equation (1.12)).

Theorem 3.5. Under (H%), (H*) and b € K,, there exists a 6 > 0 so that (1.12)) has a unique
continuous solution p(t, x; s,y) on Dg such that

Ip(t, x5 5,91 < Ci(éno + IllooTa2)(s = 1,y = x)  on D (3.16)

for some constant Cy > 0. Moreover, the following hold.

(1) (Gradient estimate) Vp is continuous on Dg and for some C, > 0 and all (¢, x; s,y) € D,

IVip(t, x; 5, 9)| < Co(a-1 + lIKllooTa,1)(s = 1,y = X). (3.17)

(i1) (On-diagonal lower bound estimate) There is a constant C3 > O such that for all |y — x| <
Vs —1t <6,

Pt x; 5,y) > Ca(s — 1), (3.18)

(ii1) (C-K equation) For all (t, x; s,y) € Dg and r € (1, 5), the following Chapman-Kolmogorov
equation holds:

f pt,x;r,2)p(r,z; s, y)dz = p(t, x; 5, y). (3.19)
Rd
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(iv) (Fractional derivative estimate) Let J : R¢ — R be a bounded measurable function satis-
fying @.T1). If in addition for a € (0, 1], b € K, and for a € (1,2), b € K,, then for some

Cy > 0and all (¢, x; 5,y) € D,
L7 p(t. 1 5, )@ < CallJlleotaos — 1.y = x) (3.20)

and

p(t, x;8,y) = Z(t, x; 8,y) + f f Z(t, x;1,2) L2 p(r, -5 5, y)(z)dzdr. (3.21)
t JRI

(V) (Second order derivative estimate) If b and k are bounded measurable and satisfy (3.12)),
then V2p is continuous on DY) and for some Cs > 0,
IV3p(t, x5 5, < Cs(€1-2 + KlleoTla0)(s = 1,y = X). (3.22)

Proof. (i) Let ¢ ,(r) and the constant ¢ be as in Lemma[3.2]with 7 = 1. In view of lims_,o €} «(6)
= 0, one can choose a 6; > 0 such that ¢, ,(6;) < 1/2. Thus by (3.7), the series p(t, x; s,y) :=
Yo Pu(t, x5 5,y) and G(t, x5 5,y) 1= 0" Vapa(t, x; 5,y) are locally uniformly absolutely con-
vergent on ]Dg‘. In particular, p, G are continuous on Dgl and

Vip(t, x;5,y) = G, X3 5, y).
On the other hand, due to (3.4) we have

m—1

D palt x;5,3) = polt, x; 5,3) + f f D Palts X DL 5, y)(@)dadr.
n=0 1t JR n=0

By taking limits and the dominated convergence theorem, we obtain (1.12]). Moreover, by (3.7)),
we have for j =0, 1,

Vip(t, x; 5,5) — Vipo(t, x; 5, y)| < V! palt, x; s,
VI p(t, 3 5,) = Vipo(t, x; 5, 9)] Z) Palt, x3.5,Y)| 523
< 2¢(||&lloona2—j + Coxéa-)(s — 1,y — X),

which in turn implies (3.16) and (3.17).
Now let p(t, x; 5,y) be another solution to (I.12) satisfying (3.16). As in the proof of (3.7),
we can show that for all n € N,

Ip(t, x:5,y) = plt, 2: 5,)| < C1 (c(clyu(s = )" + (closls = 0)") IIKllooTa(s = £,y = x)
+ Ci(clpu(s = 1)"Ero(s — 1,y — X).
Since cf(s — t) < 1/2, letting n — oo, we obtain the uniqueness.
(i) By (3.23), if |x — y| < V/s — 1, then we have
P, x;8,y) 2 po(t, x; 5, y) = 2¢(||klloona2 + Coxa0)(s — 1,y — X)
> (c1 = lps =) =" > ei(s =72,

provided s — ¢ < 6, with d, being small enough so that £}, ,(6,) < 2‘—;2

(ii1) By Fubini’s theorem, we have

fR ) p(t, x;r,2)p(r,z; s, y)dz = Z Z fR | Pt X537, 2) Prem(7, 25 8, y)dz.

n=0 m=0
For proving (3.19), it suffices to prove that for each n € Ny,

Z f Pt X2 1 )P (r, 75 5, Y)dz = pu(t, 3.5, 9)- (3.24)
m=0 VR
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For n = 0, it is clearly true by (2.18]). Now suppose (3.24)) holds for some n € N. Write

n+1
Zf Pt X3 1, D) Pusi—m(1, 25 8, )dz = 1) + I,
m=0 R4

where

Il = fd pn+1(t’ X, T, Z)po(r, 258, }’)dZ,

R
L := Z f Pnt, X3 7, 2) Pt -m(7, 25 8, y)dz.
m=0 R4
Observing that
f ) L polt, -5 1, )Xo, 23 5, 9)dz = L po(t, -5 5, y)(x), (3.25)
R

by (3.4) and Fubini’s theorem, we have

Ilzf (ff pn(t,x;r’,z’)ciﬂf"(po(r',';r,Z)(Z')dZ'dr')Po(F,Z;S,)’)dZ
RINJr JRA

= f f Pn(t,x;r’,z')( f gr{“po(r’,-;r,z)(z’)po(r,z;s,y)dz)dz’dr’
t R4 R4

= f f pult,x; 7 )L po(r -5 5,y)(Z ) dr .
t JR4

Similarly, by (3.4) and the induction hypothesis, we have

I = f f palt,x; 7 )L po(r -5 5,y)(Z)dZ dr.
r JR4

Hence,
Il +12 - ff pl’l(t’ xa r,7Z’)%{J’Kp0(r,";s’y)(zl)dz,dr, = pn+1(t, -x; S,)’),
t JRA

which gives (3.24).

(iv) If in addition for @ € (0,1], b € K; and for @ € (1,2), b € K,, then by (3.10), and since
lims_, €,(6) = 0, where £;,(r) is the same as in Lemma [3.3| with T = 1, as above there is a

d3 > 0 such that the series ), |,?K pa(t, 5 5, y)(x)| is locally uniformly convergent on fo. In

. S1AS
particular, we have on DO‘A 3

Lt 5,90(0) = Y| L palt, 5 5,0,
n=0

and so (3.20) holds. Moreover, by (3.11)), we also have (3.21).

(v) Let Cs be the constant C; in with T = 1. As above, it follows from (3.13)) with 7" = 1

—a)A1

that there is a 64 > 0 such that Cs6, > = 1/2.

Finally, we just need to set ¢ := d; A 9 A 93 A 4. m|

Using (3.19), we can extend the definition of p(, x; s, y) to Dg’.
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Proof of Theorem|[I.1] We shall show that p(z, x; s,y) in Theorem [3.5] has all the properties in
Theorem First of all, we need to extend the definition of p(¢, x; s, y) from Dg to D by C-K
equation as follows: If 6 < s — t < 29, we define

p(t, x;8,y) = fR p(t, x; 55, 2)p(52, 23 s, y)dz. (3.26)

Proceeding this procedure, we can extend p to Dy

(1), (2), (3) and (4) follow from (B.16), (3.17), (3-19), (3.20), (3.26) and Lemma 2.1, As for
(T12) and (T.13)) on Dy, it follows by (T.12)) and (T.13) on D} and C-K equation.

(5) By the construction of p(t, x; s,y) (see the proof of Theorem [3.5(1)), there is a §; > 0 such
that p(t, x;5,y) = X000 Pu(t, X; 5,y) on Dg‘. Then, by the dominated convergence theorem and
Fubini’s theorem, for any s,7 > 0 with 0 < s — 7 < §, and x € R?,

f p(t, x; s,y)dy=z f pa(t, x5 5, y)dy = f Z(t, x; s, y)dy
R? ‘o VRI

R4

+fo Pn-1(t, X;71,2) f LIZ(r, - 5,9)(2)dy|dzdr =1+ 0 = 1.
n=1 t Rd Rd

Hence, the conservativeness (1.18)) follows from the above equality and (3.26).
(6) Let P, f(x) := &d p(t, x;5,y)f(y)dy. By (1.12), we have for any bounded measurable f,

Piof(x) = P2 f(x) + f P, L PP f(x)dr. (3.27)
Hence, by , for f € C;(RY), we have
P f() = £ = PG - f) + f P 2 PO f()dr
= f P22 f(x)dr + f SP,,,;{’*KP&? f(x)dr, (3.28)
: ;
and, by and Fubini’s theorem,

f P, 2L f(x)dr — f P22 f(x)dr = f f P, LP“PE L0 f(x)dudr
t

= f P, L0 ( f Py f(x)dr) du
t

- f WL (PAf(x) = f(x))du
Combining this with (3.28]), we obtain
Pt =10 = [ P2t 2= [ P

(7) By (I.12) and (2.17), we only need to show that

lim sup
|t—s]—0 xeRd

f P, LY P f(x)dr| =0
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Notice that by (3.16)), (3.8) and Lemma[3.1]

f P 2P PP f(x)dr]| < 1flle f f f Eno + IKllerto2) (= £,2 = %)
t t JREJRA
X (|l3(r, |- Ea-1(s =y —2) + [KlleoTa0(s — 1,y — Z))dzdydr

< ||f||oo( f ((llos = "% + K35 = 1) (€0 + Illsrtaz) (s = £y = )

R
+ ”K“oo (na,Z + ||K||oo770,4—oz) (S - t,y - x))dy)

< Cllflleo (oil(s = ) + (Lols = 1)),
where ¢}, ,(r) 1s the same as in Lemma@ and the constant C is independent of x and s, ¢. Since

b € K,, one derives the desired limit. O

4. PROOF OF THE LOWER BOUND

4.1. Positivity. In this subsection, we show that if k¥ > 0, then the continuous kernel p(t, x; s, y)
constructed in Theorem [3.3]is non-negative.

Theorem 4.1. Under (H%), (H) and b € K,, if k > 0, then the heat kernel p(t, x; s,y) construct-
ed in Theorem|[3.5|is non-negative.

Proof. We divide the proof into three steps.

(i) Let b, := bxpl’ and &, := k*p?, where p{’’ € C®(R%") is supported in B, ¢ R**! satisfying
f P =1 and pi? € C2(R¥') is supported in B, c R2*! satisfying f p? = 1. For example,

Ks(t, X, 2) = f n (5,1, y2)pP(t = 5, X — 1,2 — y,)dy dy,ds.
R +

Let p.(t, x; s, y) be the corresponding heat kernel constructed in Theorem ‘We claim that
pe(t,x;5,y) >0 onDyg. 4.1)

While it is possible to use Hille-Yosida-Ray theorem and Courrége’s first theorem to prove the
claim, as it was done in [15, Theorem 1.2] (see also [26, Lemma 4.1] and [8, Lemma 4.9]), we
present here a self-contained proof based on the maximum principle established in Theorem
in the Appendix. Notice that for any 6 > 0 and € € (0, 1),

Ky (6) < K5©O),  lkellss < kil (4.2)

and by (2.34), each pair of b, and «, satisfies (3.12). Hence, by (3.16) and (3.17), we have the
following uniform estimate:

sup [VIp.(t, x; 8, V) < C€i—j + KlleoNan—)(s —t,y — %), j=0,1. (4.3)
£€(0,1)

Let f € C;(R) be non-negative. Fix s > 0 and set

ug(t, x) := fR ) pe(t, x; 5, ) f()dy, t<s.

In order to show (4.1), it suffices to check that the conditions of Theorem are satisfied
for u.. Since b, k. € C°(R, X R?), by Theorem one sees that u, € C,([0, s] x RY) and
(t, x) = Viu(t, x) is continuous for j = 0, 1,2, and
u.(t, x) = Pfi) f(x) + f Pi’zr).,?jhs”(sus(r, x)dr,
t
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where Pg) f(x) = fRd Z(t, x; s,y) f(y)dy. Moreover, by (3.16), (3.17), (3.22) and Lemma as
in the proof of (2.23), we have for any y € (0,(2 — @) A 1),

LS (r, ) = L un(r, )| < Cols = )T Jx = X
Hence, for Lebesgue almost all 7 € [0, s] (see Lemma [6.4] below),
Ous + Llu, + .L’jb&"'“‘ug =0.
Thus we can use Theorem [6.1]to conclude (.T).
(i) In this step, we show that
P 1s locally equi-continuous on Dy’ 4.4)

Recall that

pe(t, x;8,y) = Z(1, x; 5, y) + f f pe(t, x;1,2) L% Z(r, - 5, y)(2)dzdr. 4.5)
Rd

t

T

Let D be a compact subset of ID)IOO C Dy, where 0 < 1y < Ty < oco. We first show that

lim sup sup |p(t,x;s8,y)— p(t,x;s,y+ h)| =0. (4.6)
11=0 ¢e0,1) (¢,x,5,y)eD

Notice that for any ¢ < (s — 1)/4, by @.3), (3.8), (2.1) and (2.2),
f f pe(t, X3 1,2). L2 Z(r, - 5, y)(2)dzdr
s—JRY

=< f f (&x0 + llxllcona)(r — 1,2 — x)
s—0JR4

X (.2 + lille) - £101(5 = 7.y = ) + Illols = oy = D)dedr
<((s=1=0) "+ (s—1- )" 4P)

5
X ffl (lbs(s —-rny-— Z)l : na,a—l(r, Z) + ”K”oonaf,O(r’ Z))dZdI"
0 JRrd
< (s =07 (K2(6) + lIKlled* + lIklle6' ")
By @3), (2.16), (2.24), Lemmas and 2.1} for any 8 € (0,8) and y € (0,(2 — a) A 1), we

have

s—0
'f f pe(t, x; r, z)DZjbg’KS(Z(r, 58, y) = Z(r,+; s,y + h))(z)dzdr
! R4

s—0
< |’ f d(fa,o + [IKlleo0.2)(r = 1,2 = X) (Ibo(7, 2)| + [IKslloo)
t R

X (f/l,—ﬁ'—l(s —rny-2)+&pa(s—ry+h- z))dzdr]
+ Ihlﬂlyllklloo[ ff (&0 + llxllcona)(r — 1,2 — X)
t JRA

X (na,_ﬁ/y(s — 1Y =2 +Ne-py(S—1,y+h— z))dzdr

< |h|ﬁ’6—ﬁ’/2[ f f o+ Ikllonta2)(r = 1,2 = ) (1be(r, D] + el
t JR
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X ('f/l,—l(s -ny-+&a(s—ry+h— z))dzdr]

I (5 = 0770 4 o5 = 1))
< 6P PK (s = ) (1 + [IKlleo) (s = 172
+ AP (s = P77 (1 4 fIkdlools — 7)),
which together with (.7) gives (4.6). Similarly, we can show

lim sup sup |ps(t,x;5,y) = ps(t, x + h; 5, y)| = 0,
1hl=0 ge(0,1) (¢,x;5,y)eD

lim sup sup |Ps(t, X5 S’y) _p“?(z+5’ X S’y)l = 0,
16120 ge(0,1) (1,x;5,y)eD

lim sup sup |ps(t,x;5,y) — po(t,x;5 + 6,y)| = 0.
161-0 £e(0,1) (1,x;5,y)eD

Thus we obtain (@.4)).

(iii) By (@.4), Ascoli-Arzela’s lemma and a diagonalization argument, there exist a subsequence
& (still denoted by & for simplicity) and a continuous function p such that

Pe(t, x;8,y) = p(t, x; 5,y) for all (¢, x; 5,y) € Dy. (4.8)

Now we want to take limits on both sides of (4.3). First, by (¢.2), (4.3)), (4.8)) and the dominated
convergence theorem, we have

S g—)O A o
ff pe(t, x;1,2). L Z(r, - 5, y)(2)dzdr — ff p(t, x;1,2)LKZ(r, -5 5, y)(z)dzdr.
t JRY t JRA

Next, for the term containing b,(r,-) - V, by @3] and (2.13), we have

f f pelt, X, 1, )bo(r, 2)V.Z(r, 73 5, y)dzdr — f f p(t, x; 1, 2)b(r, 2)V Z(r, Z; 5, y)dzdr
t JRI t JRY

< f f G0+ Iellamo2) = 1,2= 0 15y = Bl ) &1, (5 = 1y = Ddadr
t JR

+ ffd pe = BI(t, x37,2) - 1B(r, 2)| - €1, 1 (s = 1,y = 2)dzdr =: L (&) + Ly(e),
t JR
where b is defined in (3.2) and b, is defined by

be(t, x) = by(t, x) + 1&6(1,2)f

zI>1

2ot X%, 2|27z = 1oeqou) f (1, x, 2)|zl ™ dz.
lzI<1

For I(¢), by (2.1), (2.4), Lemma[2.8] and the dominated convergence theorem, we have

Ii(e) < ft SfRd(nz,z + lKelleatta2)(r = 1,2 = X) by = bl(r, 2) - 2.1 (s = 1,y — 2)dzdr
< (1720 + lIKllona0) (s — 2,y — ) fszd b — bl(r,2) - (r = 1)(s = 1)'/2
X (Uz,o(r —tz=x)+mo(s—ry— Z))dzdr
< (21 + llloota 1) (s — £,y = X)[ ILJ lbe = BI(r,2) - o1 (r = 1,2 — x)dzdr

S —_ - &—0
+ f |be = bI(r,2) ~nai(s =1,y — z)dzdr] — 0.
t JRY
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For I,(¢), by (4.3), (4.8)) and the dominated convergence theorem again, we have

-0

Lg) > 0.

Combining the above limits, one sees that p(t, x; s, y) satisfies (I.12). Similarly, we can show p
also satisfies (I.14). Thus by the uniqueness, we obtain p = p and so, p > 0. o

4.2. Lower bound estimate. Throughout this subsection, we assume « > 0. By Theorem #.1]
and (I.13)), {p(z, x; 5,y) : (t,x;5,y) € Dy} is a family of transition probability density functions.
It determines a Feller process

(7, (o) (Xo)ss0),

with the property that
P.(Xs=x,0<s<1)=1,
and for r € [t, s] and E € B(RY),

E.(X;€E|X,)= fp(r, X, s, y)dy. 4.9)
E

Moreover, for any f € C;(RY), it follows from l) and the Markov property of X that under
P, ., with respect to the filtration .%; := o{X,, r < s},

M{ = f(Xy) — f(X)) —f Z,.f(X,)dr is a martingale. (4.10)
t
In other words, P, , solves the martingale problem for (.}, Cg(R")).
For any Borel set E, let
o :=inf{s > 0: X, € E}, Tp:=inf{s > 0: X ¢ E},

be the first hitting and exit time, respectively, of E.
Below for simplicity, we write

ja(t, X, Z) = K([, X, 7 — x)lz _ xl—d—a.

We now determine the Lévy system of the Feller process X, which in particular is a Hunt
process. The proof of the following result is similar to that of [11]. For completeness, we give
a detailed proof here.

Lemma 4.2. Suppose that E and F are two disjoint open sets in RY. Then

Z lix,_cEx,eF) f 1e(X, )fja(” X, z)dzdr

I<r<s

is a P, .-martingale for every t > 0 and x € R?.

Proof. First of all, by (4.10), {X,, s > 0} is a semi-martingale under P, . Let f € C;(R?) with
f=0onEand f = 1on F. By Itd’s formula, we have

CORVCIEDY f 0 X 0X,+ S )+ 22 [ aareacex,

1<r<s i,j=1

where

d
BA) = X)) = X, ) = D 0if (X, (X, = X,0).
i=1
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Hence,

S d A
N, := f XdM = f X0 (X, )dX, + > (X, B,
t -1 Yt

t<r<s

1 d S A
= f 16X, )0, (X, )X, XY, — f 16:(X)Z, f(X)dr

ij=1

is a martingale. Since f(x) = 0, f(x) = 61.2j f(x) = 0 for x € E, we further have

Ny= D 1(X ) f(X,) - f (X)L f(X,)dr

I<r<s !

= > LX) fX,) - f 15(X,) f F@Ta(r, X, 2)dzdr.
R4

I<r<s t

By choosing f, € C;(RY) with f,|r = 0, fylr = 1 and f, — 1, then taking limits, we obtain the
desired result. O

In particular, Lemma .2 implies that

B| ) LEG)1R(X,)

1<r<s

:]E,,x[ f f lE(Xr)lF(Z)j(t(raXraZ)dzdr]-
t JR

Let f be a non-negative measurable function on R, x RY x R¢ that vanishes along the diagonal.
By a routine measure theoretic argument, we get

E,,X[Z f(r,Xr_,Xr)] =E,. [ f f £ X DT ol X, Z)dzdr]-
t JRA

1<r<s

Finally, we can follow the same method as in [14]] to get the following Lévy system.

Lemma 4.3. Let f be a non-negative measurable function on R, x RY x R? that vanishes along
the diagonal. Then for every stopping time T (with respect to the filtration of X), we have

T
Eix Z J(r, X, X,)| = Epx f(r, X, 2 o(r, X, z)dzdr | . (4.11)
t<r<T t JR

We need the following two lemmas.

Lemma 4.4. For any M > 0, there is a constant y, € (0, 1) depending only on M and the
constants in (1.14)) with T = 1 such that for all 6 € (0, M),

2 1
sup Pt,x(T Bxo) S T+ Y00 ) < 3. 4.12)
(t,x)€R ; XR4

Proof. For simplicity, write T := Tps. By the strong Markov property of X, we have for any
r>0,

Pro(r < 147) <Pt <1471 Xeer € Bx, D)) + B Xoor € B(x, D)
= By (Prx, (Xir € Bx. D):7 <14 7) + Po(Xees ¢ B(x, )
< B (Pex,(Xeer = Xl > 8):7 <14 7) + Po(Xewr ¢ B(x, D)
<2 sup supP,(|X.., — x> %), (4.13)

t<S<t+r xeR4
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On the other hand, by (4.9) and (I.14), there is a constant C > 0 depending only the constants

in (T.T4) with T = 1 such that for all r € (0,1), 1 < s < ¢+ rand x € RY,

Pyoo(IXeer — X1 > £) = f P xt+rydy<C f (a2 +&20)(t + 1 = 5,y — x)dy
[y—x1>5

y-x>$

=C ez +E0)(t+7 = 5,9)dy S Ct+7 = $)(0™" +572),

lyl>3

which together with (4.13) yields
Pra(Toa) St+7) <CrE" +67),
By letting r = (6> with y, being small enough, we obtain (#.12).
For a number 6 > 0, define

m? = inf essinf«(t, x,z).
(t,x)eR,xR4  |z]<0

(4.14)

Lemma 4.5. Let M > 0 and y, be the same as in Lemma{d.4| For all y € (0,y,], there exists a
constant ¢, > 0 such that for all § € (0, M), t > 0, 8 > 46 and x,y € R with 0/2 > |x — y| > 26,

592 . ®

2
P,’X(O'B(y’g) <t+ ’)/5 ) = C |y ~ de"'a .

Proof. For ¢ € (0,6/4) and y € (0, y,], by (4.12) we have

(t+y8?) A Tp(xs)
E,’x( f dr) > Y6P,o(This) > 1+ ¥07) > ¥ /2.
t

Noticing that
X, ¢ B(y,0) when t<r<(t+ 752) A TB(x6)s
we have

1X(t+752)/\r3(x’5) €B(y,6) = : 1X;-€B(Y,5)'

l<r<(l+y62)/\‘l’3(x,5)

By (4.11)) and the definition of 7, we have

Pt,x(o' Byo) <1+ 752) > Pt,x(X(Hy(sz)ATBM) € B(y, 5))
(t+y82)ATp(x.s) £.X -X
=E,, f f K X2~ Xy) dzdr.

' Bys) 12— Xl
Since /2 > |y — x| > 26, we have for all z € B(y, ) and X, € B(x, 0),

lz=X | <ly—zl+y—xl+I[X, —x[ <2ly—x[<6.

Thus by (4.17) and (@.16)), we have

(®) d+2 . (0)

/}/62 m/( 6 'mK
P, 0By <t+7y5°) > = ———dz > 0p————.
ATse0 <t475)> 5 fm @ly—xp 7 Py =

The proof is complete.

Now we can give
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Proof of lower bound (1.22)). First of all, by the on-diagonal estimate (3.18) and (3.19), for any
T > 0, there is a constant C > 0 such that

pt,x;5,y) = C(s—0) % |y—x< Vs—1< VT. (4.18)
In fact, let § be as in Theorem If s—t<20and|y— x| < Vs —t, then by (3.26), we have

pt,x;s,y) = f pt,x; 52, 2)p(5, 23 5, y)dz
R4

> t,x; 55, 2p(5, 258, y)dz
/fB(m’r p(t, x5, (5 y)

S—1

@cg(s H™Vol( B, X)) = (s — 2.

Using the above estimate repeatedly, we obtain (4.18]).
Now by (@.18) and a standard chain argument (see [[18]), for any T > 0, there are positive
constants C, 1, > 0 such that

p(tax; S9y) = Cé:/lz,()(s_t’y_x) on Dg (419)
Thus to prove (1.22)), it remains to show that there is a C’ > 0 such that
p(t’-x; Sa)’) > C,mkna,Z(s_t7y_x) on DT’

where m, := inf( ) essinf e k(f, x,2). If [y — x| < Vs —1, due to (4.19), there is nothing to
prove. Below we assume

[y —x| > Vs —1=:30.

Let yo € (0, 1) be the same as in Lemma[.4]and 6 € (0, oo] be an arbitrary fixed number. By the
strong Markov property of X and Lemma4.5] we have for any 6/2 > [y — x| > 36

Pt,x(Xt+2yo62 € B(y’ 25))

\Y%

Pt,x [O’ 1= OBy < t+ ’)/052; sup X, — X,| < 5)

s€lo,o+y06?]

Et,x (me(r [ sup |Xv - X0'| < 5) s O B(y,0) <ft+ 7062)

s€[o,0+y06%]

Vv

l’l:lzf Pr,z (TB(&(;) >r+ )/062) Pt,x (0'30,7(5) <ft+ ’}/062)

0
EL) ¢, - m”

€1
> =P, .
( 2|y _ xldﬂt

O B(y.5) < t+’)’05 )
Hence, by (4.18)), we have for any /2 > |y — x| > 36
p(t, x;5,y) > f p(t, %1+ 2y08%, 2)p(t + 27067, 23 5, y)dz
B(y,26)

> inf p(t+ 2700, 2: 5. 9)Pro Xeszyre € B(3.26))

2€B(y,20)
§5a+2 . I((H)
>C(s— 1y LT S Oy a(s — 1,y — %), (4.20)
2|y — x|d+af
The proof is complete by setting § = oo in the above inequality. O
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5. THE TRUNCATED CASE

Unlike the upper and lower bound in Corollary [I.5](see also (I.5)), in the truncated case, the
heat kernel p(¢, x; s, y) decays exponentially as |x — y| — oo. In this section, we prove Theorem
[I.6]by establishing the following two lemmas.

Lemma 5.1. Under (H%), (H*), (HU") and b € K, forany T > 0, there are constants C,1; > 0
such that on D,
p(t9 X3 S,)’) < Cl (é:/ll,() + 7_7(2,1/8) (S - t9y - -x)a
where 7, 4 is defined by (1.23).
Proof. By (I.14)), we already know that

Pt x55,9) < Co (€xy0 + lIKlloonta2) (s = 1,y — x) on Dy, (.1

However, the term 1,,(s — t,y — x) is too large when [y — x| is large. So, we need to establish
a proper upper bound for this case. We use induction method to show that there is a constant
c1 = 1 suchthatforalln > 1,

ci(s—1)

p(t,x;s,y)<( ) , O0<s—t<T,|y—x|>2n, (5.2)

First of all, by , we have forall s — 7€ (0, T] and |y — x| > 2,
plt, x;5,y) < Co (5 = 7700 4 Id|27 (s = 1)) < ea(s = 1).
Hence, (5.2) is true for n = 1 as long as ¢; > ¢,.
Next we assume that (5.2)) holds for all n < N. We want to show (5.2)) for
s—te(0,T], [y—x|=2(N+1).

Fix such x,y and let 7 := 75, ) be the first exit time of X from ball B(x, 1). By the Lévy system
of X (see Lemma{4.3)) and (HU*), we have

Pt,x (X: € B(x, 2)6) = Et,x [ff k(r, X,z — Xr)dzdr =0,
t JB(x,2)¢

where we have used the fact that for r < T and z € B(x, 2)°,

|z =X, > |z = x| =X, — x| > 1.

n

/i/s+_1[) forn=0,1,---,N + 1. By the strong Markov property of X,

Letz, .=t +

p(t,x;8,y) =B, [p(t, X+ 5,); T < 5]
=E..[p(r, X5 5,y); 7T < 5, X; € B(x,2)]

N

= ZEt,x [p(7, X7 8,9); T € [ty, ths1), X7 € B(x,2)]
n=0
N

< Z sup P(”’ZQ Say) 'Pt,x (T < tn+1)~ (53)
n=0 (r2)Eltn tnr1)XB(x,2)

Noting that for all z € B(x,2) and |y — x| > 2(N + 1),
ly—zl>ly—al—lz— x> 2N,

by the induction hypothesis, we have

cl(s—tn))N: N((N+1—n)(s—t))N. .

N ! NN + 1)
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On the other hand, by (4.14) with r = (n + 1)(s —#)/(N + 1) and 6 = 1,
n+D(s—1
N+1
Combining (5.3)-(5.5), we get forall s — 7 € (0,7T] and |y — x| > 2(N + 1),

(N +1 —n)(s—t))N (n+ (s — 1)
NN + 1) N+ 1

Pi(t<ty)<C , n<N (5.5)

N
plt,x;5,) <cf - CZ(
n=0

N+1
N s_t)N+l (n)N
R ;(N+ w)

where C > 1. Since s = (N + 2 — s)(s/N)" is increasing on [0, N], we have
N+1 N N N-1
n N+1 n
N+2- (—) = +2+ N+2- (—)
;< (5 ( - ) Z( (5

N
e+2+ f (N +2 - 5)(s/N)Vds
0

N

N

1 ((N+2)NVtI  NN+2
=e+2+— -

NN N+1 N+2

N 3N +4
=e+2+ . al < 10.

N+1 N+2

Therefore,

S_t )N+l

£ 5,y) < N-loc(
Pt 5,0 < 100 (£

Thus (5.2)) is proven for ¢; = ¢, V (10C).
Finally, for [y — x| > 2, choosing n € N so that 2n < |y — x| < 2(n + 1), by (5.2), we have
A\ A\ T A
Dt 5.y) < (cl(s t)) b (2(n +1) als t))
n

n ly — x|

b =i
— 4 — 8
< (M) - ( st ) ,
ly = ly = x|
which together with (5.1)) gives the desired estimate. o

Lemma 5.2. Under (H*), (H"), (HL") and b € K,, forany T > 0, there are constants C,, 1, > 0
such that on D,

pt,x;8,y) = Ca (€10 + Tas) (s — 1,y — X).
Proof. First of all, by (4.19)), we have

p(t7 X5 S8, )’) = Cél:/lz,O(s - t’y - X) on DT’ (56)
and, by (HL*) and (4.20), for s —7 € (0, 7] and |y — x| < 1/2,
P(t,x;58,y) 2 Cilfap(s — 1,y — X). (5.7

Thus it remains to prove this lemma for s —¢ € (0, 7] and |y — x| > 1/2. Let n be the least integer
greater than 4|y — x|, that is,

2<n—-1<4ly-x <n. (5.8)
Fori=0,1,---,n, let us define

xi=x+(y—-x)i/n, B;:=Bx;,1/8) and t; =1+ (s—1)i/n.
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Noticing that foralli =0,1,--- ,n— 1 and z; € B;,

1 b 1 _ 1
|zi = zintl <lzi = x| 41X = x| + X — 2| < g + + ey 3 <2

by (5.7)), we have

—(d+a)
1 ’ s—t s—t
P, Zis tivts Ziv1) 2 Cilla2(tiv1 — i Zinn —Z) 2 C1| 5+ [ 7 (—) =10 (—)
2 3 n n
Hence, by C-K equation (3.19) and (5.8),

p(t,x;s,y)>f "'fp(thX;tl’Zl)'"p(tn—l,zn—l;s’y)dzl"'dZn—l
By

et [C2(s = 1) =)
>(Vol(B))) ( " ) (Iy xl) ’

which together with (5.7) and (5.6) yields the desired estimate. o

ﬂ

Theorem follows directly from the above two lemmas.

6. APPENDIX

6.1. A maximum principle. In this subsection we show a maximum principle for operator .Z,
which has been used to show the uniqueness and positivity of heat kernels in this paper.

Theorem 6.1. Let a(t, x), b(t, x) and «(t, x,z) be bounded measurable with matrix a(t,x) > 0
and k(t,x,z) > 0. For T > 0, let u(t, x) € C,([0,T) x RY) satisfy the following equation: for
Lebesgue almost all t € [0, T),
Ou+ Zu<0, limu(t,x) >0
T
Assume that for each t € [0,T), x € RY and j = 0,1,2, the mappings x + Vu(t, x) and
t = Viu(t, x) are continuous. Then we have

u(t,x) >0, (t,x)€[0,T) xR (6.1)
Proof. First of all, we assume that for each (¢, x) € [0, T) x R,
ou(t, x) + Lu(t,x) <6 <0 and |hm u(t, x) = (6.2)

Suppose that (6.1)) is not true. Since limyy_ u(t, x) = oo and lim . u(z, x) > 0, there must be a

point (¢, xo) € [0, T) x R¢ such that

27
u(ty, xo) = inf  u(t,x) <O.
(t,x)€[0,T)xRd
Since x — VZu(ty, x) is continuous and x is an infimum point of x > u(ty, x), we have
V. u(ty, xo) = 0 and (9;0ju(to, xo));; is positive definite and symmetric.

Therefore,

ZLu(ty, -)(x0) >0
and by (6.2),

u(t, xo) — u(to, xo) < (t — 1)6 — f Zsu(s, -)(xo)ds

< (1 —19)6 — f Zu(s, ) (xp) — Lsulty, -)(xop)ds. (6.3)

1o
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Notice that by definition and the assumptions,
|Zu(s, )(x0) — ZLiulto, -)(xo)|

< llalloollV2u(s, xo) — V2ulto, xo)| + 1Blleo|V c1t(s, X0) — V ut(to, x0)|

1
+ ”K”oo f (f ||Viu(s, Xo + QZ) — V)Zcu(to’ Xo + 9Z)||d0 |Z|2—d—a/dZ
lZI<1\J0

+Muf‘W@m+@—%u@—%@m+@+ﬂ@m%kﬁ”%
|z|>1

Since s — Viu(s, x), J = 0,1,2 are continuous, by dividing both sides of (6.3) by ¢ — 7, and
letting ¢ | #, we obtain

1 t
0<6+Ilim pa— f |-Zsu(s, )(xo0) — Lsu(to, )(xo)lds = 6 <0,
=ty [ — 0 fo

which is impossible. In other words, the infimum is achieved at terminal time 7, and (6.1)
holds.
Next, we need to drop the restriction (6.2)). Let

f) =1+ XY, Be(0,a/2),
For £,6 > 0, define
s 5(t, x) := u(t,x) + (T — 1) + ee™" f(x).
By easy calculations, one sees that for some C > 0,
L f(Ol < C(1 + |xP),
and
Oiuts (1, X) + Lus (1, x) < =6 + ee (L f(x) — f(x)) < =6/2 <0,
provided € being small enough so that ee™(.Z, f(x) — f(x)) < §/2. Moreover, clearly
Pj?o lues5(t, x)| = 0.
Hence, by what we have proved,
us5(t, x) = 0.

By letting £ — 0 and then 6 — 0, we obtain (6. 1) O

6.2. Proof of Theorem[2.3] Let A be a dxd positive definite matrix and Z, (x) the d-dimensional
Gaussian density function with covariance matrix A, i.e.,

e—<A" xx)/2

J2r)d det(A)

where det(A) denotes the determinant of A. For x,y,z € R and ¢ < s, define

Za(x) := (6.4)

A () = f a,(y)dr and Z,(1,x;5,2) := Zs, (2 — X).
t

Clearly, for each fixed y, Z,(t, x; s, z) is smooth in (x, z) and Lipschitz continuous in  and s. By
definition and (I.10), for each j € Ny, there are constants C;, 1; > 0 only depending on d and
c» such that for all x,y,z€ R?and t < s,
\V1Z(t, x;5,2)| < Ciéq, - j(s — 1,2 — X). (6.5)
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Moreover, it is easy to see that Z,(t, x; s, z) satisfies the following equation: for fixed s > 0 and
Lebesgue almost all ¢ € [0, s],

8. Zy(t, x; 5,2) + L V71,5 5,2)(x) = 0, x,y,z€ R (6.6)

Now, let us define
Zo(t, x; 8,y) 1= Z,(1, x5 8, ). (6.7)
The following lemma establishes the Holder continuity of V{;ZO(I, x; s,y)iny for every j > 0.

Lemma 6.2. Under (H"), for each T > 0, j € Ny and 8’ € (0, B), there exist constants Cj, A; > 0
depending on T, d, ¢| and c, such that for all x,y,y' € RYand 0 <t < s < T,

\VIZo(t, x; 5,y) — VIZ(t, x; 5,Y)|

" , (6.8)
< ley - y | (é‘:/lj,—ﬁ’—j(s - t»y - x) + f/lj,—ﬂ’—j(s - t’y - x))'
Proof. Observe that by the chain rule,
VIZy(x) = Hi(A™, )Zs(),
where H (A, x) is a vector valued polynomial of A, x, and has the following property
Hj((*A,¢"'x) = (/H;(A, x), £>0. (6.9)
Thus by the definition of Zj, we have
ViZo(t, x;5,y) = Hi(AL{ (), ¥ = 0Za, 0y = ). (6.10)
Due to (I.10)), there is a constant C > 0 such that for all 0 < 7 < s,
C'(s = 0! < det(A,,(y)) < C(s — 1), (6.11)
and
(A 0z.2) > Uzl (s = 0, 1A )2 < Clel/(s = 1), (6.12)

Let us denote the left hand side of by .#. Let 6 > 0 be a small number, whose value will
be determined below. We consider two cases:

(Case [y —y'| > 6 A Vs —1). In this case, by we have
I L& fs—ty-x)+&, (s =1,y —Xx)
<y =y (€ p-i(s =ty —X) + &1 p_j(s = 1Y — ).
(Case |y — y'| < 8 A Vs —1). In this case, by (6.10) we have
7 < IH(A7, 0,y = )l ‘e—m;;(y)(y—x),y—w I LR
det(A, 5(y))
Hi(A;} (), = %) ~ Hi(A{(Y),y = x)
Vdet(A,(») Vdet(A,,(")
For .#,, notice that
R = KA ()0 = 20,y = 1) = (A7 0D = 20, = )
< Cols =07 ly = y'Ply = 2 + y = y'I(ly = xl + 1y = xD)
<(Cod + DIy —x/(s = 1) + C,
where A is the same as in (6.12)), and by (6.9) and (6.12)),
H (A7), 2| < C(s = 07 h(lal/ Vs = 1),
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where h; is a j-order real polynomial. Thus in view of e — 1 < Ref for all R > 0, by (6.11) and
choosing ¢ small enough so that Co¢® = ﬁl, we have

A2 (s=0Phly—xl/ Vs =1 - Eo(s =1,y = x) - (€ = 1)
<(s=0Phily - xl/ Vs =1) - Eypo(s — 1,y — %)
x (s =07y =y Ply =2 + 1y = Ylly = xl + Iy’ = x)
<ly- yllﬁ/é:/l/&—ﬂ’—j(s -1,y —Xx),
where we have used the fact that [y — y’| < /s — ¢. Similarly, one can show
I 2y =y F&pp-i(s =1,y = X).
Combining the above calculations, we get (6.8)). O

The classical Levi’s freezing coefficients method suggests that the heat kernel Z of £ takes
the following form:

20,5, 5,9) = Zolt, 53.5,y) + f f Zo(t, 3 7, )O(r, 75 5, y)dzdr, (6.13)
t JRI

where Q satisfies the following integro-equation:

O, x;5,y) = Qo(t, x5 8,y) + f f Oo(t, x;1,2)Q(r, z; 5, y)dzdr (6.14)
]Rd

t
with
d

Qolt, x; 5,3) = (L = L2t 5 5,0)x) = ) (aP(0) = a/ )R, Zo(t, x;5,7). (6.15)

ij=1
Let us first solve the integral equation (6.14)).

Lemma 6.3. For each n € N, define Q,(t, x; s,y) recursively by

(1, x;8,y) 1= ff Qo(t, x;1,2)Qp-1(r, 25 5, y)dzdr. (6.16)
t JR

Under (H?), the series Q(t,x;s,y) = Yo On(t, x;5,y) is locally uniformly and absolutely
convergent, and solves the integral equation (6.14)). Moreover,

O, x;5,y) = Qo(t, x; 5,y) + fszd (@, x;1,2)Qo(r, z; 5, y)dzdr, (6.17)
t

and for any T > 0, on DI, we have

10(t, x5 5, )| < C&rp-2(s — 13y — X), (6.18)
and, for any 8’ € (0,),
10(t, x15 5,Y) = O(t, %25 5,Y)| < Clxy — xoF Z Eappa(s—1y—x), (6.19)
i=12

10t x:5.31) = Q. x: 5.y < Clyi = yof Y Eappals —tyi=x).  (620)

i=1,2

Proof. (i) First of all, by (6.5) and (H?), there exist Cyp, A > 0 such that

1Qo(t, x; 5, y)| < Cobapa(s =1,y = x). (6.21)
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We use induction to prove that foralln € N, 0 < < s and x,y € R,

(Col ' (B/2))"

10n1(0:3: 59| < (a5 = 23 = ), (6.22)

where I' is the usual Gamma function, and
On(t, x5 8,y) = f f On-1(t, x;1,2)Qo(r, z; 5, y)dzdr. (6.23)

t JRY

Suppose that (6.22)) and (6.23) hold for some n € N. Let y,, := % By (6.21), (6.22)
and (2.7)), we have

10,(1, x5 5, )| < Coyn f (r— t)g‘l(s - r)%‘1 (f Ero(r—t,2—x)60(s — 1,y — z)dz) dr
t R4

= Co(md™ )Py é00(s = 1.y = 1) f (r=02"(s =¥ dr
t
= Co(mA™ Y Py, mrrpals — 1,y — X)B(%, §) = Yur1éamep—2(s — 1,y — X),

where in the last step we have used B(%, §) = I“(g)l"(%) / F(@). Moreover, by the induction

hypothesis and Fubini’s theorem, we have

Our1(t, x5 8,y) = f f Qo(t, x;1,2) f f Qn1(r, 2,7, 2)Q0(r, 25 s, y)dZ' dr’ dzdr
t JR4 r JR4

) ffff Qo(t, x;1,2)Qu1(r, z5 1, 2)dzdrQo(r', 25 s, y)dz'dr’
t JRWt JRY

) f f Ou(t, x;7,2)00(r, 25 5, y)dZ'dr.
t JRI

Thus by (6.22)), the series Q = Y7, Q, is locally uniformly and absolutely convergent, and
solves (6.14) and (6.17). Moreover, we also have the estimate (6.18).

(ii) Next, we prove (6.19). We first show that

100t x1:5.3) = Qo(t. x| < i =l Y Euppals—ty-x).  (624)
i=1,2

If |x; — xp| > /s — ¢, then by (6.21]), one sees that (6.24) holds. If |x; — x| < /s — ¢, then by the
definition of Qy and (6.3), we have for some 6 € [0, 1],

100(t, X155, 3) = Qolt, X238, Y| < lay(x1) = @i ()| - V3 Zo (8, x15 5, Y)
+la(x) — a ()| - IVaZo(t, x13 5,Y) = VaZo(t, 23 5, )
<x1 = 0lPéy (s =ty — x) + |y — 0l lx — xlé,3(s — 1,y — % — 0(x) — x2))
<Ix =0l ipgpals —t,y—x1) + Iy — 02l — 0ol épa(s — £,y — x2)

< |x — xff Z Eippa(s—1y—Xx).
=12

Write
G(l’x; S,)’) = ff QO(tax; r’Z)Q(r’Z; S’)’)dzd”-
t JRA

By (6.18)) and (6.24), we have

IG(t, x15 8, y) — G(t, x25 5, Y)|
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< |x; — xf ff Eapa(s—ry—2) Z Eap-p—o(r—t,z— x;)dzdr
t

R? =12

<l -xnf Y g pals— 1y - x). (6.25)

i=1,2

Combining this with (6.24), we obtain (6.19).

(iii) We now show that on D!,

100(t, x; 5, 91) — Qot, x; 5, )| < |y1 — yaff Z Eapp—2(s—1,yi — X). (6.26)

i=1,2

If [y — y2| > Vs —t, then by (6.21]) again, one sees that (6.26) holds. If [y, — y2| < Vs —1, we
write

1Q0(t, x; 5, 1) = Qolt, x5 5, y2)| < Jaon) = auy2)|(IV320(t, 3 5, y0)] + IV2Zo(t, x; 5, 2)])
+ (ladx) = &)l A lad(x) = ai)l)|VaZo(t, x: 5.31) = ViZo(t, x5, 30)| =2 I + L.
For I, we have

I <y —yf Z Era(s—tyi=x) <y —yoff Z Eapp—2(s =1,y — X).
=12 =12

For I,, by (6.8)) we have

L <y =P (v — 2P Alys — xF) Z E—p-o(s—1,yi—X)

=12
<y =yl Z Eapp—2(s =1,y — X).
=12
Thus (6.26) is proven. Using (6.26)) and as in (ii), we have (6.20). O

The following result can be derived in the same way as that in the proof of [19, Theorem 6,
p-13] and so its proof is omitted here.

Lemma 6.4. Let f : R, XxRY — R be a measurable function and satisfy that for some y € (0, 1)
lf (2, x) = f(t, X)) < Clx = XT7.

Fix s > 0 and define V(t, x) := ft ’ fRd Zy(t, x; 1,2) f(r, z)dzdr. Then we have the following conclu-
sions:

(i) The mapping (t, x) — V2V(t, x) is continuous on [0, ) X R? and

V2V(t, x) = f f d V2Z(t, x; 1, 2) f (r, z)dzdr, (6.27)
t JR

where the integral in the right hand side is understood in the sense of double integral.
(ii) For Lebesgue-almost all t € [0, s] and x € R¢,
OVt x) + LV, x) + f(t,x) = 0. (6.28)
Now we are ready to give

Proof of Theorem We need to check Z(t, x; s, y) defined by (6.13) has all the stated proper-
ties. Let

O(t, x; 8,y) := ff Zo(t, x;1,2)Q(r, 75 5, y)dzdr.
t JRY
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(1) By (6.5) and (6.18), we have
|D(t, x; 5, y)| < ffd Epo(r —t,2 = x)é1p-0(s — 1,y — 2)dzdr
¢ JR

=< (f (s - r)ﬂzldr) Ea0(s =1,y = x) 2 &Hpn(s = 1,y = X), (6.29)

which together with (6.5) gives the upper bound of (2.21).
In view of (6.19), by (6.27), for j = 1,2, we may write

Vid(t, x;s,y) = f f ViZo(t, x; 1, 2)Q(r, z; 5, y)dzdr
S+t Rd
2

& .
. f f VIZo(t, 31, 2O 75 5,) — O(r x; 8, y))dzdr
t R4

S+t

+ f (f V{;ZO(Z, X r, z)dz) o(r,x;s,yydr =: I} + I, + . (6.30)
t R4
For I}, by (6.5) and (6.18), we have
|| < f f IVIZo(t, x;1,2)| - |O(r, 25 5, y)|dzdr
s+ JRd
2

< f Exy-j(r = 1,2 = x)&, p-2(s — 1,y — z7)dzdr

s+ d
7 JR

=< [ﬁﬂ (r— t)_%(s - r)g—ldr) Epo(s—ty—x) &y p (s =1,y —x).

For I,, by (6.5) and (6.19), we have

% )/
|| < f fd Ey-jr—t,z—x)z—xf (.fﬂjﬁ_ﬁ,_z(s —ry—2+&yppals—ry- x))dzdr
¢ JR
A‘T-H
< f fd Exppp-jr—1t,z— x)(f/lj/z,ﬁ—ﬁ'—z(s —rny—2+&pppas—ry-— x))dzdr
t R

S+t

z B=i
< (f (r—1 zjd”) Exap-p-2(8 =1,y —x) &y 0p-(s — 1,y — X).
t
For I3, noticing that for each y € RY,

f VIZ(t, x;1,7)dz = V. f Zy, w(r—t,z—x)dz =0,
R4 R4

by calculations as in Lemma|6.2] we have

fd V{;Zz(t, X7, Z)dZ fd VizA,,,(z)(r —-1,7— )C) - V!;ZA,V,(x)(r —-1,7— .X)dZ
R R

< f |z — xlﬁfﬂj,_j(r —t,z—x)dz 2 (r- t)@. (6.31)
R4

Therefore,

s+t

2 B
1] < f (r =07 &y pa(r— s,y = 0dr < &,5-1(s — 1,y = X).

t
Combining the above calculations, we obtain

|V1(D(t’ X S,}’)| =< é:/lj,ﬁ—j(s - t’y - X),
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which together with (6.5) yields (2.15).
(2) By (6.9), (6.20) and (2.8), we have for j =0, 1,
VIO, x; 5,y) = VIO, X3 5, )|

<ly-y¥ f f G jr = 2= (Eppals = 1Y =)+ (s — ny - 2))dadr
t JR

<ly- yllﬁ,(étxl,ﬁ—ﬁ’—j(s —Ly=X)+&pp-j(s—1,) - X)),
which together with (6.13)) and (6.8) implies (2.16).
(3) In view of (6.29), it suffices to show that
[ 250y - oo
R

lim sup
[t—s]—0 xeRd

= 0. (6.32)

Notice that (see (6.31))

f ) Zo(t, x; s, y)dy — 1' = ' f , Za, o)t X5 8,Y) — Za, (08, X5 8, y)dy'
R R

8
= fd ly — xPéo(s — t,y — x)dy < (s — 1)2.
R
Thus to prove (6.32)), it reduces to show

fR , Zy(t, x; s, )(f(y) — f(X))dy‘ =0.

lim sup
|t—s5|—0 xeRd

Since f is uniformly continuous, for any € > 0, there exists a 6 > 0 such that for all [y — x| < 6,

lf) - fx)l < e
Therefore, by (6.3)), we have

fR 206,55, D(O) = )y

<( f ; f )zoa,x; SO = FOldy
[y—xl<o ly—x|>6

<e f Zo(t, % 5,9)dy + 2/ f Il f Zo(t, x: 5, y)dy
|y—x|<é

ly—x|>6

< Sf Ero(s — 1,y — x)dy + 2|| flleo f Ero(s — 1,y — x)dy
[y—xl<é

|y—x|>6

<o [ £l =ty = 0d A= [ by
“ ly—x>6

< &+ 2||fllo(s — £)*257.
Letting |t — 5| — 0 and then € — 0, we get the desired limit.

(4) and (5). By (6.6) and (6.28), it is easy to see that for fixed s > 0 and Lebesgue almost all
t € [0, s],

O Z(t, x; 8,y) + LZ(t, 5,9)(x) =0, x,y€RY,

that is, equation (2.14)) holds. In particular, if we let Pg) fx) = fRd Z(t, x; s,y)f(y)dy, then for
Z)

0P f(x) + L P2 f(x) = 0, liTm P72 f(x) = P2 f(x) for r € (0, s].
tr

.8

bounded continuous function f on RY, (¢, x) V)ZCPE f(x) is continuous and

On the other hand, since ¢ — Pﬁi)Pgi) f(x) satisfies the same equation with the same final value,

by Theorem we get (2.18)). Moreover, if we take f = 1, then we get (2.19). The same
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reason yields the non-negativity of Z(t, x; s, y).

(6) Fix s > 0. For f € C;(R), set

u(t, x) = f(x) + f SP;Z,L%“ f(dr, 1€]0,s].

t

Then we have
Lou(t, x) = Lf(x) + f ZLEPD L f(x)dr.
t
Integrating both sides from ¢, to s with respect to ¢ and by Fubini’s theorem, we obtain

f Lu(t, x)dt = f LA f(x)dr + f f LAPY) L0 f(x)drdt

f L f(x)drt + f f ZLPD L0 f(x)dedr

f PO L8 f(x)dr = ulty, x) — f(x).

In particular, for almost all ¢ € [0, 5] and x € R?,

Ou(t, x) + L u(t, x) = 0, liTm u(t, x) = f(x).
1Ts

Using Theorem [6.1]once again (uniqueness), we obtain
u(t, x) = P,7) f(x).

(7) The upper bound estimate has been shown in (1). We only need to prove the lower bound
estimate. By definition, one sees that for |x — y| < (s — 1)/2,

Zo(t, x; 5,y) = Co(s — 1) 2,
and
Z(t, x;5,5) = Zo(t, x; 5, y) — |®(t, x; 5, y)| = Co(s — 1) ? = Cy (s — 1) BF1=D/2, (6.33)

which has a lower bound %(s — 1742 provided C;(s — 1)#*1/2 % Since Z(t, x; 5,y) is non-
negative, such an on-diagonal lower bound estimate together with C-K equation and a standard
chain argument yields the lower bound estimate (2.21)) (see [18] or the proof of Lemma [5.2)).

(8) Finally, we need to show the uniqueness of Z(z, x; s,y). Suppose that Z(t, x; s, y) is another
kernel that solves (2.14) and has property (2.15)). Then for bounded continuous function f on
R¢ and s > 0, w(t, x) := fRd Z(t, x; s,y)f(y)dy is continuous and

ow(t, x) + L w(t, x) = 0, liTm w(t, x) = f(x).

It follows from Theorem w(t, x) = Pﬁi) f(x) and so Z(t, x;8,y) = Z(t, x; s,y). The proof of
Theorem [2.3]is now complete. O
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